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“Curiosity is the key to problem solving.”
– Galileo Galilei





Abstract

Robotic manipulators are used for industrial automation and play an important
role in manufacturing industry. Increasing performance requirements such as
high operating speed and motion accuracy conflict with demands on heavy pay-
loads and light-weight design with reduced structural stiffness. The motion con-
trol system is a key factor for dealing with these requirements, particularly for in-
creasing the robot performance, improving safety and reducing power consump-
tion. Most industrial robot control systems rely on current and angular position
measurements from the motors, meaning that the actual controlled variable, that
is the position of the robot’s end-effector, needs to be calculated using a model.
Therefore, the mathematical model used for motion control must accurately de-
scribe the system’s dynamic behavior. Based on physics equations, the model
contains unknown parameters that are usually identified from experimental data.
This identification is a challenging problem, since the equations are nonlinear in
the parameters, the system is highly resonant and experiments can only be done
in closed loop with a controller.

Assuming a real robot is available for experiments, data-driven identification
is common in order to obtain the most accurate description of the real system’s
behavior. The method applied in this thesis estimates the dynamic stiffness pa-
rameters by matching the model’s frequency response function to the system’s
frequency response, which is obtained from measurements done with the closed-
loop robot system. The main focus of this thesis are strategies for increasing the
process efficiency such that the time it takes to do the experiments is reduced,
while the quality of the model is maintained or improved. Two strategies re-
lated to experiment design are presented: First, the number of quasi-static robot
configurations for data collection is decreased by choosing the most informative
configurations from a set of candidates. Second, less data-demanding methods
for estimating the system’s frequency response are considered. The effectiveness
of the presented approaches is demonstrated both in simulation and with real
data.

If no robot is available for experiments, e.g. in the development phase, a
model must be built based on specification data of components and other infor-
mation available to the designer, such as CAD data. This thesis contains a mod-
eling approach that derives a high-fidelity robot model of low order (lumped
parameter model with few degrees of freedom) by combining results from test-
rig measurements of isolated components with carefully reduced finite element
models of the robot’s structural parts.
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Populärvetenskaplig sammanfattning

Robotmanipulatorer används för industriell automation och de spelar en viktig
roll inom tillverkningsindustrin. Ökande prestandakrav som hög hastighet och
noggrannhet hos robotens rörelse står i konflikt med trenden att bygga lättvikts-
robotar som kan hantera tunga laster och som samtidigt är säkra för att jobba
nära människor. Robotens styrsystem är en nyckelfaktor för att hantera dessa
krav, särskilt för att öka robotens prestanda, förbättra säkerheten och minska
strömförbrukningen. I de flesta tillämpningar är styrsystemets uppgift att säker-
ställa att robotens hand gör den önskade rörelsen, d.v.s. att handens position och
hastighet motsvarar användarprogrammet. Positionen och hastigheten hos robo-
tens hand är inte mätbara med sensorerna som är inbyggda i vanliga industriella
robotar, vilket gör att de måste beräknas med hjälp av en matematisk modell.
Denna modell måste beskriva det komplicerade sambandet mellan robotarmens
rörelser och de motorer som orsakar rörelsen. Modellen är baserad på fysikaliska
samband och innehåller okända parametrar som vanligtvis tas fram med hjälp av
mätdata.

Det som mäts är position och moment hos robotens alla motorer och det som
är eftersökt är parametrarna relaterat till robotens styvhet. Metoden som används
i denna avhandling tar fram styvhetsparametrarna genom att matcha modellens
frekvenssvarsfunktion med det uppmätta frekvenssvaret för den verkliga robo-
ten. Huvudfokus är strategier för att öka processeffektiviteten så att tiden det tar
att utföra mätningarna minskar, samtidigt som modellens kvalitet bibehålls eller
förbättras. Två strategier presenteras: Den första minskar antalet robotkonfigura-
tioner för mätdatainsamling genom att välja de mest informativa konfigurationer-
na från ett antal kandidater. Den andra strategin bygger på mindre datakrävande
metoder för att skatta robotens frekvenssvar. Effektiviteten av de presenterade
strategierna visas både i simulering och med verklig mätdata.

Att få fram en bra matematisk modell är svårt om ingen robot är tillgänglig
för mätningar, t.ex. i utvecklingsfasen av en ny robot. I så fall måste en modell
byggas baserat på specifikationsdata för komponenter, t.ex. leverantörens infor-
mation om växellådans styvhet, eller materialegenskaper för robotens struktur-
delar. Styvheten av robotens strukturdelar kan beskrivas mycket noggrant med
den så kallade finita element-metoden som delar strukturen i små delar och kom-
binerar ekvationerna för varje del till ett stort ekvationssystem. Detta ekvations-
system måste reduceras för att vara användbart i styrsystemets robotmodell. Den-
na avhandling innehåller ett modelleringssätt där man får fram en noggrann ro-
botmodell genom att kombinera en reducerad styvhetsbeskrivning av robotens
strukturdelar med specifikationsdata för komponenter.
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Introduction



2 1 Introduction

1.1 Research motivation

Most industrial robot motion control systems rely on torque input (or actually cur-
rent input controlled by the drive system) and primary angular measurements
from the motors. This means that the actual controlled variable, the position
of the manipulator’s end-effector, needs to be calculated using a model. In the
simplest case the model is a static function, the direct kinematic model, but to
achieve performance in more than a static scenario a dynamic model is needed.
By considering data from the design phase, including component specifications
and CAD models, it is possible to create detailed models that can be reduced to a
model of a chosen complexity while keeping the essential characteristics. While
certain information such as rigid body parameters can be easily obtained or con-
sidered as known, other parameters such as elasticity, damping and friction need
to be identified from measurement data. An efficient modeling and parameter
identification method makes it possible to faster reach the market with new robot
types. It also makes it possible to more efficiently perform innovation related to
the motion control since the models also can be used in simulations reducing the
need for prototypes in development.

Research goals are related to the efficiency of data-driven modeling and the
identification of robotic manipulators and can be formulated as,

1. Reduce the risk of mechanical wear or damage due to identification experi-
ments,

2. Reduce the time it takes to do the experiments,

3. Maintain or improve the quality of the parametric robot models while sat-
isfying 1 and 2.

The main driver for wear or damage related to today’s identification experiments
are high excitation amplitudes. Therefore, a long-term goal of this research is
to investigate if such high amplitudes are needed in order to obtain informative
data and thus achieve a high model quality. Risk for mechanical wear can also
be addressed by reducing the need for experiments in general, either by replac-
ing them with simulations, or by limiting the amount of data that is collected.
This latter motivation is how Goal 1 is considered in this thesis, leaving explicit
research on amplitude minimization for future work and focusing on research
Goals 2 and 3. A method for improving the robot model based on an experiment
at a customer site could be the ultimate goal for this research project, providing a
significant value in many industrial applications. Therefore, the time it takes to
do the experiments needs to be decreased compared to state-of-the-art methods.
Thus, the main goal of this work is to consider the efficiency of the modeling and
identification, still giving high quality models as a result.
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1.2 Thesis outline

Part I of the thesis serves as an introduction to modeling of robotic manipu-
lators and to frequency-domain system identification methods, aiming to show
how the publications in Part II relate to previous research and to each other.

Chapter 2 summarizes basic concepts that are common for modeling of robotic
manipulators. Differently detailed model structures for a complete robot model
are introduced. Furthermore, aspects of modeling the three main components
are addressed, i.e. the transmission and friction occurring in the joints, as well as
the structural mechanics of the robot’s links.

Chapter 3 discusses the data-driven estimation of a parametric robot model
in frequency-domain. The gray-box idea used in this work is introduced and
the handling of nonlinearities, in particular friction, is addressed. Since the pre-
sented identification method is based on input-output measurement data, tech-
niques for FRF estimation are re-called in the second part of the chapter. Many
choices need to be made during the identification, and a selection is named to
conclude the chapter.

Chapter 4 is about experiment design for frequency-domain identification of
robotic manipulators. The design of the excitation signal that is used for data
collection is addressed. Furthermore, the problem of selecting the best robot
configurations from a set of candidates is formulated. The chapter is concluded
by a brief discussion about the exploitation of available experiment time aiming
to collect the most informative data and to obtain the most accurate identification
result.

Chapter 5 provides a concluding summary as well as ideas for future work.

Part II of the thesis consists of a collection of publications, presenting the main
research results.

Paper A introduces a multibody modeling approach that includes flexible
body descriptions. These descriptions are obtained from the corresponding Fi-
nite Element model of the structural parts by reducing the number of their de-
grees of freedom and introducing interface points. It is shown that such a flex-
ible link manipulator model, which is purely based on development data and
component specifications, is suitable for an accurate description of the dynamics
of the robot. Validation experiments in time and frequency domain are presented
showing accurate model performance compared to behavior of the real robot.

Paper B builds on the method for improved experiment design that was sug-
gested in Wernholt and Löfberg [2007]. Aiming to find the best manipulator
configurations for data collection experiments, the information content of a set
of candidates is estimated and the optimal combination of robot configurations
is obtained. Compared to computing the information matrix analytically based
on noise assumptions and a known controller as suggested in Wernholt and Löf-
berg [2007], Paper B proposes to use high-fidelity simulations for estimating the
uncertainty of the FRF estimates, which is then used to estimate the information
matrix of each candidate configuration. The results of the presented simulation
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study validate that a realistic estimate of the uncertainty of the frequency re-
sponse function (FRF) estimate is crucial for successful experiment design.

Paper C completes the work of Paper B by an experimental validation with
measurements from a medium size industrial robot. It is shown that the experi-
ment design is improved by the method in terms of data-efficiency and parameter
accuracy. A significantly shorter time is needed for conducting data collection ex-
periments, if only the best robot configurations resulting from the optimization
algorithm are used. Furthermore, the average standard deviation of the parame-
ter estimate is reduced compared to random experiment configurations.

Paper D deals with the estimation of nonparametric FRFs as an intermedi-
ate step in a parametric identification. Obtaining the FRF estimate from input-
output data is conventionally done by averaging over different periods of the fre-
quency domain signals. Since averaging techniques require long measurements
and many experiments, local parametric modeling methods have been developed
[Pintelon et al., 2010]. In Paper D, these local methods are adapted and applied
for estimating the FRFs of a 6-axis robotic manipulator, which is a nonlinear
MIMO system operating in closed loop. The resulting FRFs are analyzed in an
experimental study and compared to the estimates obtained by averaging tech-
niques. It is shown that the choice of parametrization in local modeling methods
has impact on the FRF quality, and that a full MIMO parametrization gives more
accurate FRF estimates compared to simpler parametrizations. It is also shown
that considering the reference signal by following a Joint Input-Output approach
improves the estimate significantly compared to methods assuming just the mea-
sured input and output data. The paper furthermore presents results of the sec-
ond step, i.e. the parametric model identification based on the different FRF es-
timates. Based on these results it is concluded that a trade-off needs to be made
between FRF quality and amount of estimation data, i.e. experiment time.

