
Master of Science Thesis in Electrical Engineering
Department of Electrical Engineering, Linköping University, 2023

Neural Network Based
Control Design for a
Unicycle System

Axel Ek

Master of Science Thesis in Electrical Engineering

Neural Network Based Control Design for a Unicycle System

Axel Ek

LiTH-ISY-EX–23/5552–SE

Supervisor: Abhishek Dhar
isy, Linköpings universitet

Filip Petersson
Combine

Examiner: Daniel Axehill
isy, Linköpings universitet

Division of Automatic Control
Department of Electrical Engineering

Linköping University
SE-581 83 Linköping, Sweden

Copyright © 2023 Axel Ek

Abstract

Physics-based models of dynamical systems can take a lot of time and be hard
to derive, and there will always be some effect that was not added to the calcula-
tions, like aerodynamic-, gyroscopic- or frictional- effects. Calculating all these
effects takes time and a lot of knowledge of the system dynamics. There are many
different ways to implement different methods to speed up the process of creat-
ing the control policy. What is the simplest way to create a control policy and
how does it control the system?

Neural networks is a promising approach, where there are two different meth-
ods. First, by using the mathematical structure of a neural network a model of
the system can be derived, and then a simple control policy is used. Second,
Reinforcement learning is where the control policy is learned. These two are
compared to a baseline model where the model of the system is derived from the
physical description of the system.

First, the model is calculated by the system dynamics with classical mechanics
that describes the mathematical description of a physics-based system. Then the
machine-learning approach of using a neural network to learn and describe the
system is implemented. Lastly, the Reinforcement learning method is made and
compared to the other models.

The models had all their own differences in performance. The controllers based
on the physics-based model were good in a small region around the equilibrium
and it took a long time to derive. The neural network models were more general
and easier to implement but were more unstable, they showed the problems with
data collection for training the model, here several approaches could be used to
improve the model and patch the problems seen. Lastly, the reinforcement con-
troller worked well but from a control theory perspective, it is very hard to prove
the stability of the controller.

iii

Acknowledgments

I would like to thank my two supervisors, Abhishek Dhar at LiU and Filip Peter-
son at Combine. Both have been great support and always helped when needed.
Further, I would like to thank Tobias Olsson at Combine who was able to step in
as an extra supervisor when needed and made sure that I felt welcome at Com-
bine together with the rest of the company. Lastly, I would like to thank my
examiner Daniel Axehill who has made sure that I have been on the right path to
a good thesis.

Linköping, 2022
Axel Ek

v

Contents

Notation xi

1 Introduction 1
1.1 Background . 1
1.2 Problem formulation . 2
1.3 Related work . 3
1.4 Delimitations . 4
1.5 Thesis outline . 4

2 Control using physics-based model 5
2.1 Mathematical description . 5

2.1.1 Rotation coordinates . 5
2.2 Description of the unicycle model characteristics 6
2.3 Lagrange dynamics . 8

2.3.1 Lagrangian . 8
2.3.2 Potential energy . 8
2.3.3 Kinetic energy . 9
2.3.4 External forces . 10
2.3.5 Lagrange equation . 10

2.4 Simulation environment . 11
2.5 LQR control theory . 11

2.5.1 Linearization . 11
2.5.2 Infinite-horizon discrete time LQR 12
2.5.3 Controllability . 13

2.6 LQR control . 13
2.6.1 Penalty matrices . 14
2.6.2 Control gain . 15
2.6.3 Simulation . 15
2.6.4 Characterizing region of attraction neighborhood 16

2.7 Disturbance reaction . 18
2.7.1 Real world test . 19

2.8 Summary . 20

vii

viii Contents

3 Learning-based model 21
3.1 System Identification . 21
3.2 Neural Network . 21

3.2.1 Basic structure . 21
3.2.2 Activation function . 23
3.2.3 Loss function . 23
3.2.4 Backpropagation . 23
3.2.5 Student-Teacher learning 23

3.3 Neural network to system description 24
3.4 Dataset . 25
3.5 Training . 26

3.5.1 Loss function . 26
3.5.2 Epochs . 26

3.6 Models . 26
3.6.1 Model structure . 27
3.6.2 System matrices . 27
3.6.3 Student Network . 28
3.6.4 Model validation . 29

3.7 Simulation . 30
3.8 LQR control . 30

3.8.1 Model 1 . 31
3.8.2 Model 2 . 32
3.8.3 Model student network . 33

3.9 Characterizing region of attraction neighborhood 35
3.9.1 Model 1 . 35
3.9.2 Model 2 . 37
3.9.3 Student model . 37

3.10 Disturbance reaction . 38
3.10.1 Model 1 . 38
3.10.2 Model 2 . 40
3.10.3 Student model . 40

3.11 Comparison . 41
3.12 Summary . 41

4 MPC controller 43
4.1 State prediction . 43
4.2 Constraints . 44
4.3 Control synthesis . 45
4.4 End penalty . 45
4.5 Simulation . 45
4.6 Physics-based model . 46
4.7 Learned models . 47

4.7.1 Model 1 . 47
4.7.2 Model 2 . 48
4.7.3 Student model . 49

4.8 Summary . 50

Contents ix

5 Control by reinforcement learning 51
5.1 Reinforcement learning . 51

5.1.1 Policy gradient method . 51
5.1.2 Reward . 52
5.1.3 Environment . 52

5.2 Proximal Policy Optimization . 52
5.2.1 Observation and action spaces 53
5.2.2 Policy method . 53
5.2.3 Reward . 53
5.2.4 Simulation . 54
5.2.5 Training . 54

5.3 Controller performance . 54
5.4 Summary . 55

6 Discussion 57
6.1 Control based on the physics-based model 57

6.1.1 LQR controller . 57
6.1.2 MPC controller . 58

6.2 Control based on the learned model 58
6.2.1 LQR controller . 58
6.2.2 MPC controller . 59

6.3 Control based on reinforcement learning 60
6.4 The different penalty matrices . 60
6.5 System identification . 60
6.6 Results . 61

7 Conclusions 63
7.1 Answers to the problem formulation 63
7.2 Future improvements . 64

A Constants for mathematical description 67

Bibliography 69

Index 71

Notation

Mathematics

Notation Meaning

R The set of real numbers

Abbreviations

Abbreviations Meaning

lqr Linear Quadratic Regression (Regulator)
nn Neural Network
pid Proportional, Integral and Derivative controller
dof Degrees of Freedom
mse Mean Squared Error
mpc Model Predictive Controller
ppo Proximal Policy Optimization
trpo Trust Region Policy Optimization
roa Region of Attraction
rf Reinforcement Learning
ospq Operator Splitting Quadratic Program

xi

1
Introduction

1.1 Background

Physics-based models of dynamical systems for control policies can be hard and
take a lot of time to derive. And there will always be some effect that was not
added to the calculations, like aerodynamic-, gyroscopic- or frictional- effects
that might affect the system dynamics. To limit these errors different tactics were
used when designing the control policies are made to be able to handle them,
Glad and Ljung [4].

For systems where the mechanical description of the system is used to create
the control policy, if the description of the system is poor, the complexity of the
control policy needs to be higher. To solve this problem, the description of the
model needs to be improved or the complexity of the control policy is raised.

One way to speed up this process is Machine Learning (ML). ML is a field that has
been used to improve many similar problems in recent years. There are broadly
two methods to use ML on control systems: learning the control policy with rein-
forcement learning and learning the system model with some ML or Deep Learn-
ing (DL) algorithm. For the first strategy, there are many off-the-shelf methods,
with different probabilities of stably controlling the system. For example, Prox-
imal Policy Optimization (PPO) is a reinforcement learning method that is com-
monly used for learning control of arbitrary systems, Jonsdottir and Petersson
[6], Schulman et al. [15]. The second method involves learning the system model
with ML and using it for controlling the system. The advantage of this method
is that popular control theory methods can be used to guarantee desirable perfor-
mance for dynamical systems. This is the method that will be focused on in this
thesis.

1

2 1 Introduction

To validate the efficacy of the strategy proposed in this thesis, a unicycle system
is chosen as a testbed. The unicycle is a good way to benchmark different control
methods, as it can be seen as a combination of an inverted pendulum and a reac-
tion wheel, Siradjuddin et al. [16], Lee et al. [7]. The experimental studies in this
thesis are done using a unicycle provided by Combine.

1.2 Problem formulation

The objective of this thesis is to develop a system model using neural networks
which learn the system models utilizing the input/output data from the system.
As presented in Section 1.3 the previous works have been focusing on the perfor-
mance of the system model. To improve on these works the problem becomes,
how the models perform when applied with control policies and do they differ
in performance from the physics-based models. Further, the closed-loop perfor-
mance obtained with said neural network-based approach is compared with the
classical approach of controlling the system by utilizing a physics-based model
of the system. The unicycle system considered in this thesis is seen in Figure 1.1.
It is a balancing robot that has an unstable equilibrium in the upright position.
They are all tested in simulation on a non-linear description of the model, and if
they showed good behavior there taken out on the real-world unicycle.

When designing good control algorithms for a system a sufficiently rich knowl-
edge about the physics of the system is needed to be able to predict the motions
correctly, which is essential to derive a control policy to guarantee the desired be-
havior of the system. The questions this thesis aims to answer can be summarized
as follows:

• How does a generic controller work on the system?

• Is it possible to improve the performance with a neural network based
learned model?

• Can a model predictive controller (MPC) further improve the performance
with operational constraints being considered explicitly?

• What is the performance difference between the control policies derived
from the different models?

1.3 Related work 3

Figure 1.1: The unicycle

1.3 Related work

The usage of neural networks to find the model of a dynamic system has been
used for a long time. Sjöberg et al. [17] presented the theory in 1994 where
they combined the theory of neural networks and regression models to create a
black box model of the system. The models they presented were such as NNARX,
NNFIR, and NNARMAX. The models were evaluated on known data from a hy-
draulic actuation for oil pressure. They present the possible improvement pos-
sibilities of collecting the data from the real-world system, starting the training
from an initial guess to try to solve the problem by finding local optima for the
model.

Ogunmolu et al. [11] presented the model performance of the three different non-
linear structures of NN 1) multilayer perceptrons, 2) recurrent neural networks,
and 3) convolutional neural networks when these were used for system identifi-
cation. Their results showed at best a model fit for the multilayer perceptions of
99.9905% on the glass furnace dataset from the DaISy file server.

The model for the Unicycle has been derived in Jonsdottir and Petersson [6] where

4 1 Introduction

the comparison between a physics-based LQR controller and a Reinforcement
learning (RL) controller was analyzed and presented. They presented some good
results for the RL where the controller managed to stabilize the system in a good
way in simulation and managed to stabilize in the real world with reasonable per-
formance. Even if the controller showed some undesired behavior with high ac-
celerations and maximizing the motors. They were not able to understand where
this behavior originated and showed one of the drawbacks of using RL. Which is
that it is hard to understand where the behavior originated and therefore hard to
remove or add behavior that is or is not desired.

For nonlinear models Gautam [3] presented a NN based system identification
approach to control an inverted pendulum. It used a three-layer network to cre-
ate the nonlinear model for the system and a detuned controller to stabilize the
system. It was shown that the nonlinear model performed well when controlling
the system.

1.4 Delimitations

The focus of this thesis is to be able to balance the unicycle, the position of the
unicycle is neglected as long as it balances close to the equilibrium.

