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Abstract
This report aims to describe the latest research and method development
of image-based multi sensor fusion navigation and summarizes open aerial
datasets which can support the latest research related to this project. It
supports the initial setting of the direction of the algorithm development in
the early stage of the project.
The Multi Sensor Image-based Navigation project aims to study and de-
velop the methods focusing on image-based multisensor navigation in order
to acquire a precise localization of the aircraft. GNSS-based localization
and navigation systems are sensitive to disturbances and jamming, hence
the capability to provide reliable position accuracy without GNSS is a key
element to develop the navigation systems.
The output of this project can be utilized in a wide range of applications,
such as aircraft operation in GNSS denied environments or urban air mo-
bility context.

Keywords: sensor fusion, aerial navigation, image processing, simultaneous
localization and mapping, visual-inertial navigation, deep learning
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Summary 
This report aims to describe the latest research and method 

development of image-based multi sensor fusion navigation and 

summarizes open aerial datasets which can support the latest research 

related to this project. It supports the initial setting of the direction of the 

algorithm development in the early stage of the project. 
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1 Introduction 

1.1 Project Information 

The Multi Sensor Image-based Navigation project aims to study and 

develop the methods focusing on image-based multisensor navigation in 

order to acquire a precise localization of the aircraft. GNSS-based 

localization and navigation systems are sensitive to disturbances and 

jamming, hence the capability to provide reliable position accuracy 

without GNSS is a key element to develop the navigation systems.   

The output of this project can be utilized in a wide range of applications, 

such as aircraft operation in GNSS denied environments or urban air 

mobility context. 

1.2 Objective of the Report 

This report aims to describe the latest research and method 

development of image-based multi sensor fusion navigation, and 

especially reviews landmark papers related to the project. In addition, the 

latest studies in which deep learning methods are also described to 

investigate the latest research trends.  

Camera sensors used for image-based navigation include monocular, 

stereo, fisheye, and RGB-D, etc., cameras. This report focuses on 

monocular camera-based navigation studies from the viewpoint that the 

research using the monocular camera sensor precedes the development of 

core technology. Recently, visual-inertial navigation in which 

measurements from an inertial measurement unit (IMU) and a camera are 

fused shows high performance and is receiving a lot of attention. This 

report also summarizes the landmark papers utilizing IMU sensors. In 

addition, open aerial datasets which can support the latest research related 

to this project are summarized. It also sets the initial direction of the 

research, and the dataset and methods can be expected to be referenced 

and utilized in developing algorithms, within the project.    

The rest of this report is organized as follows. First, the background of 

image-based navigation is reviewed in Chapter 2, and open datasets are 

summarized in Chapter 3. The key papers of the image-based navigation 

are divided into feature-based, direct, visual-inertial, and deep learning 

applied methods, and the methods are reviewed in Chapter 4 to 7. Finally, 

Chapter 8 concludes and discusses future research directions.  
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2 Background 

The latest image-based navigation research showing high performance 

has been initially led by the visual simultaneous localization and mapping 

(SLAM) based on image processing with photogrammetry. The SLAM 

methods recognize the surrounding environment to build a map and 

estimates the state of a sensor simultaneously. The classical age saw the 

introduction the probabilistic estimation formulations for SLAM [1, 2], 

including approaches based on Kalman filter, extended Kalman filter, and 

particle filter. The main formulations connected to efficiency and data 

association [3, 4] are well described. The front end of the SLAM is related 

to research fields such as computer vision and signal processing. The back 

end consists of mix of the geometry, optimization, and probabilistic 

estimation [5]. A method for estimating the trajectory based on image 

information was introduced as visual odometry (VO) [6]. Building a 

globally consistent representation using the generated environment map 

information is the difference between SLAM and odometry [7, 8]. The VO 

and visual SLAM are interdependent methods, and the definition may vary 

depending on the researcher. The VO is regarded as the localization part 

of SLAM in this report.  

The initial image-based SLAM aimed to estimate camera pose and 

generate a 3D map is known as structure from motion in computer vision. 