1.3 Contributions

In line with the publications introduced above, the main contributions of this
thesis are:

• Manipulator modeling based on development and specification data:

A low order flexible link description is proposed targeting the construction
of a highly accurate multibody model of the complete manipulator that
is purely based on development data. Experimental results validating the
approach are presented and a high model accuracy is demonstrated.

• Improved experiment design by an optimized choice of manipulator config-
urations:

Based on a realistic simulation study it is concluded that a data-based es-
timate of FRF uncertainty is crucial for successful experiment design. The
study is completed by an experimental validation showing that the amount
of data needed for system identification can be significantly decreased by
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improved experiment design, while the quality of the resulting robot model
is improved.

• Evaluation of data efficiency in FRF estimation using a local modeling ap-
proach:

Local modeling methods and traditional averaging techniques are reviewed
and experimentally compared. The impact of the parametrization that is
chosen for the local models is experimentally analyzed, showing that a full
MIMO parametrization is beneficial compared to simpler parametrizations.
The experimental study furthermore shows that a Joint-Input-Output ap-
proach allows more accurate FRF estimation when using local modeling
methods than estimates assuming an open-loop system.

The results of thorough simulation studies, both for the nonparametric FRF es-
timation and for the parametric identification, add value compared to previous
work and academic literature. The simulation setup includes a realistic nonlin-
ear robot model where friction as well as other nonlinear effects in actuators and
sensors are considered, such as torque- and resolver ripple (Gutt et al. [1996],
Hanselman [1990]). The main appeal of the thesis are the results obtained with
real measurement data. A medium size industrial manipulator was used for ex-
perimental validation of the above mentioned concepts.





Part I

Methods
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Dynamic models of robot manipulators describe the relation between the ac-
tuation and acting contact forces, and the resulting acceleration and motion tra-
jectories [Siciliano and Khatib, 2016]. Building a dynamic model is useful for
purposes of the mechanical design process, as well as for simulation, control
analysis, and real-time control. The quality of the dynamic model is of high im-
portance, especially if the control system purely relies on a model, which is often
the case for state-of-the-art industrial robots. Modeling robotic manipulators is
a challenging problem, since the behavior is nonlinear with respect to the rigid
body dynamics, and since complex physical phenomena such as friction, torque
and resolver ripple, transmission backlash, hysteresis, and nonlinear stiffness are
present. Furthermore, the mechanical structure of the manipulator, as well as
the transmission are elastic, especially for modern light-weight robot types.

A very thorough overview of the field of modeling of robot manipulators is
given in Zimmermann [2018]. Basic literature like Siciliano and Khatib [2016]
and Sciavicco et al. [2010] give comprehensive summaries of relevant topics re-
lated to the modeling of robot manipulators. This chapter will therefore be based
on the above mentioned sources. Various model structures that are commonly
used to describe the dynamic behavior of robotic manipulators are outlined. Fur-
thermore, the model structure that is used in the scope of this thesis will be pre-
sented and assumptions will be stated.

2.1 Motivation for accurate robot models

The user of a robot usually generates a trajectory describing the desired move-
ment of the tool. This trajectory needs to be transformed to corresponding mo-
tor input signals in order to realize the commanded movement. Most industrial
robot control systems rely on current and angular position measurements from
the motors, meaning that the actual controlled variable needs to be calculated us-
ing a dynamic model. This model must accurately describe the dynamic behavior
of the system in order to enable high control performance.

Figure 2.1 shows the control framework of an industrial robot, using both
feedback and feedforward loops. The feedforward controller commonly uses the
known trajectory and the inverse dynamics model for generating a signal known
as computed torque [Spong et al., 2020]. Due to model errors and disturbances,
there will be a non-zero tracking error, which is handled by the feedback con-
troller.

2.2 Modeling of robotic manipulators

A mechanical system can often be seen as the sum of a number of more or less
stiff elements. Such a system is called a Multibody System and is characterized by
two distinguishing features [Bauchau, 2011]: The overall motions of the system’s
bodies are finite and large, and all bodies are connected by mechanical joints that
impose restrictions on their relative motion. Depending on the intended use of



2.2 Modeling of robotic manipulators 11

Trajectory
Planner

Trajectory
Interpolator

M
ot

io
n

co
m

m
an

d

D
es

ir
ed

TC
P

po
se

&
sp

ee
d

r

User
program

Flexible
model

Inverse
dynamics

(Simulated)
Robot

Sensor
readings

u

Disturbances v

Controller

Figure 2.1: Control framework of an industrial robot.

the dynamic model, the bodies can be assumed as rigid, while being rigidly or
elastically connected (see below), or elastically deformable (see Sec. 2.6).

Rigid body model The basic model of a robotic manipulator as the one shown
in Figure 2.2a consists of a kinematic chain of rigid bodies (the robot’s links)
which are connected by rigid joints. A body is considered as rigid, if the distance
between any two of the body’s particles remains constant at all times and all con-
figurations. The motion of a rigid body in space can therefore be fully described
by six generalized coordinates (translation and rotation). A rigid body is usually
described by its mass m, its center of mass defined by xcog , ycog , zcog , and its in-
ertia tensor with respect to the center of mass described by Ixx, Iyy , Izz , Ixy , Ixz ,
Iyz .

Using the simple rigid body approach to model a manipulator, the joints are
also modeled as entirely rigid, and the mass and inertia of the actuators and gear-
boxes are added to the corresponding link parameters. Thus, rigid body models
possess in principle as many degrees of freedom (DOFs) as they are defined by
the joints constraining the motion of the links.

The dynamic equations of a rigid body robot model are

Ma q̈a + ca + ga + τf a = τa (2.1)

where qa is the vector of joint angles, Ma = M(qa) is the inertia matrix, ca =
c(qa, q̇a) is the velocity dependent torque, containing centrifugal and Coriolis ef-
fects, ga = g(qa) is the gravity torque, τf a = τf (q̇a) the friction torque, and τa the
vector of applied torques. In the following, a realization of qa is called configura-
tion of the robot.

Flexible joint model Taking into account the increasing operational speed of
contemporary robots, and the demand for high payload capacity with lightweight
arm structures, a more detailed and realistic model of the robot system is needed.
Instead of assuming massless coupling between the links, the joints are modeled
according to physics. The basic model of robotic joints consists of two inertias
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(a)

3D-spring-damper pair,
modeling gear transmission
and bearing stiffness

1D-Spring-damper pair,
modeling gear stiffness

(b)

Figure 2.2: Photo of a robotic manipulator (a) and illustration of the ex-
tended flexible joint model (b).

representing motor and gearbox, as well as the gear ratio. Additionally, a more
or less sophisticated friction model can be added (see Sec. 2.5). Models known
as lumped parameter models add elastic coupling, i.e. they add DOFs, to a rigid
body model using so-called flexible joints [Bauchau, 2011]. Flexible joint models
are based on the assumption that the main elasticity occurs in the drive chain
between the motors and the links. Flexible joints are often modeled as linear tor-
sional springs (see e.g. Tomei [1991], de Luca [2000]), or torsional spring-damper
pairs [Sweet and Good, 1985]. The model parameters such as spring or damping
constants are either assumed based on the data of the respective component or
can be estimated from experiments in order to adapt them to reality.

Extended flexible joint model In the scope of this thesis, a 6-axes industrial
robot is considered (see Figure 2.2a), and a model structure similar to the one pre-
sented in Öhr et al. [2006] is used for modeling it. This model structure extends
the rigid body model (2.1) by adding different kinds of flexibility to the joint mod-
els. In order to take into account the transmission stiffness, spring-damper pairs
acting in the direction of motion are introduced in the joint model. The spring
is tensed by the difference between the angle on arm-side of the joint and the
angle on motor-side. The gearbox torque is a function of this difference, which is
nonlinear for commonly used robotic gears, see e.g. Seyfferth et al. [1995]. In ad-
dition to the six spring-damper pairs modeling the transmission flexibility of the
six joints, two more spring-damper pairs acting orthogonal to the transmission
are introduced in joints 1 to 3 for taking into account flexibility that occurs in the



2.3 Linearization and frequency response function 13

bearings and the link structure. Since the loading around the wrist joints 4 to 6
is comparably low, and for keeping the number of parameters as low as possible,
these joints are modeled with one-dimensional spring-damper pairs. A schematic
drawing of such a lumped parameter model structure is shown in Figure 2.2b.

The angular motion between the rigid bodies due to elastic effects that act per-
pendicular to the transmission direction is described by the additional variables
qe. The index a indicates an expression on arm side of the gearbox, the index
m an expression on motor side. The model dynamics are then expressed by the
following set of differential equations:

Mmq̈m + τf m + rg τg = τ

Mae

[
q̈a
q̈e

]
+ cae + gae =

[
τg
τe

]

kg · (rg qm − qa) + dg · (rg q̇m − q̇a) = τg

−keqe − deq̇e = τe

(2.2)

where Mae = M(qa, qe) is the inertia matrix, cae = c(qa, qe, q̇a, q̇e) is the velocity
dependent torque, gae = g(qa, qe) is the gravity torque, qm is the vector of motor
angles, Mm = diag(Jm1, ..., Jm6) is the matrix of motor inertias, kg and dg are the
joint stiffness and damping constants in the direction of transmission, ke and de
are the stiffness and damping constants perpendicular to the direction of trans-
mission, rg is the matrix of inverse gear ratios, and τf m = τf (q̇m) is the motor
friction. Choosing the state vector x = [qm, qa, qe, q̇m, q̇a, q̇e]T , the applied torque
τ = u as input, and the motor angular velocity q̇m as output results in the follow-
ing state space model:

ẋ = f (x, u, θ) =



q̇m
q̇a
q̇e

M−1
m · (u − τf m − rg τg )

M−1
ae

([
τg
τe

]
− cae − gae

)


y = h(x, u, θ) = q̇m

(2.3)

This model contains dim(qm) + dim(qe) unknown stiffness parameters that need
to be estimated from data. These parameters are collected in the vector θ.

2.3 Linearization and frequency response function

Assume that the system is excited by a signal that is a small perturbation around

a stationary operating point (x(i)
0 , u

(i)
0 ), called configuration. Then, the nonlinear

system (2.3) can be linearized at each configuration i such that

0 = f (x(i)
0 , u

(i)
0 , θ)

y
(i)
0 = h(x(i)

0 , u
(i)
0 , θ)

(2.4)



14 2 Modeling

Note that the linearized dynamics depend on the parameter vector θ. The lin-
earized dynamics is obtained from a first-order Taylor series expansion. At each
configuration i

∆ẋ = A(i)(θ)∆x + B(i)(θ)∆u,

∆y = C(i)(θ)∆x + D(i)(θ)∆u
(2.5)

where ∆x = x − x(i)
0 , ∆u = u − u(i)

0 , ∆y = y − y(i)
0 , and where the matrices A(i)(θ),

B(i)(θ), C(i)(θ), D(i)(θ) are functions of the parameters θ defined by

A(i)(θ) =
∂f

∂x
(x(i)

0 , u
(i)
0 , θ), B(i)(θ) =

∂f

∂u
(x(i)

0 , u
(i)
0 , θ),

C(i)(θ) =
∂h
∂x

(x(i)
0 , u

(i)
0 , θ), D(i)(θ) =

∂h
∂u

(x(i)
0 , u

(i)
0 , θ).

