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Abstract—A static world assumption is often used when con-
sidering the simultaneous localization and mapping (SLAM) prob-
lem. In reality, especially when long-term autonomy is the objec-
tive, this is not valid. This paper studies a scenario where uniquely
identifiable landmarks can attend multiple discrete positions, not
known a priori. Based on a feature based multi-hypothesis map
representation, a multi-hypothesis SLAM algorithm is developed
inspired by target tracking theory. The creation of such a map is
merged into the SLAM framework allowing any available SLAM
method to solve the underlying mapping and localization problem
for each hypothesis. A recursively updated hypothesis score
allows for hypothesis rejection and prevents exponential growth
in the number of hypotheses. The developed method is evaluated
in an underground mine application, where physical barriers
can be moved in between multiple distinct positions. Simulations
are conducted in this environment showing the benefits of the
multi-hypothesis approach compared to executing a standard
SLAM algorithm. Practical considerations as well as suitable
approximations are elaborated upon and experiments on real
data further validates the simulated results and show that the
multi-hypothesis approach has similar performance in reality as
in simulation.

Index Terms—SLAM, multi-hypothesis, non-static environ-
ment

I. INTRODUCTION

Real-time, accurate and robust localization is fundamental
for safe navigation of autonomous vehicles. When a map
of the environment is not available, or the accuracy of the
given map is not sufficient, the problem can be formulated
within the framework of simultaneous localization and map-
ping (SLAM). Theoretically and conceptually SLAM can be
considered a solved problem, but issues remain when applied
to long-term, real-life problems [1]. Many of the wide-spread
SLAM methods such as FastSLAM 2.0 [2] or the graph based
solvers, iSAM2 [3] and g2o [4], assume a rigid and static
environment. The real world is both dynamic and nonrigid
due to movements and deformability of objects. The problem
of building life-long maps that can take changes into account
is often mentioned as an important remaining challenge in this
field [1, 5], and recently various aspect of this issue have been
addressed within the automated vehicle community [6–12].

An environment subject to change can be categorized into
two main categories,
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• a dynamic environment, with objects moving relatively
fast so that the perception of the object changes while
the object is in field-of-view (FOV), or,

• a non-static environment, where changes in the envi-
ronment are much slower and typically not captured by
sensors in real time, but rather discovered when an area
is revisited.

This paper focuses on a non-static environment where changes
can be represented by a sequence of discrete modes defining
the current state of the map. Specifically, re-occuring changes
are targeted, where a change is likely to later be reverted.
Such situation typically occurs in indoor environments where,
for example, doors can be opened or closed [13], or, in public
parking spaces where parking lots can be occupied or not [14].
Another application is autonomous vehicles in an underground
mine. For specific mining methods a typical operation area
for an underground loader consists of a long tunnel with
cross-sections leading to drawpoints where material is loaded
and transported to a crusher. To manage the ore body and
to prevent mistakes, tunnels leading to currently inactive
drawpoints can be closed with physical barriers that later are
reopened when the drawpoint is activated again. Due to the
special nature of an underground mine, with the area being in
total control of the mine operators, it is possible to make such
moving barriers easily identifiable by the vehicle’s perception
system.

In [15] we presented a feature based multi-hypothesis
map representation to be used for localization in non-static
environments where uniquely identifiable landmarks can have
multiple discrete modes. This paper extends the work by
considering the creation and updating of such maps. The major
contributions of this paper are:

• The theoretical incorporation of the feature based multi-
hypothesis map representation into the SLAM frame-
work, still allowing the underlying static SLAM problem
to be solved by any state-of-the-art SLAM solver of
choice.

• A tree structure for efficient hypothesis management and
decision making is introduced. Practical considerations
and possible approximations are discussed and elabo-
rated.

• A formalization of a multi-hypothesis SLAM algorithm
reinforced with ingredients from target tracking theory,
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allowing missed detections and false alarm observations
to be modeled.

• The proposed algorithm is demonstrated in experiments
using both simulated and real data from an underground
mine.

The structure of this paper is as follows: Section II presents
related work in the literature. Section III presents the multi-
hypothesis map representation and incorporates it into the
SLAM theory. Section IV defines a hypothesis score used for
decision making, and Section V suggests how the hypothesis
creation and decision making can be formalized in a tree
structure. Section VI highlights practical considerations and
Section VII suggests possible approximations. In Section VIII
the multi-hypothesis SLAM algorithm is presented followed
by experiments using both simulated, and real data, from an
underground mine in Section IX. Finally, concluding remarks
are given in Section X.

II. RELATED WORK

A dynamic environment is often handled by trying to
filter out moving objects in the input data [16, 17], or more
sophisticated solutions where the motion of the objects are
tracked and classified [18, 19]. Work more focused on non-
static environments often introduces some sort of a memory
decay [7]. In [20] a persistence filter is presented, designed
to run in parallel with a SLAM solver. Each landmark in the
map has an associated probability of existence that decays over
time when the landmark is not observed. In [8] each feature
is scored as a function of times it has been observed. Low
score features can then be disregarded not considered robust
for localization. Others have incorporated multiple hypotheses
more directly into the factor graph representation in a graph-
based SLAM system. In [21–24] such systems are designed
primarily with the goal of identifying and removing outliers
or false loop-closures from the factor graph.

A switching model solution for the state transition is pre-
sented in [25] where the discrete modes are modeled as a
Markov chain. Hypotheses are represented in a tree structure
that can efficiently be solved by graph-based SLAM solvers.
However, it is not explored how this method would perform
with ambiguities in the observation model. A similar solution
is the multi-hypothesis algorithm based on iSAM2 (MH-
iSAM2) developed in [26], which is more general in the types
of ambiguities that can be modeled but lacks the possibility
to model the modes as a Markov chain.

All of these methods completely deletes a rejected hypoth-
esis and the information is permanently forgotten or never
added to the persistent map. This paper proposes a solution
where rejected hypotheses are saved to later be re-activated
if the environment is changed back to its previous state. The
solution suggested in this paper is similar in spirit to the work
done in [27], where map hypotheses connected to different
time scales are kept in memory. However, in [27] a sample
based map representation is used which does not provide
a sensor agnostic solution, also the updating of the map
hypotheses are complicated beyond the SLAM framework.
Our feature based solution can be used with any type of sensor

where an acceptable feature extraction method is available, and
the hypotheses evaluation is performed in combination with
any SLAM solver responsible of updating each hypothesis.

