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In this paper, we propose a distributed second-order augmented Lagrangian method for distributed op- 

timal control problems, which can be exploited for distributed model predictive control. We employ a 

primal-dual interior-point approach for the inner iteration of the augmented Lagrangian and distribute 

the corresponding computations using message passing over what is known as the clique tree of the 

problem. The algorithm converges to its centralized counterpart and it requires fewer communications 

between sub-systems as compared to algorithms such as the alternating direction method of multipli- 

ers. We illustrate the efficiency of the framework when applied to randomly generated interconnected 

sub-systems as well as to a vehicle platooning problem. 
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. Introduction 

Consider a discrete-time system composed by the interconnec- 

ion of m sub-systems. The problem we are interested in solving 

s the optimal control problem that is solved repeatedly in Model 

redictive Control (MPC). It is of the form 

in 

x,u 

m ∑ 

i =1 

( 

N ∑ 

k =1 

J i ( x i (k ) , u i (k ) ) 

) 

+ J f 
i ( x i (N + 1) ) (1a) 

s . t . x i (k + 1) = f i 
(
x i (k ) , u i (k ) 

)
+ 

∑ 

j∈N (i ) 

f i j 

(
x j (k ) , u j (k ) 

)
, 

g i j 

(
x i (k ) , u i (k ) , x j (k ) , u j (k ) 

)
= 0 , j ∈ N (i ) , 

g i 
(
x i (k ) , u i (k ) 

)
= 0 , 

h i j 

(
x i (k ) , u i (k ) , x j (k ) , u j (k ) 

)
≤ 0 , j ∈ N (i ) , 

h i 

(
x i (k ) , u i (k ) 

)
≤ 0 , k = 1 , . . . , N, i = 1 , . . . , m, (1b) 

here x i (k ) ∈ R 

n x i and u i (k ) ∈ R 

n u i are the states and the inputs of

ub-system i at time instant k , J i : R 

n x i 
+ n u i → R , J 

f 
i 

: R 

n x i → R , f i :

 

n x i 
+ n u i → R 

n x i , f i j : R 

n x j 
+ n u j → R 

n x i , g i j : R 

n x i 
+ n u i + n x j + n u j → R 

n g i j , 

 i : R 

n x i 
+ n u i → R 

n g i , h i j : R 

n x i 
+ n u i + n x j + n u j → R 

n h i j , h i : R 

n x i 
+ n u i → R 

n h i 

re twice differentiable functions, N is the horizon length and 
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 (i ) is the set of all indices of sub-systems which interact with 

ub-system i . 

MPC is a popular advanced control method due to its applica- 

ility to both linear and non-linear systems, its capability in han- 

ling constraints on both inputs and states, as well as its optimal 

erformance with respect to a cost function, [12,22] . It is based on 

olving a finite horizon optimal control problem at each sampling 

nstant, where the current state of the plant is used as initial con- 

ition for the state prediction. The first part of the resulting control 

nput sequence is then applied to the actual plant, the time hori- 

on is shifted and the same procedure is repeated. Traditionally, 

he problem is solved using what is known as centralized MPC, 

here all measurements and information available about the sys- 

em are collected in a central unit to calculate all control actions. 

or large-scale systems or systems with considerable number of 

ub-systems, this approach becomes impractical due to the high 

omputational effort or due to the fact that collecting all informa- 

ion in a central unit is not feasible, [10,18,21,26,40,45] . Examples 

f such systems are power distribution systems, water distribution 

ystems, transportation systems, biological systems and coopera- 

ive payload transport in robotic applications etc, [21] . Decentral- 

zed MPC and distributed MPC are two popular approaches to ad- 

ress this issue. In both approaches the computations are calcu- 

ated distributedly in local units assigned to each sub-system. The 

ain difference, however, is that in decentralized MPC the cou- 

ling between sub-systems is ignored and the control decisions for 

he sub-systems are taken independently, whereas in distributed 

PC, sub-systems communicate with each other to compute the 

ptimal control signal, [14,34] . Here we focus on distributed MPC 
l Association. This is an open access article under the CC BY license 
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hich has been studied extensively in the control community. Next 

e present a short overview of different approaches. 

In [47] , a non-linear distributed MPC is presented, which is 

ased on gradient projection. The presented algorithm does not 

equire a central coordination level and therefore, it is truly dis- 

ributed. In [46] , a sensitivity-driven distributed MPC for linear 

ime-invariant systems is presented. The coordination between 

ub-systems is achieved by using a linear approximation of the ob- 

ective functions of the neighboring controllers within the objec- 

ive function of each local controller. This, in turn, leads to overall 

ptimality. In [50] , a distributed MPC is presented for large-scale 

etworked systems such as power systems. The overall system is 

ssumed to be linear and time-invariant. Each sub-system has its 

wn MPC controller, and the sub-systems work iteratively and co- 

peratively towards satisfying system-wide control objectives. The 

ramework is based on a terminal penalty, and it achieves perfor- 

ance equivalent to centralized MPC. In general, these frameworks 

re based on a primal decomposition method. A disadvantage of 

his class of methods is that each sub-system requires knowledge 

f the overall system, which in turn limits the scalability of the 

ethod [6] . 

Another class of distributed MPC methods is based on dual 

ecomposition. In [25] , a distributed optimization algorithm for 

trongly convex problems is presented. The algorithm is based on 

ccelerated gradient methods using dual decomposition. It is ap- 

lied to randomly generated problems arising in distributed model 

redictive control. In [18] , a distributed non-linear optimal con- 

roller is presented in which the cost function is assumed to be 

eparable and convex. The algorithm is based on two ingredi- 

nts. First, the convex problem structure is exploited using a se- 

uential convex programming framework that linearizes the non- 

inear dynamics in each iteration. Second, a distributed dual de- 

omposition method is used to solve the resulting problem. Also 

n [18] , a dual decomposition method for distributed model pre- 

ictive control over networks is presented. The authors assume 

eparable non-convex optimization problems. A sequential convex 

rogramming scheme based on a penalty function is used to han- 

le the non-convexity. See [6] , for a more complete list of papers 

hich are based on dual decomposition methods. A drawback of 

his class of methods is that their convergence rate might be low, 

hich leads to several communications among sub-systems. This 

ssue is addressed in what is known as the Alternating Direction 

ethod of Multipliers (ADMM) method. It has received a lot of at- 

ention due to its capability in retaining the decomposability of the 

ual formulation while ensuring faster convergence, [8] . In [6] , a 

cheme for continuous-time non-linear systems based on ADMM 

s proposed and stability results are presented under two differ- 

nt ADMM convergence assumptions. Similar approaches are used 

n [10,11,28] , where the performance of the framework is evalu- 

ted on different applications. Their approach is based on the as- 

umption that the systems are non-linear neighbor-affine. In [21] , 

wo frameworks for distributed MPC are proposed based on dual 

ecomposition and ADMM, respectively. In [45] , the authors in- 

estigate the application of ADMM on the distributed MPC prob- 

em, both in primal and dual domains. In [30] , a Proximal Jacobian 

DMM algorithm is presented for distributed MPC, in particular 

or building control applications. In [34] , a linear, time-invariant, 

iscrete-time plant with coupled subsystems is considered and two 

pproaches based on ADMM are proposed. In [48] , the authors ap- 

ly the ADMM based distributed MPC method to a flocking prob- 

em in a network of double integrators. They show that a near- 

entralized performance can be achieved with only a few tens of 

terations. In [17] , the authors investigate performance of ADMM 

nd a dual decomposition method based on fast gradient updates, 

y a systematic computational study. In [31] , a distributed algo- 

ithm, known as ALADIN (augmented Lagrangian alternating direc- 
2 
ion inexact Newton), is presented for non-convex smooth opti- 

ization problems with coupled affine constraints. The algorithm 

s a further development of ADMM, which contains ideas from 

ugmented Lagrangian and sequential quadratic programming. The 

lgorithm has a faster convergence rate compared to ADMM based 

lgorithms. This however comes at the price that it requires more 

ommunications, [37] . In [20] , a distributed version of ALADIN is 

resented which is based on bi-level distribution, meaning that 

he outer ALADIN structure is combined with an inner distribu- 

ion level solving a condensed variant of ALADINs convex coordi- 

ation quadratic program by decentralized algorithms. See [31] , for 

 complete list of distributed second-order methods. Common for 

he distributed approaches based on second order information is 

hat they do not address general nonlinear constraints. 

