European Journal of Control 70 (2023) 100768

journal homepage: www.elsevier.com/locate/ejcon

Contents lists available at ScienceDirect

European Journal of Control

European
Journal
of Control

Distributed optimal control of nonlinear systems using a second-order g

augmented Lagrangian method

Shervin Parvini Ahmadi*, Anders Hansson

Division of Automatic Control, Linkdping University, Sweden

Check for
updates

ARTICLE INFO ABSTRACT

Article history:

Received 1 December 2021
Revised 27 November 2022
Accepted 15 December 2022
Available online 10 January 2023

In this paper, we propose a distributed second-order augmented Lagrangian method for distributed op-
timal control problems, which can be exploited for distributed model predictive control. We employ a
primal-dual interior-point approach for the inner iteration of the augmented Lagrangian and distribute
the corresponding computations using message passing over what is known as the clique tree of the

problem. The algorithm converges to its centralized counterpart and it requires fewer communications

Recommended by Prof. T Parisini

Keywords:

Distributed optimal control
Distributed model predictive control
Augmented Lagrangian

Distributed optimization

between sub-systems as compared to algorithms such as the alternating direction method of multipli-
ers. We illustrate the efficiency of the framework when applied to randomly generated interconnected
sub-systems as well as to a vehicle platooning problem.

© 2023 The Author(s). Published by Elsevier Ltd on behalf of European Control Association.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

1. Introduction

Consider a discrete-time system composed by the interconnec-
tion of m sub-systems. The problem we are interested in solving
is the optimal control problem that is solved repeatedly in Model
Predictive Control (MPC). It is of the form

m N
min Y~ { DSk, ui() )+ (6 (N+1)) (1a)

i=1 \k=1

stxi(k+1) = fi(xi(), ui (k) + Y fii(x(k), uj(k)),

jeN (i)

gij(xik), ui(k), x;(k), uj(k)) =0, jeN(),

gi(xi(k), ui(k)) =0,

hij (xi (k). u; (k). x; (k). u;(k)) <0, jeN(D),

hi(xi(k), ui(k)) <0, k=1,...,N, i=1,...m, (1b)
where x;(k) € R™ and u;(k) € R™ are the states and the inputs of
sub-system i at time instant k, J; : R™™™ — R, ]if :R™ >R, fi:
R+ _, R fij SR R™i, 8ij - R T Rng,-j'
g Rnxi+nui N Rngi, h,“ . Rnxi+n”i+nxj +nu}- N Rnhij_ hi . Rnxi+nu,- - Rnhi
are twice differentiable functions, N is the horizon length and

* Corresponding author.
E-mail address: shervin.parvini.ahmadi@liu.se (S. Parvini Ahmadi).

https://doi.org/10.1016/j.ejcon.2022.100768

N (i) is the set of all indices of sub-systems which interact with
sub-system i.

MPC is a popular advanced control method due to its applica-
bility to both linear and non-linear systems, its capability in han-
dling constraints on both inputs and states, as well as its optimal
performance with respect to a cost function, [12,22]. It is based on
solving a finite horizon optimal control problem at each sampling
instant, where the current state of the plant is used as initial con-
dition for the state prediction. The first part of the resulting control
input sequence is then applied to the actual plant, the time hori-
zon is shifted and the same procedure is repeated. Traditionally,
the problem is solved using what is known as centralized MPC,
where all measurements and information available about the sys-
tem are collected in a central unit to calculate all control actions.
For large-scale systems or systems with considerable number of
sub-systems, this approach becomes impractical due to the high
computational effort or due to the fact that collecting all informa-
tion in a central unit is not feasible, [10,18,21,26,40,45]. Examples
of such systems are power distribution systems, water distribution
systems, transportation systems, biological systems and coopera-
tive payload transport in robotic applications etc, [21]. Decentral-
ized MPC and distributed MPC are two popular approaches to ad-
dress this issue. In both approaches the computations are calcu-
lated distributedly in local units assigned to each sub-system. The
main difference, however, is that in decentralized MPC the cou-
pling between sub-systems is ignored and the control decisions for
the sub-systems are taken independently, whereas in distributed
MPC, sub-systems communicate with each other to compute the
optimal control signal, [14,34]. Here we focus on distributed MPC

0947-3580/© 2023 The Author(s). Published by Elsevier Ltd on behalf of European Control Association. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/)


https://doi.org/10.1016/j.ejcon.2022.100768
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejcon
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejcon.2022.100768&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:shervin.parvini.ahmadi@liu.se
https://doi.org/10.1016/j.ejcon.2022.100768
http://creativecommons.org/licenses/by/4.0/

S. Parvini Ahmadi and A. Hansson

which has been studied extensively in the control community. Next
we present a short overview of different approaches.

In [47], a non-linear distributed MPC is presented, which is
based on gradient projection. The presented algorithm does not
require a central coordination level and therefore, it is truly dis-
tributed. In [46], a sensitivity-driven distributed MPC for linear
time-invariant systems is presented. The coordination between
sub-systems is achieved by using a linear approximation of the ob-
jective functions of the neighboring controllers within the objec-
tive function of each local controller. This, in turn, leads to overall
optimality. In [50], a distributed MPC is presented for large-scale
networked systems such as power systems. The overall system is
assumed to be linear and time-invariant. Each sub-system has its
own MPC controller, and the sub-systems work iteratively and co-
operatively towards satisfying system-wide control objectives. The
framework is based on a terminal penalty, and it achieves perfor-
mance equivalent to centralized MPC. In general, these frameworks
are based on a primal decomposition method. A disadvantage of
this class of methods is that each sub-system requires knowledge
of the overall system, which in turn limits the scalability of the
method [6].

Another class of distributed MPC methods is based on dual
decomposition. In [25], a distributed optimization algorithm for
strongly convex problems is presented. The algorithm is based on
accelerated gradient methods using dual decomposition. It is ap-
plied to randomly generated problems arising in distributed model
predictive control. In [18], a distributed non-linear optimal con-
troller is presented in which the cost function is assumed to be
separable and convex. The algorithm is based on two ingredi-
ents. First, the convex problem structure is exploited using a se-
quential convex programming framework that linearizes the non-
linear dynamics in each iteration. Second, a distributed dual de-
composition method is used to solve the resulting problem. Also
in [18], a dual decomposition method for distributed model pre-
dictive control over networks is presented. The authors assume
separable non-convex optimization problems. A sequential convex
programming scheme based on a penalty function is used to han-
dle the non-convexity. See [6], for a more complete list of papers
which are based on dual decomposition methods. A drawback of
this class of methods is that their convergence rate might be low,
which leads to several communications among sub-systems. This
issue is addressed in what is known as the Alternating Direction
Method of Multipliers (ADMM) method. It has received a lot of at-
tention due to its capability in retaining the decomposability of the
dual formulation while ensuring faster convergence, [8]. In [6], a
scheme for continuous-time non-linear systems based on ADMM
is proposed and stability results are presented under two differ-
ent ADMM convergence assumptions. Similar approaches are used
in [10,11,28], where the performance of the framework is evalu-
ated on different applications. Their approach is based on the as-
sumption that the systems are non-linear neighbor-affine. In [21],
two frameworks for distributed MPC are proposed based on dual
decomposition and ADMM, respectively. In [45], the authors in-
vestigate the application of ADMM on the distributed MPC prob-
lem, both in primal and dual domains. In [30], a Proximal Jacobian
ADMM algorithm is presented for distributed MPC, in particular
for building control applications. In [34], a linear, time-invariant,
discrete-time plant with coupled subsystems is considered and two
approaches based on ADMM are proposed. In [48], the authors ap-
ply the ADMM based distributed MPC method to a flocking prob-
lem in a network of double integrators. They show that a near-
centralized performance can be achieved with only a few tens of
iterations. In [17], the authors investigate performance of ADMM
and a dual decomposition method based on fast gradient updates,
by a systematic computational study. In [31], a distributed algo-
rithm, known as ALADIN (augmented Lagrangian alternating direc-

European Journal of Control 70 (2023) 100768

tion inexact Newton), is presented for non-convex smooth opti-
mization problems with coupled affine constraints. The algorithm
is a further development of ADMM, which contains ideas from
augmented Lagrangian and sequential quadratic programming. The
algorithm has a faster convergence rate compared to ADMM based
algorithms. This however comes at the price that it requires more
communications, [37]. In [20], a distributed version of ALADIN is
presented which is based on bi-level distribution, meaning that
the outer ALADIN structure is combined with an inner distribu-
tion level solving a condensed variant of ALADINs convex coordi-
nation quadratic program by decentralized algorithms. See [31], for
a complete list of distributed second-order methods. Common for
the distributed approaches based on second order information is
that they do not address general nonlinear constraints.