1.5 Thesis outline

In Chapter 2 the model of the system is obtained through Lagrangian analysis.
The necessary theory to derive this model is presented and described. Thereafter
a description of how to derive an LQR controller is presented. This ties together
by an analysis of how the LQR controller is able to control the system both in
simulation and real-world tests.

In Chapter 3 a description of how a NN can be used to learn the model of the
system is made. This model is used to derive an LQR controller for the system,
which is tested through simulation. In Chapter 4 an MPC controller is designed
from the four different models produced in the chapters before.

The main part of the thesis is finished with the discussion in Chapter 6 where
the results are discussed and why the results ended up as they did. Lastly, in
Chapter 7 the conclusions and future work are discussed.

2
Control using physics-based model

In this chapter, the physics-based model of the unicycle is analytically derived.
The two main methods to derive the model are the Newtonian approach and the
Lagrangian approach. In this thesis, the Lagrange model will be used. There-
after the theory to derive an LQR controller is presented and lastly the results,
obtained through simulating the LQR on the model are presented.

2.1 Mathematical description

To describe the systems’ model the rotation coordinates and the connection be-
tween the coordinate systems need to be described.

2.1.1 Rotation coordinates

The rotational description for an arbitrary vector p0 between two arbitrary frames
F0 and F1 can be described as follows. Consider vector p0 in frame F0 as:

p0 =

p0
x
p0
y

p0
z

 (2.1)

Where p0
x , p0

y , and p0
z is the scalar components of the arbitrary vector p0. Then p0

in frame F1 can be described as:

p1 = R1
0

p0
x
p0
y

p0
z

 (2.2)

5

6 2 Control using physics-based model

Where R1
0 is the rotation matrix from frame F0 to frame F1.

The rotation matrices that are of interest for the physics-based description in this
thesis are the elementary rotations along the x−, y− and z− axes, they are:

Rx(ϕ) =

1 0 0
0 cosϕ sinϕ
0 − sinϕ cosϕ

 (2.3)

Ry(θ) =

cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ

 (2.4)

Rz(ψ) =

 cosψ sinψ 0
− sinψ cosψ 0

0 0 1

 (2.5)

Where ϕ is the rotation around the x-axis, θ is the rotation around the y-axis
and ψ is the rotation around the z-axis. These three rotation matrices can be
combined and create complex rotational descriptions between different frames.

2.2 Description of the unicycle model characteristics

To describe the position of the unicycle a state that describes the current position
of the unicycle is denoted by s. To describe this model of the system, the Degrees
Of Freedom (DOF) of the system need to be calculated.

The unicycle can be seen as three connected bodies the wheel, the body, and the
disc. These bodies can be described with four frames, the world frame, the wheel
frame, the body frame, and the disc frame. The world frame which is the space
fixed coordinate system, is denoted by [x0, y0, z0]. The wheel frame is the coordi-
nate system connected from the center of mass of the wheel and is not affected by
the rotation of the wheel, this frame is denoted by [xw, yw, zw]. The body frame is
the coordinate system from the center of mass of the body, this frame is denoted
by [xb, yb, zb]. Lastly, the disc frame is the coordinate system from the center of
mass of the disc, this frame is denoted by [xd , yd , zd].

The DOF of the system can then be described as: i) the roll, which is the rota-
tion angle of the system around the x0-axis, ii) the pitch of the system which is
the rotation angle around the yw-axis, iii) the movement of the wheel along the
x0-axis creates the third DOF and iv) the rotation of the disc around the xd-axis.

Thus the unicycle has four degrees of freedom, the roll, which is denoted by ϕ,
the pitch, which is denoted by θ, the rotation of the wheel, which is denoted by
αw and the rotation of the disc which is denoted by αd . To be able to describe the
system behavior only these four states are needed.

To describe the positions of the system, the positions of the origins of the frames

2.2 Description of the unicycle model characteristics 7

can be expressed by disconnecting the three bodies and expressing them in the
world frame.

The description and values of the constants used in the model can be found in
the chapter appendix.

To describe the position of the wheel only its position to the world frame is
needed and therefore described by:

p0
w =

 −rwαw−rw sinϕ
rw cosϕ

 (2.6)

Where rw is the radius of the wheel. The body is connected to the wheel and to
describe the rotation frame R0

w is given by:

R0
w = RT

x (2.7)

Where Rx is the rotation frame described in Equation 2.3. Then the origin of the
body frame can be expressed by:

p0
b = p0

w + R0
wpwb =

 −rwαw + Lwb sin θ
−rw sinϕ + Lwb sinϕ cos θ
rw cosϕ + Lwb sinϕ cos θ

 (2.8)

Where Lwb is the length between the center of mass of the wheel and body. In the
same way, the rotation matrix Rw

d between the body and the disc is described by:

Rw
d = RT

y (2.9)

Where Ry is the rotation frame described in Equation 2.4. then the origin of the
disc frame can be expressed by:

p0
d = p0

w + R0
wpwd =

 −rwαw + Lwd sin θ
−rw sinϕ + Lwd sinϕ cos θ
rw cosϕ + Lwd sinϕ cos θ

 (2.10)

Where Lwd is the length between the center of mass of the wheel and the disc.

8 2 Control using physics-based model

ϕ

z0

y0

yb

zb
αd

(a)

θ

z0

xw
x0

zw

αw

(b)

Figure 2.1: Description of the coordinate systems.

2.3 Lagrange dynamics

To describe the Lagrangian the essential states are the DOF for the system. In Sec-
tion 2.2 it was shown that there are fourDOF of the system, which are αw, αd , ϕ, θ.
So the state vector of the system can be described as follows,

q(t) =

αw(t)
αd(t)
ϕ(t)
θ(t)

 ∈ R4 (2.11)

2.3.1 Lagrangian

The Lagrangian is a function that combines the energies of the system to derive
its dynamical model, and is defined as:

L(q, q̇) = T (q, q̇) − U (q) (2.12)

Where T (q, q̇) is the kinetic energy and U (q) is the potential energy of the con-
cerned system.

2.3.2 Potential energy

The potential energy of the system can be described by:

U (q) = g
[
mw mb md

]
p0

w
p0

b
p0

d

 (2.13)

2.3 Lagrange dynamics 9

Where g is the acceleration due to gravity, mi is the mass of body i and p0
i is the

position of the body in the world frame, where i = w, b, d

2.3.3 Kinetic energy

The kinetic energy can be split in two parts, translational Tt(q̇,q) and rotational
energy Tr (q̇,q). The transitional energy, i.e the energy created by the motion of
the bodies of the system and can be described as follows:

Tt =
1
2
mwṗ0

w(q)ṗ0
w(q)

T
+

1
2
mbṗ0

b(q)ṗ0
b(q)

T
+

1
2
md ṗ0

d(q)ṗ0
d(q)

T
(2.14)

Where ṗ0
i (q) is the time derivative of the position of body i.

The rotational energy for the bodies are described as:

Tri =
1
2
ωi

iIiω
i
i , i = w, b, d (2.15)

Where Ii is the inertia matrix of the body i and ωii is the angular velocity of the
body in its own frame. The angular velocities are described as following.

For the wheel, the rotations of the body is the spin of the wheel αw, and the
roll around the x0-axis ϕ̇.

ωww = Rx

ϕ̇0
0

 −
 0
α̇w
0

 (2.16)

The pitch θ̇ and roll ϕ̇ of the system gives the rotational velocity of the body ωbb .

ωbb = RxRy

ϕ̇0
0

 + Ry

0
θ̇
0

 (2.17)

The disc follows the rotation of the body with the angular velocity of the disc α̇d ,
whose angular velocity ωdd is defined as:

ωdd = ωbb +

α̇d0
0

 (2.18)

Using (2.15)-(2.18), the total rotational energy is obtained as follows:

Tr (q, q̇) = Trw + Trb + Trd (2.19)

The total kinetic energy is then defined as:

T (q, q̇) = Tr + Tt (2.20)

Where Tr is described in (2.19) and Tt in (2.14).

10 2 Control using physics-based model

2.3.4 External forces

The last part that is needed to create the Lagrangian equation is the external
forces on the system, Q. The external forces are limited to the torque of the
motors, these can be described as:

Q =

τw
τd
−τd
τw

 (2.21)

Where τd is the torque of the motor controlling the disc and τd is the torque of
the motor controlling the wheel.

According to Kirchoffs voltage law Sahin et al. [13] the torque of the motor can
be described as:

τ(t) = Kmi(t) (2.22)

where Km is the torque constant of the motor and i(t) is the armature current

− u(t) + Rai(t) + um(t) = 0⇔ i(t) =
u(t) − um(t)

Ra
(2.23)

Where Ra is the armature resistance, u is the input voltage, um is the reverse
emf voltage which is dependent of the angular velocity of the motor and can be
described as um = Kuω(t), where Ku is the motor velocity constant. This together
with (2.23), the torque of the motor can be described as:

τm = Km
um(t) − Ku α̇m(t)

Ra
(2.24)

So the external forces can be written as:

Q =

Kw

uw(t)−Ku,w α̇w(t)
Ra

Kd
ud (t)−Ku,d α̇d (t)

Ra

−Kd
ud (t)−Ku,d α̇d (t)

Ra

Kw
uw(t)−Ku,w α̇w(t)

Ra

(2.25)

2.3.5 Lagrange equation

The Lagrangian function associated with the considered system can be described
as:

d
dt

∂L(q̇,q)
∂q̇i

− ∂L(q̇,q)
∂qi

+ Q(q̇,u) = 0, i = 1...M (2.26)

This creates a nonlinear description of the system. Equation (2.26) can be simpli-
fied if (2.12) is inserted in (2.26). Then (2.26) can be written as:

∂
∂q̇

∂T (q̇,q)
∂q̇

q̈ − ∂
∂q

∂T (q̇,q)
∂q̇

q̇ − ∂L(q̇,q)
∂q

q̇ + Q(q̇,u) = 0 (2.27)

2.4 Simulation environment 11

The Lagrangian can then be solved for q̈ which gives a describing function of the
system as:

M · q̈ = f(q̇,q,u) (2.28)

Where M is the mass matrix and f is the matrix of the functions, dependent on
velocity, position and inputs of the system. Equation (2.28) is simplified to get
the acceleration of the system as:

q̈ = M−1(q̇,q,u) · f(q̇,q,u) (2.29)

From this description of the acceleration, the velocity and position states can
be derived with initial value solvers and the full description of the system is
obtained.

2.4 Simulation environment

To analyze the closed-loop performance of the unicycle system, a simulation en-
vironment was made. This simulation environment is using the full nonlinear
description of the system as presented in Section 2.3. The initial value solver
used in the simulation is the Runge-Kutta 45.

2.5 LQR control theory

Linear Quadratic Regulator (LQR) is a full state feedback method where the sys-
tem is controlled by suitably designing an optimal closed-loop gain.