As mentioned ADMM improves the speed of convergence as 

ompared to dual decomposition methods. However, as we will see 

n this paper, this is only the case when moderate accuracy is de- 

ired. For high accuracy, it might still be very slow which results 

n many iterations for convergence, which in turn leads to exces- 

ive communications between sub-systems. Similar to our previ- 

us work, [2] , we take in this paper a different approach based on 

he Augmented Lagrangian (AL) method proposed in [16] . In [2] , 

e only considered equality constraints and not inequality con- 

traints. In this paper we extend the algorithm to optimization 

roblems with both equality and inequality constraints. The idea 

s to handle the inequality constraints by incorporating a primal- 

ual interior-point approach, [41, Ch. 19] , in the augmented La- 

rangian framework. We distribute the algorithm using message- 

assing over what is known as the clique tree of the problem, as in 

33] . We will see that the proposed algorithm requires much fewer 

terations for convergence and, in turn fewer communications, as 

ompared to the most competitive method proposed in [6] , which 

s based on ADMM. However, this comes at the price that we can- 

ot distribute the computations freely. We will come back to this 

ater. However, the fact that we distribute the computations of the 

L method using message-passing over a clique tree, does not in 

ny way effect the convergence behaviour of the method. In other 

ords, the distributed version of the AL method behaves exactly 

s the centralized version of it. See [16] , for the convergence prop- 

rties of the AL method in which it is shown that AL is at least

-linearly convergent regardless of what algorithm is used for the 

nner iteration. 

The main contributions of this paper are 

• Development of a distributed second-order optimization 

method for general non-convex problems. 

• Application of the method to general nonlinear distributed pre- 

dictive control. 

• Application of the method to a vehicle platooning problem. 

The rest of the paper is organized as follows. In Section 2 , 

e present the augmented Lagrangian algorithm. In Section 3 , 

e discuss how we can distribute the algorithm over the clique 

ree of the problem. Numerical experiments are presented in 

ection 4 and we conclude the paper in Section 5 . 

. Augmented Lagrangian and primal-dual interior-point 

ethods 

Consider the optimization problem 

in 

x 
f (x ) (2a) 

 . t . g(x ) = 0 , (2b) 

 (x ) ≤ 0 , (2c) 
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here f : R 

n → R and h : R 

n → R 

q are not necessarily convex, nor 

s g : R 

n → R 

p necessarily affine. In order to define the augmented 

agrangian, one approach is to convert the inequality constraints 

o equality constraints and then include all the constraints in the 

ugmented Lagrangian function. The other approach, is to include 

art of the constraints in the augmented Lagrangian function while 

he rest of the constraints are dealt with directly. The latter ap- 

roach is called partial augmented Lagrangian or partial elimina- 

ion of constraints, [5, Ch. 2] , [4, Ch. 4] . Here we only include

he equality constraints in the augmented Lagrangian function and 

e deal with the inequality constraints by imposing the comple- 

entary slackness condition, [9, Ch. 11] , [41, Ch. 19] . The partial 

ugmented Lagrangian of this problem is given by the function 

 μ : R 

n × R 

q × R 

p → R , where 

 μ(x, λ, ν) = f (x ) + λT h (x ) + νT g(x ) + 

1 

2 μ
|| g(x ) || 2 2 , (3)

here λ and ν are Lagrangian multipliers for the inequality and 

quality constraints, respectively and μ is a penalty parameter. See 

24] , for different versions of augmented Lagrangian functions and 

heir relations to primal-dual methods. It is shown in [29] and 

44] that an augmented Lagrangian method converges to a local 

inima if the penalty parameter is sufficiently small, and if the 

ugmented Lagrangian is approximately minimized at each itera- 

ion. In this paper we use the augmented Lagrangian algorithm 

resented in [16] , which is the basis of the successful software 

ackage LANCELOT, [15,41] . The algorithm consists of inner itera- 

ion and outer iteration parts. In the inner iteration part the aug- 

ented Lagrangian is approximately minimized and in the outer 

teration part the Lagrangian multipliers and the penalty parame- 

er are updated. We will use an interior-point method for the in- 

er part. This has previously been considered in e.g. [13] , where 

he authors use a preconditioned conjugate gradient method on 

 Graphics processing unit (GPU) in order to compute the search 

irections in parallel. Our approach is instead related to multi- 

rontal factorization techniques for computing the search direc- 

ions. In [38] , the authors propose an efficient implementation of 

n interior-point algorithm for non-convex problems that uses di- 

ections of negative curvature. The method uses the augmented La- 

rangian as a merit function. In [7] , a hybrid algorithm is proposed 

n which the interior-point method is replaced by the Newtonian 

esolution of a KKT system identified by the augmented Lagrangian 

lgorithm. In [3] , an interior-point Newton algorithm for nonlinear 

rogramming problems is proposed, where they use a generaliza- 

ion of the augmented Lagrangian function as a merit function in 

rder to obtain global convergence. Next we discuss how the in- 

er iteration can be carried out using a primal-dual interior-point 

ethod. At the end of the section, we will present the overall aug- 

ented Lagrangian method. 

Necessary conditions for an optimal x of ( (2a) –(2c) ) is that 

here exist Lagrange multipliers λ and μ such that 

∂L μ(x, λ, μ) 

∂x 
= 0 , (4a) 

(x ) = 0 , (4b) 

 (x ) ≤ 0 , (4c) 

diag (λ) h (x ) = 0 , (4d) 

≥ 0 , (4e) 

here 
∂L μ(x,λ,μ) 

∂x 
can be written as 

∂L μ(x, λ, μ) 

∂x 
= 

∂ f (x ) 

∂x 
+ 

∂h (x ) T 

∂x 
λ + 

∂g(x ) T 

∂x 

(
ν + 

1 

μ
g(x ) 

)
, (5) 
3

here ∂h (x ) T 

∂x 
= ( ∂h (x ) 

∂x T 
) T and 

∂g(x ) T 

∂x 
= ( ∂g(x ) 

∂x T 
) T . ∂h (x ) 

∂x T 
and 

∂g(x ) 

∂x T 
are 

he Jacobian of h (x ) and g(x ) , respectively. The matrix diag (λ) is

 diagonal matrix with the elements of λ on the diagonal. Equa- 

ion in (4d) is known as the complementary slackness condition, 

9, Ch. 11] , [41, Ch. 19] . 