As mentioned ADMM improves the speed of convergence as
compared to dual decomposition methods. However, as we will see
in this paper, this is only the case when moderate accuracy is de-
sired. For high accuracy, it might still be very slow which results
in many iterations for convergence, which in turn leads to exces-
sive communications between sub-systems. Similar to our previ-
ous work, [2], we take in this paper a different approach based on
the Augmented Lagrangian (AL) method proposed in [16]. In [2],
we only considered equality constraints and not inequality con-
straints. In this paper we extend the algorithm to optimization
problems with both equality and inequality constraints. The idea
is to handle the inequality constraints by incorporating a primal-
dual interior-point approach, [41, Ch. 19], in the augmented La-
grangian framework. We distribute the algorithm using message-
passing over what is known as the clique tree of the problem, as in
[33]. We will see that the proposed algorithm requires much fewer
iterations for convergence and, in turn fewer communications, as
compared to the most competitive method proposed in [6], which
is based on ADMM. However, this comes at the price that we can-
not distribute the computations freely. We will come back to this
later. However, the fact that we distribute the computations of the
AL method using message-passing over a clique tree, does not in
any way effect the convergence behaviour of the method. In other
words, the distributed version of the AL method behaves exactly
as the centralized version of it. See [16], for the convergence prop-
erties of the AL method in which it is shown that AL is at least
R-linearly convergent regardless of what algorithm is used for the
inner iteration.

The main contributions of this paper are

« Development of a distributed second-order optimization
method for general non-convex problems.

- Application of the method to general nonlinear distributed pre-
dictive control.

- Application of the method to a vehicle platooning problem.

The rest of the paper is organized as follows. In Section 2,
we present the augmented Lagrangian algorithm. In Section 3,
we discuss how we can distribute the algorithm over the clique
tree of the problem. Numerical experiments are presented in
Section 4 and we conclude the paper in Section 5.

2. Augmented Lagrangian and primal-dual interior-point
methods

Consider the optimization problem

min f(x) (2a)
s.t.g(x) =0, (2b)

h(x) <0, (2¢)



S. Parvini Ahmadi and A. Hansson

where f:R" — R and h: R" — RY are not necessarily convex, nor
is g: R" — RP necessarily affine. In order to define the augmented
Lagrangian, one approach is to convert the inequality constraints
to equality constraints and then include all the constraints in the
augmented Lagrangian function. The other approach, is to include
part of the constraints in the augmented Lagrangian function while
the rest of the constraints are dealt with directly. The latter ap-
proach is called partial augmented Lagrangian or partial elimina-
tion of constraints, [5, Ch. 2], [4, Ch. 4]. Here we only include
the equality constraints in the augmented Lagrangian function and
we deal with the inequality constraints by imposing the comple-
mentary slackness condition, [9, Ch. 11], [41, Ch. 19]. The partial
augmented Lagrangian of this problem is given by the function
Ly : R" x R? x RP — R, where

Lu(x, 2, v) = f(x) + ATh(x) + v g(x) + ﬁllg(X)l 12, (3)

where A and v are Lagrangian multipliers for the inequality and
equality constraints, respectively and w is a penalty parameter. See
[24], for different versions of augmented Lagrangian functions and
their relations to primal-dual methods. It is shown in [29] and
[44] that an augmented Lagrangian method converges to a local
minima if the penalty parameter is sufficiently small, and if the
augmented Lagrangian is approximately minimized at each itera-
tion. In this paper we use the augmented Lagrangian algorithm
presented in [16], which is the basis of the successful software
package LANCELOT, [15,41]. The algorithm consists of inner itera-
tion and outer iteration parts. In the inner iteration part the aug-
mented Lagrangian is approximately minimized and in the outer
iteration part the Lagrangian multipliers and the penalty parame-
ter are updated. We will use an interior-point method for the in-
ner part. This has previously been considered in e.g. [13], where
the authors use a preconditioned conjugate gradient method on
a Graphics processing unit (GPU) in order to compute the search
directions in parallel. Our approach is instead related to multi-
frontal factorization techniques for computing the search direc-
tions. In [38], the authors propose an efficient implementation of
an interior-point algorithm for non-convex problems that uses di-
rections of negative curvature. The method uses the augmented La-
grangian as a merit function. In [7], a hybrid algorithm is proposed
in which the interior-point method is replaced by the Newtonian
resolution of a KKT system identified by the augmented Lagrangian
algorithm. In [3], an interior-point Newton algorithm for nonlinear
programming problems is proposed, where they use a generaliza-
tion of the augmented Lagrangian function as a merit function in
order to obtain global convergence. Next we discuss how the in-
ner iteration can be carried out using a primal-dual interior-point
method. At the end of the section, we will present the overall aug-
mented Lagrangian method.

Necessary conditions for an optimal x of ((2a
there exist Lagrange multipliers A and u such that

)-(2¢)) is that

Ly (’gx)h ") -0 (4a)
g(x) =0, (4b)
h(x) <0, (4c)
—diag(A)h(x) =0, (4d)
A =0, (4e)
where W can be written as

European Journal of Control 70 (2023) 100768

where E)h/(x)T (Bh(x))'r and ag(x)T (ag(x) )T, 200 ang 980 ape

the Jacoblan of h([;?) and g(x), respectlvexly The matrix diag(}) is
a diagonal matrix with the elements of A on the diagonal. Equa-
tion in (4d) is known as the complementary slackness condition,
[9, Ch. 11], [41, Ch. 19].

A primal-dual interior-point method computes a solution for
((4a)-(4e)) by applying Newton’s method in order to solve them in
an iterative fashion, where Eq. (4d) is modified as — diag(A)h(x) =
(%)1, where t > 0 and 1 is a vector of all ones. Specifically, at each
iteration I given x, A® and v® in such a way that h(x®) <0
and A > 0, the search directions Ax, AA and Av are computed
by solving the following linear system of equations which are ob-
tained by linearizing (4a), (4b) and the modified version of (4d)

{Bzf(x(’)) d [a%(x“’) w]

oxoxT + ~ oxoxT i

32g; (x
[ ) T

(O] (0] (H\T
L1 98" 0gix )“AH%(X N

W ox  OxT ax
9 x(l) T
+ X Av= i, (6a)
ag(xT !
e Ax= — el (6b)
—diag(A ") ah(x )Ax — diag (h(x")) AL = - rd (6¢0)

where g;(x) and h;(x) are the ith component of g(x) and h(x), re-
spectively and

[ aLM(X(l)’ A0, M(l))
dual - 3X ’

r® l
prlmal g(x( ))
. 1
e = — diag(.O)h(x) - (1.
We can reduce the system by eliminating AX as

M:diag(hm)l( diag(0.0) 21X >Ax+r52m) @

which will result in the following linear system of equations

s ) ®
aga(ijl ) 0 AA rprimal
where
2L, (x(’), A0, U(l>)

2f(x) [aZn(x“’) w]

0x0xT 0x0xT

P 1 92g;(xD)
o, 2 (x(D 7
+ Z [(vi e gi(x )) e

) )
+18gl(x ) dgi(x )}

oxoxT i

no 0x oxT

]
%Xi)dlag(xm) 1d1ag(x<’>)ah(x DI
Ah(x)T
=)+ ( ) diag (h(x®))7'r{,. (9)



S. Parvini Ahmadi and A. Hansson

Note that the linearized optimality conditions are the optimal-
ity conditions for the quadratic optimization problem

1 TBZLM(X(I),X('),U(D)

. - (’)T
rr&lxn 3 AX T Ax+1" Ax (10a)
9g(x™) 0
s.t. o AXx = ~T primal- (10b)

In order to assure that the obtained search direction is a de-
cent direction, the augmented Lagrangian Hessian in (9) should be
positive definite on the null space of g " . In our previous work,
[2], we satisfy this condition by making the augmented Lagrangian
Hessian in (9) positive definite at each iteration by adding a mul-
tiple of the identity matrix when it is negative definite. In partic-
ular, when the Hessian is negative definite, we add (Jo |+ €)I to
the Hessian, where o is the most negative eigenvalue and € > 0.
However, this approach is conservative. One can instead satisfy the
augmented Lagrangian Hessian being positive definite on the null
space of g;" by checking the inertia of the coefficient matrix in
(8), which is the number of positive, negative, and zero eigenval-
ues. The obtained search direction is a decent direction if the ma-
trix has exactly n positive, and p negative and zero eigenvalues,
[41]. Therefore, if this condition is not fulfilled, one can add a mul-
tiple of the identity (osI) to the Hessian, i.e. to the (1,1)-block of
the coefficient matrix in (8), in such a way that this is satisfied. For
this purpose, a simple strategy is suggested in [41, Appendix B],
which is presented in Algorithm 1. With this modification, the op-
timization problem for the search directions in ((10a)-(10b)) be-
comes

Algorithm 1 Inertia correction
1: Given o, used in the previous interior-point iteration
2: Find the inertia of the coefficient matrix in (8)