A combination of SLAM and target tracking theory has
been proposed earlier, in the multi-hypothesis FastSLAM
presented in [28] where a multi hypothesis tracker (MHT) is
used to define the particles in a FastSLAM implementation,
or in random finite set (RFS) versions of SLAM [29–33].
Such multi-hypothesis approaches theoretically result in an
exponential growth in the number of hypotheses. In this paper
hypotheses are evaluated with a recursively updated score
connected to specific landmark modes, similar to the work
done in [34]. This allows for a decision making where unlikely
hypotheses can be de-activated at certain points in times, and
an up-to-date version of the map is maintained.

III. NON-STATIC ENVIRONMENT

Throughout this paper it is assumed that true landmarks
have a unique signature, identifiable by the robot’s perception
system. However, spurious observations not originating from
any true landmark, but erroneously given a valid signature,
may appear. It is also assumed that the environment is non-
static, i.e., landmarks are moved between discrete positions
only when not in the robot’s FOV. Under these assumptions,
the static formulation of the SLAM problem fails to give good
estimates. A discrete movement of a landmark can cause jumps
in the state estimation and inconsistencies in the map.

A. Multi-Hypothesis Map

This section contains a short description of the feature based
multi-hypothesis map representation presented in [15].

Landmarks in the map identified by the same signature are
grouped together and an observation is by the unique identifier
associated to a group in the map. Probabilities of existence
of the landmarks in a group can be estimated according
to incoming observations and a valid up-to-date version of
the map is provided by selecting the landmark with highest
probability in each group as currently active.

The multi-hypothesis map is defined by

M =
[
ms1

1 , . . . ,ms1
ns1

, . . . ,msk
1 , . . . ,msk

nsk

]⊤
, (1)

where sj implies that the landmark belongs to group j, with
a total number of k groups. A version of a specific landmark
will be referred to as a mode and the number of possible
modes of the landmark with signature sj is thus given by nsj .
Let δj = q, q = 1, . . . , nsj define a mode indicator for the
landmarks in the group sj , stating that landmark m

sj
q is active,

implying that the data association is done with this particular
landmark. A mode indicator vector can then be constructed
for each time instance t,

δt =
[
δ1t . . . δkt

]⊤
, (2)

indicating which mode is active in each landmark group at
a particular point in time. This yields a sequence of mode
vectors in time,

δ1:T = {δ0, . . . , δT }. (3)
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The non-static map can now be represented by a static part
M and a sequence of modes δ1:T , stating which landmarks
contained in M are active at each time instance.

The mode sequence is modeled by a discrete valued Markov
chain with a time dependent transition matrix. If the modes
are independent across different groups the Markov chain
factorizes by

Pr(δt|δt−1) =

k∏
j=1

Pr(δjt |δ
j
t−1). (4)

For group j the elements in the transition matrix Πj
t−1 is

defined by,

Pr(δjt = k|δjt−1 = q) =
[
Πj

t−1

]
qk

, (5)

where [·]qk is the element in the qth row and kth column.

B. Multi-Hypothesis SLAM

With the multi-hypothesis map representation, an observa-
tion model can be expressed as,

p(zt|xt,M, δt), (6)

where zt are observations at time t and xt are the state vector
of the vehicle at time t. The filter SLAM problem can be
formulated as estimating

p(xT ,M, δT |z1:T , u1:T ), (7)

where u1:T represents exogenous input. This can be split into
two factors (omitting u1:T to simplify notation)

p(xT ,M, δT |z1:T ) = p(xT ,M|δT , z1:T )p(δT |z1:T ). (8)

The first factor constitutes the static SLAM problem con-
ditioned on a specific mode vector. Different techniques to
get approximate solutions to the static SLAM problem are
available in the literature, e.g., EKF-SLAM [35], FastSLAM
[2, 36], and more modern graph-based SLAM solvers such as
iSAM2 [3] or g2o [4]. From all of these methods it is possible
to recursively get an estimate of xT and M, and also of the
likelihood p(z1:T |xT ,M, u1:T , x0). The second factor in (8)
is the likelihood of a mode vector conditioned on the sequence
of measurements.

In theory, it is possible to estimate (8) by creating one
hypothesis for each possible mode sequence and associate
one SLAM solver to each hypothesis. However, this quickly
becomes computationally intractable since the number of
mode sequences grows exponentially with time. In [15] it is
shown how the number of hypotheses are reduced in the pure
localization problem by utilizing the knowledge that landmarks
do not move while in FOV. By deducing which mode is
currently active, the number of concurrent hypotheses can
often be reduced to only one. The same idea of recursively
updating a hypothesis score to allow for a decision to be
made is here adopted also for building the multi-hypothesis
map within the SLAM framework.

IV. HYPOTHESIS SCORE

Consider a SLAM system during a time window t ∈ [t1, t2]
where a specific landmark is in FOV. Assuming that multi-
ple modes for this landmark exists, the hypothesis that the
landmark is located in one of the positions is formulated as

Hj
k : δjt = k, ∀ t ∈ [t1, t2]. (9)

Consider the log-likelihood of the hypothesis conditioned on
observations and apply Bayes’ rule,

L
Hj

k
t = log Pr(Hj

k|zt1:t) = log
p(zt1:t|H

j
k)Pr(H

j
k)

p(zt1:t)
. (10)

A hypothesis score to compare two hypotheses can then be
defined as

L
Hj

ki
t = log

Pr(Hj
k|zt1:t)

Pr(Hj
i |zt1:t)

= log
p(zt1:t|H

j
k)Pr(H

j
k)

p(zt1:t|H
j
i )Pr(H

j
i )

, (11)

where the normalizing constant p(zt1:t) cancels. The marginal
probability of a hypothesis Pr(Hj

k) can be deduced from the
Markov chain model. First note that,

Pr(Hj
k) = Pr(δjt1 =k), (12)

since the landmark cannot change mode while in FOV. In the
Markov chain model this implies an identity transition matrix.
For t < t1 the transition matrix is generally not identity and

Pr(δjt1 =k) =
∑
i

Pr(δjt1 =k|δjt1−1= i)Pr(δjt1−1= i), (13)

where Pr(δjt1−1= i) is known from previous visits or initial-
ized when a landmark is first observed.