A primal-dual interior-point method computes a solution for 

 (4a) –(4e) ) by applying Newton’s method in order to solve them in 

n iterative fashion, where Eq. (4d) is modified as − diag (λ) h (x ) = 

 

1 
t ) 1 , where t ≥ 0 and 1 is a vector of all ones. Specifically, at each

teration l given x (l) , λ(l) and ν(l) in such a way that h (x (l) ) ≤ 0

nd λ(l) ≥ 0 , the search directions �x , �λ and �ν are computed 

y solving the following linear system of equations which are ob- 

ained by linearizing (4a), (4b) and the modified version of (4d) { 

∂ 2 f (x (l) ) 

∂ x∂ x T 
+ 

q ∑ 

i =1 

[
∂ 2 h (x (l) ) 

∂ x∂ x T 
λ(l) 

i 

]

+ 

p ∑ 

i =1 

[(
ν(l) 

i 
+ 

1 

μ
× g i (x (l) ) 

)
∂ 2 g i (x (l) ) 

∂ x∂ x T 

+ 

1 

μ

∂g i (x (l) ) 

∂x 

∂g i (x (l) ) 

∂x T 

]}
�x + 

∂h (x (l) ) T 

∂x 
�λ

+ 

∂g(x (l) ) T 

∂x 
�ν = −r (l) 

dual 
, (6a) 

∂g(x (l) ) T 

∂x 
�x = −r (l) 

primal 
, (6b) 

diag (λ(l) ) 
∂h (x (l) ) 

∂x T 
�x − diag 

(
h (x (l) ) 

)
�λ = −r (l) 

cent , (6c) 

here g i (x ) and h i (x ) are the i th component of g(x ) and h (x ) , re-

pectively and 

r (l) 
dual 

= −∂L μ(x (l) , λ(l) , μ(l) ) 

∂x 
, 

r (l) 
primal 

= g(x (l) ) , 

r (l) 
cent = − diag (λ(l) ) h (x (l) ) − ( 

1 

t 
) 1 . 

e can reduce the system by eliminating �λ as 

λ = diag 

(
h (x (l) ) 

)−1 

(
− diag (λ(l) ) 

∂h (x (l) ) 

∂x T 
�x + r (l) 

cent 

)
, (7) 

hich will result in the following linear system of equations 
 

∂ 2 L μ(x (l) ,λ(l) ,ν(l) ) 

∂ x∂ x T 
∂g(x (l) ) T 

∂x 

∂g(x (l) ) 
∂x T 

0 

] [
�x 

�λ

]
= −

[
r (l) 

r (l) 
primal 

]
, (8) 

here 

∂ 2 L μ
(
x (l) , λ(l) , ν(l) 

)
∂ x∂ x T 

= 

∂ 2 f (x (l) ) 

∂ x∂ x T 
+ 

q ∑ 

i =1 

[
∂ 2 h (x (l) ) 

∂ x∂ x T 
λ(l) 

i 

]

+ 

p ∑ 

i =1 

[(
ν(l) 

i 
+ 

1 

μ
× g i (x (l) ) 

)
∂ 2 g i (x (l) ) 

∂ x∂ x T 

+ 

1 

μ

∂g i (x (l) ) 

∂x 

∂g i (x (l) ) 

∂x T 

]

−∂h (x (l) ) T 

∂x 
diag (x (l) ) −1 diag (λ(l) ) 

∂h (x (l) ) 

∂x T 
r (l) 

= r (l) 
dual 

+ 

∂h (x (l) ) T 

∂x 
diag 

(
h (x (l) ) 

)−1 r (l) 
cent . (9) 
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Note that the linearized optimality conditions are the optimal- 

ty conditions for the quadratic optimization problem 

in 

�x 

1 

2 

�x T 
∂ 2 L μ

(
x (l) , λ(l) , ν(l) 

)
∂ x∂ x T 

�x + r (l) T �x (10a) 

 . t . 
∂g(x (l) ) 

∂x T 
�x = −r (l) 

primal 
. (10b) 

In order to assure that the obtained search direction is a de- 

ent direction, the augmented Lagrangian Hessian in (9) should be 

ositive definite on the null space of ∂g(x ) 

∂x T 
. In our previous work, 

2] , we satisfy this condition by making the augmented Lagrangian 

essian in (9) positive definite at each iteration by adding a mul- 

iple of the identity matrix when it is negative definite. In partic- 

lar, when the Hessian is negative definite, we add (| σ | + ε) I to

he Hessian, where σ is the most negative eigenvalue and ε > 0 . 

owever, this approach is conservative. One can instead satisfy the 

ugmented Lagrangian Hessian being positive definite on the null 

pace of ∂g(x ) 

∂x T 
by checking the inertia of the coefficient matrix in 

8) , which is the number of positive, negative, and zero eigenval- 

es. The obtained search direction is a decent direction if the ma- 

rix has exactly n positive, and p negative and zero eigenvalues, 

41] . Therefore, if this condition is not fulfilled, one can add a mul- 

iple of the identity ( ασ I) to the Hessian, i.e. to the (1,1)-block of

he coefficient matrix in (8) , in such a way that this is satisfied. For

his purpose, a simple strategy is suggested in [41, Appendix B] , 

hich is presented in Algorithm 1 . With this modification, the op- 

imization problem for the search directions in ( (10a) –(10b) ) be- 

omes 

lgorithm 1 Inertia correction 

1: Given ασold 
used in the previous interior-point iteration 

2: Find the inertia of the coefficient matrix in (8) 

3: if the inertia condition is satisfied, i.e. it has exactly n positive, 

p negative and zero eigenvalues then 

4: Set ασ ← 0 , ασold 
← 0 

5: break 

6: else if ασold 
= 0 then 

7: Set ασ ← 10 −4 

8: else 

9: Set ασ ← 

ασold 
2 

0: end if 

11: repeat 

2: Find the inertia of the coefficient matrix in (8) after adding 

ασ I to the Hessian, i.e. (1,1) block 

3: if the inertia condition is satisfied, i.e. it has exactly n posi- 

tive, p negative and zero eigenvalues then 

14: Set ασold 
← ασ

5: break 

6: else 

17: Set ασ ← 10 ασ

18: end if 

9: until maximum number of iterations reached 

in 

�x 

1 

2 

�x T 
(

∂ 2 L μ(x (l) , λ(l) , ν(l) ) 

∂ x∂ x T 
+ ασ I 

)
�x + r (l) T �x (11a) 

 . t . 
∂g(x (l) ) 

∂x T 
�x = −r (l) 

primal 
. (11b) 

For computation of the step size at each iteration of the primal- 

ual interior-point method, we employ the well known backtrack- 

ng line search method, [9,41] . The general idea in the method is 

s follows. First we compute the largest positive step, not exceed- 

ng one, for which h (x (l+1) ) ≤ 0 and λ(l+1) ≥ 0 . Then, we start the
4 
acktracking by multiplying the obtained step with βstep ∈ (0 , 1) , 

ntil we have sufficient decrease in the residual norms, i.e. r (l+1) 
primal 

nd r (l+1) 
dual 

. 

For the calculation of the t in the modified version of (4d) , first 

e define what is known as the surrogate duality gap as in [33] , 

sur (x, λ) = −λT h (x ) . (12) 

The t parameter then can be computed as t = 

μt q 
ηsur (x,λ) 

for μt ≥
 , where a typical value for μt is 10, [9] , and q is the number of in-

quality constraints. Note that the presented primal-dual interior- 

oint method is used in the inner iteration of the algorithm 

Lines 7–12). Note also that primal-dual interior-point method has 

 superlinear convergence rate for nonlinear programming prob- 

ems, which is discussed in [41, Ch. 19] . 

Now we can summarize the overall augmented Lagrangian al- 

orithm in Algorithm 2 , [16, Section 3, Alg. 2] . Note that the pre-

lgorithm 2 Augmented Lagrangian algorithm 

1: Given the nonnegative constant αη and the positive constants η0 , μ0 , τ < 1 , ω 0 ,

γ < 1 , γ1 < 1 , ω ∗ � 1 , η∗ � 1 , ηsur 
∗ � 1 , ζ , αω , βω , βη , the optimization variable

x (1) and the Lagrangian multipliers λ(1) and ν(1) 

2: Set μ(1) = μ0 , α(1) = min (μ(1) , γ1 ) , ω 

(1) = ω 0 (α(1) ) αω and η(1) = η0 (α(1) ) αη

3: for k = 1 , . . . , k max do 

4: η(k ) 
sur (x (k ) , λ(k ) ) = −λ(k ) T h (x (k ) ) 

5: t (k ) = 

μt q 

η(k ) 
sur (x (k ) ,λ(k ) ) 

6: ˆ x = x (k ) , ̂  λ = λ(k ) and ˆ ν = ν(k ) 

7: while || ∂L 
μ(k ) ( ̂ x , ̂ λ, ̂ ν) 