These methods use image processing techniques to extract feature points 

to match between different image frames and then estimate camera pose 

based on photogrammetry. The basic information that is used is a camera 

model, calibration, and 2D-2D/3D-3D/3D-2D motion from image 

correspondences. The final pose of the camera and structure are refined by 

optimization methods such as bundle adjustment and pose graph. 

However, the disadvantage is that the motion is only recovered up to an 

unknown scale factor depending on depth ambiguity. For this reason, 

navigation systems using only a camera sensor still have a limited accuracy 

that is lower than that of positioning using GNSS fusion or Light detection 

and ranging (LiDAR) sensors. The scale can be determined from direct 

measurement by other sensors. Here, as one of the alternatives, the scale 

factor can be determined by using the IMU. The IMU fusion methods have 

been proposed as loosely or tightly coupled systems. In loosely coupled 

systems, the poses are estimated by an independent algorithm, then the 

vision and inertial measurements are fused in a subsequent estimation. On  

the other hand, tightly coupled systems fuse the correlations among all the 

measurements in a single algorithm. Additionally, studies on estimating 
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camera pose and generating dense map information using deep learning 

methods have been actively conducted. Methods using deep learning have 

been extensively studied, from being a method to supplement parts of the 

previous SLAM structure to end-to-end methods that learn the output 

from the input.  

This report summarizes the landmark papers of the latest studies from 

the background of these technical development and examines the 

theoretical or practical ways to be able to utilize them in this project from 

the key methods.  
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3 Datasets 

It is challenging to acquire high quality data for development of the 

navigation algorithm in both indoor and outdoor environments. Therefore, 

utilizing open datasets commonly used by researchers can be a method in 

terms of availability of the data. Ground-level datasets such as Kitti [9], 

nuScenes [10], Waymo [11], and Argoverse [12] have significant volume 

and quality in terms of the type of sensor combination, driving scenarios, 

and data utilization. These datasets can be utilized for various tasks in 

autonomous driving systems such as tracking, prediction, LiDAR 

segmentation, panoptic segmentation, planning, scenario-based driving, 

etc. However, aerial datasets lack the volume compared to the ground-level 

datasets due to sensor configuration and limitations in data acquisition 

step. Since it is difficult to change the sensor configuration compared to 

ground vehicles, this makes the limitations of the data collection for 

various scenarios. This chapter summarizes the characteristics of currently 

accessible aerial datasets, with the expectation that the datasets can 

support the algorithm development in terms of flexibility and utility in the 

early stage of the project implementation. The overall features of the 

datasets are listed in Table 1 
 

Table 1. The Characteristics of the Open Dataset 

 

EuRoC 

MAV 

(2016) 

[13] 

UZH-FPV  

Drone Racing 

(2019) [14] 

Blackbird 

UAV 

(2020) [15] 

NTU VIRAL 

(2021) [16] 

KAIST 

VIO 

(2021) [17] 

Environment Indoor Indoor/Outdoor Indoor Indoor/Outdoor Indoor 

Sequences 11 27 186 9 4 

Camera 
20 Hz, 

752*480  

30/50 Hz, 

640*480  

120/60 Hz,  

1024*768  

10 Hz, 

752*480  

30 Hz, 

640*480  

IMU 200 Hz 500/1000 Hz 100 Hz 385 Hz 100 Hz 

Ground 

truth 
20 Hz 20 Hz 360 Hz 20 Hz 50 Hz 

Others - 
Event Camera 

50Hz 

Depth camera 

60Hz, 

Segmentation* 

60 Hz 

Vertical/Horizontal 

LiDAR, UWB 

sensors 

RGB 

(640*480) 

30 Hz 

 

   * Ground truth segmentation images 
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3.1 EuRoC MAV Dataset  

The EuRoC Micro Aerial Vehicle (MAV) dataset [13] used a stereo 

camera mounted on a micro aerial vehicle in an indoor environment. It 

contained a comprehensive suite of sensor measurements. A Vicon motion 

capture system and a Leica laser tracker was used as ground truth, and 11 

scenarios were acquired including sequences categorized as easy, medium, 

and difficult in Machine Hall and Vicon Room. The ROS bag data format 

is supported.  

The EuRoC MAV dataset has limitations in that the trajectories are 

short, and it provides only indoor environment data. However, it has been 

widely used as the reference dataset in many studies, and it is useful in this 

project in terms of data synchronization and algorithm development.  

