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A Statistically Motivated Likelihood for Track-Before-Detect

Daniel Bossér1, Gustaf Hendeby1, Magnus Lundberg Nordenvaad2, and Isaac Skog1,2

Abstract— A theoretically sound likelihood function for pas-
sive sonar surveillance using a hydrophone array is presented.
The likelihood is derived from first order principles along with
the assumption that the source signal can be approximated as
white Gaussian noise within the considered frequency band.
The resulting likelihood is a nonlinear function of the delay-
and-sum beamformer response and signal-to-noise ratio (SNR).

Evaluation of the proposed likelihood function is done by
using it in a Bernoulli filter based track-before-detect (TkBD)
framework. As a reference, the same TkBD framework, but
with another beamforming response based likelihood, is used.
Results from Monte-Carlo simulations of two bearings-only
tracking scenarios are presented. The results show that the
TkBD framework with the proposed likelihood yields an ap-
prox. 10 seconds faster target detection for a target at an SNR
of -27 dB, and a lower bearing tracking error. Compared to a
classical detect-and-track target tracker, the TkBD framework
with the proposed likelihood yields 4 dB to 5 dB detection gain.

I. INTRODUCTION

Underwater surveillance is traditionally carried out using
towed hydroacoustic arrays and sonar [1]. In the passive
sonar case, the surveillance is commonly based upon the
conventional detect-and-track philosophy which is a three-
step process [2, p. 16]: (i) beamforming is used to measure
the signal energy in different directions, (ii) the measured
energy is compared to a threshold to obtain detections, and
(iii) target tracking methods are used to filter the detections
and track the potential vessels.

A problem with the detect-and-track approach is that
modern vessels often have a low acoustic signature with
respect to the ambient noise, which makes the detection
step difficult. Depending on the selected detection threshold,
detections are either rare or indistinguishable from a large
amount of clutter. Moreover, the detection step only uses data
recorded in a single time slot, which means that information
useful for detection is not accumulated over time. If instead
the information is incoherently integrated over multiple time
slots using a motion model of the target, then potential targets
can be detected at a lower signal-to-noise ratio (SNR) [3].
This approach is commonly referred to as track-before-detect
(TkBD) [4]. Different implementations and realizations of
the TkBD concept can be found in [3], [5]–[7]. Since TkBD
solves the detection and tracking problem jointly it is crucial
to have not only an accurate model of the sound generated by
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Fig. 1: The scenario considered in this paper. A hydroacous-
tic array is towed aft of a ship and measures the acoustic
signals originating from an underwater vessel. The measure-
ments are used in a TkBD framework to simultaneously track
and detect the vessel.

the vessel, but also an accurate model of the vessels motion
[8].

Consider for instance the situation depicted in Fig. 1,
showing a hydroacoustic array being towed behind a ship and
an underwater vessel that emits an acoustic signal v. The task
is to estimate the vessel state x, e.g., bearing ψ, using passive
hydrophone measurements z of the signal v. To be able to
estimate x it is necessary to model the relationship between
z and x for the considered sound signal v. This relationship
is typically specified via the likelihood function φ(z|x, v),
which describes the statistical distribution of z given the state
x and source signal v. While established signal models exist
for the active sonar and radar case [2, p. 457], [9, p. 323], the
signal models and likelihood functions used in the passive
sonar case often lack a solid theoretical foundation. This
is likely owing to the complicated underwater environment,
which makes it difficult to accurately model the properties
of the measured sound signals.

Previous approaches have constructed the likelihood func-
tion by considering the beamforming response as the mea-
surements. Broadly, two types of approaches have been
considered before: (i) construction of a likelihood function
through either assumptions of the statistics of the response
[10], [11] or through some data fitting procedure [12], and
(ii) construction of a likelihood function through a nonlinear
function of the response, e.g., raising the response to some
power to increase its contrast [13], [14]. Here, the choice



of power has been ad-hoc. Hence, all currently proposed
likelihoods more or less lack a theoretically sound connection
to the statistical signal model, and their relation to the raw
acoustic measurements is undermined.