∂x 
|| > ω 

(k ) do 

8: Find search direction using (11a-11b) 

9: Compute �λ using (7) 

0: Find step size using backtracking line search 

1: update ˆ x , ̂  λ and ˆ ν

2: end while 

3: x (k +1) = ̂  x , λ(k +1) = ̂

 λ

4: if || g( ̂ x ) || ≤ η(k ) then 

5: if || ∂L 
μ(k ) ( ̂ x , ̂ λ, ̂ ν) 

∂x 
|| ≤ ω ∗ and || g( ̂ x ) || ≤ η∗ and ηsur ( ̂ x , ̂ λ) ≤ ηsur 

∗ then 

6: break 

7: end if 

8: μ(k +1) = μ(k ) 

9: if || ̂ ν|| ≤ ζ (μ(k +1) ) −γ then 

0: ν(k +1) = ̂  ν

1: else 

2: ν(k +1) = ν(k ) 

3: end if 

4: α(k +1) = min (μ(k +1) , γ1 ) 

5: ω 

(k +1) = ω 

(k ) (α(k +1) ) βω 

6: η(k +1) = η(k ) (α(k +1) ) βη

7: else 

8: μ(k +1) = τμ(k ) 

9: if || ̂ ν|| ≤ ζ (μ(k +1) ) −γ then 

0: ν(k +1) = ̂  ν

1: else 

2: ν(k +1) = ν(k ) 

3: end if 

4: α(k +1) = min (μ(k +1) , γ1 ) 

5: ω 

(k +1) = ω 0 (α
(k +1) ) αω 

6: η(k +1) = η0 (α
(k +1) ) αη

7: end if 

8: end for 

ented primal-dual interior-point method is used in the inner iter- 

tion of the algorithm (Lines 7–12). Note also that the superscript 

k ) in Algorithm 2 corresponds to the outer iteration, and it should 

ot be confused with the superscript (l) used in equations ( (6a) –

11b) ) which corresponds to inner iteration. The algorithm com- 

rises four main steps. The first step (Line 1-2) is the initialization 

hase. The second step (Lines 4–12) is the inner iteration. Here, 

rst we compute the parameter t associated with the complemen- 

ary slackness condition. Then, we compute an approximate mini- 

ization of the problem in ( (2a) –(2c) ) by satisfying the optimality 

onditions in ( (4a) –(4e) ), using the presented primal-dual interior- 

oint method. Note that one can move the computations of the 
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Fig. 1. Coupling graph for a problem with 30 sub-systems. 

Fig. 2. The corresponding clique tree for the problem in Fig. 1 . 

s

i

s  

a

p

s

b

c

t

a

t

c

f

i

w

w

o  

c

t

a

o

f

b

t

t  
parameter (Line 5) into the while loop (Lines 7–12) which will 

esult in more frequent update of t . We store the resulting x and 

in Line 13 in order to warm start the second step in the next 

uter iteration k + 1 (Line 6). Now, if the norm of the equality con-

traint residual is less than a certain threshold, we proceed with 

he third step (Lines 15-26). Otherwise, we proceed with the fourth 

tep (Lines 28–36). In the third step, we first we carry out a ter- 

ination test. If the termination condition is not satisfied, we keep 

he penalty parameter value the same, update the Lagrangian mul- 

ipliers for the equality constraints under a certain condition, and 

hen we update the free parameters. We then proceed with the 

econd step. In the fourth step, we update the Lagrangian multi- 

lier for the equality constraints under a certain condition, then 

e increase the penalty parameter and we update the free pa- 

ameters. We then proceed with the second step. As suggested 

n [16] , for a well-scaled problem, the typical values for the free 

arameters in the algorithm are αω = βω = γ = ζ = η0 = ω 0 = 1 ,

η = μ0 = γ1 = 0 . 1 , βη = 0 . 9 and τ = 0 . 01 . 

. Distributed computation for the inner iteration 

In this section we will see how we can distribute the computa- 

ions of the inner iteration in Algorithm 2 . Similar to our previous 

ork, [2] , we base our computations on what is known as a clique

ree. See [33] , for details about clique tree. We start by defining 

 coupling graph for the problem in ( (1a) –(1b) ). A coupling graph

s an undirected graph with the node or vertex set V c = { 1 , . . . , m }
nd the edge set E c with (i, j) ∈ E c if and only if sub-systems i and

j interact with each other, i.e. affect each others dynamics through 

tates and inputs. In graph theory, a clique is a subset of vertices 

hose induced subgraph is complete, and a clique tree is a tree 

f cliques. In order to derive a clique tree, one might need to first 

arry out what is known as chordal embedding (also known as tri- 

ngulation process). For the sake of brevity, we omit the details re- 

arding that and we refer the reader to the introduction in [43] . In

he context of this paper, a clique translates to a grouping of sub- 

ystems and a clique tree will be used as a computational graph. 

ote that for the numerical experiment of our previous work, [2] , 

e consider problems for which the clique tree is the same as the 

oupling graph. In this work, we consider more general problems 

here the clique tree of the problem is not trivial. Let us now con- 

ider a problem with 30 sub-systems where the coupling graph is 

llustrated in Fig. 1 . There are various algorithms in the literature 

o generate the clique tree of the problem. One such method is 

resented in [32] , which is used in the MATLAB library [51] . We

se the same code to generate the clique tree. The resulting clique 

ree for the problem in Fig. 1 is illustrated in Fig. 2 , where each

lique contains the following sub-systems 

C 1 = { 1 , 14 , 15 , 22 } , 
C 2 = { 14 , 15 , 16 , 22 , 27 } , 
C 3 = { 5 , 21 , 22 } , 
C 4 = { 15 , 16 , 19 , 22 , 27 , 28 , 29 , 30 } , 
C 5 = { 6 , 14 , 16 } , 
C 6 = { 2 , 28 } , 
C 7 = { 3 , 27 , 29 } , 
C 8 = { 7 , 15 , 29 } , 
C 9 = { 4 , 8 , 10 , 15 , 16 , 28 } , 
C 10 = { 11 , 15 , 19 , 29 , 30 } , 
C 11 = { 12 , 28 } , 
C 12 = { 9 , 13 , 17 , 18 , 19 , 20 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 } . 
nce the clique tree is found, we choose one of the cliques as 

he root of the tree. Let C be the root. Next, we assign each sub-
1 

5 
ystem to a clique. The assignment is not unique and can be done 

n different ways. Our strategy is as follows. A sub-system is as- 

igned to a clique if it is not present in the parent clique. For ex-

mple, sub-system 12 is assigned to C 11 as it is not present in the 

arent clique of C 11 which is C 4 . For this problem, the assigned sub- 

ystems for each clique are specified with underscore. Note that, to 

e precise, each clique comprises the variables associated with the 

ontained sub-systems (not only the assigned ones), together with 

he variables of the sub-systems that they are interacting with. 

We should note that, as mentioned earlier, in order to compute 

 clique tree, we employ a general purpose algorithm which takes 

he coupling graph as the input and generates what is known as 

hordal embedding [43] , and the corresponding clique tree. There- 

ore, we cannot know a priori how the structure of the clique tree 

s. Obviously, if the coupling graph is very dense, we may end up 

ith a clique tree which has a few number of cliques, and the 

orst case scenario is when all sub-systems are connected to each 

ther, and in that case the clique tree will be a single clique. If the

oupling graph for the sub-systems is loose or sparse, it is likely 

hat the generated clique tree has many cliques, which is desir- 

ble. Note that if the generated clique tree is a chain of cliques, 

ne can pick the middle clique as the root of the tree, and there- 

ore the resulting clique tree will have two parallel branches. Last 

ut not least, we should point out that we distribute the compu- 

ations over sub-systems. One can further distribute the computa- 

ions in each clique over time instances. In [27, Section 3.4] , the au-
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hors show how parallel computations can be exploited over time 

nstances for MPC problems. 