3.2 UZH-FPV Drone Dataset 

The UZH-FPV drone dataset [14] provides drone racing data with more 

aggressive motion trajectories. It contains flight distances of 10 km in 27 

sequences, captured on a first-person-view (FPV) racing quadrotor flown 

by pilot. The examples of the environment and trajectory are shown in 

Figure 1. The ROS bag data format is supported. A competition based on 6 

sequences is posted on the webpage. A leader board of the top ranked 

methods obtaining the best accuracy is maintained. However, the ground 

truth data of the leader board is not public on these sequences.  

This dataset provides indoor and outdoor environmental data for a 

forward facing and a 45° downward facing camera. Compared to the 

ground level datasets, the trajectories are short. However, it can be utilized 

to analyze the influence of the aggressive motion on the algorithm.  

Figure 1 The examples of the environment (left) and trajectory (right) [14]. 
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3.3 Blackbird UAV Dataset 

The Blackbird dataset [15] contains 18 different trajectories at varying 

maximum speeds through 5 different visual environments. It also includes 

synchronized motion-capture ground truth data with inertial 

measurements using camera exposure timestamps. Examples of the 

environment and trajectory are shown in Figure 2. 

This UAV dataset provides high-rate measurements, and can be used to 

develop visual inertial navigation, 3D reconstruction, and depth 

estimation algorithms. It contains trajectories for various sequences and 

conditions, but it also lacks longer trajectories (the max distance is up to 

860 meters). 

 

3.4 NTU VIRAL Dataset 

The NTU visual-inertial-ranging-lidar (VIRAL) dataset [16] includes 

camera, IMU, LiDAR, and Ultra-wideband (UWB) ranging units. The 

overall sensor suite is a configuration that conforms to an autonomous 

vehicle, and the experiments are performed in a low-texture condition 

Figure 3 The examples of the environment (top) and trajectory (bottom) [16]. 

Figure 2 The examples of the environment (top 1 row) and trajectory (bottom) [15]. 
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environment of a building area. With a sensor configuration oriented 

toward autonomous drones, data composed of various hardware among 

aviation datasets is provided and ROS bag format is supported. The 

examples of the environment and trajectories are shown in Figure 3. 

The reference experimental results are provided with the latest vision 

and LiDAR based methods that make up the state of the art. Outdoor and 

indoor environments are provided, but the lengths of the trajectories are 

limited to within several hundred meters.  

3.5 KAIST VIO Dataset 

The KAIST visual-inertial odometry (VIO) dataset [17] provides ROS 

bag format for 4 different trajectories in the laboratory environment, and 

examples of the environment and trajectories are shown in Figure 4. 

Comparisons of results from visual-inertial-based state-of-the-art 

methods including VINS-Mono [18], VINS-Fusion [19], Kimera [20], 

ALVIO [21], Stereo-MSCKF [22], ORB-SLAM2 [23] stereo, and ROVIO 

[24] are provided. By comparing the algorithm performances in three 

types of NVIDIA Jetson platforms, it has the advantage of being a reference 

for analyzing the performance of the current state-of-the-art algorithm 

and hardware platform. However, it has the disadvantage of providing only 

sequences of the data in laboratory environment.  

3.6 General Comment of the Datasets 

The characteristic of the cited datasets is that they use low resolution 

images compared with datasets from autonomous vehicles. Considering 

the high-altitude aerial scenario, it will be necessary to take into account 

the resolution for extracting the image information required for 

navigation, and mutually consider the computational cost of high 

resolution of the image processing algorithms.  

Figure 4 The examples of the environment (left) and trajectory (right) [17]. 
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4 Feature-based Methods 

Image-based navigation has been developed with feature based 

detection methods that uses extracted features from images. Recently, 

methods that directly utilize image pixels without extracting features have 

been actively studied but the basic structure of the algorithm is related to 

the existing methods, therefore, it is meaningful to understand the 

research flow of the feature-based methods.  