(2.6)

This state-space description leads to the parametric model FRF G(i)(θ):

G(i)(θ) = C(i)(θ)
(
sI − A(i)(θ)

)−1
B(i)(θ) + D(i)(θ) (2.7)

For taking into account the variations around the operating point, a statisti-
cal linearization approach is used for linearizing the system around each robot
configuration [Crandall, 2004].

2.4 Transmission modeling

The dynamic behavior of a robotic manipulator is highly influenced by the joints
that connect its links (see e.g. Abele et al. [2011]). Joint flexibilities are common
in current industrial robots, when harmonic drives or compact gears are used.
Such components have gained wide acceptance because of their compact design,
light weight and high reduction ratios, but they also introduce considerable flex-
ibilities in the drivetrain [Seyfferth et al., 1995].

In order to achieve the goal of a high transmission stiffness, and finally a
high positioning accuracy, two kinds of rigidity must be taken into account [Nab,
2013]: The torsional rigidity, which describes the ability of a part to resist defor-
mation under torque loads, and the bending moment rigidity, which describes
the ability of a part to resist deformation under moment loads. A low rigidity,
i.e. high flexibility in the robot’s joints, occurs due to elasticity in material, as
well as play between components. Backlash, soft- and windup-zones are charac-
teristic for the transmission stiffness curve of robotic applications where highly
variable payloads and changing motion directions are common [Schempf, 1990].
The resulting characteristic of a robotic joint is therefore nonlinear with respect
to the motor motion, making it difficult to model and to identify from experimen-
tal data.

In order to model nonlinear transmission stiffness, (2.2) can be adapted by a
nonlinear function τnls = τnls(rg qm−qa) replacing the linear relation kg (rg qm−qa).
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torque

deflection

Figure 2.3: Nonlinear transmission stiffness.

An example of such a nonlinear function is a piece-wise constant function as is
shown in Figure 2.3.

An early but still common proposal of a more detailed transmission model is
for example given in Good et al. [1985]: A stiffening spring characteristic is used
for the gear model, as well as viscous damping with additional Coulomb friction
and current limiters for the motor.

2.5 Friction modeling

A common design for the drive mechanism of a robotic joint is the combination
of electrical actuators with high transmission gear ratios. These gears usually
have a considerable amount of friction, which can have a significant impact on
the structure’s dynamic performance. Friction effects that occur in robotic joints
are particularly critical, since they can induce "large positioning errors, stick-slip
motions, and limit cycles" [Bona and Indri, 2005]. Due to the physical complexity
of friction phenomena, investigations within the field of dynamic modeling have
not focused on the friction models available from the experimental and theoret-
ical work of tribology [Armstrong-Hélouvry et al., 1994]. Most friction models
used in engineering are empirical, and based on observations and interpretations.
Many friction models of different complexity have been proposed in literature: A
general overview is, for example, provided in Olsson et al. [1998], or Bona and
Indri [2005], and a summary of common friction models that are used for auto-
matic control can be found in Egeland and Gravdahl [2002].

The classical friction models, such as the Coulomb-model (with or without
viscous friction), are static models. These models describe a static relationship
between the friction forces, acting during a relative motion at constant or slightly
changing velocities. They explain neither hysteretic behavior when studying fric-
tion for nonstationary velocities nor variations in the break-away force with the
experimental condition (e.g. temperature) nor the presliding behavior [Canudas
de Wit et al., 1995]. In classical models, the system stiction (presliding) is cap-
tured by the static break-away force, which has to be overcome in order to ini-
tiate the motion. In order to capture the complex frictional behavior involving
stick-slip motion and presliding hysteresis, more sophisticated dynamic friction
models are required.
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Figure 2.4: Friction models.

Static friction models The Coulomb friction model is the most basic proposal,
modeling the friction force (or torque) proportional to the load, with direction
opposite to the motion. The friction torque τf assumes a constant value τC , which
is independent of the magnitude of the velocity q̇, and the contact area. It is
described by

τf = τC · sign(q̇), q̇ � 0 (2.8)

and sketched in the left half of Figure 2.4. It should be emphasized that the
Coulomb friction model does not specify the friction force for zero velocity. For
simplifying simulation, (2.8) is often approximated by the continuous function:

τf = τC · tanh(βq̇), β >> 1. (2.9)

A viscous friction model assumes that the friction torque is not only dependent
on the direction of the velocity, but also on its magnitude. This allows taking
into account hydrodynamic effects occurring in fluid lubricated contacts between
solids. A linear model of viscous friction is expressed by τf = τv q̇, where the
constant of proportionality τv depends on lubricant viscosity, loading and contact
geometry. Viscous friction is often combined with Coulomb friction as

τf = τC · sign(q̇) + τv q̇, q̇ � 0 (2.10)

The right half of Figure 2.4 shows the Coulomb-viscous friction model, which is
considered as the most commonly used friction model in engineering [Egeland
and Gravdahl, 2002], and which is used in the scope of this thesis.

Dynamic friction models Dynamic friction models describe complex frictional
behavior in terms of differential equations. They involve stick-slip motion and
presliding hysteresis, while providing a smooth transition through zero veloc-
ity without discontinuities typical for static friction models. Examples are the
model proposed by Dahl [Dahl, 1968], the LuGre (Lund-Grenoble) friction model
[Canudas de Wit et al., 1995], and the two-state dynamic friction model with
elasto-plasticity (2SEP-Model) proposed by Ruderman and Bertram [2011].
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2.6 Flexible link models

A lumped parameter model that concentrates the flexibilities of the robot in its
joints might be sufficient for many applications, and is because of its simplicity
often the favored choice. However, if high accuracy is required models of much
higher level of detail are necessary. The sensitivity analysis presented in Zimmer-
mann [2018] shows that the total flexibility of a modern robot manipulator is dis-
tributed among its joints and links. A realistic model for a medium-size or large
industrial robot would therefore include link flexibility, i.e. some description for
the flexibility distributed over the different bodies. Robotic systems with flexible
links are "continuous dynamical systems characterized by an infinite number of
degrees of freedom and are governed by nonlinear, coupled, ordinary, and partial
differential equations" [Theodore and Ghosal, 1995]. Due to the fact, that the ex-
act solution of such a mathematical model is not feasibly practical, methods that
capture the most essential flexibilities, using a finite number of parameters, are
required. A lot of research effort has been spent in the field of modeling robot
manipulators with flexible links, see Dwivedy and Eberhard [2006] for a review.
The three different approaches to derive finite dimensional flexible link models
that can be found in literature are described below.

Finite element models describe the link deflection with a large number of DOFs.
The solution domain is divided into a finite number of sub-domains called Finite
Elements. Within each element, a small number of continuous functions are for-
mulated, while continuity of the solution across elements is ensured. Due to
their high accuracy, finite element models are commonly used in the mechani-
cal design of robotic systems. Due to their complexity, they are rarely used to
develop models suitable for dynamic simulation and control. Examples applying
the finite element method for robot modeling are given in Du et al. [1996], Jonker
[1990], Hardeman et al. [2006]. Recent attempts for making the approach more
efficient are, e.g., My et al. [2019], Li et al. [2021].

Assumed modes models are derived from the partial differential equation for-
mulation by modal truncation. This description requires to select suitable link
boundary conditions, which makes this conceptually simple approach challeng-
ing. The assumed modes approach is used in the context of dynamic substructur-
ing and component mode synthesis. As an example, Nicosia et al. [1996] derive
an approximate finite dimensional model of a two-link flexible robot arm based
on the Ritz expansion method.

Lumped parameter models divide each flexible link into a finite number sub-
links, which are assumed to be rigid. The sub-links are coupled by pseudojoints
and flexibility is modeled as springs that restrict the motion of each pseudojoint.
The lumped parameter approach is a straight-forward way to develop a model
that is simple enough to be used for real-time control and for dynamic simulation
of a manipulator. However, the method is rarely used because of the difficulty in
determining the spring constants of the pseudojoints. Early references presenting
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Figure 2.5: Finite element model of the robot’s lower arm
structure with definition of two interface nodes.

the concept of lumped parameter flexible link models are, e.g., Khalil and Gautier
[2000], Yoshikawa and Hosoda [1991].

The flexible joint approach presented in Sec. 2.2 can be combined with the idea of
modeling flexible links as proposed in Paper A. The introduced Flex-Model uses
component specification data to estimate models for the gearbox and bearings.
A friction model is identified with the help of data from test-rig measurements
of isolated components. The structural flexibilites of the links are described by
order-reduced finite element models. Taking the full finite element formulation
of each link as a starting point, the number of DOFs is reduced in order to effi-
ciently include the flexible link description in the multibody model of the com-
plete robot. Frequently employed techniques to reduce a system’s number of
DOFs are the Guyan reduction method [Guyan, 1965, Irons, 1965], and the Craig-
Bampton method [Craig and Bampton, 1968], which are used in Paper A. When
reducing the finite element description of the robot links, interface nodes are de-
fined, which make it possible to connect the flexible components to other parts
of the multibody model, e.g. the gearboxes. Figure 2.5 illustrates an example of
how the interface nodes can be defined.

The approach proposed in Paper A is appealing since the manipulator model
is based on information that is available to the designer during development,
without having a prototype available. Only specification data of the joint compo-
nents is needed, together with straight-forward test-rig measurements of isolated
components. The geometrical data of the manipulator structure is known from
the CAD model which is available to the designer, and the flexible link descrip-
tion can be derived from the finite element model, which is usually built during
development.

The main drawback of the model structures presented in Sec. 2.2 is the fact
that the model parameters such as stiffness and damping constants need to be
estimated from experimental data. Furthermore, the contribution from each in-
dividual element of the robot is hard to deduce, since elasticity from multiple ele-
ments are often lumped together. A parameter estimation for fitting the model’s
flexible behavior is not needed for the Flex-Model proposed in Paper A, making
the approach especially attractive during development, or as initialization for
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methods aiming to further improve the accuracy of a lumped parameter model.
Because the structural dynamics of the links are considered, a high-fidelity robot
model can be obtained that accurately describes the real robot’s dynamic behav-
ior.
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“Identification is a powerful technique for building accurate models of com-
plex systems from noisy data” [Pintelon and Schoukens, 2012]. Assuming that
the approximate physics of the system are known and the goal is to find a para-
metric gray-box model, system identification generally consists of three tasks:

1. Model construction based on physical laws (see Chapter 2)

2. Experiment design (see Chapter 4)

3. Estimation of model parameters from data (addressed in this chapter)

Considering a frequency-domain identification, Step 3 might be divided into

3a. Estimation of the system’s FRF from measurement data (see Sec. 3.2)

3b. Estimation of model parameters based on the estimated FRF (see Sec. 3.1)

The system identification workflow is visualized in Figure 3.1.
Many methods have been developed for system identification, both for spe-

cific applications and for general purpose. The identification of a robotic ma-
nipulator is associated with many challenging problems for traditional methods,
since the system is multivariable, nonlinear, unstable, and oscillatory. However, a
lot about the system is known in advance. The robot dynamics, for example, can
be modeled quite accurately using known mechanical and electrical relations.
These dynamic equations have characteristic features that can be exploited dur-
ing identification.