. if the inertia condition is satisfied, i.e. it has exactly n positive,
p negative and zero eigenvalues then

4 Set ag < 0, Ay < 0

5 break

6: else if oy, = 0 then

7

8

9

w

Set oy « 104
. else
: Set oty <« %T"ld
10: end if
11: repeat
12:  Find the inertia of the coefficient matrix in (8) after adding
o1 to the Hessian, i.e. (1,1) block
13:  if the inertia condition is satisfied, i.e. it has exactly n posi-
tive, p negative and zero eigenvalues then

14: Set o,y < Yo
15: break

16: else

17: Set oy < 100ty
18:  end if

19: until maximum number of iterations reached

1 (02, (xD, A0 D) T
rrilxn ij ( X9 +asl ) Ax+1"" Ax (11a)
ag(x™) 0
s.t. TAx T primal- (11b)

For computation of the step size at each iteration of the primal-
dual interior-point method, we employ the well known backtrack-
ing line search method, [9,41]. The general idea in the method is
as follows. First we compute the largest positive step, not exceed-
ing one, for which h(x(*1D) <0 and A(+D > 0. Then, we start the

European Journal of Control 70 (2023) 100768

backtracking by multiplying the obtained step with Bsep € (0, 1),
until we have sufficient decrease in the residual norms, i.e. rd+

primal
and rc(l”})
ua.
For the calculation of the t in the modified version of (4d), first

we define what is known as the surrogate duality gap as in [33],
Msur (%, 1) = —=ATh(x). (12)

The t parameter then can be computed as t = nsul:([?z 5 for pe =
0, where a typical value for w is 10, [9], and q is the number of in-
equality constraints. Note that the presented primal-dual interior-
point method is used in the inner iteration of the algorithm
(Lines 7-12). Note also that primal-dual interior-point method has
a superlinear convergence rate for nonlinear programming prob-
lems, which is discussed in [41, Ch. 19].

Now we can summarize the overall augmented Lagrangian al-
gorithm in Algorithm 2, [16, Section 3, Alg. 2]. Note that the pre-

Algorithm 2 Augmented Lagrangian algorithm

1: Given the nonnegative constant «, and the positive constants 1o, (o, T < 1, wo,
y<ln<lo<,n<, 5«1, ¢, dy Po, By the optimization variable
xM and the Lagrangian multipliers A" and v

2: Set u™M = po, a® = min(u®, Y1), oD = wo (@)% and nM = o (M)

3:fork=1,..., kmax do

4: (k)(x(k) A0y = AT p(x®)

> t(k) = Sy

6 2=x®, % =1® and p = v®

7. while || 220 C20 ) w0 do

8 Find search direction using (11a-11b)

9 Compute AL using (7)

10: Find step size using backtracking line search

11: update %, % and p

12: end while

13: x(k+1) — %, Akt — j\,

14: if ||g(®)]| < r;“” then

15: if IIMH <w, and [|g®)|| < n. and ner (X, < N then
16: break

17: end if

18: plD = )

19: if ||D]| < ¢ (u%*+)~7 then
20: pk) =

21: else

22 pkt1) — (k)

23: end if

24: a®+D) = min(u®D, yp)
25: w*D) = ® (q*k+D)fo
26: kD) = 0 (k1)) By

27: else

28: pl) —

29: if ||D]| < ¢ (u*+D)~7 then
30: pD) =

31: else

32: pkt1) — (k)

33: end if

34: ak+D) — min(pﬂ‘*”, Vl)
35: a)(k+l) — a)o(()((k+1))°’"

36: n(k+]) =1 (O[(kﬂ))u,,

37: end if

38: end for

sented primal-dual interior-point method is used in the inner iter-
ation of the algorithm (Lines 7-12). Note also that the superscript
(k) in Algorithm 2 corresponds to the outer iteration, and it should
not be confused with the superscript (I) used in equations ((6a)-
(11b)) which corresponds to inner iteration. The algorithm com-
prises four main steps. The first step (Line 1-2) is the initialization
phase. The second step (Lines 4-12) is the inner iteration. Here,
first we compute the parameter t associated with the complemen-
tary slackness condition. Then, we compute an approximate mini-
mization of the problem in ((2a)-(2c)) by satisfying the optimality
conditions in ((4a)-(4e)), using the presented primal-dual interior-
point method. Note that one can move the computations of the



S. Parvini Ahmadi and A. Hansson

t parameter (Line 5) into the while loop (Lines 7-12) which will
result in more frequent update of t. We store the resulting x and
A in Line 13 in order to warm start the second step in the next
outer iteration k + 1 (Line 6). Now, if the norm of the equality con-
straint residual is less than a certain threshold, we proceed with
the third step (Lines 15-26). Otherwise, we proceed with the fourth
step (Lines 28-36). In the third step, we first we carry out a ter-
mination test. If the termination condition is not satisfied, we keep
the penalty parameter value the same, update the Lagrangian mul-
tipliers for the equality constraints under a certain condition, and
then we update the free parameters. We then proceed with the
second step. In the fourth step, we update the Lagrangian multi-
plier for the equality constraints under a certain condition, then
we increase the penalty parameter and we update the free pa-
rameters. We then proceed with the second step. As suggested
in [16], for a well-scaled problem, the typical values for the free
parameters in the algorithm are oy =fBp =y = =ng=wg =1,
ap=po=y;=0.1, 8, =09 and T =0.01.

3. Distributed computation for the inner iteration

In this section we will see how we can distribute the computa-
tions of the inner iteration in Algorithm 2. Similar to our previous
work, [2], we base our computations on what is known as a clique
tree. See [33], for details about clique tree. We start by defining
a coupling graph for the problem in ((1a)-(1b)). A coupling graph
is an undirected graph with the node or vertex set V. = {1,...,m}
and the edge set & with (i, j) € & if and only if sub-systems i and
j interact with each other, i.e. affect each others dynamics through
states and inputs. In graph theory, a clique is a subset of vertices
whose induced subgraph is complete, and a clique tree is a tree
of cliques. In order to derive a clique tree, one might need to first
carry out what is known as chordal embedding (also known as tri-
angulation process). For the sake of brevity, we omit the details re-
garding that and we refer the reader to the introduction in [43]. In
the context of this paper, a clique translates to a grouping of sub-
systems and a clique tree will be used as a computational graph.
Note that for the numerical experiment of our previous work, [2],
we consider problems for which the clique tree is the same as the
coupling graph. In this work, we consider more general problems
where the clique tree of the problem is not trivial. Let us now con-
sider a problem with 30 sub-systems where the coupling graph is
illustrated in Fig. 1. There are various algorithms in the literature
to generate the clique tree of the problem. One such method is
presented in [32], which is used in the MATLAB library [51]. We
use the same code to generate the clique tree. The resulting clique
tree for the problem in Fig. 1 is illustrated in Fig. 2, where each
clique contains the following sub-systems

G =1{1,14,15,22},
G, = {14, 15, 16, 22, 27},

G =1{5.21.22},

Cs = {15, 16,19, 22, 27, 28, 29, 30},
Cs = {6. 14, 16},

G = {2.28),

G =1{3.27,29},

G ={7. 15,29},

Co = {4.8.10,15, 16, 28},
Cio = {11, 15, 19, 29, 30},

Cn = {12, 28},

Gz = {9.13,17,18,19, 20, 22, 23, 24, 25, 26, 27, 28, 29, 30}.

Once the clique tree is found, we choose one of the cliques as
the root of the tree. Let C; be the root. Next, we assign each sub-

European Journal of Control 70 (2023) 100768

o
W13
1
W25
W26 3
L)
B8
mo §ie W0 o
m ]
B35 20
]
it} s w7 27
e L
28
0 -
W2 W2 22
s
21
Fig. 1. Coupling graph for a problem with 30 sub-systems.
&,
®; O
‘;‘4 .:‘5
& & & & &, &, ¢,

Fig. 2. The corresponding clique tree for the problem in Fig. 1.

system to a clique. The assignment is not unique and can be done
in different ways. Our strategy is as follows. A sub-system is as-
signed to a clique if it is not present in the parent clique. For ex-
ample, sub-system 12 is assigned to Cy; as it is not present in the
parent clique of Cy; which is C4. For this problem, the assigned sub-
systems for each clique are specified with underscore. Note that, to
be precise, each clique comprises the variables associated with the
contained sub-systems (not only the assigned ones), together with
the variables of the sub-systems that they are interacting with.
We should note that, as mentioned earlier, in order to compute
a clique tree, we employ a general purpose algorithm which takes
the coupling graph as the input and generates what is known as
chordal embedding [43], and the corresponding clique tree. There-
fore, we cannot know a priori how the structure of the clique tree
is. Obviously, if the coupling graph is very dense, we may end up
with a clique tree which has a few number of cliques, and the
worst case scenario is when all sub-systems are connected to each
other, and in that case the clique tree will be a single clique. If the
coupling graph for the sub-systems is loose or sparse, it is likely
that the generated clique tree has many cliques, which is desir-
able. Note that if the generated clique tree is a chain of cliques,
one can pick the middle clique as the root of the tree, and there-
fore the resulting clique tree will have two parallel branches. Last
but not least, we should point out that we distribute the compu-
tations over sub-systems. One can further distribute the computa-
tions in each clique over time instances. In [27, Section 3.4], the au-



S. Parvini Ahmadi and A. Hansson

thors show how parallel computations can be exploited over time
instances for MPC problems.