2.5.1 Linearization

The first step to being able to synthesize an LQR controller is to linearize the
nonlinear model. The dynamics of the nonlinear system can be described as:

d
dt

x(t) = f(x(t),u(t)), x ∈ Rn,u ∈ Rm (2.30)

y(t) = h(x(t),u(t)), y ∈ Rp (2.31)

For an LQR controller the linearization is performed around the equilibrium
point xeq,ueq. At this point the system satisfies ẋ = 0, which implies:

ẋ (t) = f (x (t) ,u (t)) = 0 (2.32)

The linear dynamics can be seen as a valid approximation of the system model,
in a neighborhood of the equilibrium point provided f and h are differentiable.
Expanding f and h around the equilibrium with 1st order Taylor expansion, the
linearized dynamics can be described as:

d
dt

x = A
(
x (t) − xeq)

)
+ B

(
u (t) − ueq

)
(2.33)

y = C
(
x (t) − xeq

)
+ D

(
u (t) − ueq

)
(2.34)

12 2 Control using physics-based model

Where:

A =
∂f
∂x

∣∣∣∣∣x=xeq
u=ueq

(2.35)

B =
∂f
∂u

∣∣∣∣∣x=xeq
u=ueq

(2.36)

C =
∂h
∂x

∣∣∣∣∣x=xeq
u=ueq

(2.37)

D =
∂h
∂u

∣∣∣∣∣x=xeq
u=ueq

(2.38)

2.5.2 Infinite-horizon discrete time LQR

After discretization Equation (2.33) can be expressed as:

xk+1 = Axk + Buk (2.39)

A performance index J is considered as follows:

J =
∞∑
k=0

(
xT

kQxk + uT
kRuk

)
(2.40)

Where Q and R are matrices that are given by trial and error.

Then the optimal feedback is:

uk = −Kxk (2.41)

Where

K =
(
R + BT P B

)−1 (
BT P A + N T

)
(2.42)

And P is the positive definite solution to the discrete time algebraic Riccati equa-
tion:

P = AT P A − AT P B
(
R + BT P B

)−1
BT P A + Q (2.43)

By combining (2.39) and (2.40), the close-loop system can be written as:

xk+1 = (A − BK) xk (2.44)

Equation 2.44 has guaranteed phase and gain margins and is asymptotically sta-
ble.

2.6 LQR control 13

2.5.3 Controllability

A system is controllable if the controllability matrix S(A, B), is of full rank Glad
and Ljung [4], where S(A, B) is defined as

S(A, B) =
[
B AB A2B ... An−1B

]
(2.45)

With the A and B matrix given by the linearization in Section 2.5.1. The systems’
controllability matrix has a rank of 6, which is equal to the system state dimen-
sion. Therefore the system is controllable.

2.6 LQR control

To design the LQR controller for the unicycle system, the nonlinear model is
linerized as described in Section 2.5.1. The state vector is defined as:

x =

α̇w
α̇d
ϕ̇
θ̇
ϕ
θ

(2.46)

The linearized system matrices are obtained as follows:

A =

−23.189 0.001 0 0 0.100 129.730
0.006 −2.018 0 0 −21.228 −0.057
−0.006 0.132 0 0 21.228 0.057
−7.920 0.001 0 0 0.057 73.969

0 0 1 0 0 0
0 0 0 1 0 0

(2.47)

B =

21.653 −0.002
−0.005 7.697
0.005 −0.503
7.395 −0.001

0 0
0 0

(2.48)

The system matrices in (2.47) - (2.48) give the continuous-time linearized system
model. To implement the LQR, described in Section 2.5.2, the continuous-time
model is discretized. The system matrices for the discrete-time linearized system
are given as follows:

Ad =

7.928 · 10−1 5.547 · 10−6 4.676 · 10−6 6.016 · 10−3 9.010 · 10−4 1.159 · 100

5.437 · 10−5 9.800 · 10−1 −1.054 · 10−3 −2.728 · 10−6 −2.102 · 10−1 −5.324 · 10−4

−5.500 · 10−5 1.308 · 10−3 1.001 · 100 2.750 · 10−6 2.122 · 10−1 5.385 · 10−4

−7.077 · 10−2 3.316 · 10−6 2.750 · 10−6 1.003 · 10+0 5.385 · 10−4 6.929 · 10−1

−2.854 · 10−7 6.562 · 10−6 1.000 · 10−2 9.267 · 10−9 1.001 · 100 2.750 · 10−6

−3.673 · 10−4 1.699 · 10−8 9.267 · 10−9 1.001 · 10−2 2.750 · 10−6 1.003 · 100

(2.49)

14 2 Control using physics-based model

Bd =

1.934 · 10−1 −2.115 · 10−5

−5.077 · 10−5 7.620 · 10−2

5.136 · 10−5 −4.989 · 10−3

6.608 · 10−2 −1.264 · 10−5

2.665 · 10−7 −2.502 · 10−5

3.429 · 10−4 −6.480 · 10−8

(2.50)

From these system matrices, an LQR controller can be synthesized as described
in Section 2.5.2.

2.6.1 Penalty matrices

The choice of R and Q can be made differently depending on how the system is
desired to work. In this thesis three main Matrices will be used, these have been
chosen for their performance where they have shown the desired behavior on at
least one of the models used in this thesis.

The matrices are the following:

Q1 =

0.001 0 0 0 0 0
0 0.001 0 0 0 0
0 0 0.1 0 0 0
0 0 0 0.1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

(2.51a)

R1 =
[
0.12 0

0 0.12

]
(2.51b)

Q2 =

0.0001 0 0 0 0 0
0 0.0001 0 0 0 0
0 0 0.1 0 0 0
0 0 0 0.1 0 0
0 0 0 0 100 0
0 0 0 0 0 1

(2.52a)

R2 =
[
0.12 0

0 120

]
(2.52b)

Q3 =

0.00001 0 0 0 0 0
0 0.00001 0 0 0 0
0 0 0.0001 0 0 0
0 0 0 0.0001 0 0
0 0 0 0 0.01 0
0 0 0 0 0 100

(2.53a)

R3 =
[
0.000001 0

0 1000000

]
(2.53b)

2.6 LQR control 15

2.6.2 Control gain

With these control matrices and the linerized state space model of the system
used in (2.42) the control gain K is obtained as:

K1 =
[
−2.07 −5.64 · 10−5 −1.62 · 10−3 7.00 −1.20 · 10−2 4.65 · 101

2.40 · 10−4 −5.27 · 10−1 −2.82 · 101 −5.00 · 10−3 −1.33 · 102 −1.43 · 10−2

]
(2.54)

K2 =
[
−2.068 · 100 2.531 · 100 1.260 · 102 7.677 · 100 5.750 · 102 4.813 · 101

−1.104 · 10−3 −5.113 · 10−1 −2.546 · 101 2.199 · 10−2 −1.161 · 102 6.241 · 10−2

]
(2.55)

K3 =
[
−9.564 · 10−1 5.138 · 103 2.559 · 105 −1.775 · 102 1.167 · 106 −3.377 · 102

−1.586 · 10−6 −3.233 · 10−2 −1.610 · 100 1.228 · 10−3 −7.345 · 100 4.788 · 10−3

]
(2.56)

2.6.3 Simulation

The different control gain stabilize the systems with different characteristics. The
following plots show the reaction of the system with the starting point as θ =
0.2rad ≈ 11.5◦ and ϕ = 0.1rad ≈ 5.7◦ in plot a) and for plot b) θ = 0.02rad ≈ 1.15◦

and ϕ = 0.01rad ≈ 0.6◦

0 5 10 15 20 25 30
Time

−2

0

2

4

6

8

10

12

An
gl
e
(D
eg

re
es
)

Phi
Theta

(a)

0 5 10 15 20 25 30
Time

−2

0

2

4

6

8

10

12

An
gl
e
(D
eg

re
es
)

Phi
Theta

(b)

Figure 2.2: Balancing the unicycle system with LQR with control gain K1

16 2 Control using physics-based model

0 5 10 15 20 25 30
Time

−250

−200

−150

−100

−50

0

50

An
gl
e
(D

eg
re
es
)

Phi
Theta

(a)

0 5 10 15 20 25 30
Time

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0

An
gl
e
(D

eg
re
es

)

Phi
Theta

(b)

Figure 2.3: Balancing the unicycle system with LQR with control gain K2

0 5 10 15 20 25 30
Time

−200

0

200

400

600

An
gl
e
(D

eg
re
es
)

Phi
Theta

(a)

0 5 10 15 20 25 30
Time

−250

−200

−150

−100

−50

0

50

100

An
gl
e
(D

eg
re
es
)

Phi
Theta

(b)

Figure 2.4: Balancing the unicycle system with LQR with control gain K3

The best control gain is K1 and with it the penalty matrices of Q1 and R1.

2.6.4 Characterizing region of attraction neighborhood

The linearized model of the system is only valid within a neighborhood around
the equilibrium point. One way to find this area is to find initial states, from
which the unicycle can stabilize itself. From these tests, the region of attraction
(ROA) can be characterized. By trial and error the ROA when K1 is used is found
to be |θ| ≤ 0.45rad ≈ 26◦ and |ϕ| ≤ 0.1rad ≈ 6◦. The process to find these angles is
presented in figures 2.5-2.7.

2.6 LQR control 17

(a) (b)

Figure 2.5: Balance with LQR in simulation with initial conditions to find
max ϕ

(a) (b)

Figure 2.6: Balance with LQR in simulation with initial conditions to find
max θ

(a) (b)

Figure 2.7: LQR with start just inside (a) and just outside (b) the stable zone.

The same process were used to find the ROA when K2 and K3 are used as the
control matrices. For K2 the ROA is for ϕ = 0.1rad ≈ 5.7◦ and θ = 0.45rad ≈ 25◦

18 2 Control using physics-based model

0 5 10 15 20 25 30
Time

−50

0

50

100

150

200

250

An
gl
e
(D

eg
re
es
)

Phi
Theta

(a)

0 5 10 15 20 25 30
Time

−400

−300

−200

−100

0

100

200

An
gl
e
(D

eg
re
es
)

Phi
Theta

(b)

Figure 2.8: Stable and unstable starting points with K2 as control gain

For K3 the ROA is for ϕ = 0rad ≈ 0◦ and θ = 0rad ≈ 0◦

0 5 10 15 20 25 30
Time

−400

−300

−200

−100

0

100

200

An
gl
e
(D

eg
re
es
)

Phi
Theta

(a)

0 5 10 15 20 25 30
Time

−0.04

−0.02

0.00

0.02

0.04

An
gl
e
(D

eg
re
es

)

Phi
Theta

(b)

Figure 2.9: Stable and unstable starting points with K3 as control gain

2.7 Disturbance reaction

To test the disturbance reactions of the control matrices the control input was set
to a fixed value for 0.1 seconds, this value was slowly raised until the controller
did not manage to stabilize after.

When K1 is used to control the system the system behavior is shown in Figure
2.10

2.7 Disturbance reaction 19

0 5 10 15 20 25 30
Time

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0

12.5

An
gl
e
(D

eg
re
es

)

Phi
Theta

Figure 2.10: LQR control with K1 with disturbances every 5 seconds

The disturbances the system manages to control are when it is inside the ROA
presented in Section 2.6.4

2.7.1 Real world test

The most promising controller according to the behaviors in the simulation and
ROA is K1. This LQR controller is applied on the real-world unicycle and it
manages to stand. It oscillates around θ but manages to get back to equilibrium.

20 2 Control using physics-based model

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time

−10

−5

0

5

10

15

20

25

An
gl
e

Phi
Theta

Figure 2.11: Balance with LQR in the real world

2.8 Summary

An LQR controller is synthesized from the Lagrangian nonlinear description of
the unicycle, which is shown to stabilize the unicycle system for both the tests in
simulation and the tests on the real-world unicycle system.