Assuming the measurements in the sequence zt1:t are mu-

tually independent, the unnormalized log-likelihood L̂
Hj

k
t ∝

L
Hj

k
t can be updated recursively as new measurements become

available,

L̂
Hj

k
t = L̂

Hj
k

t−1 + log p(zt|Hj
k), (14)

with the initial value

L̂
Hj

k
t1 = log p(zt1 |H

j
k)Pr(δ

j
t1 = k). (15)

Hypothesis scores can thus be computed by taking differences
of unnormalized log-likelihoods,

L
Hj

ki
t = L̂

Hj
k

t − L̂
Hj

i
t . (16)

The recursive update of the score allows for a mode decision
to be made before t = t2, by applying a multi-hypothesis
sequential probability ratio test (SPRT). All pair-wise scores,
L
Hj

ki
t are computed and a decision is made in favor of Hj

k if,

L
Hj

ki
t >

1− α

α
for all i ̸= k, (17)

where α is the accepted probability of selecting the wrong
hypothesis [37]. Since executing many SLAM solvers in
parallel can be computationally demanding it is desirable to
make decisions and remove unlikely hypotheses as quickly
as possible. Therefore an extra decision criterion to disregard
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unlikely hypotheses may be added where a hypothesis Hj
k is

disregarded if

L
Hj

ki
t < −1− α

α
for all i ̸= k. (18)

Note that the probability of a hypothesis can be acquired
from the score directly if nsj = 2 or by solving a system of
equations containing the scores if nsj > 2.

A. Measurement Likelihood

In an ideal world, estimates of the likelihoods p(zt|Hj
k) are

directly obtained from the SLAM solver. However, this likeli-
hood estimate only considers observations that are matched
to landmarks in the map, and when different hypotheses
are evaluated also missed detections and false alarms should
be considered. In the state estimator based on the multi-
hypothesis map representation, presented in [15], the likeli-
hood is computed from equations inspired by target tracking
applications. In principal the same computations can be used
for the SLAM application.

Assume that each landmark m
sj
k in the map has a probability

of detection given by,

P jk
D (xt) = PD0P

jk
FOV(xt), (19)

where PD0 is a sensor specific part, modeled by sensor type
specific models or as a constant [38]. The uncertainty from the
landmark extraction method of choice is included in PD0, and
in case of a mixed dynamic/non-static environment occlusions
caused by dynamic objects not included in the map can also
be modeled in PD0. The probability that a landmark is in
FOV is given by P jk

FOV(xt), as a function of the state vector.
With a filtering approach, the state vector and its uncertainty
is estimated, which in combination with the uncertainty of the
landmarks, RM, determines P jk

FOV(xt).
Any method that extracts landmarks from raw sensor data

will due to noise and imperfections in the method itself,
eventually produce false measurements. Clutter, consisting
of spurious measurements not originating from any known
landmark, is assumed Poisson distributed, with a false alarm
rate βFA. Also the distribution of not yet discovered landmarks
are assumed Poisson distributed with rate βNT.

In target tracking, the hypothesis likelihood is factorized
with the assumption that different targets/landmarks are not
correlated. This is not valid if the map covariance RM contains
known landmark correlations. However, a reasonable assump-
tion is that clutter, new landmarks, and missed detections are
independent from observations matched to landmarks in the
map. The likelihood can then be factorized as,

p(zt|Hj
k) = P

|J |
D0

∏
j∈J

P jk
FOV

 p(zJt |Hj
k)

× β
mFA

t

FA β
mNT

t

NT

∏
j∈MD

(
1− PD0P

jk
FOV

)
, (20)

where zJT is the sub-set of the measurements in the scan zt that
are matched to a landmark in the map, |J | is the cardinality
of zJT , MD is the set of missed detections (i.e., landmarks

Fig. 1. The hypothesis tree structure are growing when new landmark
positions are observed. Each node is associated with one hypothesis but only
the leafs are connected to a complete mode vector and an associated SLAM
solver (SS). The two indices to the SLAM solvers are representing the mode
indicator value for the first and second landmark group respectively.

with PFOV > 0 that are not represented in the observations).
The number of false alarms and newly discovered landmarks
are denoted by mFA

t and mNT
t , respectively.

V. HYPOTHESIS SCORE FOR SLAM

For a state estimation application, the hypothesis scores and
a multi-hypothesis map known a priori is enough to provide
up-to-date knowledge of current positions of landmarks while
at the same time localize the robot in the map. Each time
a landmark comes into FOV a hypothesis test is initialized
with associated state estimators for all possible modes of
that landmark. As soon as a decision is made, all state
estimators associated with disregarded hypotheses may be
removed from further processing. For the SLAM application,
special care has to be taken with observations not matching
the current map since all possible hypotheses are not known
a priori. Also, the hypothesis score update gets slightly more
involved since the normalizing factor in the hypothesis score
only cancels if the time interval is equal for the hypotheses.
This section first presents a tree structure that simplifies the
bookkeeping of hypotheses currently under evaluation. Then
different aspects of not knowing all possible hypotheses up-
front are considered.

A. Hypothesis Tree

Hypotheses currently under evaluation can be represented
by a tree structure where each node represents one hypothesis
associated with a prior probability of that hypothesis and
a recursively updated score. The tree can be dynamically
updated as the robot is moving and nodes can be added
when a new hypothesis evaluation is instantiated. Tree growth
is typically triggered when an observation of a landmark is
not gated with any known position, a landmark with known
multiple modes enters FOV, or, a missed detection is noticed.
Nodes are removed when decisions are made or hypotheses
merged.

Each node in the tree is associated with a certain value of
one specific mode indicator and values for the other mode
indicators are given by ancestor nodes. This means that only
the leaf nodes in the tree has access to a completely defined
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mode indicator vector. To update a static SLAM solver accord-
ing to (8), a global hypothesis, i.e., a complete mode vector,
is needed. Only the leaves on the tree are therefore associated
with a SLAM solver. All landmark modes are always included
in the map for all SLAM solvers even though they are not
marked as active by the mode vector. This allows the positions
and covariances of these landmarks to be implicitly updated by
known correlations to the robot pose or other landmarks, even
though they are never explicitly updated by an observation.