Now let us write the problem in ((1a)-(1b)) in a more compact
form as

q

min F(x) = > E(x) (13a)
i=1

s.t.Gi(xg) =0, i=1,...,q, (13b)

Hi(x¢) <0, i=1,....q (13¢c)

where F;(xc;) are the terms in (1a) which are assigned to clique i.
The vector G;(xc,) is a vector obtained by stacking all the equality
constraints in (1b) which are assigned to clique i, on top of each
other. Similarly, H;(xc,) is a vector obtained by stacking all the in-
equality constraints in (1b), which are assigned to clique i, on top
of each other. The vector x¢, contains all the variables in clique i, x
is a vector including all the variables in the optimization problem
and q is the total number of cliques.

The optimization problem for the search direction in ((11a)-
(11b)) at iteration [, can be written distributedly over the cliques
as

q
. 1
min ?_1 iAxgHg”qu +r" Axg, (14a)
st.AVAxg =b", i=1,....q. (14b)

See Appendix B for the definitions of Hfl), rl.a)T, A}’) and blf').
Once Axc is computed, AAc, can be obtained as

OHi(xc')

Adg, = —diag (Hi(x)))~'{ diag ()‘g))T
G

AXQ

+diag () (x0) + (1 )11, (15)

The optimization problem in ((14a)-(14b)) can be solved using
message passing over the clique tree as outlined in [33]. Their ap-
proach is summarized briefly in the following. Consider the clique
tree in Fig. 2. For each and every leaf optimize the term of the ob-
jective function that has been assigned to the leaf with respect to
the variables that it does not share with its parent. The optimiza-
tion should be done parametrically. The resulting optimal value,
which is a function of the variables shared with the parent, is
passed to the parent as a message. Once the parents receive the
messages from all their children, they add them to their objective
function terms and the same procedure is repeated assuming that
the children cliques have been pruned away. Finally, we reach the
root of the tree where the remaining variables are optimized. Then
we can go down the tree and recover all optimal variables. This
is based on the fact that we have stored the parametric optimal
solutions in the nodes of the clique tree. See the introduction in
[43], for an example of optimization over clique tree using mes-
sage passing.

As it is discussed in Section 2, in order to see if the Hessian
in (9) needs to be modified to get a decent direction, we need
to know the inertia of the coefficient matrix in (8) at each it-
eration. Fortunately, we can calculate it distributedly, thanks to
Sylvester’s law of inertia, [23]. Let us consider an LDLT factoriza-
tion of a matrix X, i.e. X = LDLT, where L is a lower triangular
square matrix with unity diagonal elements, D is a block diagonal
matrix. It follows from Sylvester’s law that inertia(X) = inertia(DD).
Now because of the fact that conducting message passing over a
clique tree is the same as calculating an LDLT factorization, [33,
Section 6], we can calculate the inertia distributedly by summing

European Journal of Control 70 (2023) 100768

up the inertia of the block diagonal elements of D which we get
during the upward pass from leaves of the clique tree to the root.
Therefore, Algorithm 1 can be run in the root of the clique tree
to obtain the modification aI of the overall Hessian. The overall
Hessian is a sum of terms, see (14a). Moreover, Axc, and Axcj, for
i # j, may have common variables. Hence, the overall Hessian de-
pends on Hi(l) in a complicated way, and care has to be taken when

modifying each Hi(l) so that the overall Hessian is modified by o 1.

The details of this are given in Appendix B; specifically notice the

term ongC.ECT_ in the computation of H,.(l). Since the overall modifi-
!

cations can be carried out as modifications of Hlf’), they distribute
over the clique tree.

In order to be able to use the message-passing technique, there
is a rank condition for the equality constraints in (14b) that should
be imposed. This can be imposed in a similar way as in Lemma 6.2
in [33]. However we need to impose them in every iteration since
our original problem is non-convex. For the computations of step
size and termination criteria, we again refer to [33, Section 6],
where it is thoroughly explained how they can be distributedly
computed over the clique tree.

Last but not least, it should be pointed out that all other com-
putations in the outer iteration of Algorithm 2 can be carried out
in the root of the clique tree. Note that what clique is chosen as
root does not affect the number of communications between the
cliques required for converging to a solution. However, it affects
how computations can be carried out in parallel. See our previous
work [1], for parallel exploitation of the clique tree.

4. Numerical experiments
4.1. Randomly generated interconnected sub-systems

For the first experiment, we consider model predictive control
of a discrete-time system composed by the interconnection of m

non-linear sub-systems. Let us assume that the following optimiza-
tion problem needs to be solved at each iteration of the MPC

m N
s . 4 . 4 . 4
min DD S it + rau(k)* ) + X (N + 1)

(16a)
i=1 \k=1
st.xi(k+1) = axi(k)® + (k) + D x;(k),
JeN (i)

x(k)* + ui(k)* < 7.

Ximin = xi(k) =< Xj max»

Ui min = ui(k) = Uj max>

xi(1)=%, k=1,....N, i=1,...,m, (16b)

where x;(k) € R™ and u;(k) € R™ are the states and the inputs of
sub-system i at time instant k, N is the horizon length and A (i)
is the set of all indices of sub-systems which interact with sub-
system i. 7x > 0, 1y 2 0, &, Bi, ¥i = 0, Xi mins Xi.max> Yi,min» Ui max and
X; are generated randomly. The last equation is the initial condi-
tion. We also generate all the coupling graphs in a random fash-
ion and we make sure that they are connected. For all the ran-
domly generated systems in the paper, the average number of sub-
systems that each sub-subsystem interacts with, is 2.23.

We compare performance of the proposed algorithm, referred
to as AL-PDIP (AL refers to Augmented Lagrangian and PDIP refers
to Primal-Dual Interior-Point), with an ADMM based distributed al-
gorithm proposed in [6], which is explained in the following. We
refer to this algorithm as ADMMe-original. In the algorithm, first
local copies of coupling variables are defined for each sub-system.
After that, consistency constraints with coordination variables are



S. Parvini Ahmadi and A. Hansson

introduced so that the local copies and the original variables co-
incide at optimality. The outline of the algorithm for each sub-
system is given in Algorithm 3. Note that in forming the aug-
mented Lagrangian in Step 2, only the corresponding cost func-
tion and the consistency constraints are used. The augmented La-
grangian is then minimized subject to the local dynamics by fixing
the coordination variables. Note also that for the convergence test
in Step 4, a central coordinator determines whether the criterion
is satisfied for all sub-systems which requires a global communica-
tion at the end of each iteration. The first part of Step 2 in which
an optimization problem needed be solved is the most computa-
tionally heavy part of the algorithm.

Algorithm 3 The ADMM algorithm outline in [6]

1: Local initialization
2: Local minimization

+ minimize the corresponding augmented Lagrangian subject
to the local dynamics by fixing the coordination variables

o receive local copy of coupling variables values from neigh-
bors

o Compute local coordination variables

» receive coordination variables values from neighbors

3: Local multiplier update

e compute local Lagrangian multipliers
o compute local copies of Lagrangian multipliers for neighbors

4: Stopping criterion

e quit if termination criterion is satisfied
e otherwise return to Step 2

It should be noted that the way the computations are dis-
tributed in AL-PDIP algorithm and the ADMM based algorithm
in [6], are different. In the AL-PDIP algorithm, in order to carry
out the computations, it is enough to assign one computational
agent per clique. Therefore, there will be as many computational
agents as the number of the cliques. This is related to how we
distribute the computations which is based on the clique tree. In
the ADMM based algorithm, however, one computational agent per
sub-system is assigned. Hence, there will be as many computa-
tional agents as the number of the sub-systems. One can, therefore,
argue that in a sense the ADMM based algorithm is further dis-
tributed than AL-PDIP algorithm. However, the advantage of having
one computational agent per clique is that in general the number
of communications are lower compared to the case where there
is one computational agent per sub-system. This property can be
useful when the communications are more costly than carrying out
the computations. It should also be mentioned that one might ex-
pect that the computations carried out in a clique (AL-PDIP algo-
rithm) may be heavier than the computations carried out in a sub-
system (ADMM based algorithm). This is not necessarily the case.
The reason is that in the former case, at each iteration the domi-
nant computation is matrix factorization, whereas in the latter case
at each iteration, a local optimization problem should be solved
which can be costly. It should also be stressed that our proposed
AL-PDIP algorithm is limited to using the clique tree, and the form
of this tree depends on the type of coupling we have. There are ac-
tually examples for which we would not be able to distribute the
computations at all. This is the case when each sub-system is con-
nected to all other sub-systems in the coupling graph, or when the
generated clique tree is a single clique. However, there are many
cases for which our method works and as we will see in the rest

European Journal of Control 70 (2023) 100768

Cost function value

102 T T
AL
fmincon
ADMM-original
ADMM-grouped
10" F 1
100 F E
107 F 1
102 : : :
10° 10 102 10° 104

Iteration

Fig. 3. The objective function value in (16a) for a system with 10 interconnected
sub-systems.

of the section, our method outperforms ADMM based methods by
far.