In this paper a theoretically motivated likelihood function
based on first order principles is proposed and evaluated.
A theoretically motivated likelihood function may give sev-
eral benefits, for instance: (i) better detection and tracking
performance, (ii) better understanding of the behavior of
the algorithm and the results, (iii) better ability to extend
the model to include different acoustic phenomena, and (iv)
insights into how one could create more robust algorithms.

Reproducible research: The code to reproduce the results
in this paper is available at https://gitlab.liu.se/
coast/tkbd.

II. TRACK-BEFORE-DETECT FILTERING

The problem considered in this paper is to find a suitable
likelihood function φ(z|x) that can be used for passive sonar
surveillance of a single vessel. Next, to highlight how the
likelihood function is used in a TkBD framework, the key
equations for the Bernoulli filter based TkBD framework
presented in [15] will be recapitulated. The Bernoulli filter
based TkBD framework will later be used to evaluate the
performance of the proposed likelihood function.

A. Algorithm Overview

The Bernoulli filter is a Bayesian filter that jointly esti-
mates the probability that a target exists and the probability
distribution of the target state x. Let qk|k (qk+1|k) denote
the estimated (predicted) target existence given the measure-
ments z1:k = {z1, . . . , zk} at time slot k. Further, let sk|k(x)
(sk+1|k(x)) denote the estimated (predicted) distribution of
the target state x given z1:k. Like the Kalman filter and the
particle filter, the Bernoulli filter recursively updates these
quantities through a time update step and a measurement
update step. In the Bernoulli filter, the prediction step is

qk+1|k =pb(1− qk|k) + psqk|k, (1a)

sk+1|k(x) =
pb(1− qk|k)bk+1|k(x)

qk+1|k

+
psqk|k

∫
πk+1|k(x|x′)sk|k(x′) dx′

qk+1|k
.

(1b)

Here, πk+1|k(x|x′) is the probability density function that
describes the motion of the vessel and bk+1|k(x) is the
birth density that describes where new vessels may appear.
Further, pb is the probability that a vessel appears, and 1−ps
is the probability that a vessel disappears. The measurement
update, given the new measurements zk+1, is

qk+1|k+1 =
qk+1|kIk+1

1− qk+1|k + qk+1|kIk+1
, (2a)

sk+1|k+1(x) =
φ1(zk+1|x)sk+1|k(x)∫
φ1(zk+1|x)sk+1|k(x) dx

, (2b)

where

Ik+1 =

∫
ℓ(zk+1|x)sk+1|k(x) dx, (3a)

ℓ(z|x) =φ1(z|x)
φ0(z|x)

. (3b)

Here, φ1(z|x) and φ0(z|x) are the likelihood functions for
z given that there exists or does not exist a vessel with state
x, respectively. As can be seen, the filtering recursions (1)–
(2) depend on the likelihood functions φ1(z|x) and φ0(z|x).
Hence, an accurate description of how the vessel state x
relates to the hydrophone measurements z is essential.

B. Vessel Model

Consider a bearings only target tracking scenario. A simple
model of a potential vessel is to describe it as a point with
a bearing ψ and an angular rate ω. Moreover, to describe
the relation between the measurements z and the power of
the sound emitted by the vessel, the model also includes the
SNR η in decibel (dB), at the array. Hence, the state at time
slot k is

xk =
[
ψk ωk ηk

]T
. (4)

The state of the vessel is assumed to change according to

xk+1 = Fxk +Gwk, (5)

where

F =

1 T 0
0 1 0
0 0 1

 , G =

T 2/2 0
T 0
0 T

 , (6)

and T is the time between two time slots. Further, wk is
white Gaussian noise with covariance

Q =

[
0.0012 0

0 0.052

]
. (7)

In other words, the bearing is assumed to be changing
according to a constant velocity model, while the SNR
is assumed to follow a random walk model. Hence, the
probability density function relating the vessel states between
two time instances is

πk+1|k(x|x′) = N (x;Fx′, GQGT ), (8)

i.e., x follows a Gaussian distribution with mean Fx′ and
covariance GQGT .

