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Joint Estimation of States and Parameters in Stochastic SIR Model

Peng Liu, Gustaf Hendeby, Fredrik Gustafsson

Abstract— The classical SIR model is a fundamental building
block in most epidemiological models. Despite its widespread
use, its properties in filtering and estimation applications are
much less well explored. Independently of how the basic SIR
model is integrated into more complex models, the fundamental
question is whether the states and parameters can be estimated
from a fusion of available numeric measurements. The problem
studied in this paper focuses on the parameter and state
estimation of a stochastic SIR model from assumed direct mea-
surements of the number of infected people in the population,
and the generalisation to other measurements is left for future
research. In terms of parameter estimation, two components are
discussed separately. The first component is model parameter
estimation assuming that the all states are measured directly.
The second component is state estimation assuming known
parameters. These two components are combined into an
iterative state and parameter estimator. This iterative method
is compared to a straightforward approach based on state
augmentation of the unknown parameters. Feasibility of the
problem is studied from an information-theoretic point of view
using the Cramér Rao Lower Bound (CRLB). Using simulated
data resembling the first wave of Covid-19 in Sweden, the
iterative method outperforms the state augmentation approach.

Index Terms— SIR Epidemic Model, Iterative Parameter and
State Estimation, Cramér Rao Lower Bound, Bayesian Filtering
and Smoothing.

I. INTRODUCTION

Mathematical modelling gives a way to investigate epi-
demics more quantitatively and makes it easier for decision
makers to design social policies, such as social distance,
vaccination, quarantine, lockdown, etc [1]. The compartmen-
tal model is one of the widely used model structures in
epidemiology. The Susceptible-Infectious-Recovered (SIR)
model [2] is a type of widely used compartmental epidemics
model, which is composed of susceptible, infectious, and
recovered compartments, respectively. A brief explanation
of the SIR model with a notation and methodological fusion
framework similar to this paper can be found in [3]. In the
SIR model, the dynamic trajectory is significantly impacted
by two of the parameters, i.e., the spreading and recovering
rates [4]. The basic reproductive number, R0, is defined as
the ratio between these two parameters, and this number is a
well-known index for epidemics prediction and intervention.
However, it is usually hard to measure the spreading and
recovering rates in most real-world cases. Therefore, it is
important to estimate these parameters from the data.
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Parameter identifiability is thus an important property of
the model, where several approaches have been suggested
in the literature. The first category mainly deals with de-
terministic formulations and uses the Least Squares (LS)
method for identification. Some methods are proposed in
[5], [6], [7] for the SIR model, and some others for ex-
tended models, Susceptible-Infectious-Recovered-Deceased
(SIRD) model [8], [9], and Susceptible-Exposed-Infectious-
Recovered (SEIR) model [10]. The performance is evaluated
from the curve fitting aspect, and the parameter estimation is
assumed to be solved perfectly if it has a small curve fitting
error. However, the curve fitting criterion is not enough to
analyse the model identification problem [3]. Some other
works investigate the stochastic SIR model. [11], [12] discuss
the method to construct a stochastic model. [13] solves
the problem using Markov Chain Monte Carlo (MCMC)
methods. Some works involve multiple measurement data.
[14], [15] incorporate state augmentation method to estimate
the model parameters. [16], [17] treat state and parameter
separately and solve them iteratively. In [16], they use
primal-dual interior point method for optimisation, whereas
we use weighted least squares (WLS), which is simpler and
has a lower complexity. The parameter in their method is
the covariance of noise, which is different from us. In [17],
complicated gradient and Hessian matrix are compulsory,
whereas we do not need them. The common difference
compared with [16], [17] is evaluation criterion. We evaluate
the parameter estimation accuracy, whereas they use cruve
fitting. Besides, we add the parameter identifiability issue
which is not contained in their papers.

The main contribution of this paper is that we propose an
iterative method to estimate both the parameter and states in
stochastic SIR models. We assume access to the number of
infected people per day. The assumed data may come from
prevalence tests which take some random selection of the
population to check whether they are infected or not. Our
method can be easily applied to the extended models, such
as SIRD and SEIR, and other observed numerical data related
to the infection, such as patients in hospital, in ICU, deaths
or estimated immunity in the population.