This chapter gives background information about Step 3 of the procedure
above and introduces the concepts and methods that are used in the scope of this
work. Since identification in robotics is a much studied problem, the purpose of
this chapter is to re-call a selection of research results related to the identifica-
tion of kinematics and rigid body dynamics, flexibilities, and nonlinearities. The
second part of this chapter summarizes available methods for estimating non-
parametric FRFs from noisy measurement data.

3.1 Identification of a parametric robot model

The goal is to identify the parameters of a dynamic robot model from experimen-
tal data such that the model behaves as similarly as possible to the real system.
Model structures as outlined in Chapter 2 are considered, i.e. nonlinear paramet-
ric models in continuous time formulation.

3.1.1 Related work

Experimental techniques for identifying robots involve estimating their dynamic
parameters based on measurements of motion and torque. If the position (includ-
ing velocity and acceleration) of all DOFs can be measured, the dynamic model
can be represented as a set of equations linear w.r.t. the unknown dynamic pa-
rameters. In this case, a straight-forward linear least squares identification pro-
cedure can be used to identify the model parameters. See e.g. Kozlowski [1998]
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Figure 3.1: Procedure for frequency-domain identification of a gray-box
model.

and Khalil and Dombre [2002] for a general overview of the parameter identifi-
cation methods for rigid robot models. Assuming that the robot model can be
formulated as a linear set of equations w.r.t. the dynamic parameters, the trajec-
tories performed for data collection can be optimized, see e.g. Armstrong [1987],
Swevers et al. [1996].

However, for industrial robots, only motor position and torque data are typ-
ically available. The dynamics of additional DOFs due to flexibilities are not
directly measurable, making the linear least squares technique inappropriate for
flexible robot models. Of course, additional sensors for measuring the elastic
deformations can be applied, such as acceleration sensors (see e.g. Pham et al.
[2002]), link position and/or velocity sensors (see e.g. Tsaprounis and Aspra-
gathos [2000], Huang [2003]), or additional joint torque sensors (see e.g. Albu-
Schaffer and Hirzinger [2001]). However, from a practical point of view, the use
of additional sensors for identification is not preferred due to high cost or feasi-
bility issues. Without measurements from additional sensors, the elastic defor-
mations can be obtained from the equations of motion by solving a non-linear
optimization problem. This is a challenging task and it cannot be excluded that
a local minimum is obtained. Good guesses for the initial parameter values are
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therefore essential for such methods in order to succeed.
System identification theory offers various algorithms for estimating state

space or transfer function models from a limited number of input and output
measurements, such as prediction-error methods or subspace techniques. In the
scope of this thesis, an identification approach in frequency domain is consid-
ered. Frequency domain methods are well established in mechanical analysis, for
example related to modal analysis. The purpose here is to estimate the parame-
ters of a flexible dynamic manipulator model with emphasis on stiffness identi-
fication. Since the stiffness characteristics can be conveniently described by the
system’s frequency response, the domain is advantageous. Another motivation
for the choice to work in frequency domain is that a lot of data can be handled in
compressed form. Several experiments can be combined to a consistent system
description in frequency domain. Further discussion about the choice between
frequency domain and time domain identification can be found in e.g. [Pintelon
and Schoukens, 2012, p. 522 ff.].

3.1.2 Gray-box approach

Assuming that the goal is to identify a parametric robot model such as the exam-
ples in Section 2.2, the total set of parameters can be classified in three categories:

• Static and geometric parameters θstat :
This subset contains the masses of all robot components, the lengths and
the inertia data. These parameters can be gained with high accuracy from
the CAD model of the manipulator, which is available to the robot manu-
facturer.

• Quasi-static, separately measurable parameters θchar :
These parameters are also called characteristic curve parameters and can of-
ten be estimated from specific measurements of isolated components in test
rig experiments. Separating components from the robot assembly and mea-
suring them individually can be laborious or expensive. In this case where
test rig measurements are unfavorable, parameters θchar can still be iden-
tified separately from each other by experiments without highly dynamic
excitation. The most common representative of this parameter subset are
friction parameters.

• Dynamic parameters θdyn:
These parameters determine the dynamic behavior of the robot and can
practically not be estimated separately. Parameters of this subset are usu-
ally highly coupled and dependent on each other. As an example, the trans-
mission parameters of Axis 3 of a 6-axis manipulator (the ‘elbow’) are very
difficult to separate from the stiffness behavior of the robot’s lower arm and
the Axis 2 gear stiffness, since dynamic excitation of Axis 3 always also ex-
cites the dynamics of the other components. The parameters θdyn can be
identified simultaneously from data, if the system is dynamically excited
and some form of optimization algorithm is applied.
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The gray-box identification approach that is used in this work assumes that only
the parameter subset θdyn must be identified by a sophisticated method. This
approach exploits the fact that many parameters can be estimated independently
from each other, or can be provided by the robot manufacturer. In the scope of
this work, the set of θstat is assumed to be known, while the friction parameters
are identified separately in advance to the actual identification, see Sec. 3.1.4.

3.1.3 Handling of nonlinearities

For industrial robots, the following nonlinearities are common and must be dealt
with during identification [Moberg et al., 2014, Saupe and Knoblach, 2015]:

• Configuration dependent mass distribution (nonlinearities associated with
the rigid body dynamics)

• Gear load constraints

• Friction of motor bearings and gear transmission

• Nonlinearities caused by motor torque ripple and sensor position ripple

• Nonlinear transmission stiffness

For dealing with nonlinearities associated with the rigid body dynamics, we de-
sign the experiments such that large deviations from the initial configuration are
avoided. We aim for quasi-static experiments, since then the Coriolis forces can
be neglected due to only low velocities, and the gravity torques can be assumed
to act like constant disturbances. Dynamic gear load constraints must be taken
into account during experiment design. Overloading of the gearboxes risking me-
chanical failure is prevented by the controller which applies a saturation if the
torque limit is exceeded. In order to avoid the occurrence of these nonlinearities
introduced by the controller, careful design of the commanded motor torque is
required, while providing a high excitation level.

Friction affects the resonances in the FRF estimate by acting as a damping
force. For reducing the effects of friction, the excitation needs to be designed
such that the low velocity regime is avoided, i.e. the resulting mean of the exciting
motor torque should be well above the Coulomb friction level.

Nonlinearities that are caused by the drive train torque ripple and the sensor
position ripple are treated as input nonlinearities (see Figure 3.2) and are com-
pensated offline in a separate step from the actual identification. Even though
the position resolvers have high resolution, severe noise can occur in the velocity
signals which usually are computed by numerical differentiation. Careful selec-
tion of numerical methods can solve this issue.

The stiffness of commonly used gears is deflection dependent, and the deflec-
tion in turn depends on the chosen excitation. The FRF also depends on the excita-
tion, meaning that resonances can be shifted by choosing either a weak excitation
(leading to low deflections) or a strong excitation (leading to high deflections).
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Figure 3.2: Nonlinearities of a robot system (adapted from Moberg et al.
[2014]).

The summary above makes clear that dealing with nonlinearities is strongly
related to experiment design. Carefully chosen robot configurations and excita-
tion signals are crucial for collecting informative data that allows to identify the
system’s nonlinearities. Chapter 4 is therefore dedicated to experiment design
for frequency domain identification of robotic manipulators.

3.1.4 Identification of friction

Using the gray-box approach introduced in Sec. 3.1.2, the rigid body parameters
are assumed to be known, while the a priori identification of the parameters of
the friction model is still needed. The following paragraphs give an idea about
the available methods for separate friction identification. It should be mentioned
that methods to simultaneously identify friction and the rigid body dynamics
have been developed, see e.g. Grotjahn et al. [2001].

The basic procedure is to run each joint with constant velocity in the steady
state regime. Then, the corresponding motor input represents the torque re-
quired to keep the system in motion against the friction torque. There is a lot of
literature on this type of identification, see e.g. Swevers et al. [1997], Kozlowski
[1998], Grotjahn et al. [2001], Gautier and Poignet [2000].

In the scope of this thesis, the Coulomb-viscous friction model (2.10) is used,
resulting in two additional parameters per joint that need to be estimated. Even
though this simple friction model does not correctly describe dynamic friction
(see Armstrong-Hélouvry et al. [1994]), it compensates for the major frictional
effects, assuming a high amplitude in the motor torque excitation signal. For
identification of the friction parameters, applied torque and joint movements are
recorded, and the parameters are estimated using linear regression. This identifi-
cation of the friction torque is usually done in advance to the stiffness identifica-
tion, such that τ in (2.2) can be replaced by τ − τf .

Different methods have been proposed for identifying more complex friction
models, as for example the LuGre friction model. Hensen et al. [2002] propose
a frequency domain identification technique in the presliding regime that lin-
earizes the dynamic LuGre model in the stiction regime in order to obtain a linear
second-order description. The proposed technique allows to estimate both the
stiffness and damping of the presliding behavior from a measured FRF. Another
identification technique based on FRFs is described in Ruderman and Bertram
[2011] by means of a two-state dynamic friction model with elasto-plasticity.
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3.1.5 Parameter estimation in frequency-domain

The overall goal is to identify the stiffness parameters of a nonlinear robot model
(2.3), which are a subset of θdyn and are collected in the parameter vector called
θ. The frequency-domain procedure that was proposed in Wernholt and Moberg
[2008a] is used and developed in the scope of this work, following the previously
introduced gray-box approach. The method is based on linearization as described
in Sec. 2.3. The optimal parameters θ̂ are obtained by minimizing the weighted
logarithmic error between the measured FRFs and the FRFs of the linearized gray-
box model (2.7). The method can be summarized in three steps (see Moberg et al.
[2014] for more details):

1. Estimate non-parametric FRFs Ĝ(i)(ω) in a number of robot configurations i
based on measurement data, see Sec. 3.2.

2. Select a model structure and linearize the gray-box model (2.3) in each of
the robot configurations to get parametric FRFs G(i)(ω, θ), see Sec. 2.3.

3. Compute the error

E (i)(ωl, θ) = log vec(Ĝ(i)(ωl )) − log vec(G(i)(ωl, θ)) (3.1)

for all frequencies ωl and obtain the parameter vector by solving

θ̂ = arg min
θ

∑

i∈Qc

Nf∑

l=1

[
E (i)(ωl, θ)

]T
W (i)(ωl ) E (i)(ωl, θ) (3.2)

where W (i)(ω) is a weighting matrix, and Nf the number of frequencies.