Now let us write the problem in ( (1a) –(1b) ) in a more compact

orm as 

in 

x 
F (x ) = 

q ∑ 

i =1 

F i (x C i ) (13a) 

 . t . G i (x C i ) = 0 , i = 1 , . . . , q, (13b) 

 i (x C i ) ≤ 0 , i = 1 , . . . , q, (13c) 

here F i (x C i ) are the terms in (1 a ) which are assigned to clique i .

he vector G i (x C i ) is a vector obtained by stacking all the equality

onstraints in (1 b) which are assigned to clique i , on top of each

ther. Similarly, H i (x C i ) is a vector obtained by stacking all the in-

quality constraints in (1 b) , which are assigned to clique i , on top

f each other. The vector x C i contains all the variables in clique i , x

s a vector including all the variables in the optimization problem 

nd q is the total number of cliques. 

The optimization problem for the search direction in ( (11a) –

11b) ) at iteration l, can be written distributedly over the cliques 

s 

in 

�x 

q ∑ 

i =1 

1 

2 

�x T C i 
H 

(l) 
i 

�x C i + r (l) T 

i 
�x C i (14a) 

 . t . A 

(l) 
i 

�x C i = b 

(l) 
i 

, i = 1 , . . . , q. (14b) 

See Appendix B for the definitions of H 

(l) 
i 

, r (l) T 

i 
, A 

(l) 
i 

and b 

(l) 
i 

.

nce �x C i is computed, �λC i 
can be obtained as 

λC i = − diag 

(
H i (x (l) 

C i 
) 
)−1 

{ 

diag 

(
λ(l) 

C i 

)∂H i 

(
x (l) 

C i 

)
∂x T 

C i 

�x C i 

+ diag 

(
λ(l) 

C i 

)
H i 

(
x (l) 

C i 

)
+ 

(
1 

t 

)
1 

} 

. (15) 

The optimization problem in ( (14a) –(14b) ) can be solved using 

essage passing over the clique tree as outlined in [33] . Their ap- 

roach is summarized briefly in the following. Consider the clique 

ree in Fig. 2 . For each and every leaf optimize the term of the ob-

ective function that has been assigned to the leaf with respect to 

he variables that it does not share with its parent. The optimiza- 

ion should be done parametrically. The resulting optimal value, 

hich is a function of the variables shared with the parent, is 

assed to the parent as a message. Once the parents receive the 

essages from all their children, they add them to their objective 

unction terms and the same procedure is repeated assuming that 

he children cliques have been pruned away. Finally, we reach the 

oot of the tree where the remaining variables are optimized. Then 

e can go down the tree and recover all optimal variables. This 

s based on the fact that we have stored the parametric optimal 

olutions in the nodes of the clique tree. See the introduction in 

43] , for an example of optimization over clique tree using mes- 

age passing. 

As it is discussed in Section 2 , in order to see if the Hessian

n (9) needs to be modified to get a decent direction, we need 

o know the inertia of the coefficient matrix in (8) at each it- 

ration. Fortunately, we can calculate it distributedly, thanks to 

ylvester’s law of inertia, [23] . Let us consider an LDL T factoriza- 

ion of a matrix X , i.e. X = LDL 

T , where L is a lower triangular

quare matrix with unity diagonal elements, D is a block diagonal 

atrix. It follows from Sylvester’s law that inertia (X ) = inertia (D ) .

ow because of the fact that conducting message passing over a 

lique tree is the same as calculating an LDL T factorization, [33, 

ection 6] , we can calculate the inertia distributedly by summing 
6

p the inertia of the block diagonal elements of D which we get 

uring the upward pass from leaves of the clique tree to the root. 

herefore, Algorithm 1 can be run in the root of the clique tree 

o obtain the modification ασ I of the overall Hessian. The overall 

essian is a sum of terms, see (14a) . Moreover, �x C i and �x C j , for

 	 = j, may have common variables. Hence, the overall Hessian de- 

ends on H 

(l) 
i 

in a complicated way, and care has to be taken when

odifying each H 

(l) 
i 

so that the overall Hessian is modified by ασ I. 

he details of this are given in Appendix B; specifically notice the 

erm ασ Ē C i Ē 
T 
C i 

in the computation of H 

(l) 
i 

. Since the overall modifi- 

ations can be carried out as modifications of H 

(l) 
i 

, they distribute 

ver the clique tree. 

In order to be able to use the message-passing technique, there 

s a rank condition for the equality constraints in (14b) that should 

e imposed. This can be imposed in a similar way as in Lemma 6.2 

n [33] . However we need to impose them in every iteration since 

ur original problem is non-convex. For the computations of step 

ize and termination criteria, we again refer to [33, Section 6] , 

here it is thoroughly explained how they can be distributedly 

omputed over the clique tree. 

Last but not least, it should be pointed out that all other com- 

utations in the outer iteration of Algorithm 2 can be carried out 

n the root of the clique tree. Note that what clique is chosen as 

oot does not affect the number of communications between the 

liques required for converging to a solution. However, it affects 

ow computations can be carried out in parallel. See our previous 

ork [1] , for parallel exploitation of the clique tree. 

. Numerical experiments 

.1. Randomly generated interconnected sub-systems 

For the first experiment, we consider model predictive control 

f a discrete-time system composed by the interconnection of m 

on-linear sub-systems. Let us assume that the following optimiza- 

ion problem needs to be solved at each iteration of the MPC 

in 

x,u 

m ∑ 

i =1 

( 

N ∑ 

k =1 

r x x i (k ) 4 + r u u i (k ) 4 

) 

+ r x x i (N + 1) 4 (16a) 

 . t . x i (k + 1) = αi x i (k ) 3 + βi u i (k ) + 

∑ 

j∈N (i ) 

x j (k ) , 

x i (k ) 2 + u i (k ) 2 ≤ γ̄i , 

x i, min ≤ x i (k ) ≤ x i, max , 

u i, min ≤ u i (k ) ≤ u i, max , 

x i (1) = 

˜ x i , k = 1 , . . . , N, i = 1 , . . . , m, (16b) 

here x i (k ) ∈ R 

n x i and u i (k ) ∈ R 

n u i are the states and the inputs of

ub-system i at time instant k , N is the horizon length and N (i )

s the set of all indices of sub-systems which interact with sub- 

ystem i . r x ≥ 0 , r u ≥ 0 , αi , βi , γ̄i ≥ 0 , x i, min , x i, max , u i, min , u i, max and

˜  i are generated randomly. The last equation is the initial condi- 

ion. We also generate all the coupling graphs in a random fash- 

on and we make sure that they are connected. For all the ran- 

omly generated systems in the paper, the average number of sub- 

ystems that each sub-subsystem interacts with, is 2.23. 