Fig. 1 shows an example of how a hypothesis tree, com-
prising two landmark groups, is built up over time as new
hypotheses evaluations are initialized. The depth of the tree
reflects the number of landmark groups that are currently
evaluated, and the width reflects the number of concurrent
SLAM solvers that need to be updated. Note how the third
level in the tree in Fig. 1 is not divided at the same point in
time for the different branches. This is perfectly valid behavior
since different slam solvers might discover and initiate a
hypotheses evaluations at different times.

B. Hypotheses Branching

There are four different types of observations or measure-
ments that can trigger branching of the hypothesis tree;

1) negative information in form of missed detections,
2) new landmark observations,
3) false alarm measurements, or,
4) a landmark enters FOV.

None of these observations will under all circumstances trigger
a new branch in the tree. If appropriate nodes are already
present in the tree, the observation is merely used in the, for
each hypothesis, corresponding factor in (20) to update the
hypothesis score, and for updating the SLAM solver. Below
follows a description of when each of the four situations will
trigger branching. Note that if a complex tree structure already
exists, the same observation might be classified and treated
differently in the different sub-trees due to discrepancies in
the state and map estimates of the different SLAM solvers.

1) Negative Information: When the multi-hypothesis map
representation is used in a pure state estimation scenario, as
in [15], negative information can be utilized in the sense
that if a landmark expected to be observed is not, the mode
probabilities in that landmark group will shift towards other
modes. This usage of negative information does not directly
transfer to the SLAM application since not all modes are
known a priori. If an expected observation is missing, there
might not yet exist an alternative mode whose probability
of existence could be increased. To reflect this scenario the
alternative hypothesis is introduced. This hypothesis is created
when an active mode of a landmark enters FOV but there
is no observation of it. The alternative hypothesis constitutes
the option that the landmark is not in any known position.
The landmark could have been removed completely from the
operation area or it is placed in a position where it has not
yet been observed. This hypothesis can be treated as a null
hypothesis and can therefore be defined as,

Hj
0 : δjt = 0. (21)

For Hj
0 the probability of the landmark being in FOV is

always zero, P j0
FOV(xt) = 0.

2) New Landmark: If an observation of a landmark is made,
not gating with any known mode of that landmark, a new
hypothesis containing this observed position should be started.
A hypothesis where mNT

t = 1 is created and the landmark
is added to the map according to the SLAM solvers internal
procedure of adding new landmarks. If multiple modes of that
landmark already exists, but are currently inactive, hypotheses
for all inactive modes should also be started and evaluated.
In that case a tree structure where a parent node has multiple
children is created. If on the other hand, no landmark with the
observed signature already exists in the map representation, no
new hypothesis should be created. The observation is merely
left to the SLAM solver to add to the map.

3) False Alarm: Clutter measurements are by the SLAM
solver seen as observations not gated with any known mode
and are impossible to distinguish from an actual new landmark
mode. Hence, a new hypothesis should be created reflecting
this new observation. Call this newly created hypothesis, Hj

B ,
and the original hypothesis Hj

A. The problem is that none of
these hypotheses reflects the truth, that the observation is in
fact a false alarm. Therefore, a third hypothesis also has to be
created Hj

C , where the map and mode indicator vector is equal
to that of Hj

A but with this particular observation treated as a
false alarm in (20) and not used in the measurement update of
the SLAM solver. Note that this third hypothesis always has
to be started also for the new landmark case since the SLAM
solver cannot distinguish between the two events.

4) Landmark Enters FOV: This branching trigger applies
when multiple modes are present in the map and any of
them enters FOV. A tree node is created for each existing
mode and a score evaluation is started. This is analogous
to the hypothesis management for the pure state estimation
problem described in [15]. For the SLAM problem though, this
situation might also start an alternative hypothesis, according
to the negative information trigger, if no observations are made
of the landmark when it enters FOV.

VI. PRACTICAL CONSIDERATIONS

Updating multiple SLAM solvers in parallel can for many
systems be computationally demanding. There are some prac-
tical considerations that can be taken into account to limit the
computations or the number of SLAM solvers that has to be
executed. The branching triggers described in Section V-B are
general for all Markov chains. The total number of hypotheses
created can be reduced by exploiting the idea that transitions
are not allowed while a landmark is in FOV. Further compu-
tations can be saved by noting that the alternative hypothesis
does not need its own SLAM solver.

A. The Alternative Hypothesis

Since the alternative hypothesis carries no different infor-
mation about the state vector or the landmark positions than
the original hypothesis that it is an alternative to, the SLAM
solver does not have to be forked for this hypothesis and a
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lot of the factors in the likelihood ratio L
Hj

k0
t cancels. For

hypothesis with equal state estimates it is enough to compute,

p(zt|Hj
k) ∝

{
PD0P

jk
FOVp(z

J
t |Hj

k) if zjt ̸= ∅(
1− PD0P

jk
FOV

)
p(zEt |H

j
k) if zjt = ∅

, (22)

since all other factors cancel when the score is formed. Here,
zjt is the observation associated with the landmark that the
hypothesis is formed with, and zEt is the subset of matched
measurements such that

{
zjt , z

E
t

}
= zJt . The likelihood of the

alternative hypothesis is given by,

p(zt|Hj
0) ∝

{
βFAp(z

E
t |H

j
0) if zjt ̸= ∅

p(zEt |H
j
0) if zjt = ∅,

(23)

since P j0
FOV = 0. This yields a score update according to

L
Hj

k0
t = L

Hj
k0

t−1 +

log
(

PD0P
jk
FOVp(zJ

t |Hj
k)

βNTp(zE
t |Hj

k)

)
if zjt ̸= ∅

log
(
1− PD0P

jk
FOV

)
if zjt = ∅,

(24)

where it is used that p(zEt |H
j
k) = p(zEt |H

j
0).

A potential dilemma occurs if there are already two active
hypotheses with different modes of landmark sj , and then neg-
ative information triggers an alternative hypothesis branching.
Which of the two SLAM solvers should the alternative hypoth-
esis use? Theoretically, two different alternative hypotheses
should be created. In practice, however, when this situation
occurs the landmark is often in FOV and the no transition
Markov property defer any mode change and no alternative
hypothesis has to be created at all.