To briefly recap of the feature detection flow, since the initial corner 

detection proposed by Maravec [25], the feature extracting method has 

been developed through interaction of the algorithm and computing 

power. The corner/edge detector proposed by Harris and Stephens [26] is 

one of the methods most used so far. The concept of visual odometry, first 

introduced by Nister [27] using a 5-point RANSAC algorithm, established 

the initial idea of vision-based navigation. After that, the SIFT method with 

scale-invariance and rotation-invariance was presented by Lowe [28]. This 

method is accurate but relatively slow. The FAST method proposed by 

Rosten [29] improved the processing speed compared to the Harris and 

SIFT methods. Meanwhile, to improve the performance of the descriptor, 

a more memory efficient binary descriptor, the BRIEF descriptor was 

proposed by Calonder [30]. The ORB feature, an oriented FAST and 

rotated BRIEF to improve both feature detection and descriptor 

performance, is proposed by Rublee [31]. It shows scale and rotation 

invariance performance and is the feature detector in ORB-SLAM [32] 

which is one of the state-of-the-art visual SLAM. More recently, Hamming 

Binary Search Tree (HBST) [33], a fast matching of binary feature 

descriptors using kd-tree, was proposed. In summary, a method is selected 

that meets the requirements of the algorithm to be developed in terms of 

accuracy of SIFT and speed of ORB.  

Mono-SLAM [34], an EKF-based SLAM, was presented as a visual 

navigation system to obtain the camera pose by deriving translation 

between image frames. It extracts 2D features and mapping it to 3D based 

on a Kalman filter. However, it requires an object of prior knowledge in the 

initialization step and is limited to a small area.  

PTAM [35] which uses the FAST corner detector and optimizes the map 

with bundle adjustment was proposed as a method to improve 

performance. This approach splits tracking and maps them into two 

threads and uses a keyframe idea in the mapping step. However, it is 

limited to small scale operation and manual initialization is required.  
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ORB-SLAM [32] is a method actively used in research and the industrial 

setting, showing excellent performance. It is a feature-based method. It 

uses ORB feature and overcomes the shortcomings of manual initialization 

of PTAM by extracting a keyframe-based homography and fundamental 

matrix with automatic initialization. It draws attention as an optimization-

based pipeline with 3 parallel threads structure of tracking, local mapping, 

and loop closing as shown in Figure 5. This architecture is computationally 

efficient and does not require high-end computing power. Based on this 

structure, an improved version, ProSLAM [36], was proposed. In ORB-

SLAM2 [23] and ORB-SLAM3 [37] sensor such as stereo and RGB-D 

cameras are added, and the source code is continuously updated.  

Feature-based methods require more computing resources compared to 

the direct methods to handle the feature extraction step and generate 

sparse feature information which can be different from the real 

environment. The weakest point is poor performance with a low number 

of features or featureless environment. This is the background why the 

direct methods that directly utilize image pixels without extracting 

features has been proposed.  

 

 

Figure 5 The basic threads of ORB-SLAM [32]. 
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5 Direct Methods 

As the performance of computer and camera sensors improves, 

methods using a direct photogrammetric method that compares the entire 

image, rather than extracting features, have been widely studied. DTAM 

[38] using parallel operation and keyframe selection in PTAM has been 

proposed, and dense measurement information was provided with robust 

performance in featureless environments with motion-blur. Although this 

method provides a basic idea for a dense map generation, it is limited to a 

small area and requires a GPU for real-time operation. However, it is 

recognized as an early study in the development of the direct methods that 

can compensate for the shortcomings of the feature-based methods in 

featureless environments and in the presence of motion blur.  

5.1 LSD-SLAM 

The large-scale direct monocular SLAM (LSD-SLAM) [39] 

implemented the direct method in the CPU and reconstructed the semi-

dense map, as shown in Figure 6. Tracking of camera frames is calculated 

with transform estimation of subsequent image frames with extracting 

lines through image gradient calculation. It has the characteristics of a 

light algorithm and can be executed in mobile environment with good 

performance in large scale area. It is defined as semi-dense because it uses 

line information rather than feature points or entire images. It can provide 

a method of how to specify the feature density based on the characteristics 

of the environment.  