III. SIGNAL MODEL AND LIKELIHOOD
FUNCTIONS

Consider an array with M hydrophones. Moreover, assume
that there exists a vessel that emits a sound signal which
is recorded in noise by each hydrophone. Depending on the
bearing ψk to the vessel, the incoming sound signal vk(t) will
be delayed with τ (m)(x), due to the extra distance the sound
needs to propagate to reach to hydrophone m compared to
some reference microphone m = 1. Thus, the sound signal
recorded by the m:th hydrophone can be modeled as

y
(m)
k,n = vk

(
nTs + τ (m)(xk)

)
+ e

(m)
k,n n = 0, 1, . . . , N − 1,

(9)



where N is the number of samples collected during time
slot k. Further, Ts is the sampling period and e

(m)
k,n is the

measurement noise. The measurement noise is assumed to be
uncorrelated both in time and space and to follow a Gaussian
distribution with variance σ2

e . Let

y
(m)
k =

[
y
(m)
k,1 y

(m)
k,2 . . . y

(m)
k,N

]T
, (10)

denote the k:th batch of data recorded at hydrophone m. In
the case that there is no vessel in the tracking frame at time
slot k, the signal model is unchanged with the exception that
vk(t) = 0 for all t in (9).

Next, define the sound signal and the noise vector

vk =
[
vk(0) vk(Ts) . . . vk(Ts(N − 1))

]T
, (11)

and
e
(m)
k =

[
e
(m)
k,0 e

(m)
k,1 . . . e

(m)
k,N−1

]T
, (12)

respectively. Then, the measurement vector y(m)
k in (10) can,

using trigonometric interpolation [16], be approximated as

y
(m)
k ≈W ∗Λ(τ (m))Wvk + e(m). (13)

Here

[Λ(τ)]n,l =

{
λn(τ) if n = l

0 otherwise
, (14)

λn(τ) =


exp(−j2πnτ/(NTs)) n < N/2,

cos(τπ/Ts) n = N/2,

exp(j2π(N − n)τ/(NTs)) n > N/2,

(15)

is the fractional time delay operator and W the unitary
discrete Fourier transform matrix.

A. Existing Approximate Likelihood Functions

Several publications, see e.g., [11], [12], [14], have sug-
gested to use the beamforming response B(ψ, z) to construct
a likelihood function. Here, the measurements z is the
concatenated vector of all hydrophone signals, i.e.,

z =
[
y
(1)T
k y

(2)T
k . . . y

(M)T
k

]T
. (16)

The conventional delay-and-sum beamformer evaluates
B(ψ, z) by reversing the delay at each hydrophone, and then
examining the signal energy of the summed signal, i.e.,

B(ψ, z) =

∥∥∥∥∥
M∑
m=1

W ∗Λ(−τ (m)(ψ))Wy(m)

∥∥∥∥∥
2

2

= ∥U(ψ)(IM ⊗W )z∥22 ,

(17)

where

U(ψ) =
[
Λ(−τ (1))∗ Λ(−τ (2))∗ . . . Λ(−τ (M))∗

]∗
, (18)

and IM is the identity matrix of dimension M . Further, ⊗
denotes the Kronecker product. For a given z, B(ψ, z) is
usually precalculated for some set ψ ∈ Ψ of linearly spaced
bearing bins.