B. Back-tracking

A practical complication with the definition of the hypothe-
sis score in (11) is that all likelihoods that are to be compared
has to be started at the same point in time for the normalizing
factor to cancel. If an evaluation of a landmark is ongoing
and an observation is made that is not gated with any of the
already evaluated hypotheses. A third hypothesis should be
added to the tree, either by backtracking the probability of
that hypothesis to when the already existing evaluation was
started, or by adding it as a child to the existing branches.
Fig.2 shows the tree at t = t0 when only two modes of a
landmark exists, and the resulting tree at t = t1 when the third
hypothesis is created, for the two options. If the backtracking
strategy is used the unnormalized log-likelihood of the third
hypothesis has to be corrected by adding the log-likelihood
for the time steps in between t0 and t1 with the assumption
that the landmark was in the MD set. Also the priors of
the existing hypotheses, Pr(δjt0 = k), and Pr(δjt0 = m) has
to be adjusted in this back-tracking procedure to have the
probabilities at t = t0 to sum to 1. This requires data to
always be saved when an evaluation is present for potential
future branching.

The alternative of adding all new hypothesis as children
to existing nodes does not require old data to be saved.
However, this solution might cause duplication of the same
global hypothesis in the tree leaves, resulting in computational
overhead of executing unnecessary SLAM solvers.

C. Score Recursion

It would be possible to only evaluate hypothesis scores for
the leaf nodes and compare them to each other according
to (17) and (18), but that might delay decisions. In some
situations a decision can be made at a higher level in the
tree and large sub-trees can be removed at once. However,
this requires the scores at the higher levels to be computed
and updated through marginalization. For a non-leaf node the
likelihood is determined by

p(zt|Hj
k) =

∑
Hi

m

p(zt|Hj
k,H

i
m)Pr(Hi

m|Hj
k), (25)

where the summation is over all hypotheses that are a branch
to the node. With a deep tree this of course has to be done
recursively until a leaf is reached, and then backtracked to
the higher levels. Note that Pr(Hi

m|Hj
k) = Pr(Hi

m) since the
mode of each landmark is assumed independent and Pr(Hi

m)
can be obtained from the scores at the branched level in the
tree. Note that this strategy is not applicable if i = j, which is
the case if multi-hypothesis are added as children as discussed
in section VI-B.

D. Observation of Inactive Modes

Theoretically it should not be possible to obtain measure-
ments from landmarks that are not in FOV. However, in
practice P jk

FOV is not exactly known and the decision of when a
landmark is considered to be in FOV is decided by a threshold
parameter that has to be tuned. This may lead to situations
where an inactive landmark is not considered to be in FOV yet,
but still observations are obtained. Sometimes this could be
solved by lowering the threshold, but then you risk to falsely
decide for an alternative hypothesis before measurements are
obtained in other situations. A practical solution is therefore
to start a new hypothesis according to the landmark enters
FOV-trigger when this situation occurs and simply treat the
landmark as if in FOV.

VII. POSSIBLE APPROXIMATIONS

To further limit computations and the need of executing
SLAM solvers in parallel some approximations can be made.

A. Transform Alternative Hypothesis

Consider a situation where an alternative hypothesis exists,
created due to a negative information trigger, and an obser-
vation is made that is not gating with any of the current
modes. Then the alternative hypothesis can be transformed into
a regular hypothesis with the landmark mode positioned ac-
cording to the incoming observation. This limits the overhead
of having to create a new hypothesis and backtrack the score if
instead the score from the alternative hypothesis is adopted. As
soon as measurements are starting to come in, the alternative
hypothesis is unlikely to be true and would probably be
rejected soon anyway. A risk with this approximation is that
the incoming observation is in fact a false alarm and the
currently true position of the landmark might not be in FOV at
the moment. In that case two SLAM solvers will be executed
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Fig. 2. The left picture show the hypothesis tree at t = t0, δE denotes the subset of the mode indicator vector for all landmark groups except the jth one. At
t = t1 an additional hypothesis of landmark j is created that can be added to the tree directly as children (middle) or be re-arranged by back-tracking (right).

in parallel with equally decreasing score until observations
are made of the true position or an alternative hypothesis is
triggered again by the landmarks re-entering the FOV.

The transformation of alternative hypothesis implicates fur-
ther simplifications in the situation when there are two existing
modes of one landmark and only the inactive one comes
into FOV while no observations are made. In this case, an
evaluation should be triggered and an alternative hypothesis
should be created. However, the alternative hypothesis will in
this case completely follow the hypothesis where the landmark
is not in FOV and as soon as an observation is made, the
alternative hypothesis is transformed into that hypothesis.
Therefore, it is unnecessary to create the alternative hypothesis
to begin with since hypothesis would anyhow be triggered
when an ungated observation is made or the active mode enters
FOV.

B. False Alarm
In case of a false alarm triggered branching, three hypothe-

ses are evaluated; the original hypothesis Hj
A, the hypothesis

reflecting the measurement Hj
B , and, the hypothesis Hj

C with
state according to Hj

A but with this particular measurement
considered as false alarm. Since data association is assumed
trivial the SLAM solver associated with Hj

A might take a huge
leap when updated with the observation not gating with the
active mode in this hypothesis. Depending on other landmarks
in the vicinity and correlations to them, this update might
locally adapt to the observed situation causing the succeeding
updates to result in relatively large likelihoods, even though the
hypothesis is in fact false. Also, Hj

C , which in this case is the
true hypothesis, might get a low likelihood if the false alarm
rate is low. It is therefore important to tune the thresholds so
that such hypotheses are not immediately rejected, but still
allow for a quick decision in the coming updates to avoid
running SLAM solvers in parallel.

A solution to this is to always treat a non-gated observation
as a false alarm, in all hypotheses. In the case of spurious false
alarms this can be interpreted as an immediate reject of Hj

A

and instead only proceed with Hj
C , which for a false alarm is

the correct hypothesis. However, with this approach Hj
A is also

rejected in situations where a landmark has actually changed
mode and Hj

B is the true one. This might affect the time it

takes to make a decision. However, the false alarm rate is for
many applications typically low and the score for Hj

C might
even decrease faster than the score for Hj

A where the solution
gradually adapts to the observations. Fig. 3 show a simple
example where this approximation is beneficial for the result,
since Hj

A is the wrong hypothesis but adapts to observations.