In terms of parameter estimation, the current estimated
state trajectory is used to formulate a WLS problem, and
in terms of state estimation, an extended Kalman smoother
(EKS) is implemented given the current estimation of pa-
rameter values. Compared to previous research which are
based on iterative methods, the parameter optimisation is
straightforward with WLS. The information content of the
parameters is analysed using the CRLB, and a positive
definite decreasing bound in time is a necessary condition



for parameter observability. We illustrate the results using
simulated data from the SIR model are tuned to give a good
curve fit to the first wave of covid-19 in Sweden. We compare
the proposed iterative algorithm to a straightforward EKS
approach, where the state is augmented with the parameters.

The structure of this paper is the following: the stochastic
SIR model is formulated in Section 2 with details about the
model itself. In Section 3 and 4, the parameter and state
estimation problems, respectively, are considered individu-
ally assuming the other one is given. Section 5 contains the
state augmentation method, observability, iterative method,
and numerical example. Section 6 contains the conclusion.

II. MODEL AND PROBLEM DESCRIPTION

A. Stochastic SIR Model

The SIR model is composed of the three compartments
Susceptible, Infectious and Recovered. A stochastic version
of the SIR model is given as:

ds(t)
dt

=−λ s(t)i(t)+ s(t)i(t)ws(t)

di(t)
dt

= λ s(t)i(t)− γi(t)− s(t)i(t)ws(t)+ i(t)wi(t)

dr(t)
dt

= γi(t)− i(t)wi(t).

(1)

Here, s(t) denotes the susceptible fraction of the population,
which relates to the people who can be infected, i(t) denotes
the infected fraction of the population, while r(t) denotes the
recovered fraction of the population. Here, the parameter λ

is the spreading rate, which denotes how fast the pandemic
transmits. Its value could be interpreted as the average
amount of people each infectious person can infect every
day. Further, γ denotes the recovery rate, and the reverse of
it, 1

γ
, could be interpreted as the number of days on average

a person is infectious (not ill).
The vector w(t) =

[
ws(t) wi(t)

]T is assumed to be
Gaussian process noise with covariance matrix Q, where we
assume that the small disturbances in the number of infected
and recovered each day are independent, so Q=

[
qs 0
0 qi

]
.

The reason for this multiplicative form for how the noise
enters the states is that the model uncertainty should be
large when we have large values of s(t) and i(t), and the
uncertainty should be small when these states are small.

In the current model (1), all the three variables should be
non-negative and the sum of them represents the fraction of
the whole population and must hence always be 1, which
means:

s(t)+ i(t)+ r(t) = 1
s(t), i(t),r(t) ∈ [0,1].

(2)

These constraint are crucial for generating simulated data,
but not so important for filtering. Because the measurement
provides enought information for confidence interval (CI) of
states to be within the constraints.

B. Discrete Time Model

The continuous model (1) can be discretised using the
Euler-Maruyama method. Based on (2), the third variable,
r(t), could be eliminated from the model because it can be
calculated from the other two variables. The discrete-time
model that will be used in the sequel is given by:

sk+1 = sk − τλ skik + skikvs,k

ik+1 = ik + τλ skik − τγik − skikvs,k + ikvi,k,
(3)

where τ is the time step, which can control the accuracy of
discretisation. The subscript, k, is used as a shorthand of the
quantity at time kτ , e.g., sk = s(kτ). For simplicity, τ is set
to 1 day in the sequel.