One of the proposed likelihood construction strategies
compares the energy within the main lobe to the sum of
energy outside the main lobe [14]. Assume that the B(ψ, z)
is evaluated for all ψ ∈ Ψ, and that the lobe width is Lψ .
Denote the bearing bins that are within the main lobe as
∆(ψ) = {ψ′ ∈ Ψ s.t. |ψ − ψ′| < Lψ}. Then, the likelihood
functions suggested in [14] are defined as

φ1(x, z) =
1

C|∆(ψ)|
∑

α∈∆(ψ)

B(α, z)r, (19a)

φ0(x, z) =
1

C(|Ψ| − |∆(ψ)|)
∑

α∈Ψ\∆(ψ)

B(α, z)r, (19b)

where C =
∑
α∈ΨB(α, z)r is a normalization constant

and r is an exponential factor to increase the contrast in
the beamforming response. Note that the normalization with
respect to the number of bearing bins in (19) were not
included in [14]. Henceforth, this set of likelihood functions
is referred to as the lobe width likelihood (LWL).

B. Proposed Likelihood Function
Next, a likelihood function will be derived directly from

the signal model in (13). To get around the fact that the
signal model depends on the unknown signal vk, it will be
assumed that vk is Gaussian with covariance σ2

vIN . For a
given SNR η, it follows that σ2

v = σ2
e10

η/10.
Given the state x and sound signal v, the likelihood of the

measurements z is given by

φ1(z|x, v) = N (z; (IM ⊗W ∗)U(ψ)Wv, σ2
eINM ). (20)

Next, by marginalizing φ1(z|x, v) with respect to the un-
known signal v, it holds that

φ1(z|x) =
∫
φ1(z|x, v)N (v; 0, σ2

e10
η/10IN ) dv

= N (z; 0, R),

(21)

where

R =σ2
e(IM ⊗W ∗)(INM + 10η/10U∗(ψ)U(ψ)) (22)

(IM ⊗W ).

Hence, the marginalized negative log likelihood is given by

−2 logφ1(z|x) = z∗R−1z + log |R|+NM log(2π). (23)

Using the matrix inversion lemma, it can be shown that

z∗R−1z =
∥z∥22
σ2
e

− B(ψ, z)

σ2
e(10

−η/10 +M)
. (24)

Further, it holds that

log |R| = N log(σ2
eM10η/10 + σ2

e) +N(M − 1) log(σ2
e).
(25)

Thus, the final expression for the marginalized log likelihood
becomes

−2 logφ1(z|x) =
∥z∥22
σ2
e

− B(ψ, z)

σ2
e(10

−η/10 +M)

+N log(σ2
eM10η/10 + σ2

e)

+N(M − 1) log(σ2
e)

+NM log(2π),

(26)



from which φ(z|x) can be computed. The likelihood for the
measurements z when there is no vessel can be found by
letting η → −∞ in (26), which yields

−2 logφ0(z|x) =
∥z∥22
σ2
e

+NM log(2πσ2
e). (27)

As seen in (26), the likelihood function takes the number of
hydrophones M in the array, the number of samples N , and
the SNR η into account. Henceforth, this set of likelihood
functions is referred to as the white Gaussian signal model
likelihoods (WGSML).

C. Connection to Existing Likelihood Functions

A noteworthy difference between the WGSML and the
LWL is that the LWL functions do not require the SNR to
be known or estimated, e.g., as a part of the vessel model.
Implicitly, the LWL likelihood functions in (19) do estimate
the SNR, since the functions compare the signal energy at
the estimated target bearing to the surrounding environment.

Additionally, it can be seen that the beamformer response
B(ψ, z) naturally enters the WGSML, and does so without
any prior assumption that the beamformer should have been
used in the first place. Furthermore, the LWL [14] and
other previously used likelihood functions [13] increases
the contrast of the B(ψ, z) by raising it some power. It is
noteworthy that the WGSML also increases the contrast in
B(ψ, z), but does so by evaluating the exponential of the
beamformer. Hence, the ad-hoc choice of power is no longer
required, and the choice of nonlinear function is theoretically
motivated.