We compare performance of the proposed algorithm, referred 

o as AL-PDIP (AL refers to Augmented Lagrangian and PDIP refers 

o Primal-Dual Interior-Point), with an ADMM based distributed al- 

orithm proposed in [6] , which is explained in the following. We 

efer to this algorithm as ADMM-original. In the algorithm, first 

ocal copies of coupling variables are defined for each sub-system. 

fter that, consistency constraints with coordination variables are 
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Fig. 3. The objective function value in (16a) for a system with 10 interconnected 

sub-systems. 
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ntroduced so that the local copies and the original variables co- 

ncide at optimality. The outline of the algorithm for each sub- 

ystem is given in Algorithm 3 . Note that in forming the aug- 

ented Lagrangian in Step 2, only the corresponding cost func- 

ion and the consistency constraints are used. The augmented La- 

rangian is then minimized subject to the local dynamics by fixing 

he coordination variables. Note also that for the convergence test 

n Step 4, a central coordinator determines whether the criterion 

s satisfied for all sub-systems which requires a global communica- 

ion at the end of each iteration. The first part of Step 2 in which

n optimization problem needed be solved is the most computa- 

ionally heavy part of the algorithm. 

lgorithm 3 The ADMM algorithm outline in [6] 

1: Local initialization 

2: Local minimization 

• minimize the corresponding augmented Lagrangian subject 

to the local dynamics by fixing the coordination variables 
• receive local copy of coupling variables values from neigh- 

bors 
• Compute local coordination variables 
• receive coordination variables values from neighbors 

3: Local multiplier update 

• compute local Lagrangian multipliers 
• compute local copies of Lagrangian multipliers for neighbors 

4: Stopping criterion 

• quit if termination criterion is satisfied 

• otherwise return to Step 2 

It should be noted that the way the computations are dis- 

ributed in AL-PDIP algorithm and the ADMM based algorithm 

n [6] , are different. In the AL-PDIP algorithm, in order to carry 

ut the computations, it is enough to assign one computational 

gent per clique. Therefore, there will be as many computational 

gents as the number of the cliques. This is related to how we 

istribute the computations which is based on the clique tree. In 

he ADMM based algorithm, however, one computational agent per 

ub-system is assigned. Hence, there will be as many computa- 

ional agents as the number of the sub-systems. One can, therefore, 

rgue that in a sense the ADMM based algorithm is further dis- 

ributed than AL-PDIP algorithm. However, the advantage of having 

ne computational agent per clique is that in general the number 

f communications are lower compared to the case where there 

s one computational agent per sub-system. This property can be 

seful when the communications are more costly than carrying out 

he computations. It should also be mentioned that one might ex- 

ect that the computations carried out in a clique (AL-PDIP algo- 

ithm) may be heavier than the computations carried out in a sub- 

ystem (ADMM based algorithm). This is not necessarily the case. 

he reason is that in the former case, at each iteration the domi- 

ant computation is matrix factorization, whereas in the latter case 

t each iteration, a local optimization problem should be solved 

hich can be costly. It should also be stressed that our proposed 

L-PDIP algorithm is limited to using the clique tree, and the form 

f this tree depends on the type of coupling we have. There are ac- 

ually examples for which we would not be able to distribute the 

omputations at all. This is the case when each sub-system is con- 

ected to all other sub-systems in the coupling graph, or when the 

enerated clique tree is a single clique. However, there are many 

ases for which our method works and as we will see in the rest 
7

f the section, our method outperforms ADMM based methods by 

ar. 

In order to have a fair comparison with the ADMM based al- 

orithm, we also solve the problem by applying the ADMM al- 

orithm on the clique tree of the problem. In other words, each 

lique which is a grouping of sub-systems, is considered as a new 

ub-system with the clique tree being the new coupling graph of 

he problem, and then we apply ADMM to this new structure of 

he problem. We refer to this as ADMM-grouped. 

Additionally, we solve the problem using fmincon (Interior- 

oint method) in MATLAB as a benchmark. Termination criteria 

re set to default values which is 10 −6 for the derivative of ob- 

ective function and the equality constraint residual norm. As for 

he AL-PDIP algorithm, we terminate when the derivative of the 

ugmented Lagrangian, the equality constraints residuals norm and 

he surrogate duality gap are below 10 −6 . The termination crite- 

ion for the ADMM based algorithm is rather different. It is based 

n the norm of difference of current and previous iterates of the 

agrangian multipliers and the coordination variable values. In or- 

er to ensure a fair comparison, we define the solution obtained 

rom fmincon as the optimal cost. The algorithm is then termi- 

ated when it converges to the optimal cost with tolerance of 10 −6 

nd the equality constraint residual norm is below 10 −4 . Notice 

hat the latter threshold is looser than the corresponding thresh- 

ld chosen for the AL-PDIP algorithm, which is 10 −6 . The reason 

ill become apparent later, and it is related to the fact that the 

DMM based algorithm requires many iterations to converge. The 

ime horizon N is set to 4 and all algorithms are initialized with 

he same initial value of the optimization variables, which is gen- 

rated randomly from a normal distribution. 

In the first setup, we consider a system with 10 intercon- 

ected sub-systems. The objective function value in (16a) for all 

lgorithms is shown in Fig. 3 . As can be seen, both the ADMM- 

riginal and ADMM-grouped approaches require many more itera- 

ions to converge than the AL-PDIP algorithm. The ADMM-grouped 

pproach converges in less number of iterations than the ADMM- 

riginal approach. This, however, comes at the price that the lo- 

al optimization problems in the ADMM-grouped approach are 

arger and hence computationally more expensive to solve than the 

DMM-original approach. 
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Fig. 4. Objective value difference from the optimal cost for a system with 10 inter- 

connected sub-systems. 
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Fig. 5. The minimum, maximum and average number of iterations (top figure) and 

communications (bottom figure) over 5 randomly generated problems for AL-PDIP, 

fmincon and ADMM-original approaches. 

Fig. 6. The average number of iterations (top figure) and communications (bottom 

figure) over 5 randomly generated problems for AL-PDIP, fmincon, ADMM-original 

and ADMM-grouped approaches. 
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In Fig. 4 , for each algorithm the norm of differences of the 

bjective function values from the optimal cost (obtained from 

mincon ) is shown. As can be seen, for this particular problem, 

he AL-PDIP algorithm converges to an accurate solution in less 

han 100 iterations (inner iterations). As for the ADMM-grouped 

nd ADMM-original approaches, they converge to a modest accu- 

acy ( ∼ 10 −2 ) in around 20 0 0 and 30 0 0 iterations, respectively. For

igh accuracy, however, as can be seen, both approaches strug- 

le, where the ADMM-original approach struggles slightly more as 

here are more agents in ADMM-original to reach to a consensus 

ompared to ADMM-grouped. This issue becomes even more se- 

ere when the number of sub-systems increases. 

In the second setup, we consider problems with 10, 20 and 30 

ub-systems and for each problem, we generate 5 problems ran- 

omly. The average number of iterations (total number of inner it- 

rations for the AL-PDIP approach and total number of outer it- 

rations for the ADMM approach) and communications between 

ub-systems required for converging to a solution over these prob- 

ems are shown in Figs. 5 and 6 . The shaded areas in Fig. 5 depict

he maximum and minimum values. We do not include ADMM- 

rouped in Fig. 5 to avoid cluttering the graph and instead, we 

nclude all the algorithms in Fig. 6 where we do not show the 

haded areas. It should be pointed out that in the simulations for 

oth ADMM-original and ADMM-grouped approaches, the maxi- 

um number of iterations is 30,0 0 0 and for some problems the 

lgorithm did not converge within this threshold. To be precise, 

or the ADMM-original approach, 2, 2 and 1 out of the 5 prob- 

ems with 10, 20 and 30 sub-systems are converged within this 

hreshold. For the ADMM-grouped approach, 4, 4 and 2 out of 

he 5 problems with 10, 20 and 30 sub-systems converged within 

his threshold. In addition, for both ADMM-original and ADMM- 

rouped approaches, 1, 1 and 2 out of the 5 problems with 10, 

0 and 30 sub-systems did not converge to an acceptable solu- 

ion within this threshold. For both ADMM-original and ADMM- 

rouped approaches in Figs. 5 and 6 , we assigned 30,0 0 0 itera-

ions for the problems which did not converge within the con- 

idered threshold. We can see that the AL-PDIP algorithm requires 

uch less number of iterations for convergence than both ADMM 

ased approaches. ADMM-grouped approach requires slightly less 

umber of iterations for convergence than the ADMM-original ap- 

roach. 
8 
As for the total number of communications, we proceed as fol- 

ows. For the proposed AL-PDIP algorithm, it can be calculated 

s 

 tree × ( 3 × iter in + 3 × iter Hessian + iter step + iter out ) , 



S. Parvini Ahmadi and A. Hansson European Journal of Control 70 (2023) 100768 

w

t

i

t

i

r

i

a

t

i

w

t

t

s

v

r

t

T

f

b

t

t

b

t

i

t

g

p

i  

i

g

c

i

s

n

s

t

A

w

a

w

c  

i

F

o

p

w

o

t

c

F  

c

c

4

t

n

c

p

c

Fig. 7. The average number of cliques before and after merging over 5 randomely 

generated problems. 
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here m tree is the number of edges in the clique tree, iter in is the 

otal number of iterations through the clique tree for the inner 

teration of the algorithm, iter Hessian is the total number of itera- 

ions through the clique tree required for modifying the Hessian, 

ter step is the total number of iterations through the clique tree 

equired computing the step size, iter out is the total number of 

terations through the clique tree for the outer iteration of the 

lgorithm. 