Figure 6 The examples of the LSD-SLAM [39]. 
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5.2 SVO  

The semi-direct visual odometry (SVO) [40] method is a method that 

focuses on increasing the speed of the direct method. It uses the direct 

photogrammetric method for frame-to-frame tracking and a feature-based 

method for bundle adjustment. The direct method is used for random 

selection of sub-image patches without using the entire image, as shown 

in Figure 7. It led to a speed-up of the direct method, and SOV2 [41] was 

proposed to extend a multi-camera system including a fisheye camera.  

5.3 DSO 

The direct sparse odometry (DSO) [42] method was first proposed as a 

sliding window bundle adjustment method for the direct tracking method 

without using a feature-based method and loop closure, as shown in Figure 

8. It provides reliable tracking performance in large scale environments 

without loop closure, and it has the less translation error than LSD-SLAM 

and ORB-SLAM especially in featureless environments. Extensions such 

as separating threads from the DSO and adding other sensors have been 

proposed, and recently the delayed marginalization visual-inertial 

odometry (DM-VIO) [43] combined with an IMU was proposed.  

When comparing the performance of the sparse, semi-dense, and dense 

methods according to the distance between frames, the three methods 

show similar performance when the frame interval is small. Therefore, the 

dense method tends to be used for 3D reconstruction, surface restoration, 

and dense map construction. The sparse method is used for general 

odometry and SLAM purposes. Compared to the feature-based methods, 

the direct methods skip the feature extraction and matching steps, that is 

a benefit for high camera frame rate.  

 

Figure 7 The optimization 2D position of each patch in SVO [40]. 



LINKÖPING UNIVERSITY 
DEPARTMENT OF ELECTRICAL 
ENGINEERING 

State-of-the-art Report of Research about Multi Sensor Image-based Navigation 
13(23) 

 

 

 

The direct methods need the high camera frame rate. However, fast 

cameras consume more power, therefore, it requires more from the 

hardware. Moreover, the monocular-based direct method still has the scale 

issue. Therefore, visual-inertial methods that integrate the IMU sensor 

have been proposed to solve the scale issue and fast localization 

performance considering the hardware performance. 

 

Figure 8 The examples of the DSO [42]. 
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6 Visual-inertial Methods 

The visual-inertial method, which is a method that fuses camera and 

IMU information, has been actively studied by solving the issues of the 

extrinsic calibration and time synchronization of frame rates. This chapter 

summarizes the visual-inertial methods in which the IMU sensor and 

camera are fused.  

6.1 MSCKF 

The multi-state constraint Kalman filter (MSCKF) [44] has the 

characteristic that the algorithm is fast because only the last state is 

updated. Although the number of features has to be limited because the 

covariance increases quadratically with the number of features, but it 

provides good performance in an environment with sufficient features and 

is actively utilized in for example Google’s ARCore [45] and Apple’s ARKit 

[46]. 

The filter-based method has a limitation on the number of features, 

which has led to the proposal of the optimization approach. In addition, 

the limited number of features leads to lack of measurements, which 

reduces the IMU calibration performance. On the other hand, the 

optimization-based methods have the disadvantage of handling a lot of 

parameters.  

6.2 Rovio/Rovioli/Maplab 

The robust visual inertial odometry (Rovio) [24] method was proposed 

as an EKF-based feature tracking and IMU fusion method. It extracts 

FAST corners and surrounding sub-images and uses the direct method on 

the image for tracking. The Rovioli [47] method proposed EKF-based IMU 

camera filtering, and the Maplab [48] method supported the offline entire 

map building within the framework.  

6.3 VINS-Mono/VINS-Fusion 

The IMU pre-integration [49] method which integrates the IMU 

parameters between camera frames has been proposed as an improvement 

of the real-time computational performance by reducing the number of 

parameters. This can reduce the computational burden of the algorithm. 

The IMU pre-integration is widely used in research of the tightly coupled 

systems.   
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The VINS-Mono [18] modularized the pipeline of the visual-inertial 

method and is considered one of the leading methods in this fields. Tightly 

coupled pre-integration and loop closure for global optimization were 

proposed. It optimizes position with sliding window optimization using a 

feature-based method. It contains loosely coupled bootstrap initialization 

from arbitrary state and has expanded the hardware configuration with 

sensors such as stereo-IMU fusion (VINS-Fusion) [19] in large scale 

environments. The pipeline of the VINS series is cited as the reference 

pipeline for visual-inertial framework, and the pipeline of the VINS-Mono 

is shown in Figure 9. 