IV. EVALUATION OF PROPOSED LIKELIHOOD
FUNCTION

To evaluate the performance of the proposed likelihood
function, i.e., the WGSML, the target tracking performance
of the Bernoulli filter algorithm in (1)–(2) when using
the proposed likelihood, is evaluated. The performance is
compared to when using the LWL as the likelihood function
in the Bernoulli filter algorithm, as well as a standard
detect-and-track target tracking algorithm. The detect-and-
track tracker uses a constant false alarm rate (CFAR) detector
to construct detections from the beamformer response. The
detections are then fed into a track score based track manager
to evaluate the probability that there exists a vessel in the
tracking frame, and a Kalman filter to estimate ψk and ωk.

Two scenarios were used in the performance evaluation.
The array used in the two scenarios is a linear array with
55 elements and a hydrophone spacing of 0.375 m. With
this spacing and number of hydrophones, the lobe width is
approximately Lψ = 2.12◦, which is a valid approximation
for all bearings except for those close to the end fire
directions [17, p. 237]. The beamformer B(ψ, z) is evaluated
over a linearly spaced set of 180 bearing bins between 0◦

and 180◦. The time between two time slots is T = 1 s. Other
simulation and the filter parameters used are found in Table I.

The ground truth vessel x movement is simulated using
the motion model in (5). Here, the SNR η of the vessel

TABLE I: Parameters describing the simulation environment
in Section IV and settings for the likelihood functions in
Section III-A.

Param. Value Description
ps 0.999 Survival probability
pb 0.001 Birth probability
|Ψ| 180 Number of bearing bins
N 300 Number of samples from each hydrophone
Ts 0.250 ms Sampling period
M 55 Number of hydrophones in the array
Lψ 2.12 ◦ Main lobe width
T 1 s Time between two consecutive time slots
r 5 The exponential factor in LWL

TABLE II: Thresholds γ for which the probability of false
track confirmation, at any point in a simulation of 180 s
without a vessel, is α = 10−3. The thresholds are based
on data from 30 000 simulations without a vessel.

Method: WGSML LWL CFAR
γ: 0.968 0.981 0.999

changes depending on the examined scenario. Hydroacoustic
measurements y(m) are generated in accordance with the
signal model (13). Further, the estimate qk|k is used for track
confirmation, where the presence of a vessel is flagged when
qk|k surpass some threshold γ. The threshold γ is determined
by running the filters in a 180 s long simulation without any
vessel, and finding for which γ the probability of a false
track confirmation is α. If qk|k surpass γ at any time slot
of the simulation, it is considered a false track confirmation.
The thresholds, for α = 10−3, can be found in Table II.
To ensure statistical significance in the thresholds, a total of
30 000 simulations are considered.

A. Scenario I

It is of interest to know the target detection capabilities
of the different methods used for various SNRs. This is
examined by simulating a target with a fixed SNR η, and
observing the qk|k estimates, in a simulation that is run for
240 s. The target is introduced in the simulation after 60 s. A
track confirmation is considered successful if the estimated
target existence qk|k surpass the threshold γ and if the
estimated target bearing ψk|k differs at most one lobe width
Lψ from the true target bearing. The number of successful
track confirmations are recorded over 1000 simulation for
every examined SNR to estimate the probability of detection
which is shown in Fig. 2a. From the figure, it is clear that
there is no notable difference between the two considered
TkBD methods. The methods can successfully detect a vessel
with a 50 % probability when the SNR is -31 dB. For the
CFAR method, the corresponding SNR is approximately
-27 dB. Thus, it is clear that TkBD improves detection
performance at lower SNRs, compared to classical detect-
and-track methods.

Additionally, it is also of interest to determine how fast
each method is at detecting the vessel after it is introduced.
To evaluate this, the optimal subpattern assignment (OSPA)
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Fig. 2: Results for Scenario I, evaluated using 1000 Monte-
Carlo simulations. The scenario consists of a single vessel,
for which its bearing changes according to (5) and has a
constant SNR. The vessel is introduced at the 60 s mark.