For both ADMM approaches, the total number of communica- 

ions is 

ter tot × (2 × m system 

+ n system 

) , 

here iter tot is the total number of iterations, m system 

is the to- 

al number of couplings between the sub-systems and n system 

is 

he total number of the sub-systems. The term 2 × m system 

corre- 

ponds to the exchange of local copy variables and coordination 

ariables among neighboring sub-systems and the term n system 

cor- 

esponds to the global communication of sub-systems with a cen- 

ral unit which evaluates the termination criteria of the algorithm. 

he communicated data are of the type matrix/vector and vector 

or the AL-PDIP and ADMM based algorithms, respectively. As can 

e seen in Figs. 5 and 6 , the proposed AL-PDIP algorithm requires 

wo order of magnitude less number of communications compared 

o both ADMM based approaches. 

It should be pointed out that the message-passing scheme can 

e viewed as a distributed multi-frontal indefinite block LDL T fac- 

orization technique that relies on fixed pivoting, [33] . This reliance 

s imposed by the structure of the problem which can in turn make 

he algorithm vulnerable to numerical problems, such as propa- 

ation of rounding errors due to ill-posed sub-problems. For the 

roblem in ( (1a) –(1b) ), as the number of sub-systems increases, 

t will be more likely that one will get at least one pivot that is

ll-conditioned. Note that this issue is not related to the conver- 

ence properties of the algorithm, but rather it is related to the 

onditioning of the problem. We can overcome this issue by merg- 

ng the cliques. In particular, whenever the step size becomes too 

mall in a couple of consecutive iterations and the algorithm does 

ot make progress, we proceed as follows. When calculating the 

earch direction, we store the condition numbers of the matrices 

o be inverted in all cliques and then we terminate the algorithm. 

fter that, we merge the clique with the highest condition number 

ith its parent clique and we run the algorithm again. If it fails 

gain, we repeat the same procedure until we get a clique tree for 

hich the algorithm converges successfully. Note that the worst 

ase scenario is to end up with a clique tree with one clique which

s equivalent to solving the centralized version of the problem. 

or numerical experiments, we consider the third setup consisting 

f a large number of sub-systems with dense coupling graphs. In 

articular, we generate 5 problems with different coupling graphs 

ith 25, 50 and 75 sub-systems, respectively. The average number 

f cliques for the original clique tree for which the algorithm failed 

o converge and the average number of cliques after merging the 

liques for which the algorithm converged successfully, is shown in 

ig. 7 . Note that for a few problems, we did not need to merge the

liques and the algorithm converged successfully for the original 

lique tree. 

.2. Vehicle platooning problem 

For the second experiment, we consider the problem of dis- 

ributed model predictive control of a platoon of vehicles with 

on-linear dynamics, [42] , [19,35,36,49] . In addition, we consider 

ollision avoidance constraint to assure that each vehicle in the 

latoon stays at a safe distance away from the neighboring vehi- 

les. To be specific, we consider the optimization problem 
9 
in 

x,u 

m ∑ 

i =1 

N ∑ 

k =1 

(
x i (k ) − x̄ r i 

)
2 + 

(
y i (k ) − ȳ r i 

)
2 + v i (k ) 2 + ω i (k ) 2 (17a) 

 . t . x i (k + 1) = x i (k ) + T s v i (k ) cos ( θi (k ) ) , (17b)

 i (k + 1) = y i (k ) + T s v i (k ) sin ( θi (k ) ) , (17c)

i (k + 1) = θi (k ) + 

1 

L 
T s v i (k ) tan ( ψ i (k ) ) , (17d) 

 i (k + 1) = ψ i (k ) + T s ω i (k ) , (17e)

 i ≤ x i (k ) ≤ x̄ i , y 
i 
≤ y i (k ) ≤ ȳ i , (17f) 

i ≤ θi (k ) ≤ θ̄i , ψ 

i 
≤ ψ i (k ) ≤ ψ̄ i , (17g) 

 i ≤ v i (k ) ≤ v̄ i , ω i ≤ ω i (k ) ≤ ω̄ i , (17h) 

 i (1) = 

˜ x i , y i (1) = 

˜ y i , θi (1) = 

˜ θi , (17i) 

 i (1) = 

˜ ψ i , k = 1 , . . . , N, i = 1 , . . . , m, (17j)

∣∣∣∣
[

x i (k ) 
y i (k ) 

]
−
[

x i +1 (k ) 
y i +1 (k ) 

]∣∣∣∣
∣∣∣∣

2 

≥ ˜ d , k = 1 , . . . , N, i = 1 , . . . , m − 1 , (17k)

here x i (k ) , y i (k ) , θi (k ) and ψ i (k ) are the states and v i (k ) and

 i (k ) are the inputs for the i th vehicle, i = 1 , . . . , m where m is

he number of vehicles. For the i th vehicle, (x i (k ) , y i (k )) is the po-

ition of vehicles center, θi (k ) is the orientation angle and ψ i (k ) 

s the steering angle of the front wheels with respect to the ve- 

icles body. The quantities v i (k ) and ω i (k ) denote the speed and

he steering rate, respectively. The vector ( ̄x r 
i 
, ̄y r 

i 
) is the fixed ref- 

rence signal for the i th vehicle, L is the wheelbase length, T s is

he sampling time and N refers to the horizon length. The quan- 

ities x i , y 
i 
, θ i , ψ 

i 
, v i , ω i are the fixed lower bounds on the states 

nd the inputs. Similarly, x̄ i , ȳ i , θ̄i , ψ̄ i , v̄ i , ω̄ i are the fixed upper 

ounds on the states and the inputs. Finally, ˜ x , ˜ y , ˜ θ and 

˜ ψ are 
i i i i 
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Fig. 8. The cost function values for AL-PDIP and IPOPT (top left figure), the primal residuals norm (top right figure), the dual residuals norm (bottom left figure) and the 

surrogate duality gap (bottom right figure) for m = 100 . 

Table 1 

Parameters for the problem in ( (17a) –(17k) ) (for i = 1 , . . . , m ). 

Parameter Value Parameter Value 

x i −100 x̄ i 100 

y 
i 

−100 ȳ i 100 

θ i −π θ̄i π

ψ 

i 

−π
2 

ψ̄ i 
π
2 

v i −0 . 5 v̄ i 0.5 

ω i −0 . 005 ω̄ i 0.005 
˜ θi 

π
4 

˜ ψ i 0 

( ̄x r 
i 
, ̄y r 

i 
) (i, i ) ( ̄x r 

i 
, ̄y r 

i 
) (i − 0 . 5 , i − 0 . 5) 

t

b

(  

a

c

n

s

i

c

t

T  

c

v

 

i  

f

w

T  

t

t

i

w

t

Fig. 9. The number of iterations for AL-PDIP, IPOPT and ADMM based approaches. 

u

i

fi

e

z

a

A

o

p

c

e

he initial values for the states and 

˜ d is the specified safe distance 

etween the neighboring vehicles. The equality constraints ( (17b) –

17e) ) are the vehicles dynamic, [39] . The inequalities ( (17f) –(17h) )

re the box constraints on the states and inputs and the equality 

onstraints ( (17i) –(17j) ) are the initial conditions for the states. Fi- 

ally, the inequality constraint (17k) is the collision avoidance con- 

traint for the neighboring vehicles. Note that for this problem the 

nteraction between sub-systems is through the collision avoidance 

onstraint. Note also that both the coupling graph and the clique 

ree for this problem is similar and can be described with a chain. 

he number of cliques in the clique tree is m and each clique i

ontains the variables associated with i th vehicle, plus the position 

ariables of the (i + 1) th vehicle. 