C. Merge Hypotheses

In the SLAM application where landmark and state esti-
mates are constantly updated and adjusted to incoming mea-
surements, situations might occur where the hypotheses are
not well separated. To saved computations the hypotheses can
then be merged to one. Merge candidates can be discovered
by evaluating the Mahalanobis distance between the map
estimates. Let hypothesis HA and MB , have map estimate
MA and MB , and associated covariance matrices RMA

and
RMB

, respectively. The hypotheses are considered similar if
the Mahalanobis distance is smaller than a threshold,

(MA −MB)
⊤
(RMA

+RMB
)
−1

(MA −MB) < κ2.
(26)

The hypotheses can be merged by linear combination
weighted by the probability of each of the hypothesis.

VIII. MULTI-HYPOTHESIS SLAM
This section describes how the multi-hypothesis map repre-

sentation can be used together with a static SLAM solver of
your choice.

A. Implementation

The multi-hypothesis map representation can be used in the
SLAM framework together with any SLAM solver that can
provide estimates of p(xt,M|δt, z1:t) and of the measure-
ment likelihood p(zJt |Hj

k). The workflow of multi-hypothesis
SLAM is described in Algorithm 1. First all active SLAM
solvers, which corresponds to leafs in the hypothesis tree,
are predicted to the current time step, then possibly new
hypotheses are created and added to the hypothesis tree. All
unnormalized log-likelihoods are updated for all nodes in the
hypothesis tree according to (14) and then the pair-wise scores
are computed and compared to the decision thresholds. If de-
cisions can be made the hypothesis tree is pruned accordingly.
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(a) (b) (c) (d)

Fig. 3. A prior map is given where the landmark m1 has a mode indicator not corresponding with observations to come. In (a) the prior configuration is
shown. Landmark and state estimate are marked with position and uncertainty ellipse. The FOV of the robot is visualized with a black circle and a line
reflecting the heading. Dashed landmarks mark inactive modes in the landmark group associated with that color. In (b) the green graphics corresponds to the
original hypothesis H1

A where the landmark is still positioned at m1
1, but slightly adapted to observation originating from m1

2. The purple graphic represents
H1

B . Note that the erroneous hypothesis is chosen according to maximum likelihood. In (c) when m2
1 enters FOV, the correct hypothesis is eventually selected.

If instead only gated observations are included in the correction step, the incorrect hypothesis is quickly rejected when consecutive false alarms are observed.
This is shown in (d).

Algorithm 1 Multi-Hypothesis SLAM
Input: x0, P0, u1:T , z1:T
1: Initialize root SLAM solver (x0, P0)
2: for t = 1:T do
3: for all leafs in the hypothesis tree do
4: p(xt,M|δt, z1:t−1, u1:t)← SLAM time update
5: Branch hypothesis if needed
6: end for
7: Update all scores, L̂

Hj
k

t
8: Prune hypothesis tree by decisions or merging
9: for all leafs in the hypothesis tree do

10: p(xt,M|δt, z1:t, u1:t)← SLAM measurement update
11: end for
12: p(xt,M, δt|z1:t)← global estimate
13: end for

The hypotheses are also checked for merging and the tree is
pruned if necessary. Finally, the SLAM measurement update
is performed for all leafs in the hypothesis tree, and a global
estimate is obtained from the hypothesis tree.

To obtain stability due to noise and uncertainties in the
estimates, a list of landmarks currently in FOV for each SLAM
solver is managed through:

• PFOV > γ1: add to the list of landmarks in FOV,
• PFOV < γ2: remove from the list of landmarks in FOV,

where γ1 > γ2. The thresholds should be high enough not to
initiate alternative hypotheses when they should not, and, low
enough for truly valid observations not to be miss-classified
as false alarms.

B. The Global Hypothesis

To retrieve a global hypothesis at all times during execution,
a maximum likelihood (ML) approach can be taken. In cases
with a complex tree structure, this can be obtained by starting
at the root and selecting the branch with highest score all the
way down to a leaf. That leaf provides the global hypothesis.

IX. UNDERGROUND MINE EXPERIMENTS

The multi-hypothesis SLAM algorithm is evaluated in an
underground mine application using a mid-articulated loader

Fig. 4. A Scooptram18 loader from Epiroc, equipped with odometry and two
lidar sensors, is used for data collection. [Asset: Epiroc]

equipped with odometry and two 2D lidar sensors, see Fig. 4.
The operation area is a long tunnel with crossroads leading
to drawpoints where material is picked up, see Fig. 5. To
manage the ore body, drawpoints are closed or opened with
physical barriers to prevent loaders from entering the wrong
aisle. If the physical barriers can be uniquely identified by the
perception system of the vehicle, a situation suitable for multi-
hypothesis SLAM is achieved. This situation is evaluated
with both simulated data and with real data recorded in an
underground mine in the area covered by the map in Fig. 5.

A. SLAM Solver

The SLAM solvers implement extended Kalman filter
(EKF) SLAM [35] and estimates the 2D position of the
vehicle, i.e., the Cartesian coordinates of the vehicle in the
global frame together with the heading,

[
x1, x2, θ

]⊤
. The state

vector is extended by the Cartesian coordinates of discovered
landmarks, which yields the full state vector

xt =
[
x1
t , x

2
t , θt,M⊤

t

]⊤
. (27)

The state transition model is nonlinear and given by

xt+1 = xt + T

uv
t cos θt

uv
t sin θt
uw
t

+ vt, (28)

where T = 50ms is the sampling rate, uv
t and uw

t are
the linear and angular velocity, respectively and is obtained
from the odometry. The process noise vt ∼ N (0, Q) is
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Fig. 5. The operation area with the two polygon-based metric maps overlayed.
Lidar data is simulated while the loader travels along the dashed line to obtain
a prior feature-based map. The landmarks in the prior map is marked with a
cross and covariance ellipses. Different colors is associated with the different
signatures of the landmarks, and blue landmarks are considered not uniquely
identifiable.

modeled as time-invariant with diagonal covariance Q =
0.05 diag

(
0.05, 0.05, (5◦)2

)
, chosen according to previous

knowledge about the application.
The measurement model is a transformation of the land-

marks in the map to the vehicles coordinate frame. For each
landmark currently in field-of-view this yields,

zit = R(xt)
(
MFOV,i

t −
[
x1
t , x

2
t

]⊤)
+ et, (29)

where R(xt) is a rotation matrix and MFOV,i
t is the ith

landmark in the subset of visible landmarks in the complete
map Mt selected by the mode vector. The measurement noise
is assumed white Gaussian and equal for all i landmarks,
et ∼ N (0, R), with R = 0.25I where I is the identity matrix.