The optimization problem is solved using the function fminunc in MATLAB, which
finds a local minimum. In order to find the global minimum, a good initial param-
eter vector is important, which can be gained from e.g. the modeling approach
presented in Paper A. Furthermore, the problem is solved for a number of ran-
dom perturbations around the initial guess.

The weighting matrix W (i) would optimally be the covariance matrix of the
FRF estimate, which is usually unknown. If available, an estimate can be used in-
stead, but it was shown that “rough user-defined weights work much better than
the theoretically optimal weights” [Wernholt and Moberg, 2008a]. If selected
manually, the weights are defined such that they reflect where the best model
performance is required, i.e. favoring frequencies and/or configurations that are
most important and critical for the application. For control purposes, for exam-
ple, the frequency region around the first resonance is usually required to be
most accurate.

The logarithmic least squares criterion (3.1) is used because of the large dy-
namic range of the highly resonant robot system. From a theoretical perspec-
tive, this criterion is not optimal since it gives inconsistent estimates. In practice,
this is of minor importance if a good signal-to-noise ratio can be ensured. Fur-
thermore, this criterion has improved numerical stability as well as robustness
with respect to outliers in the measurement data [Pintelon and Schoukens, 2012,
p. 208 f.].
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3.2 Estimation of frequency response functions

The method described in the previous section requires an estimate of the system’s
FRF in order to estimate the parameters of the gray-box robot model. The goal
of this section is therefore to estimate the ny × nu nonparametric time-discrete
FRF Ĝ(i)(ω) of the robot system in configuration i from experimental data. Motor
torque and motor acceleration are defined as the system’s input and output, in ac-
cordance with the sensors that are commonly available in industrial robots. The
current of each motor is measured, and a simple linear relation between the cur-
rent and the motor torque τm is used since the motor dynamics are much faster
compared to the dynamics of the manipulator arm. The angular position qm of
the six actuators is measured by resolvers and numerically differentiated to be-
come angular acceleration. All motors are excited simultaneously with a speed
reference signal and the motor torque time series is recorded based on current
measurements. In the scope of this thesis, an orthogonal random phase multi-
sine is used as excitation signal, given certain amplitude constraints. This signal
was suggested by Dobrowiecki and Schoukens [2007] for multivariable nonpara-
metric FRF estimation. In this section, it is assumed that the optimal excitation
signal is known and that informative data is available. How the excitation is
chosen is described in Sec. 4.2.

3.2.1 Basics on discrete time systems in frequency domain

Consider the setting in Figure 3.3, where u(t) is the plant input (dimension nu)
and y(t) is the measured output (dimension ny), corrupted by measurement noise
v(t). The goal is to obtain a non-parametric estimate of the system’s transfer func-
tion G(Ω), as well as the noise covariance matrix CV = Cov(V ). Since the open-
loop system is unstable, data needs to be collected in closed loop, i.e. the robot
operates together with a controller. The input to the controller is the difference
between the reference signal r(t) and the measured output y(t).

A limited number of discrete time data points y(kTs), k = 1, 2, ..., N are col-
lected, where the time interval Ts is the sampling period and N the total number
of samples. It is common to consider the Discrete Fourier Transform (DFT), de-

G(Ω)
u

v

yr

+ -
Controller

Open-loop system

Figure 3.3: Linear closed-loop system.
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fined as

Y (ωk) =
1
√
N

N∑

n=1

y(nTs)e
−jωkTsn (3.3)

with the DFT frequencies

ωk = k
2π
NTs

, k = 1, 2, . . . , N. (3.4)

The DFTs of input and output, U(ωk) and Y (ωk), are related as

Y (ωk) = G(ejωkTs )U(ωk) + V (ωk) (3.5)

where G(ejωkT ) is the ny × nu transfer function of the system and V (ωk) the noise
DFT. In the following, the complex variable Ωk = ejωkTs = ej2πk/N is used.

G(Ωk) contains ny · nu unknown transfer functions, i.e. ne ≥ nu experiments
are needed for estimating G(Ωk) in the noise-free case of (3.5) and by use of
classical FRF estimation techniques. The data vectors from ne experiments are
collected into matrices (bold-face) where each column corresponds to one experi-
ment. Eq. (3.5) then becomes

Y(ωk) = G(Ωk)U(ωk) (3.6)

where Y(ωk) and U(ωk) have the dimensions ny × ne and nu × ne, respectively. A
basic method for obtaining the estimate Ĝ(Ωk) is the H1 estimator (see e.g Guil-
laume et al. [1996]):

ĜH1(Ωk) = Y(ωk)UH (ωk)
[
U(ωk)UH (ωk)

]−1
(3.7)

Other methods are summarized in e.g. Ljung [1999] or Pintelon and Schoukens
[2012], which are also recommended as basic references and for detailed theory.

3.2.2 Closed-loop identification

The system of an industrial robot is unstable and open-loop experiments are
therefore not feasible. This section gives a brief introduction of the field of closed-
loop system identification. The following closed-loop system is considered:

y(t) = G0 · u(t) + v(t)

u(t) = r(t) − Fy · y(t)
(3.8)

where Fy denotes the controller and G0 is the plant. The reference signal r(t) is
typically considered as the excitation signal.

Closed-loop identification is challenging, because there will be correlation be-
tween the input signal at time t and past values of the noise signal v(t). Further-
more, output nonlinearities perturb the input via the feedback. Because of this,
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several methods that work well in open loop will give biased estimates in closed
loop. Furthermore, a closed-loop experiment may be non-informative even if the
input is persistently exciting.

The available methods for closed-loop identification can be categorized as fol-
lowing [Gustavsson et al., 1977]:

• The direct approach

• The indirect approach

• The joint input-output approach (including two-stage/projection method)

The theoretically interested reader is referred to, e.g., Ljung [1999], Forssell [1999]
or Forssell and Ljung [1999] for a detailed discussion on the topic of closed-loop
identification. A brief summary of the main ideas is given below.

The direct approach applies a standard identification method using the input
u(t) and the output y(t) in the same way as for an open-loop system. Any possible
feedback is ignored and the reference signal r(t) is not used. The bias in the
estimate of G0 will be small in frequency regions where either (or all) of the
following holds: The noise model is accurate (or flexible enough), the feedback
contribution is small, the signal-to-noise ratio is high. Since the latter can be
realized for a robotic system [Wernholt, 2007] the direct approach is the primary
choice in this work.

The indirect approach assumes that the reference signal r(t) is measured and
that the controller is known. The system is identified by a two-step process: First,
a model for the closed-loop system from the reference signal to output signal y(t)
is estimated, which is an open-loop problem. In a second step, an estimate of the
open-loop transfer function is computed by making use of the known controller.

The joint input-output (JIO) approach considers y(t) and u(t) jointly as outputs
of a system that is driven by r(t). That is, models that describe how both u(t) and
y(t) depend on r(t) are estimated (open-loop problems). Working with the com-
plete model makes it possible to consider the fact that the noise on the u-channel
is correlated with the noise on the y-channel. The classic method for spectral
analysis in closed-loop settings can be viewed as a JIO approach, considering the
ratio of the cross-spectra estimates of reference to input and output, respectively.
The JIO approach is also used in Pintelon and Schoukens [2013] in the context
of FRF measurement of nonlinear systems operating in closed loop. Aspects of
input design and properties of the resulting FRF estimate, called the best linear
approximation (BLA), are discussed.

The indirect and joint input-output approaches convert the closed-loop problem
to an open-loop problem, seeing the reference signal as input. Since the refer-
ence signal is uncorrelated with the output noise, these approaches can be used
together with any open-loop method, including spectral analysis, instrumental
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variables and standard subspace methods. Disadvantageous are prerequisites
that the controller is known (indirect approach) and that the reference signal
must be measured.

3.2.3 Nonparametric averaging methods

In order to improve the quality of the FRF estimate (3.7), the effect of distur-
bances and nonlinear effects must be dealt with. Therefore, and for calculating
the uncertainty of the FRF estimate, multiple periods are measured and addi-
tional experiments are performed in each robot configuration. Averaging over
multiple periods will reduce random noise, whereas averaging over different ex-
periments will also reduce the effect of nonlinearities, since different realizations
of the random phase multi-sine input signal are used [Wernholt and Gunnars-
son, 2006]. Here, multiple experiments are grouped in one block M , and an FRF
is estimated for each block. By averaging and comparing these estimates, it is
possible to both improve the final FRF estimate Ĝ(i) for each configuration i as

well as to calculate its uncertainty Λ
(i)
Ĝ

. Note that the configuration index i will
be dropped in the remainder of this section. Assuming that M blocks of data are
collected, i.e. ne = nu M experiments in each configuration, the DFT matrices can
be partitioned into M blocks such as

U(ωk) =
[
U[1](ωk) . . .U[M](ωk)

]
,

Y(ωk) =
[
Y[1](ωk) . . .Y[M](ωk)

]
.

(3.9)

Then, the FRF can be estimated using e.g. the H1-estimator by

ĜH1 =


1
M

M∑

m=1

Y[m]U[m]H



1
M

M∑

m=1

U[m]U[m]H

−1

(3.10)

where ( · )H denotes the complex conjugate transpose. Another estimation method
is the arithmetic mean (ARI) estimator [Guillaume, 1998, Pintelon and Schoukens,
2012]:

ĜARI =
1
M

M∑

m=1

Y[m]
[
U[m]

]−1
=

1
M

M∑

m=1

Ĝ[m]. (3.11)

The averaging can be generalized to nonlinear techniques, as in Guillaume et al.
[1992] for SISO systems and in Guillaume [1998] for MIMO systems. The loga-
rithmic averaging technique has shown to give best results for the robotic system
[Wernholt and Moberg, 2008b]. The FRF is then estimated by

ĜLOG = P−1exp


1
M

M∑

m=1

log
(
P Ĝ[m]

) (3.12)
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where the matrix P is used to avoid phase wrapping problems when averaging
the phase. It is chosen as

P = V [1]diag
{
e−jargλ[1]

l

}n
l=1

[V [1]]−1 (3.13)

with the eigenvalue decomposition Ĝ[1] = V [1]Λ[1][V [1]]−1, Λ[1] = diag
{
λ

[1]
l

}n
l=1

.

Assuming the closed-loop system of Figure 3.3, and that the reference signal r
is available, the following Joint-Input-Output approach can be applied (Well-
stead [1981], Ljung [1999, p. 438]): First, the FRFs Ĝru and Ĝry from the refer-
ence r to the input u, and from the reference r to the output y are estimated.
Second, the FRF from u to y is computed as the ratio Ĝry/Ĝru . Applying this
approach to the multiple-experiment framework introduced above, gives

ĜJIO =


1
M

M∑

m=1

Y[m]R[m]H



1
M

M∑

m=1

U[m]R[m]H

−1

(3.14)

with R analogous to (3.9). The JIO estimator is consistent and asymptotically un-
biased and is therefore expected to give the best performance when the number of
measured data blocks M increases. This is also concluded in Wernholt and Gun-
narsson [2007], where different averaging estimation techniques are compared in
a simulation study with a linear robot model. However, the experimental results
in Wernholt and Moberg [2008b] show that JIO gives “the worst overall perfor-
mance” of all considered averaging techniques, mainly due to large errors at low
frequencies.