[18] is used, which summarizes cardinality and state estima-
tion errors in one metric. The average OSPA for a vessel at an
SNR of -27 dB for every time slot is shown in Fig. 2b. From
the figure, it is evident that the WGSML tracker outperforms
the LWL in terms of time to detection. When the difference
between the methods is the greatest, the LWL is lagging
behind the WGSML by approximately 10 s. Moreover, given
that the two methods have similar performance in terms of
successful detections, as shown in Fig. 2a, indicates that
the WGSML tracker is faster at signaling the presence of
a vessel.

Lastly, the accuracy of the estimated bearing may also be a
relevant factor, since it may differ between the two methods.
This is due to the dependency on the lobe width in the LWL.
To examine this, the root mean square error (RMSE) of
the bearing estimate and the by the filter estimated standard
deviation of the bearing estimate are evaluated at the moment
of detection. These metrics are shown in Fig. 2c. From the
figure, it can be seen that the two methods have comparable
performance at lower SNRs. However, at higher SNRs, the
RMSE of the LWL is approximately Lψ , while the RMSE
of the WGSML is considerably lower. This is likely due
to the summation of the main lobe in the LWL, acting as
smoothing of the response of beamformer B(ψ, z) over ψ,
which consequently limits the accuracy to the width of the
main lobe. Meanwhile, the WGSML method does not require
such a summation, which results in the lower RMSE at
higher SNR.

B. Scenario II

The second scenario considers a vessel moving towards
the array. As the vessel approaches the array, the acoustic
transmission loss decreases, which increases the SNR. Since
the WGSML also estimates the SNR, unlike the LWL, a
comparison in a changing SNR scenario is of interest.

The scenario considers a vessel that approaches the array
at a speed of 2m/s. Initially, the vessel is r1 = 6813m from
the array. To relate the SNR to the current distance rk, a
simple ocean channel model [19, p. 130] is used to emulate
the attenuation of the signal, as

ηk = −10 log10

(
rk
r0

)1.8

, (28)

where r0 = 100m is the distance where the SNR is 0 dB. A
total of 1000 Monte-Carlo simulations of this scenario are
examined. The SNR of the first successful detection and the
average OSPA for every time step can be seen in Fig. 3a
and Fig. 3b, respectively. From the figures, it seems like the
LWL tracker is able to make the first successful detection
at slightly lower SNRs compared to the WGSML tracker.
Again, the TkBD methods outperform the CFAR detect-and-
track method by being able to detect targets with a 5 dB lower
SNR.

While the first detection of the vessel can be made slightly
earlier with the LWL method, it provides no significant
benefit over the WGSML in terms of OSPA, as shown
in Fig. 3b. This is an indication that the LWL is unable
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Fig. 3: Results for Scenario II, evaluated using 1000 Monte-
Carlo simulations. The scenario consists of a single vessel
that is approaching the array. The percent detected indicates
how many of the 1000 runs have had at least one successful
detection at the considered SNR.

to make several consecutive successful detections after the
initial detection at low an SNR.

V. SUMMARY OF RESULTS AND CONCLUSIONS

In this paper, we have introduced a theoretically sound
likelihood function for passive sonar surveillance using a
hydrophone array. The likelihood was derived from first
principles via a measurement model for raw acoustic data.
Our proposed likelihood model was compared to a likelihood
model based on a common, yet ad-hoc, transformation of the
beamformer response. These were used in a track-before-
detect target tracker, and compared to a detect-and-track
target tracker. Through simulation studies, it was shown
that the proposed likelihood function yields a more accu-
rate estimate of the bearing at higher SNRs, and enables
earlier detection and tracking of the target. Compared to the
classical detect-and-track method, the TkBD tracker with the
proposed likelihood is able to detect the vessel at 4 dB to 5 dB
lower SNR. This is lower than the expected gain of 6 dB [9,

p. 318].
Future work will include adapting the proposed likelihood

functions to work with real data, which likely will introduce
the challenge of spatially correlated measurement noise.
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