B. Data Generation

Lidar data is obtained as 2D point clouds either directly
from recorded log-files or simulated by ray-casting in a
polygon defined metric map, available for this particular area.
Measurement errors added to the simulated data is created
utilizing a support vector machine (SVM) model, trained
on real data from an underground application, where the
measurement error depends on range and inclination angle of

a laser ray to the wall [39]. This is the same model as used
in [40] where more details and internal parameter values can
be found. This method of producing measurement errors gives
rather realistic sensor data.

From the point clouds, features are extracted with the fast
laser interest region transform (FLIRT) algorithm presented
in [41] and evaluated with comparatively good results for
the underground application in [40]. The method searches for
high-curvature regions and identifies keypoints from peaks of
an evaluation function F . The minimum value of F to be
considered a peak is set to Fmin = 0.367 and the minimum
separation of peaks is set to Fdist = 0.12, to identify enough
keypoints to allow for good positioning while keeping them
few to be well separated. All other parameters associated with
the FLIRT algorithm are set according to [40].

Since the feature-based map representation is sensor agnos-
tic, it is assumed that the unique identifiers are in place and
what actual device that in practice is used to obtain this can
be application dependent. In these experiments the identifiers
are added by manually assigning a signature to landmarks
discovered within bounding boxes where changes are applied.
All other landmarks are not considered uniquely identifiable
and are therefore not considered for branching. When giving
landmarks their signatures the ground truth position of the
loader is used. For the real data, no ground truth is available
and the estimated position from an internal positioning system,
executed on the loader and based on matching raw lidar data
to the polygon defined metric map, is used instead.

C. Prior Map Generation

Two versions of the polygon defined metric map is available
of the operation area, see Fig. 5, the original one and a
modified one where a tunnel is extended and a corner is moved
closer to the main aisle. A prior map and associated covariance
matrix is generated by executing the EKF SLAM solver with
simulated lidar data from the ground truth trajectory defined
in Fig. 5, where also the obtained map is presented. Three
uniquely identified landmarks are present in the map and all
other landmarks are not considered for branching.

D. Probability of FOV

The probability that a landmark is in FOV is in this
implementation estimated by considering the raw point cloud
obtained from the lidar sensor. Since the map M is completely
defined by landmark points it is not possible to find occlusions
directly from the map, at least not without further processing
of the map. However, by using the actual point cloud from
the sensors it is possible to estimate the probability that a
particular landmark is within the area covered by the point
cloud.

100 samples of each landmark position and vehicle position
are created given their estimated distributions. The point cloud
is transformed to each sampled vehicle position and a ratio
is obtained on how often the landmark is withing the area
covered by the point cloud. This ratio is used as an estimate
of PFOV. In the ideal case, the landmark would be on the
exact border of the point cloud area, the ratio approximation
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will therefore vastly underestimate the PFOV. To compensate
for this, the point cloud areas are extended with 0.5m in the
radial direction.

E. Simulated Data Experiment

A simulated data experiment is conducted where a trajectory
is created in the modified map. White Gaussian noise is added
to the odometry data by

ut =

[
uv
t

uw
t

]
+

[
evt
ewt

]
, (30)

where evt ∼ N (0, 0.12) and ewt ∼ N (0, (5◦)2). Landmark
measurements are simulated according to the process de-
scribed in Section IX-B, and signatures are manually assigned
to match the scenario that the unique landmarks in the prior
map have moved.

The multi-hypothesis SLAM algorithm is given the prior
map in Fig. 5, clutter and new landmark rates are set to
βFA = βNT = 3.5 · 10−7, the FOV thresholds are γ1 = 0.8,
γ2 = 0.1, and, the score threshold for decision is set to
α = 10−8. An elliptic gating is used for matching observations
with landmarks in the map, with the significance level set to
99%.

The transition matrix is assumed equal for all landmarks
and is set to identity when a landmark is in FOV. During a
time period when a landmark is not in FOV it could possibly
change mode in any time step during the period. However,
if it is assumed that the transition matrix is constant when a
landmark is not in FOV a final transition probability at the
end of the time period yields,[

Pr(δjt+i = k)

Pr(δjt+i = q)

]
=

(
Πj

)i [Pr(δjt = k)

Pr(δjt = q)

]
. (31)

The values of Π is highly application dependent and should be
tuned to match the frequency of changes in the environment.
Due to how the experiments is setup here, the time i since
a landmark was previously in FOV is not known. Using a
transition probability of 0.5 would correspond to a stationary
state, while letting the diagonal values be larger than the off-
diagonal ones considers the last observed mode more probable.
In these experiments

(
Πj

)i
= Π̃ = [ 0.9 0.1

0.1 0.9 ] is used, which
results in a more conservative algorithm not advantageous in
experiments where the landmarks have truly changed mode.

When running this simulation with a static SLAM solver
the vehicle position is shifted to the right when the unique
landmarks comes into FOV. The distances to observation of
the landmarks in the extended drawpoint is much longer than
expected and the SLAM solver compensates by correcting both
the landmark positions and the vehicle position. If instead the
multi-hypothesis approach is used, new hypotheses of all three
unique landmarks are started and decisions are made according
to incoming observations.

Fig. 6 shows the root mean square error (RMSE) and the
normalized estiamted error squared (NEES) of the estimated
vehicle position, relative the known ground truth. The NEES
is computed by (xt − x̂t)

⊤
P̂−1
t (xt − x̂t), where xt are the

true state vector, x̂t and P̂t are the estimated state and
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Fig. 6. Results for the simulated data experiment with 100 Monte Carlo
realizations. Orange line is the multi-hypothesis SLAM algorithm, blue is
when static SLAM is used and yellow is dead-reckoning with only odometer
data. The black dashed line in the NEES plot marks the optimal value, 3.

covariance, respectively. For Gaussian distribution of the state,
this quantity is χ2-distributed and the optimal value is equal to
the dimension of the state vector [42]. If only the elements of
the state corresponding to the vehicle position is considered,
the optimal NEES value is in this case 3. As seen in Fig. 6
a dead-reckoning solution gives conservative estimates since
the NEES values is below three. The multi-hypothesis and
static SLAM approaches are similar until half-way when the
unique landmarks come into FOV. The static SLAM solver
then diverges while the multi-hypothesis approach remains
close to the true solution. The multi-hypothesis approach also
gives a correct posterior version of the map where the prior
positions of the landmarks are marked as inactive.