C. Measurement Model

Many potential data sources are both publicly available
and have been used in epidemiological studies. Possible
measurements include the following ones:

yprev
k = Nik + eprev

k (4)

yanti−body
k = N(1− ik − sk)+ eanti−body

k (5)

ydeath
k = Nαik−ddeath + edeath

k (6)

yICU
k = Nβ ik−dICU + eICU

k (7)

yhosp
k = Nδ ik−dhosp + ehosp

k . (8)

Here yk denotes the measurement, and the superscript de-
notes what the measurement is, here exemplified with preva-
lence, anti-body test, mortality, ICU and hospitalisation.
Since measurements are usually in the unit of people and
not fractions of the populations, the measurements are here
scaled with the number of people in the population N,
which is assumed to be known. α denotes the fraction of
death, which is Infectious Fatality Ratio (IFR). β denotes the
fraction of ICU, and δ denotes the fraction of hospitalisation.
The measurement noise ek is assumed to be Additive White
Gaussian Noise (AWGN). An important discrete parameter
is the delay d between the day the infection occurs and when
its consequence is observed. In this paper, we assume that
we have access to daily observations of the infectious people
yprev

k , which does not include a delay. The reason is to focus
on the fundamental filtering and estimation problem.

D. Model Example for Illustration

We will illustrate the results on simulated data. To make
the data semi-realistic, we tune them to give a good fit to
the first wave of Covid-19 in Sweden during the spring and
summer of 2020, for which daily fatality data is available.
The number of deaths per day have a weakly regular pattern
because of delayed reporting. The common solution is to
apply a moving average filter on the measurement,

ȳdeath
k =

1
7

k+3

∑
j=k−3

ydeath( j). (9)
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Fig. 1. Measured, averaged and estimated fatality data. The thin blue curve
is the reported number of daily deaths, while the thick blue curve is ydeath

k
and the red curve is simulated fatality data without process noise using
parameters in Table I.

TABLE I
PARAMETER VALUES IN SIMULATION AND FILTERING

[γ,λ ]T [s0, i0]
T

[
s f

0 , i
f
0

]T[
0.0237
0.2256

] [
0.9891
0.0109

] [
1
0

]
Qsim Qfs R[

0.02 0
0 0.006

]
2Qsim 2.7524×105

For the ground truth of parameter values in the simulation
in later sections, we choose the parameter values which min-
imise the LS cost between fitted and the averaged data ȳdeath

k .
A comparison between measured and simulated fatality data
is given in Fig. 1. We have used the value α = 1.4583×10−5

for the IFR parameter. The reason for this value is that we
plan to get a small curve fitting error to get a value for
parameter λ , γ and initial value of state for simulation, and
α is not further used in this paper. The parameter values
used for simulation and filtering are summarised in Table I.

In Table I, s0 is the initial value of the susceptible fraction,
which can be calculated as s0 = 1− i0. s f

0 and i f
0 are initial

values in filtering in the following sections. R denotes the
standard deviation of measurement noise for infection data
in (4), and the reason for such a large number is because the
population N, is 107. Qsim and Qfs are standard deviations
for process noise used in the later section.

E. Problem Description

As stated before, the goal is to jointly estimate the
state trajectory x1:T and parameters θ = (γ,λ )T from the
observations y1:T on an interval k ∈ [0,T ]. First, we will
break down the joint estimation into the simpler problems
of estimating θ from an estimated state trajectory x1:T with
known uncertainty, followed by a section on estimating x1:T
from y1:T and known θ .

III. PARAMETER ESTIMATION

If the state sequence x1:T is known, a WLS problem can be
formulated for the model described in (3) and (4) rewritten

as the following linear regression
dk+1 = φk+1θ +wk. (10)

Here, the virtual measurement dk+1 and regression vector
φk+1 are defined as:

dk+1 =

[
sk+1 − sk
ik+1 − ik

]
φk+1 =

[
−skik 0
skik −ik

]
. (11)

The noise term, wk, in (10), has the covariance matrix:

Σk =

[
q2

s s2
k i2k −q2

s s2
k i2k

−q2
s s2

k i2k q2
s s2

k i2k +q2
i i2k

]
. (12)

The parameter can now be estimated using WLS:

θ̂ = argmin
θ

T−1

∑
k=0

∥dk+1 −φk+1θ∥2
Σ
−1
k
, (13)

where ∥(·)∥2
P = (·)T P(·). The closed-form solution is given

by

θ̂ =

(
T−1

∑
k=0

φ
T
k+1Σ

−1
k φk+1

)−1(T−1

∑
k=0

φ
T
k+1Σ

−1
k dk+1

)
, (14)

and the corresponding estimation covariance matrix is

Cov(θ̂) =

(
T−1

∑
k=0

φ
T
k+1Σ

−1
k φk+1

)−1

. (15)