In order to have a fair comparison with the ADMM based al-
gorithm, we also solve the problem by applying the ADMM al-
gorithm on the clique tree of the problem. In other words, each
clique which is a grouping of sub-systems, is considered as a new
sub-system with the clique tree being the new coupling graph of
the problem, and then we apply ADMM to this new structure of
the problem. We refer to this as ADMM-grouped.

Additionally, we solve the problem using fmincon (Interior-
point method) in MATLAB as a benchmark. Termination criteria
are set to default values which is 106 for the derivative of ob-
jective function and the equality constraint residual norm. As for
the AL-PDIP algorithm, we terminate when the derivative of the
augmented Lagrangian, the equality constraints residuals norm and
the surrogate duality gap are below 10~6. The termination crite-
rion for the ADMM based algorithm is rather different. It is based
on the norm of difference of current and previous iterates of the
Lagrangian multipliers and the coordination variable values. In or-
der to ensure a fair comparison, we define the solution obtained
from fmincon as the optimal cost. The algorithm is then termi-
nated when it converges to the optimal cost with tolerance of 10-6
and the equality constraint residual norm is below 10—, Notice
that the latter threshold is looser than the corresponding thresh-
old chosen for the AL-PDIP algorithm, which is 10-6. The reason
will become apparent later, and it is related to the fact that the
ADMM based algorithm requires many iterations to converge. The
time horizon N is set to 4 and all algorithms are initialized with
the same initial value of the optimization variables, which is gen-
erated randomly from a normal distribution.

In the first setup, we consider a system with 10 intercon-
nected sub-systems. The objective function value in (16a) for all
algorithms is shown in Fig. 3. As can be seen, both the ADMM-
original and ADMM-grouped approaches require many more itera-
tions to converge than the AL-PDIP algorithm. The ADMM-grouped
approach converges in less number of iterations than the ADMM-
original approach. This, however, comes at the price that the lo-
cal optimization problems in the ADMM-grouped approach are
larger and hence computationally more expensive to solve than the
ADMM-original approach.



S. Parvini Ahmadi and A. Hansson

Cost difference from optimal cost

102 ' '
AL
fmincon
100 E ADMM:-original | 3
ADMM-grouped
102 ¢ E
ul x10° x10°
10 o
6L 8 |
6
4 2
108 5
|
3000 5000 5400
10-10 | | I |
10° 10° 102 108 10*
Iteration

Fig. 4. Objective value difference from the optimal cost for a system with 10 inter-
connected sub-systems.

In Fig. 4, for each algorithm the norm of differences of the
objective function values from the optimal cost (obtained from
fmincon) is shown. As can be seen, for this particular problem,
the AL-PDIP algorithm converges to an accurate solution in less
than 100 iterations (inner iterations). As for the ADMM-grouped
and ADMM-original approaches, they converge to a modest accu-
racy (~ 102) in around 2000 and 3000 iterations, respectively. For
high accuracy, however, as can be seen, both approaches strug-
gle, where the ADMM-original approach struggles slightly more as
there are more agents in ADMM-original to reach to a consensus
compared to ADMM-grouped. This issue becomes even more se-
vere when the number of sub-systems increases.

In the second setup, we consider problems with 10, 20 and 30
sub-systems and for each problem, we generate 5 problems ran-
domly. The average number of iterations (total number of inner it-
erations for the AL-PDIP approach and total number of outer it-
erations for the ADMM approach) and communications between
sub-systems required for converging to a solution over these prob-
lems are shown in Figs. 5 and 6. The shaded areas in Fig. 5 depict
the maximum and minimum values. We do not include ADMM-
grouped in Fig. 5 to avoid cluttering the graph and instead, we
include all the algorithms in Fig. 6 where we do not show the
shaded areas. It should be pointed out that in the simulations for
both ADMM-original and ADMM-grouped approaches, the maxi-
mum number of iterations is 30,000 and for some problems the
algorithm did not converge within this threshold. To be precise,
for the ADMM-original approach, 2, 2 and 1 out of the 5 prob-
lems with 10, 20 and 30 sub-systems are converged within this
threshold. For the ADMM-grouped approach, 4, 4 and 2 out of
the 5 problems with 10, 20 and 30 sub-systems converged within
this threshold. In addition, for both ADMM-original and ADMM-
grouped approaches, 1, 1 and 2 out of the 5 problems with 10,
20 and 30 sub-systems did not converge to an acceptable solu-
tion within this threshold. For both ADMM-original and ADMM-
grouped approaches in Figs. 5 and 6, we assigned 30,000 itera-
tions for the problems which did not converge within the con-
sidered threshold. We can see that the AL-PDIP algorithm requires
much less number of iterations for convergence than both ADMM
based approaches. ADMM-grouped approach requires slightly less
number of iterations for convergence than the ADMM-original ap-
proach.

European Journal of Control 70 (2023) 100768

Average number of iterations
T T T

10° T
M — e — — e —— — ———— — — X
104 £ ]
—© -AL
fmincon
10%F — 5 — ADMM-original | 3
2 £ -
10 o ———— G————————— o
10° : . ‘ ‘ w
5 10 15 20 25 30 35
number of subsystems
. Average number of communications
10 T T T : .
_____ X
e ¥ - -
10°F =TT 4
—© -AL
105 L — % — ADMM-original i
4 -
ote °
— ="
o ———=
10° ' ' : ‘
5 10 15 20 25 30 35

number of subsystems
Fig. 5. The minimum, maximum and average number of iterations (top figure) and

communications (bottom figure) over 5 randomly generated problems for AL-PDIP,
fmincon and ADMM-original approaches.

Average number of iterations
T T T

10° ;
104 F 3
0 —— AL
—#— ADMM-original
3L ADMM-grouped | |
10 —O— fmincon
102 o E 3
G—//—V7
101 1 1 I I I
5 10 15 20 25 30 35
number of subsystems
; Average number of communications

10 T T T T

108 ._//‘ 4
—— A
~——#— ADMM-original

105 £ ADMM-grouped | o

104 £ r/w/_,‘ 3

103 1 1 L L L

5 10 15 20 25 30 35

number of subsystems

Fig. 6. The average number of iterations (top figure) and communications (bottom
figure) over 5 randomly generated problems for AL-PDIP, fmincon, ADMM-original
and ADMM-grouped approaches.

As for the total number of communications, we proceed as fol-
lows. For the proposed AL-PDIP algorithm, it can be calculated
as

Mgree X (3 X iterj, + 3 X it€Tyegsian + iteTstep + it€Tout),



S. Parvini Ahmadi and A. Hansson

where myee is the number of edges in the clique tree, iter;, is the
total number of iterations through the clique tree for the inner
iteration of the algorithm, iteryega, i the total number of itera-
tions through the clique tree required for modifying the Hessian,
itersep is the total number of iterations through the clique tree
required computing the step size, iteroy is the total number of
iterations through the clique tree for the outer iteration of the
algorithm.

For both ADMM approaches, the total number of communica-
tions is

itergr x (2 x Msystem + nsystem)a

where itert is the total number of iterations, msystem is the to-
tal number of couplings between the sub-systems and ngystem is
the total number of the sub-systems. The term 2 x Mgystem COITE-
sponds to the exchange of local copy variables and coordination
variables among neighboring sub-systems and the term nsystem cor-
responds to the global communication of sub-systems with a cen-
tral unit which evaluates the termination criteria of the algorithm.
The communicated data are of the type matrix/vector and vector
for the AL-PDIP and ADMM based algorithms, respectively. As can
be seen in Figs. 5 and 6, the proposed AL-PDIP algorithm requires
two order of magnitude less number of communications compared
to both ADMM based approaches.