The controller works reasonably well, even though the pitch and roll of the sys-
tem are highly correlated. There is room for improving the controller with the
help of different filters and system models. These filters can for example dampen
the reaction of the controller, as seen in Figure 2.11. The θ angle oscillates around
the equilibrium but never manages to stabilize itself.

3
Learning-based model

In this chapter, the approach of learning the system model with a neural network
is formulated. The model learned using the neural network is then used to derive
an LQR controller. A short analysis of how the system performs, with the derived
LQR, concludes the chapter.

3.1 System Identification

System identification deals with building a mathematical model of a dynamical
system based on the observed data of the system with statistical methods, Ljung
[8]. System Identification is a black or gray box system, which is a system that can
be viewed in terms of its inputs and outputs and the terms in the models have no
direct or not complete physical interpretation, Ljung and Glad [9]. Thus when
learning the model with a neural network is classified as a system identification
method.

3.2 Neural Network

A neural network is a mathematical structure consisting of suitably designed
nodes with weighted connections amongst themselves. The network tries to
learn a system model by updating the connection weights, by utilizing the in-
put/output data of the concerned system, Bishop [1].

3.2.1 Basic structure

A neural network is created by a number of input and output nodes that are con-
nected. All the connections are assigned a weight that tries to map the input to

21

22 3 Learning-based model

the output. For example, a neural network that has one input and one output
node takes the input value and multiplies it with the weight between the nodes,
and presents it as the output. This output is then compared with the actual out-
put of the system (obtained input/output database of the system) and the weight
of the connection is suitably adjusted so that errors between the obtained output
and the actual output are reduced. See Figure 3.1 for a visual example.

x1 = 1 y1 = 0.1w11 = 0.1

Input
layer

Output
layer

Figure 3.1: Neural network with one input and one output

This NN can be described in mathematical terms as:

w11 · x1 = y1 (3.1)

If the network is expanded with more inputs and outputs, a larger network of
weights will connect the inputs with the outputs where the output is the sum of
the inputs multiplied by the weights connected to the outputs and create a linear
mapping between them, as seen in Figure 3.2.

x1 = 1

x2 = 1

y1 = 0.4

y2 = 0.6

w11 = 0.1

w12 = 0.2

w21 = 0.3

w22 = 0.4

Input
layer

Output
layer

Figure 3.2: Neural network

The extended general NNs with j inputs and i outputs output can mathematically
be described as:

yi =
∑
j

wij · xj (3.2)

Which can be represented in compact form as follows:
y1
...
yi

 =

w11 . . . w1j
...

. . .
...

wi1 . . . wij

 ·

x1
...
xj

 (3.3)

3.2 Neural Network 23

3.2.2 Activation function

In neural networks, the activation function passes the values after a node through
a function. So for example after the output layer a function is added, so the
output would be g(w11x1 + · · · +w84x8) where g is the activation function. In this
thesis, the linear activation function is used. The linear activation function sets
the function g as follows:

g(x) = x (3.4)

3.2.3 Loss function

To quantify the performance of the neural network, a loss function is used. This
function is a big part of the backpropagation algorithm (discussed below) and de-
pending on what loss function is used the backpropagation will work differently.
The most common loss function for regression problems is MSE - Mean Squared
Error, which is described by the difference between the model prediction and the
true measured value of the state squared, Blom et al. [2]. The loss function is
denoted by ε(j) and the equation for MSE is described by:

ε(j) = (yj − zj)2 (3.5)

Where yj is the true measured value and zj is the model predicted value.

3.2.4 Backpropagation

To train the NN, i.e. update its weights, backpropagation is used where the
change of the weight between nodes i and j, ∆wij is calculated by:

∆wij = −η
J∑
j=1

∂ε(j)
∂wij

(3.6)

Where η is the learning rate, j is the output node, J is the total number of output
nodes, and ε is the value of the loss functions for the measurement of the output
node.

3.2.5 Student-Teacher learning

Student-Teacher methods are used to help the network that is going to be de-
ployed to start training from a point where it has been given an advantage and
therefore has a higher chance to find the global optima of the system. This can
be realized in several different ways. One is to let a network train in a simulated
environment where it has been given privileged knowledge, like its global posi-
tion. This network is called the teacher network. This network is later used to
help train the network that is going to be deployed, the student network, to find
the best model.

The method of warm starting the training of a network is often used to help give

24 3 Learning-based model

the network a good guess as a starting point and is classified as a student-teacher
method.

3.3 Neural network to system description

The system can be described as in (2.39), if we substitute Axk+Buk with F(q̇,q,u) =

F ·

q
q̇
u

 we get q̈ = F ·

q
q̇
u

. Then F is a n×mmatrix where n is the number of states

in q̇,q and m is the number of states in q̈. Then F can be learned with a NN and
then rewritten back to state space form as ẋ = A · x + B · u.

...
...

x1

x2

x8

y1

y4

W11

W14
W21

W24

W81

W84

Input
layer

Output
layer

Figure 3.3: Neural network

F and therefore A and B can be derived from the structure of the NN. Where the
weights between the input nodes and output nodes can be structured as a matrix.
As can be seen in Figure 3.3 creates F as:

F =

W11 W21 W31 W41
W12 W22 W32 W42
W13 W23 W33 W43
W14 W24 W34 W44
W15 W25 W35 W45
W16 W26 W36 W46
W17 W27 W37 W47
W18 W28 W38 W48

(3.7)

3.4 Dataset 25

FT ·

α̇w
α̇d
ϕ̇
θ̇
ϕ
θ
uw
ud

=

α̈w
α̈d
ϕ̈
θ̈

 (3.8)

In this example the system is described by x =

α̇w
α̇d
ϕ̇
θ̇
ϕ
θ

.

To get the system matrices first the weights corresponding to u are taken out and
create B as:

B =
[
W17 W27 W37 W47
W18 W28 W38 W48

]T
=

W17 W18
W27 W28
W37 W38
W47 W48

 (3.9)

And the A matrix then becomes:

A =

W11 W21 W31 W41 0 0
W12 W22 W32 W42 0 0
W13 W23 W33 W43 1 0
W14 W24 W34 W44 0 1
W15 W25 W35 W45 0 0
W16 W26 W36 W46 0 0

T

=

W11 W12 W13 W14 W15 W16
W21 W22 W23 W24 W25 W26
W31 W32 W33 W34 W35 W36
W41 W42 W43 W44 W45 W46

0 0 1 0 0 0
0 0 0 1 0 0

(3.10)

The complete system can finally be described as:

α̈w
α̈d
ϕ̈
θ̈
ϕ̇
θ̇

=

W11 W12 W13 W14 W15 W16
W21 W22 W23 W24 W25 W26
W31 W32 W33 W34 W35 W36
W41 W42 W43 W44 W45 W46

0 0 1 0 0 0
0 0 0 1 0 0

·

α̇w
α̇d
ϕ̇
θ̇
ϕ
θ

+

W17 W18
W27 W28
W37 W38
W47 W48

0 0
0 0

·
[
uw
ud

]

(3.11)

3.4 Dataset

The dataset used to train the neural network to learn the model of the system was
created by running the unicycle in the real world. During the data collection, the
LQR designed in Chapter 2 was used to stabilize the Unicycle. To get the dataset

26 3 Learning-based model

as diverse as possible firstly the controller ran with the standard LQR controller
from Chapter 2, where the systems model around the equilibrium is in focus.
Sequentially a white noise was added to the input to obtain diverseness in the
collected data. The standard deviation of the white noise was slowly increased
and when the unicycle was not able to stand, the white noise was introduced only
at every tenth time step.

This ended up with around 400 000 data points that could be used for learning
the system behavior.

3.5 Training

To find the best training approach for the models several different approaches
were tested and the final training method includes the following structure.

3.5.1 Loss function

The loss function used was MSE. This method returns the difference between the
true measured value and the predicted value squared.

ε(j) = (yj − zj)2 (3.12)

This gives the backpropagating term as:

∂ε(j)
∂zj

= −2(yj − zj) (3.13)

Where yj is the true measured value and zj is the model predicted value.

3.5.2 Epochs

To get as much as possible from the dataset, the model was trained on ∼ 80% of
the data and the rest of the data was used for evaluation and testing. The train-
ing data was then split into five batches, which were iterated for each epoch of
training. Up to 100 epochs were used to produce the models.

3.6 Models

To try to find the best model to describe the system two different model struc-
tures were tested.

3.6 Models 27

3.6.1 Model structure

The linearized model can be created in different ways. To create a linearized
model the A matrix of the system model needs to be able to be described with a
quadratic matrix. The first model is the same as used in Chapter 2 the A matrix
was described as a 6 × 6 matrix where

α̈
α̈
ϕ̈
θ̈
ϕ̇
θ̇

= A1

α̇w
α̇d
ϕ̇
θ̇
ϕ
θ

+ B1

[
uw
ud

]
(3.14)

Where the two last rows in A1 are

[
0 0 1 0 0 0 0

]
and [

0 0 0 1 0 0 0
]

since they describe ϕ̇ and θ̇ directly, as seen in Section 3.3.

The second models structure is describing the velocity and creates the A matrix
as 4 × 4 which is described as the following system:

α̇w
α̇d
ϕ̇
θ̇

 = A2

αw
αd
ϕ
θ

 + B2

[
uw
ud

]
(3.15)

The theory derived in Section 3.3 is used to create the matrices for the second
model structure. The difference is for F which will be a 6× 6 matrix and a square
matrix and thus no extra rows will be added.

3.6.2 System matrices

The first model structure gave the system matrices shown in (3.16)

28 3 Learning-based model

A1 =

7.429 · 10−4 −2.423 · 10−3 −2.745 · 10−2 6.024 · 10−2 −1.002 · 10−1 −1.535 · 100

2.415 · 10−3 −3.298 · 10−2 −1.318 · 100 −8.788 · 10−3 2.041 · 100 2.164 · 10−1

−2.012 · 10−3 −4.371 · 10−3 −1.402 · 10−1 1.091 · 10−2 −1.092 · 100 2.720 · 10−2

−3.994 · 10−2 6.373 · 10−3 2.919 · 10−1 1.991 · 10−1 1.161 · 100 2.068 · 10−1

0 0 1 0 0 0
0 0 0 1 0 0

(3.16a)

B1 =

1.486 · 10−2 4.013 · 10−3

−6.443 · 10−3 1.235 · 10−1

2.490 · 10−4 4.566 · 10−3

2.818 · 10−2 −5.868 · 10−3

0 0
0 0

(3.16b)

The second model approach gave the system matrices shown in (3.17)

A2 =

−7.136 · 10−4 −1.112 · 10−3 1.615 · 10−4 −1.153 · 10−4

−7.267 · 10−5 1.054 · 10−3 −2.264 · 10−4 −1.405 · 10−4

−4.864 · 10−1 −1.802 · 102 −5.750 · 10−1 1.373 · 10−2

2.374 · 101 −1.806 · 100 3.909 · 10−2 2.783 · 100

 (3.17a)

B2 =

5.354 · 10−1 −4.287 · 10−3

2.980 · 10−3 1.585 · 10+0

−5.123 · 10−4 −5.393 · 10−3

−1.017 · 10−3 5.955 · 10−3

 (3.17b)

3.6.3 Student Network

As described in section 3.2.5 the learning of the model can be started from a priv-
ileged starting point. This was done by setting the start weights as the weights
derived in section 2.5, and the state space models presented in equations (2.47)
and (2.48). When this is applied the NN models start predicting according to
the model that was produced in Chapter 2 and then starts to converge from that
model towards the model that the dataset produced. This gives the NN a higher
chance to converge towards the true model, where the true model is how the
system is behaving with all the effects that were not added to the calculations
in Chapter 2. Since only the first model approach was produced with the La-
grangian in Chapter 2. This is the only NN model that can be used with student-
teacher learning.