 

The optimization method and filter-based approaches have been 

actively studied complementary to each other. Therefore, both methods 

are important for confirming the latest research.  

 

 

 

 

 

 

 

 

Figure 9 The pipeline of the monocular VINS [18]. 
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7 Deep Learning applied Methods 

With the development of deep learning algorithms, various studies have 

been conducted to apply learning techniques to the visual navigation 

problem.  

CNN SLAM [50] was proposed by combining deep learning-based depth 

estimation and the LSD-SLAM backend. It can estimate the camera pose 

from pure rotation through depth estimation without baseline movement. 

This method improves the performance of deep learning-based depth 

estimation at sharp edges with the LSD-SLAM backend. However, its 

robustness is limited in large scale environments and long-term navigation.  

A study applying the deep learning method to the existing feature 

extraction and descriptor has also been proposed. The SuperPoint [51] 

method was proposed that uses a deep learning-based corner detector, as 

shown in Figure 10. It creates a synthetic corner dataset using OpenGL, 

and the domain is transferred from synthetic to real scene. The self-

supervised learning-based corner detector and descriptor are presented in 

a real scene. The LIFT [52] benchmarked on SIFT was proposed as a 

method of outputting detection, orientation, and descriptor using a 

Siamese network and a spatial transformer [53]. Compared to SIFT, it 

improves the performance in feature extraction and matching rate.   

 

Figure 10 The examples of the feature extraction and descriptor [52]. 
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The PoseNet [54] was proposed as a GoogLeNet-based pose regression. 

It is trained on SfM data and do not use any map information for pose 

regression. The example of the PoseNet is shown in Figure 11. With image-

input and pose-output structure, it requires sophisticated SfM with 

existing data in the training step. Therefore, the performance is highly data 

dependent.   

The CubsSLAM [55] was proposed in a more object dependent method, 

and it uses 3D object detection with bundle adjustment for pose 

computation, as shown in Figure 12. It is considered a useful method to 

use when the objects have continuity and representation in the scene.  

 

Figure 11 The camera pose prediction (red) from training (green) and testing 

                          (blue) of the PoseNet [54]. 

Figure 12 The CubeSLAM. (a) Sample frames, (b) Top view comparison,  

                   (c) pose estimation [55]. 
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The DeepFactors [56] method introduces the idea of combining the 

advantages of previous image-based navigation paradigms. It considers 3 

kind of errors, geometric error from feature-based, photometric error from 

direct method, and geometric error from deep learning depth estimation. 

It creates a dens-map and focuses on 3D reconstruction. The method 

shows clean 3D surface reconstruction using the factor graph, but it still 

has limitation in the large-scale scenes.  

Studies on how to apply the deep learning algorithm to navigation 

system have also been conducted. A study on how intermediate 

representations influence the result [57] suggests that using an 

intermediate representations method including the depth estimation or 

optical flow performed better than end-to-end learning. A study on 

limitations of CNN-based camera pose estimation [58] suggests that pose 

estimation in an unknown environment results in interpolation, that can 

cause performance degradation. By presenting a theoretical model for 

camera pose estimation, it explains why these methods do not achieve the 

same level of pose accuracy as 3D structure-based methods. Because of the 

limitations of the image net dataset for 3D camera pose estimation, it 

claims that the algorithms need to be improved.  

Deep learning applied methods started with replacing obvious 

components such as feature detection, descriptor, and depth estimation. 

End-to-end learning methods for direct camera pose estimation have also 

been studied. The learning-based algorithms are highly data-dependent. 

The aerial data is relatively sparse compared to the ground-level data, and 

research on algorithm development that supplements this is needed.  

 

Figure 13 Visualization of the translational errors of the learning-based pose [58].  
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8 Summary 

This report summarized currently available open datasets and 

described landmark papers related to the project. By reviewing from the 

traditional image feature extraction methods to the latest methods 

applying deep learning, it can help set the initial direction of the algorithm 

development for the composition of image features and navigation 

structure suitable in the early stage of the project.  
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