It should be pointed out that the message-passing scheme can
be viewed as a distributed multi-frontal indefinite block LDLT fac-
torization technique that relies on fixed pivoting, [33]. This reliance
is imposed by the structure of the problem which can in turn make
the algorithm vulnerable to numerical problems, such as propa-
gation of rounding errors due to ill-posed sub-problems. For the
problem in ((1a)-(1b)), as the number of sub-systems increases,
it will be more likely that one will get at least one pivot that is
ill-conditioned. Note that this issue is not related to the conver-
gence properties of the algorithm, but rather it is related to the
conditioning of the problem. We can overcome this issue by merg-
ing the cliques. In particular, whenever the step size becomes too
small in a couple of consecutive iterations and the algorithm does
not make progress, we proceed as follows. When calculating the
search direction, we store the condition numbers of the matrices
to be inverted in all cliques and then we terminate the algorithm.
After that, we merge the clique with the highest condition number
with its parent clique and we run the algorithm again. If it fails
again, we repeat the same procedure until we get a clique tree for
which the algorithm converges successfully. Note that the worst
case scenario is to end up with a clique tree with one clique which
is equivalent to solving the centralized version of the problem.
For numerical experiments, we consider the third setup consisting
of a large number of sub-systems with dense coupling graphs. In
particular, we generate 5 problems with different coupling graphs
with 25, 50 and 75 sub-systems, respectively. The average number
of cliques for the original clique tree for which the algorithm failed
to converge and the average number of cliques after merging the
cliques for which the algorithm converged successfully, is shown in
Fig. 7. Note that for a few problems, we did not need to merge the
cliques and the algorithm converged successfully for the original
clique tree.

4.2. Vehicle platooning problem

For the second experiment, we consider the problem of dis-
tributed model predictive control of a platoon of vehicles with
non-linear dynamics, [42], [19,35,36,49]. In addition, we consider
collision avoidance constraint to assure that each vehicle in the
platoon stays at a safe distance away from the neighboring vehi-
cles. To be specific, we consider the optimization problem

European Journal of Control 70 (2023) 100768

Average number of cliques
T

50

Il Before merging
[ ] After merging

40 1

30 [ g

20 - 7

0 Il 1 1
25 sys 50 sys 75 sys

Fig. 7. The average number of cliques before and after merging over 5 randomely
generated problems.

min Y3 (xi(k) = &)? + (vik) = 77)? +vi(k)? + wi(k)*  (172)

i1 kot
s.t.x;(k+ 1) = x;(k) + Tvi (k) cos (6;(k)), (17b)
yitk+1) = yi(k) + Tsvi (k) sin (6;(k)), (17¢)
Gi(k+1) = 6;(k) + %Tsv,-(k) tan (;(k)), (17d)
Vitk +1) = i (k) + T (k), (17e)
X <x(k) <X, y <yi(k) <y (171)
0, <0:(k) <0 W, < Yik) <. (17g)
v =vi(k) <0, @ < wi(k) < oy, (17h)
(D) =%, yi(D) =5 61)=0, (171)
Yi() =¥, k=1,...,N, i=1,....m, (17j)

[;'Em_[;:gm = d k=1,....N, i=1,....m -1, (17k)

where x;(k), y;(k), 6;(k) and ¥;(k) are the states and v;(k) and
w;(k) are the inputs for the ith vehicle, i=1,...,m where m is
the number of vehicles. For the ith vehicle, (x;(k),y;(k)) is the po-
sition of vehicles center, 6;(k) is the orientation angle and v;(k)
is the steering angle of the front wheels with respect to the ve-
hicles body. The quantities v;(k) and w;(k) denote the speed and
the steering rate, respectively. The vector (X7, y7) is the fixed ref-
erence signal for the ith vehicle, L is the wheelbase length, T is
the sampling time and N refers to the horizon length. The quan-
tities x;, Vo [ ﬂi, v;, w; are the fixed lower bounds on the states
and the inputs. Similarly, %, y;, 6;, ¥, ¥;, @; are the fixed upper
bounds on the states and the inputs. Finally, %;, 7;, 6; and ; are



S. Parvini Ahmadi and A. Hansson

Cost function value

250
—AL
= = =optimal cost (IPOPT)
200
150
100
0 10 20 30 40
Iteration
108 Dual residuals norm
100
105t
10710 ‘ ! I
0 10 20 30 40
Iteration

European Journal of Control 70 (2023) 100768

Primal residuals norm

10°
10
10710}
10715 . ‘ .
0 10 20 30 40
Iteration
1010 Surrogate duality gap norm
10%
1001
107 ' ' -
0 10 20 30 40
Iteration

Fig. 8. The cost function values for AL-PDIP and IPOPT (top left figure), the primal residuals norm (top right figure), the dual residuals norm (bottom left figure) and the

surrogate duality gap (bottom right figure) for m = 100.

Table 1

Parameters for the problem in ((17a)-(17k)) (fori=1,..., m).
Parameter Value Parameter Value
X; —-100 X 100
Y -100 Vi 100
0; -1 0; b4
v, 5 Vi z
v; -0.5 v; 0.5
w; —0.005 (o} 0.005
0; S ¥ 0
X9 (i,1) x50 (i-0.5,i—0.5)

the initial values for the states and d is the specified safe distance
between the neighboring vehicles. The equality constraints ((17b)-
(17e)) are the vehicles dynamic, [39]. The inequalities ((17f)-(17h))
are the box constraints on the states and inputs and the equality
constraints ((17i)-(17j)) are the initial conditions for the states. Fi-
nally, the inequality constraint (17k) is the collision avoidance con-
straint for the neighboring vehicles. Note that for this problem the
interaction between sub-systems is through the collision avoidance
constraint. Note also that both the coupling graph and the clique
tree for this problem is similar and can be described with a chain.
The number of cliques in the clique tree is m and each clique i
contains the variables associated with ith vehicle, plus the position
variables of the (i + 1)th vehicle.

Let T=1,L=0.1 N=5, d =1 and the other parameters be as
in Table 1. Let also (x},y}) = (i,i) and (X},y]) = (i—0.5,i—0.5),
fori=1,...,m.

In the first setup, for the given values we solve the problem
with the proposed AL-PDIP algorithm for 100 vehicles, i.e. m = 100.
The results are shown in Fig. 8. The top left figure is the cost func-
tion value. We also solve the problem using IPOPT. It can be seen
that both algorithms converge to the same value. It is worth not-
ing that fmincon was not able to solve the problem and therefore
we chose IPOPT for the benchmark purpose. The top right figure is
the primal residuals norm which is the equality constraints resid-

10

Number of iterations
100 T T T T T T

—— AL
—O&— IPOPT T
ADMM

80 1

90

70 [ 7

60 [ 1

50 1

40 -

30 1

20 o Py

< ©

10 | | I | | . | I |
10 60 70 80 90 100

Number of vehicles

110

Fig. 9. The number of iterations for AL-PDIP, IPOPT and ADMM based approaches.

ual norm. The bottom left figure is the dual residuals norm which
is the gradient of the augmented Lagrangian and the bottom right
figure is the surrogate duality gap norm which concerns the in-
equality constraints. As can be seen, all the residuals converge to
zero eventually.

In the second setup, we consider problems with 20, 40, 60, 80
and 100 vehicles, respectively. We then solve the problems with
AL-PDIP, IPOPT and the ADMM approaches. Note that the ADMM-
original and ADMM-grouped approaches are the same for this
problem as the coupling graph and the clique tree is identical. We
choose the same termination criterion as before. The number of it-
erations for the mentioned approaches is shown in Fig. 9. As can



S. Parvini Ahmadi and A. Hansson

be seen, here the ADMM approach preforms well when the num-
ber of vehicles is low compared to the experiments in Section 4.1,
in which the ADMM based approaches required much more num-
ber of iterations for convergence. The main reason is that for this
problem the coupling graph which is a chain, is much looser than
for the experiments in Section 4.1, where the interaction between
sub-systems are more strong. Nevertheless, even for this problem,
as can be seen in the figure, as soon as we increase the number
of the vehicles, the number of iterations for the ADMM approach
grows significantly. For the proposed AL-PDIP approach, however,
the number of iteration for convergence does not depend on the
number of vehicles. Last but not least, it should be stressed that
each iteration of the ADMM approach consists of solving m local
optimization problems which is computationally much more heavy
than the computations at each iteration of the AL-PDIP algorithm,
specially when m is large.

5. Conclusion

In this paper, we presented a distributed algorithm for optimal
control of coupled systems, with application to model predictive
control. The algorithm is based on an augmented Lagrangian ap-
proach in which a primal-dual interior-point method is used for
the inner iteration. We distributed the computations for search di-
rection, step size, and termination criteria over a clique tree of the
problem and calculated each of them using message passing. We
showed the superiority of the algorithm in terms of number of it-
erations and communications using a set of numerical examples.
For future work we intend to investigate the possibility of dis-
tributing the preconditioned conjugate gradient computations of
[13].

Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgment

This work was partially founded by the Wallenberg Al, Au-
tonomous Systems and Software Program (WASP) funded by the
Knut and Alice Wallenberg Foundation, which is gratefully ac-
knowledged.