F. State-of-the-art Comparison

State-of-the-art methods for SLAM in dynamic or non-static
environment often adopts either an outlier rejection method
where observations not coherent with the map is filtered out,
or, some sort of memory decay where non-robust landmarks
are eventually deleted. A simulation is therefore performed
comparing the suggested multi-hypothesis approach with an
ideal outlier rejection and an ideal memory decay.

The prior map used in this experiment is the output from the
previous one. That is, both modes of the uniquely identifiable
landmarks are present in the map. Data is simulated in the
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original map but the multi-hypothesis SLAM algorithm is
given the mode indicator vector corresponding to landmark
positions in the modified map. Assuming it was a long time
since this particular aisle was changed, a perfect memory
decay would completely have forgotten the original version
of the map. Therefore this SLAM solver is executed as a
static EKF SLAM solver given a prior map with the original
modes of the landmarks removed. This solver allows multiple
landmarks with the same signature to be added if observations
not gated with the known position is made and the original
position of the landmark will be re-added. If a perfect outlier
rejection is assumed, all observations not matching the known
position of a landmark would be considered an outlier. This
would be the case when a landmark is moved. A outlier
rejection SLAM solver is therefore executed ignoring all
observations from the moving landmarks, only using the not
uniquely identifiable ones.

The simulation constitutes 100 Monte Carlo realizations
on the subpart of the trajectory in Fig. 5 where the mov-
ing landmarks are visible. Each run is started with a prior
uncertainty in the starting position given by the covariance
diag([0.04, 0.04, 0.0023]), which is estimated by running the
trajectory once from the very beginning.

Using the ML hypothesis in each time step as the global
state estimate, might cause the multi-hypothesis algorithm to,
at specific time steps, use the wrong hypothesis, even though
the correct one is still active and updated and decided upon at a
later stage. Therefore the methods are evaluated by the RMSE
of the best active hypothesis at only the last time step when the
changing landmarks have left field-of-view. In this experiment
the moving landmarks are few compared to the number of
static landmark visible at the same time. To evaluate how the
algorithms perform when a larger ratio of observations belong
to moving landmarks, a percentage of the static landmarks
in the prior map is removed and also the same percentage
of observations of the static landmarks are removed. Fig. 7
show the RMSE of the vehicle position at the final time
step for the different algorithms and for different percentages
of removed landmarks. When no landmark is removed the
differences between the algorithms are small, but as landmarks
are removed, the moving landmarks have a higher impact on
the estimates and the multi-hypothesis algorithm outperforms
the others. This clearly shows the benefits of saving a rejected
hypothesis if it is likely to re-occure in the future. The drop
in RMSE when all static landmarks are removed seen in
Fig. 7 can be explained by erroneous data associations. Since
the static landmarks are not uniquely identifiable observations
might be gated with the wrong landmark, causing erroneous
input to the SLAM solver updates.

G. Real Data Experiment

An experiment with real data collected by a loader in this
particular operation area, gives similar results as the simulated
experiment. The real data is more coherent with the original
map than the modified. Therefore a prior map is created by
simulation in the modified map and then the multi-hypothesis
SLAM solver is executed with the same parameter setup as
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Fig. 7. Comparison of the multi-hypothesis SLAM algorithm with a perfect
memory decay and a perfect outlier rejection. Landmarks in the map and in
observations are randomly removed with varying ratios. Running with pure
odometry is unaffected by the ratio since no landmarks are used in the dead-
reckoning state estimate.

presented in Section IX-E. Since no ground truth is available
for this data RMSE and NEES cannot be computed but Fig. 8
show the resulting trajectory when the loader is traveling from
the top to the bottom in the map, creating new hypotheses
for the uniquely identifiable landmarks and make decisions
accordingly. This result is similar to the simulated results,
which further validates the simulations and the benefits of the
multi-hypothesis approach.

Worth noting is that for one of the landmarks (the purple one
in Fig. 8) multiple hypotheses are never started. By inspecting
an actual laser scan from this part of the area this is not
surprising. Fig. 9 shows that the sensor data is not more
coherent with the modified map than the original one. This
highlights the flexibility and robustness of the multi-hypothesis
approach, where the end result reflects the actual observations
well.

X. CONCLUSION

The assumption of a static world is a prerequisite for SLAM
to be considered a solved problem. In reality this is almost
never the case. This paper have considered a scenario where
uniquely identifiable landmarks are present and can be moved
between multiple discrete positions, not known a priori. A
multi-hypothesis SLAM algorithm have been developed based
on the feature based multi-hypothesis map representation
introduced in [15], where also a hypothesis score enables
decision making to prevent the number of hypotheses to grow
unbounded. This map representation has theoretically been
incorporated into the SLAM framework and a tree structure
has been formalized to manage the hypotheses. Many prac-
tical considerations have been elaborated upon and suitable
approximations are suggested. This have resulted in a multi-
hypothesis SLAM algorithm that works in combination with
any available SLAM solver designed for a static environment.

The developed algorithm have been evaluated in experi-
ments in the underground mine application, conducted with
both simulated and real data. In this non-static environment,
simulations show the benefits of the multi-hypothesis approach
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Fig. 8. The top picture show the black trajectory estimated when the multi-
hypothesis SLAM algorithm is used. The landmarks shown are the estimates
at the final time step. The green trajectory is the outcome from a static SLAM
approach applied to this problem. Note that the estimated landmark positions
for this approach is not shown in the figure. The bottom picture is zoomed
in on the modified part of the map, and shows landmarks that are inactive
according to the estimated mode indicator vector with dashed covariance
ellipses.

compared to executing a standard SLAM solver. It also
performs better compared to ideal outlier rejection and ideal
memory decay, which are methods that many state-of-the-art
SLAM solutions for non-static environments are based upon.
The experiments on real data further validates the simulated
results and show the potential of this approach to perform well
in real world applications.

Future work will focus on not being reliant on the assump-
tion that landmark are uniquely identifiable, which will allow
uncertainty also in the data association.

Fig. 9. An example of a real lidar scan, shown as an orange area. For the
drawpoint to the right in the picture where one of the corners are changed
in the two map versions, the real observations are somewhere in between the
two map versions.
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