3.2.4 Parametric local methods

The key idea of the method proposed by Pintelon et al. [2010] is that G(Ωk) is a
smooth function of the frequency so that it can be approximated in a narrow fre-
quency band (window) around a central frequency fk by a complex polynomial
or rational function. Figure 3.4 visualizes this idea of estimating local approx-
imations of G(Ωk) from the measured input and output signals. The most ap-
pealing feature of such local methods compared to averaging techniques is their
data efficiency: Only one experiment in each robot configuration is sufficient for
estimating the ny × nu FRF matrix of the system. The following paragraphs in-
troduce the local parametric modeling approach and some variants of the basic
method. Targeting to reduce the experiments needed for identification, Paper D
contributes with an experimental comparison of the FRF estimates obtained from
local models with the FRFs gained from averaging techniques. The experimental
study furthermore shows that the choice of parametrization in the local model-
ing approach has significant impact on the FRF quality, and that considering the
reference signal (JIO-approach) improves the estimate.
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Figure 3.4: Visualization of the local parametric modeling method for FRF
estimation. The local frequency window is marked between the vertical
red lines; the selected data points as well as the estimated polynomial are
marked in red.

Local polynomial method (LPM)

Assuming a good signal-to-noise ratio, the open loop system indicated in Fig-
ure 3.3 is considered. The goal is to obtain a non-parametric estimate of the
system’s transfer function G, as well as the noise covariance matrix CV = Cov(V ),
by applying the local polynomial modeling (LPM) method. To begin with, ev-
ery row i = 1, . . . , ny of G is estimated separately by considering all nu inputs
U = [U1, . . . , Unu ]T and one output Yi at the time (MISO case). Then, (3.5) at DFT
line Ωk+r can be written as

Yi (ωk+r ) = Gi (Ωk+r )U(ωk+r ) + Vi (ωk+r ) (3.15)

where Gi (Ωk+r ) =
[
Gi1(Ωk+r ), . . . , Ginu (Ωk+r )

]
with

Gij (Ωk+r ) = Gij (Ωk) +
R∑

s=1

gs,ij (ωk)rs (3.16)

for j = 1, . . . , nu . G(Ωk) is approximated with polynomials of order R in a sliding
window of width w = 2b, which is centered around a central frequency k. Except
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near the frequency borders r ∈ {−b, . . . ,−1, 0, 1, . . . , b−1}. Collecting all w samples
within a window, (3.15) can be re-written as

Yw,i = Kw,iΘi (ωk) + Vw,i (3.17)

where Yw,i and Vw,i are w×1 vectors, and Θi is the (R+1)nu×1 vector of unknown
complex parameters, i.e.:

Θi (ωk) = [Gi1(Ωk), g1,i1(ωk), . . . , gR,i1(ωk), . . . ,

Gi nu (Ωk), g1,i nu (ωk), . . . , gR,i nu (ωk)]T
(3.18)

Kw,i is the w × (R + 1)nu matrix containing the input data Uw within the window:

Kw,i =
[
[1 r . . . rR] ⊗ Uw

]

= [Uw,1, rUw,1, . . . , r
RUw,1, . . . , Uw,nu , . . . , r

RUw,nu ]
(3.19)

Note that the window width w must fulfill w ≥ wmin = (R + 1)nu in order to
estimate all parameters Θi .

If w > (R + 1)nu , (3.15) is an overdetermined set of equations that can be
solved using least squares as

Θ̂i (ωk) = (KH
w,iKw,i )

−1KH
w,iYw,i (3.20)

where ( · )H denotes the conjugate transpose. For each central frequency k, the
estimate of the FRF related to output channel i is contained in Θ̂i as indicated in
(3.18). The residual of the least-squares fit (3.20) is given by

V̂w,i = Yw,i − Kw,i Θ̂i (ωk) (3.21)

and an estimate of the noise covariance is

ĈV ,i (ωk) =
1
q
V̂H
w,i V̂w,i (3.22)

where q = w − rank(Kw,i ), see Pintelon et al. [2010].
Increasing w, i.e. taking a larger number of frequencies in the frequency win-

dow, reduces the variance of the parameter estimate since the noise is averaged
over a larger number of data. On the other hand, the larger the window, the
larger the interpolation error caused by the fact that the transfer function varies
over the interval. In practice, the LPM is mostly used with polynomials of degree
two, i.e. R = 2 [Gevers et al., 2011].

Local rational method (LRM), MISO

Considering rational functions as local approximations, (3.15) is modified to

Yi (ωk+r ) =
Gi (Ωk+r )
Di (Ωk+r )

U(ωk+r ) + Vi (ωk+r ) (3.23)
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where Gi is defined as in (3.16) and Di as

Di (Ωk+r ) = 1 +
R∑

s=1

ds,i (ωk)rs , (3.24)

see Parametrization 2 in Voorhoeve et al. [2018]. Multiplying with Di gives

Yi (ωk+r ) =

Gi (Ωk) +
R∑

s=1

gs,i (ωk)rs
U(ωk+r )

−


R∑

s=1

ds,i (ωk)rs
 Yi (ωk+r ) + Vi (ωk+r )Di (Ωk+r )

(3.25)

and using matrix notation yields

Yw,i = Kw,iΘi (ωk) + Ṽw,i (3.26)

where Dw,i contains the polynomial (3.24) at all frequencies of the window, Ṽw,i
is the noise term scaled with Dw,i and Θi now is a (R + 1)nu + R × 1 matrix of
unknown complex parameters

Θi (ωk) = [Gi1(Ωk), g1,i1(ωk), . . . , gR,i1(ωk), . . . ,

Gi nu (Ωk), g1,i nu (ωk), . . . , gR,i nu (ωk), d1,i (ωk), . . . , dR,i (ωk)]T
(3.27)

The matrix Kw,i has the dimension w × (R + 1)nu + R and is defined as

Kw,i =
[
[1 r . . . rR] ⊗ Uw , −[r . . . rR] ⊗ Yw,i

]
(3.28)

The window width must be w ≥ wmin = (R + 1)nu + R in order to estimate all
parameters Θi . (3.26) is linear in the parameters and can be solved with (3.20),
which is referred to as Local Levy method in Pintelon et al. [2021]. It is noted, but
not further considered in the scope of this thesis, that the linearization of the out-
put error yields a biased estimate [Pintelon and Schoukens, 2012, p. 301 f.]. Note
also that no transient term is estimated here, but instead the data is truncated
such that only steady-state samples are used.

Local rational method (LRM), MIMO

Since the robot operates in closed loop, it can be expected that all outputs affect
the system through feedback. Therefore, all outputs i are considered simultane-
ously in the following such that Y = [Y1, . . . , Yny ], and D becomes a ny ×ny-matrix
of polynomials (full MFD parametrization, see Parametrization 3 in Voorhoeve
et al. [2018]). With Dw being the block-matrix containing the matrix of polyno-
mials for each frequency of the window, it can be written analogous to (3.26)

Yw = KwΘ(ωk) + Ṽw (3.29)
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where Yw and Ṽw are w × ny matrices and Θ(ωk) = [Θ1(ωk), . . . ,Θny (ωk)] is the
(R + 1)nu + R ny × ny matrix of unknown parameters. For i = 1 . . . ny ,

Θi (ωk) = [Gi1, g1,i1, . . . , gR,i1, . . . , Gi nu , g1,i nu , . . . , gR,i nu ,

d1,i1, . . . , dR,i1, . . . , d1,i ny , . . . , dR,i ny ]T
(3.30)

Now, wmin = (R + 1)nu + R ny , and the matrix Kw is w × (R + 1)nu + R ny :

Kw =
[
[1 r . . . rR] ⊗ Uw , −[r . . . rR] ⊗ Yw

]
(3.31)

This approach has the advantage that the cross-influence of the different outputs
is taken into account through the parameters of the polynomials in the matrix D.

Analogous as in (3.21) and (3.22), the uncertainty of the FRF estimate is de-
rived from the residuals as

ĈṼ (ωk) =
1
q

ˆ̃VH(ωk) ˆ̃V (ωk) (3.32)

ˆ̃V (ωk) = Yw − KwΘ̂(ωk) . (3.33)

Local rational method (LRM), JIO

Assuming the closed-loop system of Figure 3.3, and assuming that the reference
signal r is available, the following Joint-Input-Output approach can be applied
(Wellstead [1981], [Ljung, 1999, p. 438]): First, the FRFs Ĝru and Ĝry from the
reference r to the input u, and from the reference r to the output y are estimated
using LRM as described in Sec. 3.2.4. Second, the FRF from u to y is computed
as the ratio Ĝry/Ĝru .

3.2.5 Dealing with transients

When exciting a system, the response will show transient (leakage) effects before
reaching the steady-state. For local parametric methods, transient effects may be
handled by additional parameters, i.e. by approximating and estimating a tran-
sient term. Assuming periodic excitation and that an integer number of periods
is measured in steady-state, “the spectra of the signals calculated using the DFT
are free of leakage errors due to the plant dynamics” [Pintelon and Schoukens,
2012, p. 518].

Here, we avoid the estimation of transient terms and cut the data such that
the estimation data only contains the steady-state response. The waiting time
until the steady state is reached mainly depends on the damping of the system.
In practice, the user needs to wait until the transient effects are less than other
sources of errors, such as measurement noise.

3.3 Choices in identification

Many choices are to be made when performing system identification of robotic
manipulators. Following the procedure outlined in the introduction of this chap-
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ter, some exemplary questions and considerations are outlined below.
The first step of constructing the model should be based on the intended usage

of the model. The model structure should be as simple as possible, describing the
relevant dynamic behavior of the robot. A reasonable level of detail should be
chosen, e.g. related to the equations describing friction or transmission behavior
of the robotic joints. Another task in this first step of the identification procedure
is to decide which parameters need to be identified from data and which can be
assumed to be known accurately enough from other sources such as specification
data of components. Furthermore, a technique to linearize the constructed model
must be chosen such that as little as possible information is lost.

The step of experiment design involves many decisions that must be carefully
made to ensure informative data and obtain convincing identification results.
The type and design of the excitation signal plays an important role. Assuming
periodic excitation, exemplary questions to be answered are: What frequencies
should be excited with what amplitude?, or How many periods are needed, and what
period length is suitable?. Physical constraints need to be considered, both related
to excitation signal and the lab environment. When designing the experiments,
the system’s nonlinearities must be considered and it needs to be ensured that
there is enough information about them in the data. Even the choice of payload
that is attached to the end-effector is part of the experiment design problem.