Appendix A
Let Ec, be the zero-one matrices such that Ecx =xc for all

i= 1,...,q The gradients and Hessians of F, G;s and Hs for the
problem in ((13a)-(13c)) can be derived as

aF(x) X": 1 IE(xc)
G qu. ’
32F (x) 02 F(XC)
x0xT Z G dxc axT Ee,
3(Gi(xq))j g 3(Gi(xq))j iz N
0x G axg, ’ T ER
2(c. 2(c
0 (Gl(xC,-))j _ Ta (GI(XC,-))]-E j:] P
dxaxT G 9xcoxL G e
i G
3(Hi(xq))j B 8(Hi(XC,-))j . '
0x TG 9k I=2

1

European Journal of Control 70 (2023) 100768

82(Hi(xQ))j T BZ(HI-(XQ))j

= 1,...
9x0xT G ’

G J= . Gis

T
9xc 0x(,

where p; and g; are the number of equality and inequality con-
straints in clique i, respectively.

Appendix B

First see Appendix A, for the gradients and Hessians of F, G;s
and H;s in ((13a)-(13c)). Let us now define the modifications of
Ec, that we call I::C They are obtained by identifying the non-zero
columns which EC have in common with Ec ar iy’ where par(i) is

the parent of the ith clique in the clique tree. Then Eq. is defined
to be equal to Eg, except for these columns, which are set equal

to zero. With this definition, H(') rl A(’) and b(') in problem
((14a)-(14b)) can be written as

321:( (l)) q 32(1_1( (1)))j
; i Bxciaxq_

1

L (Ge) j)
(v

2(Gix),

T
8xq

H" =
! aXC BXC

4

| (o

j=1
RICCD)
122 9,
3H( (l))T
Ixg

0 (G0)),

T
9xc 0x(.

—+ (){UEQE_é

OH;(xg)).
diag (H;(x!)) " diag (A ) ol
G

(1) i (1)
. BF(X Z ( ( ))

O]
1(Gixd)),

axg,

Dbi
+y (v;” +
P :
3H( (l))T
axc

(o),

qu

AL = :

(G (Xu)))

é)xcI

1 -0
(Gl )))

diag (Hi(xg))) (dlag(k(’))H (x<’)) + (%)1)

b =
1

()

Note that if the Hessian does not need to be modified, then
as = 0.

References

[1] S.P. Ahmadi, A. Hansson, Parallel exploitation for tree-structured coupled
quadratic programming in Julia, in: Proceedings of the 22nd International
Conference on System Theory, Control and Computing (ICSTCC), IEEE, 2018,
pp. 597-602.

[2] S.P. Ahmadi, A. Hansson, A distributed second-order augmented lagrangian
method for distributed model predictive control, IFAC-PapersOnLine 54 (6)
(2021) 192-199.

[3] M. Argéez, R. Tapia, On the global convergence of a modified augmented la-
grangian linesearch interior-point newton method for nonlinear programming,
J. Optim. Theory Appl. 114 (1) (2002) 1-25.

[4] D.P. Bertsekas, Nonlinear programming, J. Oper. Res. Soc. 48 (3) (1997) 334.

[5] D.P. Bertsekas, Constrained Optimization and Lagrange Multiplier Methods,
Academic Press, 2014.

[6] A. Bestler, K. Graichen, Distributed model predictive control for continuous—
time nonlinear systems based on suboptimal ADMM, Optim. Control Appl.
Methods 40 (1) (2019) 1-23.

[7] E.G. Birgin, J.M. Martinez, Improving ultimate convergence of an augmented
lagrangian method, Optim. Methods Softw. 23 (2) (2008) 177-195.


https://doi.org/10.13039/501100004063
http://refhub.elsevier.com/S0947-3580(22)00161-3/sbref0001
http://refhub.elsevier.com/S0947-3580(22)00161-3/sbref0002
http://refhub.elsevier.com/S0947-3580(22)00161-3/sbref0003
http://refhub.elsevier.com/S0947-3580(22)00161-3/sbref0004
http://refhub.elsevier.com/S0947-3580(22)00161-3/sbref0005
http://refhub.elsevier.com/S0947-3580(22)00161-3/sbref0006
http://refhub.elsevier.com/S0947-3580(22)00161-3/sbref0007

S. Parvini Ahmadi and A. Hansson

[8] S. Boyd, N. Parikh, E. Chu, Distributed optimization and statistical learning via
the alternating direction method of multipliers, Now Publishers Inc, 2011.

[9] S. Boyd, L. Vandenberghe, Convex optimization, Cambridge university press,
2004.

[10] D. Burk, A. Vélz, K. Graichen, Towards a modular framework for distributed
model predictive control of nonlinear neighbor-affine systems, in: Proceed-
ings of the 58th IEEE Conference on Decision and Control (CDC), IEEE, 2019,
pp. 5279-5284.

[11] D. Burk, A. Vélz, K. Graichen, A modular framework for distributed model pre-
dictive control of nonlinear continuous-time systems (GRAMPC-D), Optim. Eng.
23 (2) (2022) 771-795.

[12] E.E. Camacho, C.B. Alba, Springer Science & Business Media, 2013.

[13] Y. Cao, A. Seth, C.D. Laird, An augmented lagrangian interior-point approach
for large-scale nlp problems on graphics processing units, Comput. Chem. Eng.
85 (2016) 76-83.

[14] P.D. Christofides, R. Scattolini, D.M. de la Pena, ]. Liu, Distributed model pre-
dictive control: a tutorial review and future research directions, Computers &
Chemical Engineering 51 (2013) 21-41.

[15] A.R. Conn, N. Gould, PL. Toint, Numerical experiments with the LANCELOT
package (release a) for large-scale nonlinear optimization, Math. Program. 73
(1) (1996) 73.

[16] A.R. Conn, N.I. Gould, P. Toint, A globally convergent augmented Lagrangian
algorithm for optimization with general constraints and simple bounds, SIAM
J. Numer. Anal. 28 (2) (1991) 545-572.

[17] C. Conte, T. Summers, M.N. Zeilinger, M. Morari, C.N. Jones, Computational
aspects of distributed optimization in model predictive control, in: Proceed-
ings of the 51th IEEE Conference on Decision and Control (CDC), IEEE, 2012,
pp. 6819-6824.

[18] Q.T. Dinh, I. Necoara, M. Diehl, A dual decomposition algorithm for separable
nonconvex optimization using the penalty function framework, in: Proceed-
ings of the 52th IEEE Conference on Decision and Control (CDC), IEEE, 2013,
pp. 2372-2377.

[19] W.B. Dunbar, D.S. Caveney, Distributed receding horizon control of vehicle pla-
toons: stability and string stability, IEEE Trans. Autom. Control 57 (3) (2011)
620-633.

[20] A. Engelmann, Y. Jiang, B. Houska, T. Faulwasser, Decomposition of nonconvex
optimization via bi-level distributed Aladin, IEEE Trans. Control Netw. Syst. 7
(4) (2020) 1848-1858.

[21] E Farokhi, I. Shames, K.H. Johansson, Distributed MPC via dual decomposition
and alternative direction method of multipliers, in: Distributed Model Predic-
tive Control Made Easy, Springer, 2014, pp. 115-131.

[22] CE. Garcia, D.M. Prett, M. Morari, Model predictive control: theory and prac-
ticea survey, Automatica 25 (3) (1989) 335-348.

[23] PE. Gill, W. Murray, M.A. Saunders, M.H. Wright, Inertia-controlling methods
for general quadratic programming, SIAM Rev. 33 (1) (1991) 1-36.

[24] PE. Gill, D.P. Robinson, A primal-dual augmented Lagrangian, Comput. Optim.
Appl. 51 (1) (2012) 1-25.

[25] P. Giselsson, M.D. Doan, T. Keviczky, B. De Schutter, A. Rantzer, Accelerated gra-
dient methods and dual decomposition in distributed model predictive control,
Automatica 49 (3) (2013) 829-833.

[26] A. Grancharova, T.A. Johansen, Distributed MPC of interconnected nonlinear
systems by dynamic dual decomposition, in: Distributed Model Predictive Con-
trol Made Easy, Springer, 2014, pp. 293-308.

[27] A. Hansson, S.K. Pakazad, Exploiting chordality in optimization algorithms
for model predictive control, in: Large-Scale and Distributed Optimization,
Springer, 2018, pp. 11-32.

[28] S. Hentzelt, K. Graichen, An augmented Lagrangian method in distributed dy-
namic optimization based on approximate neighbor dynamics, in: Proceedings
of the 2013 IEEE International Conference on Systems, Man, and Cybernetics,
IEEE, 2013, pp. 571-576.

12

European Journal of Control 70 (2023) 100768

[29] M.R. Hestenes, Multiplier and gradient methods, J. Optim. Theory Appl. 4 (5)
(1969) 303-320.