In practice, it is impossible to get perfect measurements of
ik and sk. In our later sections, their estimated values will be
used. In this case, an error for each state is inevi and causes
an errors in variable (EIV) problem. Total least squares (TLS)
could be used to solve this [18]. However, TLS assumes
all error terms are i.i.d., which cannot be satisfied here. By
computing the weight matrix, Σ

−1
k , we find that it is sensitive

to estimation error when sk and ik are small. Regularisation
is used to mitigate this. The regularised weight matrix is

Σ
−1
k,re = (Σk +ηI2×2)

−1, (16)

where I is the identity matrix. With proper tuning of the
regularisation parameter η , WLS will be more robust to
errors in (14).

IV. STATE ESTIMATION

Given a parameter vector θ = (λ ,γ)T , the model (3) and
(4) is a standard stochastic nonlinear state space model where
the extended Kalman filter (EKF) and EKS apply.

Observability for nonlinear models depends on the state
trajectory. One way to monitor observability is to study
the CRLB for a given state trajectory. Since this is a
lower bound on the achievable estimation error covariance
matrix, a necessary condition for parameter observability
is that the CRLB is positive definite and decreases when
more measurements become available. Another indication is
provided by just monitoring the covariance matrix from the
EKF or EKS.

We exemplify the covariance matrix using simulated data
of the model with parameters as given in Table I. Figure
2 compares the root mean square error (RMSE) to the CI
computed from the covariance matrix for each state for the
EKF and EKS, respectively. The solid line shows the average
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Fig. 2. RMSE of state estimation with EKF and EKS, model (3) and (4),
and parameters in Table I are used. Qsim is used for data generation. s f

0 , i f
0

and Qfs are used for state estimation. R is used for data generation and state
estimation. Solid line is the average RMSE over the MC runs, the dashed
lines show the CI with respect to the noise realisations in the MC runs.

RMSE over the MC runs, while the dashed lines show the
CI on RMSE from the MC simulations (thus showing the
variability of the estimated estimation variance). The CI
decreases over time, so the influence of the realisation of the
process and measurement noise decreases over time. We can
in particular note that the smoother gains information about
the early phases of the wave from the later data, where one
can make better predictions of the initial amount of infected
people i0 at time k = 0.

V. JOINT STATE AND PARAMETER ESTIMATION

In the previous section, state and parameter estimation
is discussed separately assuming the other one is given.
However, none of them is given in practice. Therefore, we
need to estimate both of them together.

A. State Augmentation

A simple method to estimate the parameter and state
simultaneously is state augmentation, where the parameters
are included in the state vector [19], [20]. The augmented
state space model can then be written in the following form

xk+1,a = fa(xk,a)+ga(xk,a)vk,a

yk,a = ha(xk,a)+ ek,
(17)

which is for convenience a bit more compact that the state
space model before. Here a denotes augmentation, and

xk,a =
[

sk ik λk γk
]T

vk,a =
[

vs,k vi,k
]T

fa(xk,a) =


sk −λkskik

ik +λkskik − γkik
λk
γk

 ga(xk,a) =


skik 0
−skik ik

0 0
0 0


ha(xk,a) = Nik.

the EKS can then be applied in an attempt to solve the joint
parameter and state estimation problem.
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Fig. 3. CRLB for filtering with augmented SIR model. Solid lines are
mean value of CRLB among simulations for each variable, dashed lines are
95% CI. The data is simulated with parameter values in Table I.

B. Identifiability Issue for Parameters

Similar to approach to analyse the observability for the
state estimation discussed in Section IV, we use the CRLB
to investigate identifiability for parameters. The parameter is
identifiable if, with model (17), we have:

PC
T |T ≤ P0|0, (18)

where P0|0 is the covariance matrix of the initial state without
any measurement, and PC

T |T is the CRLB of the estimated
state at the last time step. The initial value for CRLB is set
as PC

0|0 =P0|0. The reason for using (18) is that the estimation
of λ and γ at the last time step can be used. Therefore, (18)
will be enough.