When this approach was applied the following system matrices were produced:

3.6 Models 29

Asn =

8.133 · 10−2 3.163 · 10−3 3.111 · 10−1 −1.269 · 10−1 9.454 · 10−1 −3.060 · 100

3.162 · 10−3 −1.025 · 10−2 −6.929 · 10−1 2.252 · 10−2 −6.179 · 10−1 3.488 · 10−2

−2.194 · 10−3 −6.440 · 10−4 7.585 · 10−2 4.336 · 10−3 −1.358 · 10−1 1.090 · 10−2

−2.730 · 10−2 −4.241 · 10−4 4.831 · 10−2 1.480 · 10−1 −8.748 · 10−2 1.527 · 10−1

0 0 1 0 0 0
0 0 0 1 0 0

(3.18a)

Bsn =

−4.048 · 10−2 −2.213 · 10−3

−4.293 · 10−3 2.199 · 10−2

2.456 · 10−3 7.625 · 10−4

1.756 · 10−2 1.529 · 10−3

0 0
0 0

(3.18b)

3.6.4 Model validation

For the second model, the rank of the controllability matrix is 4 which is a full
rank and therefore controllable according to the controllability theorem.

For the first and the student-based model, the rank of the corresponding control-
lability matrices is 6 which is of full rank, and therefore the model is controllable.

To validate the performances of the models they were used to predict the mo-
tions of the unicycle from a shorter real world test run. The same test data were
used for all models except for the second model which measures the velocity of
the states compared to the acceleration in the other models.

For the first model the measurement of ϕ̈ and θ̈ is shown in Figure 3.4. The
measurement of ϕ̈, seen in Figure 3.4a, begins performing well but drifts away
towards the end of the test. For the measurement of θ̈, see Figure 3.4b, it follows
the reactions of the test data but it does not spike as high.

(a) (b)

Figure 3.4: True and measured values of model 1

30 3 Learning-based model

The second model is not predicting the changes in ϕ̇ and θ̇ well. It tries to follow
but does not manage to react to any of the changes in the system.

(a) (b)

Figure 3.5: True and measured values of model 2

For the student network model measurements in Figure 3.6 its measurements are
similar to model three for both ϕ̈ and θ̈. But a small improvement of reacting on
the changes in accelerations of ϕ where it seems to follow the true value better.

(a) (b)

Figure 3.6: True and measured values of the student network

3.7 Simulation

The same simulation environment that was created by the nonlinear model in
Section 2.3 was used, with the same solver Runge-Kutta 45. The simulation gives
an understanding if the model is promising or not before being applied in the
real world. For all simulations, the same nonlinear model was used.

3.8 LQR control

The system matrices from the different models were used to create the LQR con-
trollers which were applied in the simulation environment. The simulation angle

3.8 LQR control 31

of ϕ is shifted by π for all models. This result is discussed in Chapter 7.

3.8.1 Model 1

Then the derived Kd matrices becomes:

K1 =
[
−3.015 · 100 2.030 · 10−1 4.102 · 101 4.950 · 101 1.969 · 101 2.376 · 101

2.024 · 10−1 −3.025 · 10−4 −2.475 · 100 −3.284 · 100 ,−1.243 · 100 −1.595 · 100

]
(3.19)

K2 =
[
−3.031 · 100 1.957 · 10−1 4.139 · 101 4.974 · 101 , 1.882 · 101 2.390 · 101

1.964 · 10−4 7.774 · 10−6 9.283 · 10−3 −3.406 · 10−3 2.010 · 10−3 −1.562 · 10−3

]
(3.20)

K3 =
[
−2.471 · 10+2 1.142 · 10+1 1.930 · 10+2 9.770 · 10+2 4.109 · 10+1 8.836 · 10+3

−3.099 · 10−9 1.575 · 10−0 2.515 · 10−9 1.493 · 10−9 6.144 · 10−1 −1.504 · 10−9

]
(3.21)

When tested in the simulation we get the following results:

0 5 10 15 20 25 30
Time

−25

−20

−15

−10

−5

0

5

10

An
gl
e
(D

eg
re
es
)

Phi
Theta

(a)

0 5 10 15 20 25 30
Time

−40

−20

0

20

40

60

80

An
gl
e
(D
eg

re
es
)

Phi
Theta

(b)

Figure 3.7: Balancing the unicycle system with LQR with control gain K1

The first controller manages to stabilize within a reasonable time frame, even
though the oscillation, in the beginning, is a bit higher.

32 3 Learning-based model

0 5 10 15 20 25 30
Time

−25

−20

−15

−10

−5

0

5

10

An
gl
e
(D

eg
re
es
)

Phi
Theta

(a)

0 5 10 15 20 25 30
Time

−40

−20

0

20

40

60

80

An
gl
e
(D
eg

re
es
)

Phi
Theta

(b)

Figure 3.8: Balancing the unicycle system with LQR with control gain K2

The second controller is not as fast to stabilize as the first but manages to stabilize
in the end.

0 5 10 15 20 25 30
Time

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0

12.5

An
gl
e
(D

eg
re
es

)

Phi
Theta

(a)

0 5 10 15 20 25 30
Time

−20

0

20

40

60

80

An
gl
e
(D
eg

re
es
)

Phi
Theta

(b)

Figure 3.9: Balancing the unicycle system with LQR with control gain K3

The third controller has the worst behavior with high oscillation for ϕ, but in
some cases manages to stabilize θ quickly.

3.8.2 Model 2

Since the Q and R matrices that are used for the other models are not working
on model 2, separate matrices are produced and used. The Q and R matrices that

3.8 LQR control 33

were found to perform the best in the simulation were:

Q =

0.0001 0 0 0

0 0.001 0 0
0 0 0.1 0
0 0 0 0.1

 (3.22a)

R =
[
0.12 0

0 1.2

]
(3.22b)

Then the derived Kd matrix, with the choice of Q and R as above, is obtained as
follows:

Kd =
[

4.633 · 100 −9.381 · 10−1 6.039 · 10−3 5.433 · 10−1

−1.546 · 10−2 −3.591 · 10−1 −1.318 · 10−3 −1.754 · 10−3

]
(3.23)

When tested in the simulation we get the following result:

0 5 10 15 20 25 30
Time

−4

−2

0

2

4

6

An
gl
e
(D

eg
re
es
)

Phi
Theta

Figure 3.10: LQR controller based on the second model

The controller behaves undesirably, but manages to stabilize.

3.8.3 Model student network

The Penalty matrices used are the same as presented in (2.51), (2.52) and (2.53).
Then the derived K matrices are the following:

K1 =
[
−2.08 1.61 · 10−4 3.53 · 10−3 8.706 3.44 · 10−2 5.37 · 101

−6.85 · 10−4 −5.27 · 10−1 −2.77 · 101 1.79 · 10−2 −1.26 · 102 4.76 · 10−2

]
(3.24)

34 3 Learning-based model

K2 =
[
−3.800 · 100 2.068 · 10−1 −1.320 · 102 , 9.351 · 101 2.593 · 101 3.945 · 101

6.020 · 10−5 1.200 · 10−5 6.312 · 10−2 ,−5.574 · 10−3 3.183 · 10−3 −1.752 · 10−3

]
(3.25)

K3 =
[
−2.235 · 102 4.590 · 101 −3.677 · 104 5.714 · 103 2.635 · 103 8.547 · 103

1.231 · 10−9 −2.884 · 10−0 7.684 · 10−6 −1.072 · 10−6 3.779 · 10−8 5.024 · 10−8

]
(3.26)

When tested in the simulation we get the following results:

0 5 10 15 20 25 30
Time

−100

−75

−50

−25

0

25

50

75

100

An
gl
e
(D

eg
re
es
)

Phi
Theta

(a)

0 5 10 15 20 25 30
Time

−100

−50

0

50

100

An
gl
e
(D

eg
re
es
)

Phi
Theta

(b)

Figure 3.11: Balancing the unicycle system with LQR with control gain K1

The first controller does not stabilize at all, even when staring almost at the equi-
librium.

0 5 10 15 20 25 30
Time

−30

−20

−10

0

10

An
gl
e
(D

eg
re
es
)

Phi
Theta

(a)

0 5 10 15 20 25 30
Time

−20

−15

−10

−5

0

5

10

An
gl
e
(D

eg
re
es
)

Phi
Theta

(b)

Figure 3.12: Balancing the unicycle system with LQR with control gain K2

The second controller manages to stabilize the system but has a big undesired
oscillation in the beginning.

3.9 Characterizing region of attraction neighborhood 35

(a)

0 5 10 15 20 25 30
Time

−30

−20

−10

0

10

20

An
gl
e
(D

eg
re
es
)

Phi
Theta

(b)

Figure 3.13: Balancing the unicycle system with LQR with control gain K3

The third controller has a hard time stabilizing ϕ but when starting ϕ close to
the equilibrium it manages to stabilize.

The controllers have different reactions, the first does not manage to stabilize,
the second stabilizes but has high oscillation in the beginning, and the third only
manages to stabilize if the start position is close to the equilibrium.

3.9 Characterizing region of attraction neighborhood

The linearized model of the system is only valid within a neighborhood around
the equilibrium point. One way to find this area is to find the initial states, from
which the unicycle can stabilize itself. From these tests, the ROA can be charac-
terized. The ROA for the different models and control matrices are found by trial
and error.

3.9.1 Model 1

For K1 the ROA is for ϕ = 3.2rad ≈ 183◦ and θ = 0.65rad ≈ 37◦

36 3 Learning-based model

0 5 10 15 20 25 30
Time

−100

−50

0

50

100

150

An
gl
e
(D

eg
re
es
)

Phi
Theta

(a)

0 5 10 15 20 25 30
Time

−100

0

100

200

300

400

An
gl
e
(D

eg
re
es
)

Phi
Theta

(b)

Figure 3.14: Stable and unstable starting points with control gain K1

For K2 the ROA is for ϕ = 0.6rad ≈ 34◦ and θ = 0.25rad ≈ 14◦

0 5 10 15 20 25 30
Time

−40

−20

0

20

40

An
gl
e
(D

eg
re
es
)

Phi
Theta

(a)

0 5 10 15 20 25 30
Time

−100

−75

−50

−25

0

25

50

75

An
gl
e
(D

eg
re
es
)

Phi
Theta

(b)

Figure 3.15: Stable and unstable starting points with control gain K2

For K3 the ROA is for ϕ = 0.95rad ≈ 54◦ and θ = 2.4rad ≈ 137◦

0 5 10 15 20 25 30
Time

−20

0

20

40

60

80

100

120

140

An
gl
e
(D
eg

re
es
)

Phi
Theta

(a)

0 5 10 15 20 25 30
Time

50

75

100

125

150

175

200

225

An
gl
e
(D

eg
re
es

)

Phi
Theta

(b)

Figure 3.16: Stable and unstable starting points with control gain K3

3.9 Characterizing region of attraction neighborhood 37

3.9.2 Model 2

For model 2 the LQR controller the ROA is small and hard to analyze. The behav-
ior is undesired for all starting points but is stabilizing as seen in Figure 3.17.