Let T s = 1 , L = 0 . 1 N = 5 , ˜ d = 1 and the other parameters be as

n Table 1 . Let also ( ̄x r 
i 
, ̄y r 

i 
) = (i, i ) and ( ̄x r 

i 
, ̄y r 

i 
) = (i − 0 . 5 , i − 0 . 5) ,

or i = 1 , . . . , m . 

In the first setup, for the given values we solve the problem 

ith the proposed AL-PDIP algorithm for 100 vehicles, i.e. m = 100 . 

he results are shown in Fig. 8 . The top left figure is the cost func-

ion value. We also solve the problem using IPOPT. It can be seen 

hat both algorithms converge to the same value. It is worth not- 

ng that fmincon was not able to solve the problem and therefore 

e chose IPOPT for the benchmark purpose. The top right figure is 

he primal residuals norm which is the equality constraints resid- 
10 
al norm. The bottom left figure is the dual residuals norm which 

s the gradient of the augmented Lagrangian and the bottom right 

gure is the surrogate duality gap norm which concerns the in- 

quality constraints. As can be seen, all the residuals converge to 

ero eventually. 

In the second setup, we consider problems with 20, 40, 60, 80 

nd 100 vehicles, respectively. We then solve the problems with 

L-PDIP, IPOPT and the ADMM approaches. Note that the ADMM- 

riginal and ADMM-grouped approaches are the same for this 

roblem as the coupling graph and the clique tree is identical. We 

hoose the same termination criterion as before. The number of it- 

rations for the mentioned approaches is shown in Fig. 9 . As can 
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e seen, here the ADMM approach preforms well when the num- 

er of vehicles is low compared to the experiments in Section 4.1 , 

n which the ADMM based approaches required much more num- 

er of iterations for convergence. The main reason is that for this 

roblem the coupling graph which is a chain, is much looser than 

or the experiments in Section 4.1 , where the interaction between 

ub-systems are more strong. Nevertheless, even for this problem, 

s can be seen in the figure, as soon as we increase the number

f the vehicles, the number of iterations for the ADMM approach 

rows significantly. For the proposed AL-PDIP approach, however, 

he number of iteration for convergence does not depend on the 

umber of vehicles. Last but not least, it should be stressed that 

ach iteration of the ADMM approach consists of solving m local 

ptimization problems which is computationally much more heavy 

han the computations at each iteration of the AL-PDIP algorithm, 

pecially when m is large. 

. Conclusion 

In this paper, we presented a distributed algorithm for optimal 

ontrol of coupled systems, with application to model predictive 

ontrol. The algorithm is based on an augmented Lagrangian ap- 

roach in which a primal-dual interior-point method is used for 

he inner iteration. We distributed the computations for search di- 

ection, step size, and termination criteria over a clique tree of the 

roblem and calculated each of them using message passing. We 

howed the superiority of the algorithm in terms of number of it- 

rations and communications using a set of numerical examples. 

or future work we intend to investigate the possibility of dis- 

ributing the preconditioned conjugate gradient computations of 

13] . 
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ppendix A 

Let E C i be the zero-one matrices such that E C i x = x C i for all

 = 1 , . . . , q . The gradients and Hessians of F , G i s and H i s for the

roblem in ( (13a) –(13c) ) can be derived as 

∂F (x ) 

∂x 
= 

q ∑ 

i =1 

E T C i 

∂F i (x C i ) 

∂x C i 
, 

∂ 2 F (x ) 

∂ x∂ x T 
= 

q ∑ 

i =1 

E T C i 

∂ 2 F i (x C i ) 

∂ x C i ∂ x 
T 
C i 

E C i , 

∂ 
(
G i (x C i ) 

)
j 

∂x 
= E T C i 

∂ 
(
G i (x C i ) 

)
j 

∂x C i 
, j = 1 , . . . , p i , 

∂ 2 
(
G i (x C i ) 

)
j 

∂ x∂ x T 
= E T C i 

∂ 2 
(
G i (x C i ) 

)
j 

∂ x C i ∂ x 
T 
C i 

E C i , j = 1 , . . . , p i , 

∂ 
(
H i (x C i ) 

)
j 

∂x 
= E T C i 

∂ 
(
H i (x C i ) 

)
j 

∂x C 
, j = 1 , . . . , q i , 
i 

11 
∂ 2 
(
H i (x C i ) 

)
j 

∂ x∂ x T 
= E T C i 

∂ 2 
(
H i (x C i ) 

)
j 

∂ x C i ∂ x 
T 
C i 

E C i , j = 1 , . . . , q i , 

here p i and q i are the number of equality and inequality con- 

traints in clique i , respectively. 

ppendix B 

First see Appendix A, for the gradients and Hessians of F , G i s

nd H i s in ( (13a) –(13c) ). Let us now define the modifications of

 C i 
that we call Ē C i . They are obtained by identifying the non-zero 

olumns which E C i have in common with E C par(i ) 
, where par(i ) is 

he parent of the i th clique in the clique tree. Then Ē C i is defined

o be equal to E C i , except for these columns, which are set equal

o zero. With this definition, H 

(l) 
i 

, r (l) T 

i 
, A 

(l) 
i 

and b 

(l) 
i 

in problem

 (14a) –(14b) ) can be written as 

 

(l) 
i 

= 

∂ 2 F 
(
x (l) 

C i 

)
∂ x C i ∂ x 

T 
C i 

+ 

q i ∑ 

j=1 

λ(l) 
j 

∂ 2 
(
H i (x (l) 

C i 
) 
)

j 

∂ x C i ∂ x 
T 
C i 

p i ∑ 

j=1 

[ (
ν(l) 

j 
+ 

1 

μ

(
G i (x (l) 

C i 
) 
)

j 

)∂ 2 
(
G i (x (l) 

C i 
) 
)

j 

∂ x C i ∂ x 
T 
C i 

+ 

1 

μ

∂ 
(
G i (x (l) 

C i 
) 
)

j 

∂x C i 

∂ 
(
G i (x (l) 

C i 
) 
)

j 

∂x T 
C i 

] 

+ ασ Ē C i Ē 
T 
C i 

−
∂H i (x (l) 

C i 
) T 

∂x C i 
diag 

(
H i (x (l) 

C i 
) 
)−1 diag 

(
λ(l) 

C i 

)∂H i (x (l) 
C i 

) 

∂x T 
C i 

, 

 i = 

∂F i (x (l) 
C i 

) 

∂x C i 
+ 

q i ∑ 

j=1 

λ(l) 
j 

∂ 
(
H i (x (l) 

C i 
) 
)

j 

∂x C i 

+ 

p i ∑ 

j=1 

(
ν(l) 

j 
+ 

1 

μ
(G i (x (l) 

C i 
)) j 

)∂ 
(
G i (x (l) 

C i 
) 
)

j 

∂x C i 

−
∂H i (x (l) 

C i 
) T 

∂x C i 
diag 

(
H i (x (l) 

C i 
) 
)−1 

(
diag (λ(l) 

C i 
) H i (x (l) 

C i 
) + 

(
1 

t 

)
1 

)
, 

 

(l) 
i 

= 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

∂ 
(

G i (x (l) 
C i 

) 
)

1 

∂x T 
C i 

. . . 

∂ 
(

G i (x (l) 
C i 

) 
)

p i 

∂x T 
C i 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, b 

(l) 
i 

= −G i 

(
x (l) 

C i 

)
. 

Note that if the Hessian does not need to be modified, then 

σ = 0 . 
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