The parametric CRLB is used because of its simplicity,
and it is computed as [21]:

PC
k+1|k = JC

x,kPC
k|kJC,T

x,k + JC
w,kQa,kJC,T

w,k

PC
k+1|k+1 = PC

k+1|k −PC
k+1|kHC,T

k (HC
k PC

k+1|kHC,T
k +R)−1HC

k PC
k+1|k,

(19)
where JC

x,k is the Jacobian matrix of the state transition model
with respect to xk,a computed at the ground truth. JC

w,k is the
Jacobian matrix of the state transition model with respect
to process noise computed at the ground truth. HC

k is the
Jacobian matrix of measurement model with respect to xk,a
at ground truth. The CRLB curve is given in Fig. 3.

As it is shown in Fig. 3, given the measurement data, the
CRLB for each state and parameter is decreasing with time
after the peak. This is a valid motivation for the identifiability
of parameters.

C. Iterative Parameter and State Estimation

We propose to estimate state and parameter simultaneously
using an iterative method. It starts from initial parameter
values λ 0 and γ0, and uses them to estimate the state with
EKS. The estimated states can be represented as s1

0:T and i10:T ,
where T denotes data length. With s1

0:T and i10:T , the notations
in (11) and (12) can be constructed. (14) can be used to
solve the parameter estimation part afterward to get a new



parameter value, λ 1 and γ1. Then we can go back to state
estimation with λ 1 and γ1 for the next iteration and repeat
until we meet the maximum iteration number condition. The
implementation details are in Algorithm 1.

Algorithm 1 Iterative Parameter and State Estimation
Input: Initial parameter values as λ 0, γ0, mean and covari-

ance of the initial states s0 and i0, the maximum iteration
number K.
for j = 1 : K do

2: Do EKS with model (3) and (4) using parameters λ j−1

and γ j−1 to get s j
0:T and i j

0:T .

4: Construct d j, φ j and Σ j using (11) and (12)

6: Use (14) to get γ j and λ j with d j, φ j and Σ j
end for

8: Do EKS to estimate ss
0 and is0 with the parameters after

the last iteration.
Output: λ K and γK as parameter estimation, ss

0 and is0 and
their covariance matrix as initial state estimation.

In Algorithm 1, λ j−1 and γ j−1 are parameter estimations
after the j−1th iteration. s j

0:T and i j
0:T are estimated states in

the jth iteration. s f
0 and i f

0 in Table I will be used to initialize
the smoother in every iteration. In terms of the initial state
value estimation, ss

0 and is0, should be estimated using the
smoothing result after the last iteration. For each iterations,
the initial state value of state estimation is fixed as s f

0 and
i f
0 . The reason is that it is found the state and parameter

estimation is sensitive to the initial state value in EKS, and
because the parameter value is far away from the ground
truth in the first several iterations, the smoothing result for[
ss

0, i
s
0
]

cannot be correct. If we replace the predefined value
with the smoothed value,

[
ss

0, i
s
0
]
, our algorithm will be

divergent. For the stopping rule of the iterative method, we
use maximum iteration criterion with an iteration number
which can guarantee all simulation could be convergent.

D. Numerical Example
In this section, Monte Carlo simulations of the model (3)

and (4) based on the values in Table I are used to evaluate
the performance of the methods.

In the simulation, 500 simulations are done. The initial
value of γ has the uniform distribution over the range [0,0.1],
and the initial value of λ has the uniform distribution in
[0.1,0.9]. The process noise has standard deviation Qsim for
data generation, and Qfs for state estimation as they are given
in Table I. In terms of the initial covariance matrix for state
estimation, 0.022× I2×2 is used. The reason for such a small
value is that the initial value in the filter is [1,0]T , which
is close to the ground truth. A comparison of the results
using the iterative parameter and state estimation and the
state augmentation of λ and γ methods, respectively, can be
found in Fig. 4.