0 5 10 15 20 25 30
Time

−4

−2

0

2

4

6

An
gl
e
(D

eg
re
es
)

Phi
Theta

Figure 3.17: LQR controller based on the second model

3.9.3 Student model

For K1 the system is not stable even if started from the equilibrium.

0 5 10 15 20 25 30
Time

−100

−50

0

50

100

An
gl
e
(D

eg
re
es
)

Phi
Theta

(a)

0 5 10 15 20 25 30
Time

−100

−50

0

50

100

An
gl
e
(D

eg
re
es
)

Phi
Theta

(b)

Figure 3.18: Balancing the unicycle system with LQR with control gain K1

For K2 the ROA is for ϕ = 0.3rad ≈ 17◦ and θ = 0.15rad ≈ 8◦

38 3 Learning-based model

0 5 10 15 20 25 30
Time

−30

−20

−10

0

10

An
gl
e
(D

eg
re
es
)

Phi
Theta

(a)

0 5 10 15 20 25 30
Time

−80

−60

−40

−20

0

20

40

60

80

An
gl
e
(D
eg

re
es
)

Phi
Theta

(b)

Figure 3.19: Balancing the unicycle system with LQR with control gain K2

For K3 the ROA is for ϕ = 0.1rad ≈ 6◦ and θ = 0.3rad ≈ 17◦

0 5 10 15 20 25 30
Time

−25

−20

−15

−10

−5

0

5

10

15

An
gl
e
(D

eg
re
es
)

Phi
Theta

(a) (b)

Figure 3.20: Balancing the unicycle system with LQR with control gain K3

3.10 Disturbance reaction

To test the disturbance reactions of the control matrices the control input was set
to a fixed value for 0.1 seconds, this value was slowly raised until the controller
did not manage to stabilize.

3.10.1 Model 1

The disturbance tests for model 1. Only K1 is used as a control gain for the
disturbance tests since it was the gain that showed the best performance in the
step tests.

3.10 Disturbance reaction 39

0 5 10 15 20 25 30
Time

−20

0

20

40
An

gl
e
(D

eg
re
es
)

Phi
Theta

Figure 3.21: Disturbance tests with LQR controller based on model 1

0 5 10 15 20 25 30 35 40
Time

−75

−50

−25

0

25

50

75

100

An
gl
e
(D

eg
re
es
)

Phi
Theta

Figure 3.22: Disturbance tests with LQR controller based on model 1 with
larger disturbance

The LQR controller for model 1 manages to stabilize after all disturbances in the
test.

40 3 Learning-based model

3.10.2 Model 2

Disturbance tests with LQR controller based on model 2

0 5 10 15 20 25 30 35 40
Time

−400

−200

0

200

400

600

800

An
gl
e
(D
eg

re
es
)

Phi
Theta

Figure 3.23: Disturbance tests with LQR controller based on model 2

The LQR controller for model 2 does not manage to stabilize after the first
disturbances in the test.

3.10.3 Student model

Disturbance tests with LQR controller based on the student model. Only K1
is used as a controller gain for the disturbance tests since it was the gain that
showed the best performance in the step tests.

3.11 Comparison 41

0 5 10 15 20 25 30 35 40
Time

−30

−20

−10

0

10

20

30

40

50

An
gl
e
(D

eg
re
es
)

Phi
Theta

Figure 3.24: Disturbance tests with LQR controller based on the student
model

The LQR controller for the student model manages to stabilize after all distur-
bances in the test.

3.11 Comparison

The best model is model 1. This model looks promising and as seen in Figure 3.7
and Figure 3.22 it manages to control the system in a desirable way. The other
models have high oscillations and even though those models manage to stabilize
in the end the behavior makes them less likely to be able to stabilize in the real
world.

3.12 Summary

The learned models are able to control the system when the offset for ϕ is added,
why this offset is needed is discussed in Chapter 7. The controller derived from
model 1 with control gain K1 is performing the best in the simulated environ-
ment. The other models are harder to use for control, they all stabilize but take a
long time to do so. The student model is able to get to the equilibrium reasonably
fast but with too high overshoots to be applied in the real world. An attempt was
made to apply this controller on the real-world unicycle but it never was able to
control the system to stay at equilibrium.

The control gain K1 is performing the best for both model 1 and the student

42 3 Learning-based model

model. For model 2 the behavior is undesired for most starting points and has
some effects that are not desired even if it is stable.

4
MPC controller

To compare the models from Chapter 2 and 3 a model predictive controller (MPC)
was created based on the models and the performance compared. An MPC con-
troller works by predicting a finite number of future states and optimizing the
input to the system to try to minimize the performance measure Raković and
Levine [12].

4.1 State prediction

The state space model considered in this chapter is as follows Lorenzen et al. [10].

xk+1 = Axk + Buk (4.1)

The model in (4.1) can be used for predicting future states. In the following state
predictions for 4 consecutive time instants are shown.

xk+1 = Axk + Buk (4.2a)

xk+2 = Axk+1 + Buk+1 (4.2b)

xk+3 = Axk+2 + Buk+2 (4.2c)

xk+4 = Axk+3 + Buk+3 (4.2d)

By combining the equations in (4.2) the prediction equations can be rewritten as
follows:

xk+1 = Axk + Buk (4.3a)

xk+2 = A [Axk + Buk] + Buk+1 (4.3b)

xk+3 = A [A [Axk + Buk] + Buk+1] + Buk+2 (4.3c)

xk+4 = A [A [A [Axk + Buk] + Buk+1] + Buk+2] + Buk+3 (4.3d)

43

44 4 MPC controller

This can be simplified to:

xk+1 = Axk + Buk (4.4a)

xk+2 = A2xk + ABuk + Buk+1 (4.4b)

xk+3 = A3xk + A2Buk + ABuk+1 + Buk+2 (4.4c)

xk+4 = A4xk + A3Buk + A2Buk+1 + ABuk+2 + Buk+3 (4.4d)

This equation can be generalized as follows:

xk+n = Anxk + An−1Buk + An−2Buk+1 + · · · + ABuk+n−2 + Buk+n−1 (4.5)

Utilizing (4.5), the state prediction equations can be presented in compact form
as follows:

Xk+1 =

A
A2

...
An

︸︷︷︸
P

Xk +

B 0 . . . 0
AB B . . . 0
...

...
. . .

...
An−1B An−2B . . . B

︸ ︷︷ ︸
H

uk
uk+1
...

uk+n−1

︸ ︷︷ ︸
ū

(4.6)

Where:

Xk+1 =

xk+1
xk+2
...

xk+n

 (4.7)

And:

Xk =

xk
xk+1
...

xk+n−1

 (4.8)

Where
−→
X k+1 is the vector of the predicted states.

4.2 Constraints

When choosing optimal control, constraints on the variables are set. For the uni-
cycle, those constraints are as follows. For the motor voltages:

−12 ≤ud(k) ≤ 12 (4.9a)

−12 ≤uw(k) ≤ 12 (4.9b)

For the states, the constraints are set to reasonable stability for the system.

|ϕ| ≤ 0.6rad = ϕmax (4.10a)

|θ| ≤ 0.6rad = θmax (4.10b)

Since αw and αd are not affecting the controllability of the system, it is not rele-
vant to constrain them.

4.3 Control synthesis 45

4.3 Control synthesis

The controller is synthesized by the following quadratic program:

min
U

n∑
j=0

xTk+j |kQxk+j |k + uTk+j |kRuk+j |k (4.11a)

subject to xk+j |k = Axk+j−1|k + Buk+j−1|k (4.11b)

|θ| ≤ θmax (4.11c)

|ϕ| ≤ ϕmax (4.11d)

|ud | ≤ 12 (4.11e)

|uw | ≤ 12 (4.11f)

WhereQ ≥ 0 and R ≥ 0 are penalty matrices made when implementing the policy
and the sequence of predicted control actions, U is defined as follows.

U =

uk|k
uk+1|k
...

uk+n−1|k

 (4.12)

This quadratic programming problem is solved at every timestep for the hori-
zon of n timesteps forward. The solution is the optimal feedback at the cur-
rent timestep k. The solver used to solve the problem was Operator Splitting
Quadratic Program (OSQP).

4.4 End penalty

To force the MPC controller to find the optimal control policy an end-penalty can
be used. The end penalty can be applied with several different methods, Zanon
and Faulwasser [19]. For this thesis, a longer time horizon was used to ensure
stable closed-loop satisfaction.

4.5 Simulation

To simulate the MPC controller the simulation environment based on the nonlin-
ear model that was described in Section 2.4 was used.

For each timestep in the simulation, the optimization problem presented in (4.11)
was solved with the horizon n. When the optimal U was found for the n timesteps,
the first element from the sequence of predicted control action is given as input
to the system and with the new measured state the entire process is repeated for
every time instant.

46 4 MPC controller

4.6 Physics-based model

For the physics-based model, the discrete state space model derived in Section
3.8 was applied to (4.11). The Q and R matrices are selected as presented in Sec-
tion 2.6.1. The horizon was selected as 15 steps.

This creates the following plots when starting from ϕ = 0.01rad and θ = 0.1rad

0 5 10 15 20 25 30
Time

−1

0

1

2

3

4

5

6

An
gl
e
(D

eg
re
es
)

Phi
Theta

(a) MPC controller

0 5 10 15 20 25 30
Time

−1

0

1

2

3

4

5

6

An
gl
e
(D

eg
re
es
)

Phi
Theta

(b) LQR controller

Figure 4.1: Balancing the unicycle system with control matrices Q1 and R1

The first controller is coinciding with the LQR controller, stabilizing the system
quickly.

0 5 10 15 20 25 30
Time

−2

0

2

4

6

An
gl
e
(D

eg
re
es
)

Phi
Theta

(a) MPC controller

0 5 10 15 20 25 30
Time

−2

0

2

4

6

An
gl
e
(D

eg
re
es
)

Phi
Theta

(b) LQR controller

Figure 4.2: Balancing the unicycle system with control matrices Q2 and R2

The second controller is coinciding with the LQR controller, stabilizing the sys-
tem quickly.

4.7 Learned models 47

0 5 10 15 20 25 30
Time

−400

−300

−200

−100

0

100

200
An

gl
e
(D

eg
re
es
)

Phi
Theta

(a) MPC controller

0 5 10 15 20 25 30
Time

−400

−300

−200

−100

0

100

200

An
gl
e
(D

eg
re
es
)

Phi
Theta

(b) LQR controller

Figure 4.3: Balancing the unicycle system with control matrices Q3 and R3

The third controller is not able to stabilize the system, even when starting close
to the equilibrium.

4.7 Learned models

This section shows the results of applying the MPC controller based on the differ-
ent learned models and penalty matrices.