[30] X. Hou, Y. Xiao, ]. Cai, J. Hu, J.E. Braun, Distributed model predictive control via
proximal Jacobian ADMM for building control applications, in: Proceedings of
the 2017 American Control Conference (ACC), IEEE, 2017, pp. 37-43.

[31] B. Houska, J. Frasch, M. Diehl, An augmented lagrangian based algorithm for
distributed nonconvex optimization, SIAM ]. Optim. 26 (2) (2016) 1101-1127.

[32] EV. Jensen, F. Jensen, Optimal junction trees, in: Uncertainty Proceedings 1994,
Elsevier, Morgan Kaufmann, 1994, pp. 360-366.

[33] S. Khoshfetrat Pakazad, A. Hansson, M.S. Andersen, 1. Nielsen, Distributed
primal-dual interior-point methods for solving tree-structured coupled con-
vex problems using message-passing, Optim. Methods Softw. 32 (3) (2017)
401-435.

[34] M. Kégel, R. Findeisen, Cooperative distributed MPC using the alternating di-
rection multiplier method, IFAC Proc. Vol. 45 (15) (2012) 445-450.

[35] S.E. Li, Y. Zheng, K. Li, Y. Wu, J.K. Hedrick, F. Gao, H. Zhang, Dynamical mod-
eling and distributed control of connected and automated vehicles: challenges
and opportunities, IEEE Intell. Transp. Syst. Mag. 9 (3) (2017) 46-58.

[36] P. Liu, A. Kurt, U. Ozguner, Distributed model predictive control for cooperative
and flexible vehicle platooning, IEEE Trans. Control Syst. Technol. 27 (3) (2018)
1115-1128.

[37] N. Meyer-Huebner, M. Suriyah, T. Leibfried, Distributed optimal power flow in
hybrid AC-DC grids, IEEE Trans. Power Syst. 34 (4) (2019) 2937-2946.

[38] J.M. Moguerza, FJ. Prieto, An augmented lagrangian interior-point method us-
ing directions of negative curvature, Math. Program. 95 (3) (2003) 573-616.

[39] F. Mohseni, E. Frisk, L. Nielsen, Distributed cooperative MPC for autonomous
driving in different traffic scenarios, IEEE Trans. Intell. Veh. 6 (2) (2020)
299-3009.

[40] 1. Necoara, C. Savorgnan, D.Q. Tran, ]J. Suykens, M. Diehl, Distributed nonlinear
optimal control using sequential convex programming and smoothing tech-
niques, in: Proceedings of the 48th IEEE Conference on Decision and Control
(CDC) held jointly with 2009 28th Chinese Control Conference, IEEE, 2009,
pp. 543-548.

[41] J. Nocedal, S. Wright, Numerical Optimization, Springer Science & Business Me-
dia, 2006.

[42] S.K. Pakazad, Divide and conquer: Distributed optimization and robustness
analysis, Department of Electrical Engineering, Linképing University, 2015.

[43] S. Parvini Ahmadi, Distributed Optimization for Control and Estimation,
Linkoping University Electronic Press, 2022. Ph.D. thesis

[44] M. Powell, A method for nonlinear constraints in minimization problems, Op-
timization (1969) 283-298.

[45] R. Rostami, G. Costantini, D. Gorges, ADMM-based distributed model predictive
control: primal and dual approaches, in: Proceedings of the 56th IEEE Confer-
ence on Decision and Control (CDC), IEEE, 2017, pp. 6598-6603.

[46] H. Scheu, W. Marquardt, Sensitivity-based coordination in distributed model
predictive control, J. Process Control 21 (5) (2011) 715-728.

[47] B.T. Stewart, S.J. Wright, J.B. Rawlings, Cooperative distributed model predictive
control for nonlinear systems, J. Process Control 21 (5) (2011) 698-704.

[48] T.H. Summers, ]. Lygeros, Distributed model predictive consensus via the al-
ternating direction method of multipliers, in: Proceedings of the 50th An-
nual Allerton Conference on Communication, Control, and Computing (Aller-
ton), IEEE, 2012, pp. 79-84.

[49] R. Van Parys, G. Pipeleers, Distributed MPC for multi-vehicle systems moving
in formation, Robot. Auton. Syst. 97 (2017) 144-152.

[50] A.N. Venkat, L.A. Hiskens, J.B. Rawlings, S.J. Wright, Distributed MPC strategies
with application to power system automatic generation control, IEEE Trans.
Control Syst. Technol. 16 (6) (2008) 1192-1206.

[51] X. Xie, A recursive method to learn Bayesian network, 2020, https://se.
mathworks.com/matlabcentral/fileexchange/20678-a-recursive- method- to-lea
rn-bayesian-networkl.


http://refhub.elsevier.com/S0947-3580(22)00161-3/sbref0008
http://refhub.elsevier.com/S0947-3580(22)00161-3/sbref0009
http://refhub.elsevier.com/S0947-3580(22)00161-3/sbref0010
http://refhub.elsevier.com/S0947-3580(22)00161-3/sbref0011
http://refhub.elsevier.com/S0947-3580(22)00161-3/sbref0012
http://refhub.elsevier.com/S0947-3580(22)00161-3/sbref0013
http://refhub.elsevier.com/S0947-3580(22)00161-3/sbref0014
http://refhub.elsevier.com/S0947-3580(22)00161-3/sbref0015
http://refhub.elsevier.com/S0947-3580(22)00161-3/sbref0016
http://refhub.elsevier.com/S0947-3580(22)00161-3/sbref0017
http://refhub.elsevier.com/S0947-3580(22)00161-3/sbref0018
http://refhub.elsevier.com/S0947-3580(22)00161-3/sbref0019
http://refhub.elsevier.com/S0947-3580(22)00161-3/sbref0020
http://refhub.elsevier.com/S0947-3580(22)00161-3/sbref0021
http://refhub.elsevier.com/S0947-3580(22)00161-3/sbref0022
http://refhub.elsevier.com/S0947-3580(22)00161-3/sbref0023
http://refhub.elsevier.com/S0947-3580(22)00161-3/sbref0024
http://refhub.elsevier.com/S0947-3580(22)00161-3/sbref0025
http://refhub.elsevier.com/S0947-3580(22)00161-3/sbref0026
http://refhub.elsevier.com/S0947-3580(22)00161-3/sbref0027
http://refhub.elsevier.com/S0947-3580(22)00161-3/sbref0028
http://refhub.elsevier.com/S0947-3580(22)00161-3/sbref0029
http://refhub.elsevier.com/S0947-3580(22)00161-3/sbref0030
http://refhub.elsevier.com/S0947-3580(22)00161-3/sbref0031
http://refhub.elsevier.com/S0947-3580(22)00161-3/sbref0032
http://refhub.elsevier.com/S0947-3580(22)00161-3/sbref0033
http://refhub.elsevier.com/S0947-3580(22)00161-3/sbref0034
http://refhub.elsevier.com/S0947-3580(22)00161-3/sbref0035
http://refhub.elsevier.com/S0947-3580(22)00161-3/sbref0036
http://refhub.elsevier.com/S0947-3580(22)00161-3/sbref0037
http://refhub.elsevier.com/S0947-3580(22)00161-3/sbref0038
http://refhub.elsevier.com/S0947-3580(22)00161-3/sbref0039
http://refhub.elsevier.com/S0947-3580(22)00161-3/sbref0040
http://refhub.elsevier.com/S0947-3580(22)00161-3/sbref0041
http://refhub.elsevier.com/S0947-3580(22)00161-3/sbref0042
http://refhub.elsevier.com/S0947-3580(22)00161-3/sbref0043
http://refhub.elsevier.com/S0947-3580(22)00161-3/sbref0043
http://refhub.elsevier.com/S0947-3580(22)00161-3/sbref0044
http://refhub.elsevier.com/S0947-3580(22)00161-3/sbref0045
http://refhub.elsevier.com/S0947-3580(22)00161-3/sbref0046
http://refhub.elsevier.com/S0947-3580(22)00161-3/sbref0047
http://refhub.elsevier.com/S0947-3580(22)00161-3/sbref0048
http://refhub.elsevier.com/S0947-3580(22)00161-3/sbref0049
http://refhub.elsevier.com/S0947-3580(22)00161-3/sbref0050
https://se.mathworks.com/matlabcentral/fileexchange/20678-a-recursive-method-to-learn-bayesian-networkl

	Distributed optimal control of nonlinear systems using a second-order augmented Lagrangian method
	1 Introduction
	2 Augmented Lagrangian and primal-dual interior-point methods
	3 Distributed computation for the inner iteration
	4 Numerical experiments
	4.1 Randomly generated interconnected sub-systems
	4.2 Vehicle platooning problem

	5 Conclusion
	Declaration of Competing Interest
	Acknowledgment
	Appendix A
	Appendix B
	References