Attempting to estimate the system’s FRF from measurement data, a suitable
method needs to be selected. Effects related to the present feedback must be con-
sidered, as well as the system’s nonlinearities. Estimating the model parameters
based on the FRFs requires also a careful selection of an optimization method
and a suitable optimization criterion.

The above outlined complexity demonstrates the necessity to automate the
identification procedure in order to make it applicable in practice. The ultimate
goal of this work is therefore to reduce the choices that the user needs to make
during the identification. The procedure should be simplified and shortened in
order to enable on-site identification of robot individuals.
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Estimating parametric robot models from experimental data is challenging
since the system must operate in closed loop and since different types on non-
linearities act as disturbances. Phenomena such as friction, torque and resolver
ripple, transmission backlash, and hysteresis can hardly be neglected, and the
mechanical structure of the manipulator as well as the transmission behavior
are elastic. Because of these challenges, identification from data requires well-
designed experiments, especially the design of the input signal for data collection
is very important. Choices related to the design of identification experiments are
often called design variables and are in many cases crucial for an accurate and
efficient identification. Since it is often costly and time-consuming to do new
measurements, it is worthwhile to design the experiments such that the collected
data is sufficiently informative.

After a brief introduction to the broad field of experiment design, this chapter
focuses on two aspects that are relevant for frequency-domain identification of a
parametric robot model. Firstly discussed are design variables related to the ex-
citation signal that is used for data collection. Secondly, the problem of selecting
the best manipulator configurations for estimating the system’s FRFs is addressed.
The chapter is concluded with some practical notes on how to optimally exploit
the time that is available for doing experiments.

4.1 The idea of experiment design

Experiment design often relates to maximizing the information that is gained
from the experiment while considering physical constraints. The classical ap-
proach is to minimize a scalar measure of the covariance matrix, which depends
both on the experimental conditions χ and the true parameters θ0. In the case of
robot identification, the experimental conditions χ can be described in terms of
excitation signal, the sampling period, amplitudes, frequency content, etc. Con-
straints are often related to the measurement time and the power or amplitude of
the excitation signals. In system identification theory, an estimator is called maxi-
mally efficient if the parameter covariance matrix achieves the Cramér-Rao lower
bound (inverse of the Fisher information matrix) with an unbiased estimator, see
Ljung [1999] and Pintelon and Schoukens [2012] as basic references.

Many aspects of input design for general linear time-invariant systems are
well-understood. See e.g. Goodwin and Payne [1977] for an early reference and
Bombois et al. [2011] for a more recent overview. However, research on exper-
iment design for nonlinear systems is limited to specific sub-classes of nonlin-
ear systems, such as finite-impulse-response-type systems (see e.g. de Cock et al.
[2016]) or nonlinear models that are composed of a known linear dynamic system
interconnected with unknown static nonlinearities (see e.g. Vincent et al. [2010]).

Optimal experiment design in robotics has been studied for over two decades.
Most methods parametrize the excitation as a Fourier series in order to find an
optimal excitation trajectory. The method for optimizing the excitation trajectory
that is presented in Swevers et al. [1997] aims directly at estimating the robot
model parameters with minimal uncertainty. Compared to that, an information
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matrix is maximized in Vantilt et al. [2015] for guaranteeing an informative data
set. A similar optimality criterion for finding a persistently exciting trajectory is
chosen in Tika et al. [2020] and the optimal trajectory is computed by using an
extended genetic algorithm.

The frequency-domain identification approach presented in Sec. 3.1 requires
linearization of the dynamic equations around an operating point such that the
system’s FRFs can be estimated. Two aspects of experiment design are in this case
of particular interest: First, optimal excitation for best possible quality of the FRF
estimate (see Sec. 4.2), and second, optimal linearization points (configurations)
for collecting informative data (see Sec. 4.3). Another design variable is, for ex-
ample, the payload that is attached to the robot during data collection: What
impact does the payload have, and is it beneficial if the estimation data contains
experiments with different payloads?

Achieving an optimal experiment design related to all variables is often hard
or impossible. From a practical point of view, it could instead be the goal to
achieve an improvement compared to a reference. Referring to the research goals
of this thesis (see Sec. 1.1), the experiment design is considered to be improved if
an appropriate compromise can be found between the following criteria:

• The total experiment time is reduced, e.g. by fewer robot configurations for
collecting data, or fewer experiments in each configuration,

• The model’s FRFs are closer to the measured FRFs, i.e. the error (3.1) is
reduced,

• The average and worst-case standard deviation of the parameter estimate θ̂
is reduced.

The goal of reducing the excitation amplitude is set aside for the moment, and the
investigation of minimum amplitudes is left to future research. Instead, the max-
imal possible amplitude is realized for ensuring good excitation of the system’s
flexibilities and a high signal-to-noise ratio.

4.2 Design of the excitation signal

Choices related to the type of excitation, input amplitude, and excited frequen-
cies are important to consider in order to obtain valid and good quality FRF esti-
mates. The textbook Pintelon and Schoukens [2012] gives a very pedagogic and
complete theoretical basis on the design of excitation signals for frequency do-
main identification, see especially Chapter 5. An extension to nonlinear systems
operating in closed loop has been published in Pintelon and Schoukens [2013].
See also Saupe and Knoblach [2015], Boukhebouz et al. [2020] and Dirkx et al.
[2022] for approaches on optimal input signals for FRF estimation. The purpose
of the following section is to summarize and motivate the choices made for this
work.
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Type of excitation

For achieving a certain input spectrum, many different signals exist, e.g. (filtered)
random noise, pseudo-random binary sequence, swept sine (chirp), and sum of
sinusoids (multisine). In this thesis, a random phase multisine signal is used,
since the advantages of a periodic excitation can be exploited, and this signal is
very flexible in the sense that the user can specify exactly which frequencies to
use from the available frequency grid. The multisine can be written as

ums(t) =

Nf∑

k=1

Akcos(ωkt + φk) (4.1)

where Ak are the amplitudes, ωk the frequencies chosen from a grid

{
2πl
NPTs

, l = 1, . . . ,
NP

2
− 1

}

(NP even) and φk the random phases uniformly distributed on the interval [0, 2π).
The signal (4.1) is periodic with NP samples in each period, and given a desired

power spectrum Φu(ω), the amplitudes are Ak = 2
√

Φu (ωk )
NP

.

Even though the multisine excitation might be optimal from a theoretical
point of view, the nonlinear components of a robotic system require additional
features of the excitation. For example, in order to reduce the effects of static
friction around zero speed, a single sine wave with low frequency and high am-
plitude is superimposed with the multisine [Saupe and Knoblach, 2015, Wernholt
and Gunnarsson, 2008], giving u(t) = ums(t) + uss(t), see Figure 4.1.

For estimating multivariable nonparametric FRFs, the orthogonal random
phase multisine signal is suggested in Dobrowiecki and Schoukens [2007]. The
blocks of experiments in (3.9) are then given by

U[m](ωk) = diag
{
U

[m]
c (ωk)

}nu
c=1

T, m = 1, . . . , M (4.2)

where

Tjc = e
2πj
nu

(j−1)(c−1) (4.3)

is an orthogonal matrix for input channels c = 1, . . . , nu and experiments j . For
each of the M blocks of measurement data, nu random phase multisine signals
are generated that are orthogonally shifted in the subsequent nu − 1 experiments
of each block.

As an example, Figure 4.1 shows the motor speed reference signal for Axis 2
of the robot. The data that is used for identification is marked in red, while motor
torque limit and friction level are indicated as dashed horizontal lines. Figure 4.3
shows the measurement of the corresponding motor torque time series.
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Excited frequencies

In order to avoid leakage effects in the DFT, the excitation signal is assumed to
be periodic with NP samples in each period. An integer number of periods P
of the steady-state response are collected. A vector with logarithmically spaced
frequencies is generated and all odd frequencies are excited, i.e. ωk = 2π(2k+1)

NPTs
in

(4.1). This is recommended in order to find the best linear approximation of the
nonlinear system, see e.g. Schoukens et al. [2005]. The frequency range that is
most relevant for robot motion control reaches up to 100 Hz, i.e. high frequent
structural modes are not considered. Note that a periodic signal with period T0
excites the plant only at frequencies kf0 with f0 = 1/T0, and is insensitive to
what happens between these frequencies. That is, very narrow resonance peaks
(compared with f0) can be missed. Assuming that several periods P are measured,
the frequency resolution is increased to P/T0.

Figure 4.2 shows the excited frequency lines of the designed reference sig-
nal shown in Figure 4.1, which excites 120 log-space frequencies between 4 and
80 Hz. Figure 4.4 shows the excited frequency lines for the measured torque of
Figure 4.3.

Input amplitude

As mentioned above, the amplitude of the multisine delivers the desired power
spectrum. Physical constraints such as the maximal available motor torque need
to be considered, as well as possible damage and wear of components or the
manipulator structure during identification experiments. However, large ampli-
tudes are needed in order to achieve a high signal-to-noise ratio.

For the amplitude of the superimposed sine wave, the following trade-off
needs to be considered: A small amplitude is favorable for ensuring that the ma-
nipulator does not move too far away from a quasi-static configuration and for
ensuring the assumptions related to constant gravity torque, etc. On the other
hand, the amplitude must be large enough such that static friction regime is over-
come.

Figure 4.3 shows the measured input signal of an exemplary excitation of
Axis 2 of the robot. The motor’s torque limit as well as the friction level are
indicated as horizontal dashed lines.

Optimal excitation

Periodic excitation signals based on Fourier series have become most popular for
robot identification (see Swevers et al. [1997] as basic reference and Wu et al.
[2012a] for a more recent application). For such signals, mostly two criteria are
used to find optimal excitation: One is based on minimization of the condition
number of the regressor matrix (see e.g. Presse and Gautier [1993], Armstrong
[1987], Gautier and Khalil [1992], Wu et al. [2012a]). This criterion exploits that
the sensitivity of a least squares solution to measurement noise depends on the
condition number of the regressor matrix. The second criterion is based on the
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Figure 4.1: Speed reference signal for Axis 2, Configuration 1. Data used
for FRF estimation in red.
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Figure 4.2: FFT of the reference signal in Figure 4.1.
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Figure 4.3: Measured torque input signal for Axis 2, Configuration 1. Data
used for FRF estimation in red. Torque limit and (gravity compensated)
friction level as horizontal lines.
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Figure 4.4: FFT of the measured input signal in Figure 4.3.
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minimization of some measure (e.g. log det) of the Fisher information matrix (see
e.g. Calafiore et al. [2001], Swevers et al. [1997]). Jin and Gans [2015] propose an-
other criterion for optimizing an excitation trajectory using Hadamard’s inequal-
ity, which states that the determinant of a positive definite matrix is less than or
equal to the product of its diagonal entries.

It should be noted that it might be difficult to solve the resulting optimiza-
tion problem, due to a large number of parameters describing the Fourier series
and due to constraints on the trajectory, such as initial and final conditions and
bounds on position, velocity and acceleration. Furthermore, most research re-
lated to optimal excitation trajectories targets only the estimation of geometric
and inertial parameters (see references above), not the identification of dynamic
parameters such as stiffness.