4.7.1 Model 1

For the learned model, the state space description of the system from the student
model is presented in (3.16). The Q and R matrices are selected as presented in
Section 2.6.1. The start placement of the unicycle was set to ϕ = 0.01rad and
θ = 0.1rad and a horizon of 150 timesteps as the end penalty. This setup gave the
following results:

0 5 10 15 20 25 30
Time

−25

−20

−15

−10

−5

0

5

10

15

An
gl
e
(D

eg
re
es
)

Phi
Theta

(a) MPC controller

0 5 10 15 20 25 30
Time

−20

−10

0

10

An
gl
e
(D

eg
re
es
)

Phi
Theta

(b) LQR controller

Figure 4.4: Comparison between the MPC controller and LQR controller
with control matrices Q1 and R1

48 4 MPC controller

The first controller is able to stabilize the system, it does it quicker than the LQR
controller and with a lower oscillation.

0 5 10 15 20 25 30
Time

−30

−20

−10

0

10

20

An
gl
e
(D

eg
re
es
)

Phi
Theta

(a) MPC controller

0 5 10 15 20 25 30
Time

−20

−10

0

10

An
gl
e
(D

eg
re
es
)

Phi
Theta

(b) LQR controller

Figure 4.5: Comparison between the MPC controller and LQR controller
with control matrices Q2 and R2

The second controller stabilizes quickly with some oscillations for the θ angle.
The controller behaves similar to the LQR controller.

0 5 10 15 20 25 30
Time

−30

−20

−10

0

10

20

An
gl
e
(D

eg
re
es
)

Phi
Theta

(a) MPC controller

0 5 10 15 20 25 30
Time

−15

−10

−5

0

5

An
gl
e
(D

eg
re
es
)

Phi
Theta

(b) LQR controller

Figure 4.6: Comparison between the MPC controller and LQR controller
with control matrices Q3 and R3

The third controller is stabilizing the system similar to the second controller. The
controller is stabilizing quicker than the LQR controller.

4.7.2 Model 2

The second model could not solve the MPC controllers optimization problem, the
controller diverged quickly to a point where the MPC could not find a solution
back to the equilibrium. Thus it coincides with the LQR controller from Chapter

4.7 Learned models 49

3. Therefore model 2 will not be discussed in this chapter, for more see Chapter
6.

4.7.3 Student model

For the learned model, the state space description of the system from the student
model is presented in (3.18). The Q and R matrices are selected as presented in
Section 2.6.1. The start placement of the unicycle was set to ϕ = 0.01rad and
θ = 0.1rad and a horizon of 150 timesteps as the end penalty. This setup gave the
following results compared to the LQR controller: The first controller is not able

0 5 10 15 20 25 30
Time

−200

0

200

400

600

800

An
gl
e
(D
eg

re
es
)

Phi
Theta

(a) MPC controller

0 5 10 15 20 25 30
Time

−200

0

200

400

600

800

An
gl
e
(D
eg

re
es
)

Phi
Theta

(b) LQR controller

Figure 4.7: Comparison between the MPC controller and LQR controller
with control matrices Q1 and R1

to stabilize the system.

0 5 10 15 20 25 30
Time

−10

−8

−6

−4

−2

0

2

4

6

An
gl
e
(D
eg

re
es
)

Phi
Theta

(a) MPC controller

0 5 10 15 20 25 30
Time

−25

−20

−15

−10

−5

0

5

10

15

An
gl
e
(D

eg
re
es
)

Phi
Theta

(b) LQR controller

Figure 4.8: Comparison between the MPC controller and LQR controller
with control matrices Q2 and R2

The second controller is stabilizing the system quicker and with lower oscillation
than the LQR controller.

50 4 MPC controller

0 5 10 15 20 25 30
Time

−10

−5

0

5

10

15

An
gl
e
(D

eg
re
es
)

Phi
Theta

(a) MPC controller

0 5 10 15 20 25 30
Time

−30

−20

−10

0

10

20

An
gl
e
(D

eg
re
es
)

Phi
Theta

(b) LQR controller

Figure 4.9: Comparison between the MPC controller and LQR controller
with control matrices Q3 and R3

The third controller is stabilizing the system quicker and with lower oscillation
than the LQR controller.

4.8 Summary

The MPC controller works well for controlling θ but is not as good at controlling
ϕ for all models in the simulation. The best controller is the Student model with
control matrices (2.52). For all models, there is a small oscillation in ϕ when it is
close to tracking the desired set-point, this is discussed in Chapter 6.

5
Control by reinforcement learning

The second method of learning a control method is reinforcement learning (RL)
To compare this method with the previous models and controllers an off-the-shelf
method was used.

5.1 Reinforcement learning

Using reinforcement learning to learn control policies has become popular over
the later years. The methods have become more sophisticated and easier to im-
plement which makes it a desirable option. Off-the-shelf methods have become
easy to implement and the knowledge needed to use them is low, many thanks to
companies like Open-Ai.

RL works by letting an agent discover the world around it by enabling it to take
an action at at time step t and at the next time step t + 1 giving it a reward rt+1
and the state st+1 of the agent according to the action taken.
There are several methods that can be used in RL based on the actions that are
taken and how the policy is decided. In this thesis, the policy gradient method is
used.

5.1.1 Policy gradient method

The policy gradient method is a technique to optimize the policies with respect to
the reward. This creates a faster gradient descent toward the optimal policy for
the system. The agent learns the policy directly from a parameterized function
with respect to Θ instead of the value function of the action space. Where Θ

represents the unknown parameter of the system.

π(a|x;Θ) = P r{A(ti) = a|S(ti) = x,Θ(ti) = Θ} (5.1)

51

52 5 Control by reinforcement learning

Agent
π

Environment
s, r

atrt+1, st+1

Where π(a|x;Θ) is the probability that action a is taken at timestep ti , given that
the agent is at state x at time step ti with parameter Θ.

This gradient method learns the policy parameter from the gradient of the scalar
performance measure, L(Θ). Θ is updated by finding the best ∆L(Θ) which gives
the best return to the policy Sutton and Barto [18].

These methods are especially good for big action spaces, where the possible ac-
tions can go towards infinity, since the policy gradient method learns the proba-
bility distribution statistics.

5.1.2 Reward

The reward rt+1 is the reward the agent gets after taking the action at at timestep
t. This creates the feedback the agent gets from the environment when taking
an action. The reward functions can look very different and depend on how the
designer of the system wants the agent to behave. This is the primary feedback
the designer can give to the agent.

5.1.3 Environment

The environment has the same importance as the data had in Chapter 3. Because
it is the environment that decides what happens to the agent after it has made its
action. The environment used to train the policy is based on the nonlinear model
that was created in Chapter 2.

5.2 Proximal Policy Optimization

Proximal Policy Optimization (PPO) is a policy gradient method that Open AI
created, PPO is a general RL method that combines the stability of Trust Region
Policy Optimization (TRPO) with a simpler and faster solver method, Schulman
et al. [14]. This method has been proven to work well in many applications, Jin

5.2 Proximal Policy Optimization 53

and Wang [5] presented how PPO can be used to find the optimal path for mo-
bile robots and Jonsdottir and Petersson [6] presented how the method works for
unicycles.

5.2.1 Observation and action spaces

To let the system understand which real-world scenarios are the observation and
action spaces are set to mirror the real-world setup. The output is the motor
voltages for the agent, the unicycle, which corresponds to the action space of:

ud ∈ [−12, 12] (5.2a)

uw ∈ [−12, 12] (5.2b)

Similarly, the observation space is the states the agent can reach. The observation
space is set by reason and testing to limit the agent to enter states from which it
can not stabilize. These are set to:

α̇w ∈ [−84, 84] (5.3a)

α̇d ∈ [−450, 450] (5.3b)

ϕ̇ ∈ [−100, 100] (5.3c)

θ̇ ∈ [−100, 100] (5.3d)

ϕ ∈ [−25, 25] (5.3e)

θ ∈ [−25, 25] (5.3f)

If the agent reaches any of the limits of the observation space the states are reset
to their origin and the training restarts.

5.2.2 Policy method

The policy gradient method used in PPO is defined as follows.

LP P O(Θ) = Êt
(
logπΘ(at |st)Ât

)
(5.4)

Where Êt(...) is the expectation function over a finite batch of samples, Ât is the
estimator of the advantage function at timestep t and πΘ is a stochastic policy
Schulman et al. [14].

5.2.3 Reward

The reward is the agents’ input on if it is performing correctly or badly, the feed-
back from the environment. By changing the reward the agents’ behavior can
differ and undesirable behavior can be created.

54 5 Control by reinforcement learning

The design of the reward function is by trial and error, the reward function used
for this thesis is based on the difference between the worst case of the state x̄ and
the current state x:

6∑
i=1

1 −
(
xi,k
x̄i

)2 (5.5)

Where i is for the 6 different states. When the agent leaves the observation space
a reward of −1 is given.

5.2.4 Simulation

The training of the agent is made in a simulated world created by a toolkit called
Gym created by Open AI. This toolkit is used to create the environment where
the agent is trained and the PPO models’ structure. The testing of the control
method is made in this environment.

5.2.5 Training

The training consisted of 1 · 107 timesteps where the agent was let to learn its pol-
icy. The training was made with a randomized starting point from where it had
to learn how to stabilize and with a constant learning rate of 0.004.

The starting states are set to a random state within the observation space and
every time the agent goes outside the observation space it is given a reward of -1
and the agent is set to a random starting state to start making actions again.

5.3 Controller performance

The resulting controller performance is shown in Figure 5.1 and 5.2.

0 1000 2000 3000 4000 5000

−60

−40

−20

0

20

40

Phi
Theta

Figure 5.1: RL controller

5.4 Summary 55

0 1000 2000 3000 4000 5000

−100

−50

0

50

100

Phi
Theta

Figure 5.2: RL controller step test

When compared to the other control policies it has the same problem of under-
standing and controlling θ, but manages to control ϕ reasonably. The biggest
difference between the RF controller and the others is the oscillation behavior.
The other controllers have a sinusoidal oscillation compared to the RF controller
which is harder to describe mathematically.

5.4 Summary

The RL controller performs well, but the behavior is harder to understand and
describe. It has the same problem of understanding the θ angle as the other
controllers but manages to stabilize.

6
Discussion

The controllers tested in this thesis had varied behaviors from very good to not
working. In this chapter, the differences and reasons why they behaved as they
did will be discussed.

6.1 Control based on the physics-based model

The controllers created from the physics-based model worked well and controlled
the system in most cases within a reasonable ROA.

6.1.1 LQR controller

The physics-based LQR controller controls the simulated system stably and with
low oscillations. Depending on which penalty matrices are used, the ROA of ϕ
varies. However, when applied to the real-world system, it is θ that is harder for
the controller to stabilize. The problems in θ that are not seen in the simulations
are believed to arise from how the world affects the system. One example is the
gyroscopic and aerodynamic effects created by the disc. This is created by the
discs’ high speed.

The benefit of the physics-based model is that if we have a good knowledge of
mechanical systems, a model that can describe the system in a way that makes
it possible to control the system can be constructed quite fast. But for many sys-
tems, this can be done faster and better with a simple PID controller. An attempt
was made to implement a PID for the unicycle, but a simple PID was not able
to control the unicycle. The theory why it did not work is that the states are too
coupled. Since there are similar unicycles that can be controlled by PIDs but they

57

58 6 Discussion

have more weight on the disc than the one used in this thesis and because of that,
they do not need to accelerate the disc as fast as the unicycle used in this thesis.