For the state augmentation method, three among the all
500 simulations resulted in that the estimated parameter

Fig. 4. Parameter estimation results for state augmentation and iterative
method, respectively. 95% CI are computed through the covariance matrix
of the parameters. The left figure contains initial and estimated parameter
value. The right figure contains estimated value only for a clear look.

TABLE II
RMSE OF PARAMETERS IN TERMS OF DIFFERENT VALUE FOR

REGULARISATION FACTOR.

η LS 10−5 10−6 10−7 10−8

RMSE λ 0.0101 0.0096 0.0098 0.0101 0.0103
RMSE γ 9×10−4 7×10−4 7×10−4 7×10−4 7×10−4

values are outside of the displayed area, whereas this did
not happen for the iterative method. Both the actual estima-
tion errors and the confidence ellipsoid are smaller for the
iterative method.

In terms of regularisation factor in WLS as discussed
in (16), Table II shows the RMSE of parameter esitmation
with respect to the regularisation factor η . The purpose of
regularisation factor is to avoid divergence. Our simulation
shows that a too small value for η does not solve the
problem of divergence. Table II shows that this parameter can
be in a quite broad range without divergence in parameter
estimation.

For the initial value of the state, the criterion about whether
the initial value is estimated correctly can be rephrased as
whether the CI of the estimated state covers the ground truth.
We can use the chi-square test to detect whether the ground
truth is inside the CI region. The test statistic is given by:

T S = (

[
ss

0
is0

]
−
[

s0
i0

]
)T P−1,s

0 (

[
ss

0
is0

]
−
[

s0
i0

]
)

∼ χ
2(2).

(20)

Here, ss
0 and is0 are estimated initial states. s0 and i0 are

the ground truth of the initial state. P−1,s
0 is the covariance

matrix for the initial state using EKS. The ground truth is
covered in the CI region if the test statistic, is smaller than
the threshold. The threshold is determined using the chi-
square distribution. The result with different CI levels is
given in Table III. For instance, the first number shows that
51.2% of the simulations for the iterative method ended up
inside a confidence ellipsoid that corresponds to 50%. All in



TABLE III
COMPARISON OF HOW THE PARAMETER ESTIMATION ERRORS COMPARE

TO THEIR THEORETICAL COVARIANCE.

CI level 50% 68% 90% 95% 99%
Iterative method 51.2% 67.6% 85.4% 88.8% 95.8%

State augmentation 16.7% 22.9% 34.1% 39.8% 48.6%

Fig. 5. Test statistics of initial value estimation with iterative method.
The blue rectangulars are histogram of test statistics computed from (20).
The red curve is chi-square distribution with freedom 2, the red crosses are
threshold of different CI given in III.

all, the iterative methods outperforms the state augmentation
approach both in terms of final parameter and initial state
estimation.

A histogram of the test statistics is given in Fig. 5,
which shows that test statistic is approximately chi-square
distributed.

To summarise the simulations with focus on the parameter
estimates:

• The confidence ellipsoid is smaller for the iterative
method as shown in Fig. 4.

• The estimation errors are smaller for the iterative
method as shown in Fig. 4.

VI. CONCLUSION

In this paper, the parameter and state estimation problem
of the stochastic SIR model was investigated. The SIR model
can approximate a given wave of a pandemic quite well,
which was illustrated by the first wave in Sweden for Covid-
19. The spreading and recovery rates are crucial to monitor.
We proposed a method that iterates between state estimation
using given parameters with EKS and parameter estimation
using a known state trajectory with WLS.

We compared this method to the state augmentation. It was
shown in a simulation study that the iterative method out-
performed the augmentation method in terms of (i) smaller
estimation errors and (ii) no divergence rate.

The state augmentation method was used to analyse the
information content of the data using the CRLB. It was
shown that the CRLB decreases over time for a given
wave of the pandemic, which gives a necessary condition of
parameter observability. The longer one waits into the wave,
the better parameter estimates can be expected.

Future work will include the state estimation error into
the WLS criterion, and vice versa, include the parameter es-
timation covariance into the state estimator. Another possible
extension is to investigate Expectation Maximization (EM)
algorithm, which is quite similar to the iterative method.
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