4.3 Choice of manipulator configurations

In the following, the primary goal of experiment design is to reduce the time and
effort that are needed for collecting the identification data. This goal shall be
achieved by reducing the number of robot configurations for experiments. Fig-
ure 4.5 shows six exemplary robot configurations as schematic 2-D drawings. In
the scope of this section, it is assumed that a suitable excitation signal for FRF
estimation is known and that it is not part of the experiment design problem to
optimize the excitation signal according to any criteria.

Figure 4.5: Exemplary robot configurations.

The idea of finding optimal manipulator configurations for parameter iden-
tification has mostly been treated related to robot calibration, which involves
static experiments only. The goal in this context is to minimize the TCP position
error by identifying the geometric parameters and by estimating a static stiffness
compensation. In order to find optimal robot configurations w.r.t. kinematic per-
formance methods based on Jacobians of the robot’s generalized coordinates are
most common, see e.g. Hu et al. [2020], Dumas et al. [2012]. An optimal com-
pliance error compensation is derived in Wu et al. [2012b] by minimizing the
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covariance matrix, and a method for simultaneously identifying geometric and
elasticity parameters is presented in Gadringer et al. [2022].

Compared to robot calibration, this work aims to improve experiment design
for the identification of a dynamic robot model. Since the information content
about the dynamic parameters θ differs between different configurations, exper-
iments should be performed in the most informative configuration(s) w.r.t. θ.
Wernholt and Löfberg [2007] propose a method which formulates the experiment
design as a convex optimization problem: The optimal manipulator configura-
tions are selected from a set of candidates based on the information matrix of
each candidate configuration. The method, which is also used in Papers B and C,
can be summarized as follows:

1. Choose a set of candidate configurations Qc, that is sufficiently large to
cover the workspace of the manipulator.

2. For each candidate configuration, derive an estimate of the FRF Ĝ(i), to-

gether with the total co-variance matrix Λ
(i)
0 .

3. Derive the information matrix for each candidate:

Hi = 2Re
{
Ψ(i)(θ0)

[
Λ

(i)
0

]−1 [
Ψ(i)(θ0)

]T}
(4.4)

with the Jacobian
[
Ψ(i)(θ0)

]T
= ∂G(i)(θ0)

∂θ , where G(i)(θ0) are the parametric
model FRFs, and θ0 the nominal parameters.

4. Solve an optimization problem for finding the best combination λ of candi-
date configurations:

minimize log det
[∑

i∈Qc
λiHi

]−1

subject to λ ≥ 0, 1T λ = 1
(4.5)

The total co-variance matrix Λ
(i)
0 is a block-diagonal matrix with the uncertainty

of the FRF estimate Λ
(i)
Ĝ

on the diagonal:

Λ
(i)
0 = diag

[
Λ

(i)
Ĝ

(ω1), . . . ,Λ(i)
Ĝ

(ωf )
]

(4.6)

Note that Λ(i)
0 is usually unknown and needs to be estimated. A matrix W (i)(ω)

can optionally be introduced for weighting different frequencies. Paper B sug-

gests to use simulations and estimate Λ
(i)
0 by averaging the signals over different

periods and realizations of the excitation. Since the robot system is nonlinear, the
experiment configurations, i.e. the linearization points, must contain information
about all nonlinear effects for enabling the estimation of a globally valid model.

Obtaining Λ
(i)
Ĝ

from simulation implies multiple simulations (experiments) in
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each candidate configuration, which is a costly procedure. The effort can be mo-
tivated if the resulting experiment design can be used for the identification of
many robots of the same type. Once the optimal configurations are found, only
few experiments need to be conducted for identifying robot individuals of the
same design, i.e. non-parametric FRFs Ĝ(i) need to be estimated only for the opti-
mal configurations Qopt .

Another approach for obtaining Λ
(i)
0 is suggested in Wernholt and Löfberg

[2007]. By assuming the FRF estimates to be the sum of the parametric FRF
G(i)(l, θ0) and a zero mean measurement noise η(i)(l), i.e.

Ĝ(i)(l) = G(i)(θ0) + η(i)(l), (4.7)

the variance matrix Λ
(i)
0 is determined by the noise contribution. If the noise

is independent and identically distributed for different experiments with power

spectrum Φv = Cvω
2I , then Λ

(i)
0 depends on the ratio of Cv and the power

spectrum Φr of the multisine reference signal. Assuming the nominal model

G(i)(l, θ0) = G
(i)
0 linearized around configuration i together with an arbitrary con-

troller F gives an approximation of the FRF uncertainty as

Λ
(i)
Ĝ

=
1
Φr

[
(G(i)

0 + F−1)H (G(i)
0 + F−1)

]T
⊗ Φv . (4.8)

Besides the estimate of Λ(i)
0 , the Jacobian Ψ(i)(θ0) is needed in (4.4) to obtain

the information matrices Hi . Ψ(i)(θ0) is estimated using the central difference
approximation, assuming that the nominal parameters θ0 are known. In most
cases, a good guess of θ0 can be provided, and if simulated experiments are used,
the nominal parameters are known.

The results in Paper B show that a realistic estimate of the FRFs’ uncertainty
is crucial for successful experiment design. The potential of improving the exper-
iment design by the proposed method has been demonstrated both with help of
a simulation study and by an experimental validation with a medium size indus-
trial robot (see Paper C). A significantly shorter time is needed for conducting
data collection experiments and the average standard deviation of the parameter
estimate is reduced, when using data from experiments with improved design.

4.4 Exploitation of experiment time

Until now, the goal of experiment design has been to reduce the experimental
time as much as possible while keeping (or improving) the identification accuracy.
Another formulation of experiment design builds on the assumption of a certain
available time for doing experiments. This leads to the question of how to use the
time optimally in the sense of collecting the most suitable data for identification.
The optimal exploitation of the available experiment time can be seen as a trade-
off between
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• The number of robot configurations Qc,

• The number of experiments m in each configuration,

• The length of each experiment (period length and number of periods).

This is a difficult problem to solve, involving many constraints, design variables,
and both time and frequency-domain. Furthermore, the method chosen for the
FRF estimation plays an important role, since the estimated FRFs are treated as
measurements.

By simulation is was shown in Paper B that additional configurations are more
beneficial compared to longer experiments. However, a trade-off needs to be
made since fewer experiments per configuration make it harder, or impossible,
to estimate accurate FRFs using averaging techniques. Depending on the FRF es-
timation method, the number of experiments in each configuration has different
impact: Using logarithmic averaging, for example, the choice of M = 4 blocks of
each 6 experiments has turned out to be a good compromise between FRF qual-
ity and measurement time [Moberg et al., 2014]. However, an estimate derived
with LRM does not significantly improve if more than 6 experiments are used,
see Paper D. Compared to that the LRM method opens the possibility for more
robot configurations in the same total measurement time assuming that only one
experiment per configuration is sufficient for getting a high-quality FRF estimate.
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This first part of the thesis has served as an introduction to modeling of
robotic manipulators and to frequency-domain system identification methods.
The aim has been to create a framework to relate the publications in the follow-
ing second part to previous research results and to each other. Basic concepts for
modeling of robotic manipulators were summarized in Chapter 2, as well as some
aspects on modeling the transmission and friction occurring in the joints, and the
structural dynamics of the robot’s links. Data-driven estimation of a parametric
robot model in frequency-domain was addressed in Chapter 3. The gray-box idea
was introduced and the handling of nonlinearities, in particular friction, was ad-
dressed. Furthermore, techniques for FRF estimation were re-called. Since ex-
periment design is a key factor for successful system identification, and essential
for reaching the research goals of this thesis, Chapter 4 discussed some aspects
of experiment design for frequency-domain identification of robotic manipula-
tors. The design of the excitation signal, the problem of selecting the best robot
configurations, and an optimal exploitation of available experiment time were
addressed.

The contributions in Part II of this thesis deal with efficiency aspects of data-
driven modeling of robotic manipulators. Considering the research goals that
were stated in Sec. 1.1, the contributions mostly address goals 2 and 3, i.e. the
reduction of experiment time while maintaining or improving the quality of the
parametric robot model. Starting from the idea to completely avoid identifica-
tion experiments, Paper A suggests a modeling approach restricted to component
specifications and development data. An accurate robot model is derived by com-
bining specific measurements of separated components with the reduced Finite
Element description of the robot’s links. If the robot to be modeled is available
for experiments, measurement data is commonly used to further improve the
model accuracy and particularly to estimate parameters of a lumped parameter
gray-box model. In order to reduce the risk of wear or damage during data collec-
tion, the amount of identification experiments should be reduced. Paper B there-
fore presents an approach to limit the experiment configurations to a minimum
number that contain most information and therefore allow the best parameter es-
timate. The effectiveness of the approach is demonstrated by a simulation study
and completed by a validation with real measurement data in Paper C. Paper D
addresses the aspect of reducing the experiment time by shorter experiments.
A local parametric modeling method for estimating the FRFs from less data is
analyzed w.r.t. its potential for robot identification. It is shown that the conven-
tional averaging technique with appropriate excitation gives more accurate FRF
estimate than the data-efficient LRM method and that a compromise needs to be
found between estimation accuracy and experiment time.

Future work could be considered in terms of further improved experiment de-
sign, a modified or novel system identification method, or related applications
such as modeling of a different robot type such as a Delta-type manipulator.

For further improving the experiment design method of Papers B and C, a non-
linear transmission model should be considered. The method could be adapted
in order to account for the changed stiffness behavior of the robot in different ar-
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eas of its workspace. In order to correctly describe the global dynamic behavior,
the experimental data needs to contain information about all stiffness regimes,
and the experiment design method needs to find the most valuable robot config-
urations in that sense. Combining the results of Paper D and the idea of data-
efficient FRF estimation with the experiment design approach is another idea for
future research. In particular, can the LRM method be used for estimating the
FRF uncertainty that is needed for computing the information matrix of each con-
figuration? A third direction for further research related to experiment design is
the optimization of the excitation signal w.r.t. low excitation amplitudes. This is
of particular interest in order to reach research goal 1.

Future research targeting a modified or novel system identification method
can be thought of very broadly. Analyzing a time-domain approach could have
scientific value within the field of identification of a nonlinear system operat-
ing in closed loop. A comparison of this approach with the frequency-domain
method of this thesis would be interesting. Developing an identification ap-
proach that uses IMU measurements at the robot’s end-effector could contribute
to a better understanding of the system’s nonlinear behavior and might result in
more accurate parameter estimates. More general, the potential of additional sen-
sors on the arm side of the gearboxes could be studied, both in terms of model
accuracy and lowered excitation amplitudes. An idea that is close to the current
identification method is to study the effect of different payloads during data col-
lection on the identification accuracy.

All these suggestions aim to reach the original research goals of this thesis,
i.e. the efficient data-driven modeling and identification of robotic manipulators
for obtaining high quality models.
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