6.1.2 MPC controller

The physics-based MPC controller controls the system in the same way as the
LQR controller. It is observed that the performance with the MPC coincides with
that generated by the LQR controller.

The controller using (2.53) becomes very good at controlling θ and manages to
stabilize it directly, but it has a hard time stabilizing ϕ. This is because of how the
penalty matrices are defined, (2.53) gives a large focus on controlling θ with the
effect that it is not as focused on ϕ. The controller is in general a lot better than
the LQR controller with the same penalty matrices that were not able to stabilize
from very small starting angles.

6.2 Control based on the learned model

The controllers created by the learning-based models worked with satisfactory
performance. Some behaviors were caused by flaws in the model which are dis-
cussed more in the following subsections.

All the controllers have a small acceleration around the equilibrium and do not
fully stabilize in the time frame tested. This is believed to happen due to having
an imperfect model since they are not able to describe ϕ correctly and it takes a
very long time to stabilize fully.

6.2.1 LQR controller

The different models created very different results when used for the LQR con-
troller. In general, the controllers were good at controlling θ and performed
worse for ϕ, this is believed to be a consequence of the opposite problem for the
physics-based model where it was good at controlling ϕ and worse for θ. Be-
cause the physics-based model controller was used to collect the data, the data
collection became more diverse for the movement in the θ angle. This illustrates
one possible direction for improvement when collecting the dataset to train the
models. One solution could have been to add a greater distribution of noise in uw
when collecting the data.

A second possible deviation for improvement is that the models created had to
be offset with π radians for ϕ. This is believed to come from when the model is
trained, it has no frame of reference and therefore sets its ϕ reference vector "to-
wards the ground". So the models believe that it is supposed to stabilize around
ϕ = π and is behaving like is expected except for the oscillations that are pro-
duced by the controller.

6.2 Control based on the learned model 59

ϕ

z0

y0

yb

zb
αd

(a)

ϕ

z0

y0

yb

zb
αd

(b)

Figure 6.1: The difference in how the models think ϕ is defined.

One of the main drawbacks of learning-based models is that when errors like the
one encountered with the ϕ offset occur, it is hard to troubleshoot and fix the
error. To be able to do this fast, a high knowledge base is required. In my case,
this error was found late, which made it hard to find a good solution to correct
this error in the models.

The collection of the data is another drawback of learning, the models can only
be as good as the data that it is given to learn. To be able to learn better a larger
dataset with more white noise in the controller is needed, but to do this a highly
controlled environment is needed.

6.2.2 MPC controller

The MPC controllers created from the learned system models are in most cases
improving the LQR controller created by the same system description. They are
either better at controlling ϕ, as seen in Figure 4.4, or faster at finding the equilib-
rium, as seen in all controllers created by the student model. The two controllers
that are not improved are the controllers created by Model 1 with control matri-
ces (2.51) and (2.52), where the initial oscillation is bigger but is as fast to stabilize
as the LQR model. This is believed to come from the model behavior. Model 1
has a behavior with high oscillations, so it has not learned how the system works
correctly from the input and is expecting the system to have lower reactions from
the input it suggests. This is exaggerated when it is used in the MPC controller
since it gives a large weight to the model and therefore applies a higher input
than when the other models are used.

The student models work better and are improving from the LQR controller, it
manages to stabilize quicker and with lower oscillations. Here it is possible to see
how a learned model with an MPC controller can work and it is potential. The
MPC can take the model and understand how the system is going to react and

60 6 Discussion

plan accordingly. it is still far from the performance of the physics-based model
and shows the same behavior as Model 1 discussed above, it does not have the
full understanding of how the system will react to the input.

Model 1 shows another problem with the dataset, as it did not have enough data
to understand how the system behaved with larger inputs. It looks to give a
larger input than necessary or hold that input for too long, so it will overshoot
the equilibrium.

6.3 Control based on reinforcement learning

The RL controller shows the same behavior as the NN-created models where it
has a lot harder time controlling θ. This is believed to come from the lack of
data on the system behavior for θ. This is the same problem believed to create
the oscillations for the learning-based model, where more noise in θ was needed
when collecting data.

The second drawback is that the behavior is harder to describe mathematically
and it is hard to know how the controller will behave in the scenarios it has not
been tested in. So the model needs to be tested more, to say that it can be stabi-
lized. It can be seen from the test applied in this thesis that it looks promising.

6.4 The different penalty matrices

The reason why the three different matrices were used was their performance
between the different models. Matrix nr.1, (2.51), were performing the best for
the physical model, matrix nr.2, (2.52), performed the best for the student model,
and matrix nr.3, (2.53), performed the best for Model 1 in the initial tests. The
different matrices also showed the different behaviors from the different models,
that either needed to be reduced or raised.

6.5 System identification

The NN approach for the system identification problem was chosen because of its
simplicity and how easy it is to scale to a larger NN. Since this model structure
can make a good model of the dynamics of the system with limited data, and cre-
ate a linear description of the model which when used to create a control policy
works desirably.

The reason why the one-layer NN was chosen was that the multi-layer NN is
well documented and known for its performance and since this thesis is focused
on trying to make the simplest model to control the system the best and the one-
layer NN was a good way to show that.

6.6 Results 61

6.6 Results

All the models and controllers have their pros and cons. The best controller and
model derived in this thesis is the baseline controller made from the physics-
based model and an LQR controller. The MPC controller shows high potential
but its problems to control ϕ show that it is not better than the control matrices
that were tested. There might be some control matrices that can stabilize ϕ better
but they were not found for this thesis.

The big drawback of ML models was found with the offset for ϕ, this shows how
it is hard to calculate how the ML model will work and understand the problem.

7
Conclusions

Even if the learned models were not able to become good enough to control the
unicycle in the real world the models show good promise. The best learned model
was able to become close to the physics-based model. With more time I think the
learning models can outperform the physics-based model. Especially if the stu-
dent network learning approach is used.

7.1 Answers to the problem formulation

How does a generic controller work on the system?
The generic controller works well for the system, it is able to stabilize the system
both in simulation and in the real world.

Is it possible to improve the model and controller with a neural network?
It is not shown in this thesis that it is possible to improve the physics-based model
with the one learned with a neural network. Although it has shown potential,
more work needs to be done to be able to improve the model for the control sys-
tems.

If the LQR controller and MPC controller are compared it can be seen that in
many cases the MPC controller is only slightly better. This shows the perfor-
mance of the learned model, even with an MPC controller that is trying to opti-
mize the controller of the system, when given a strong computer it had a compute
time of up to 1 hour for a 30 second test. The simple LQR controller on the other
hand is still able to understand the dynamics of the system in a way that is close
to the MPC with a computation time of 5 seconds.

63

64 7 Conclusions

Can a model predictive controller further improve the performance with operational
constraints being considered implicitly?
It can, but only for the right models. The difference in the performance of the
MPC is shown by the different models. With a good model, the MPC controller
works better however, it will also enhance the faults in the models as seen in the
behaviors of model 1.

What is the performance difference between the control policies derived from the dif-
ferent models?
The performance differs from how the different models understand the system.
This is reflected more or less depending on the controller, the MPC controller
works better if the model is better but it also shows if the model has any problems.
The LQR controller can reduce these problems since it is a simpler controller and
is not as directly coupled with the model.

7.2 Future improvements

The result of this thesis opens up future improvements, to get the learned model
to perform better than the physics-based model.

The first point to improve on is the dataset for the learned model. There are
several methods to improve the dataset i) Bigger dataset where the unicycle has
been left to balance for longer, this will let the NN have more data points to learn
the system model. ii) To do this the most efficient way a wireless connection be-
tween the unicycle and a laptop should be made. Then the unicycle can run for
longer by itself. For the data collected in this thesis, the connection between the
unicycle and the laptop was via wire. iii) More white noise could be added to
the controller when collecting the data. When the data was collected the envi-
ronment was not optimal, I had to control both the unicycle and, the computer
collecting the data. This limited the possibility to push the unicycles limits. Dur-
ing more controlled runs more white noise could be added and create a more
diverse dataset. iv) Collect data from the simulated environment. By collecting
data from the simulated environment there is a possibility to get data at points
where it is hard to get the real-world unicycle safely. To be able to do this a fuller
understanding of the system can be given to the learning model.

The methods for learning the model that is presented in this thesis are only for
linear descriptions of the system. By applying non-linear activation functions to
the NN, a nonlinear description of the system could also be realized.

Appendix

A
Constants for mathematical

description

The inertia constants for the components are

Component Disc Wheel Body
Ixx 5.792 · 10−3 3.612 · 10−4 4.008 · 10−2

Ixy −0.000 −0.000 −1.286 · 10−4

Ixz 2.140 · 10−7 0 2.148 · 10−3

Iyx −7.957 · 10−9 −0 −1.286 · 10−4

Iyy 6.897 · 10−3 6.888 · 10−4 3.025 · 10−2

Iyz 1.580 · 10−6 0 6.148 · 10−3

Izx 2.140 · 10−7 0 2.148 · 10−3

Izy 1.580 · 10−6 0 6.211 · 10−3

Izz 6.891 · 10−3 3.612 · 10−4 1.183 · 10−2

Table A.1: The inertia of the unicycle

67

68 A Constants for mathematical description

The constants used to describe the system are:

Constant Description Value
rw Radius of the wheel 0.072m
lwb Length between the center of mas for the wheel and body 0.1292 [m]
lwd Length between the center of mas for the wheel and disc 0.3006 [m]
mw Mass of the wheel 0.272987 [kg]
mb Mass of the body 0.25746 [kg]
md Mass of the disc 2.168873 [kg]
Kw Torque constant of the wheel motor 1.0709 [Vs]
Kd Torque constant of the disc motor 0.2622 [Vs]
Ka,w Armature resistance of the disc motor 4.8 [Ω]
Ka,d Armature resistance of the disc motor 0.6 [Ω]

Table A.2: The constants of the physics-based model of the unicycle

Bibliography

[1] Christopher Bishop. Pattern Recognition and Machine Learning. Springer
New York, NY, 2006. ISBN 9781493938438.

[2] Gunnar Blom, Jan Enger, Gunnar Englund, Jan Grandell, and Lars Holst.
Sannolikhetsteori och statistikteori med tillämpningar. Studentlitteratur
AB, 2017. ISBN 9789144123561.

[3] Pooja Gautam. System identification of nonlinear inverted pendulum us-
ing artificial neural network. 2016 International Conference on Recent
Advances and Innovations in Engineering (ICRAIE), Recent Advances and
Innovations in Engineering (ICRAIE), 2016 International Conference on,
pages 1 – 5, 2016. ISSN 978-1-5090-2807-8.

[4] Torkel Glad and Lennart Ljung. Reglerteori : flervariabla och olinjära
metoder. Studentlitteratur, 2003. ISBN 9144030037.

[5] Xin Jin and Zhengxiao Wang. Proximal policy optimization based
dynamic path planning algorithm for mobile robots. In Electronics
letters, volume 58, pages 13 – 15, 2022. URL https://login.e.
bibl.liu.se/login?url=https://search.ebscohost.com/
login.aspx?direct=true&AuthType=ip,uid&db=edsbl&AN=vdc.
100145682935.0x000001&lang=sv&site=eds-live&scope=site.

[6] Maria Helga Jonsdottir and Filip Petersson. Deep learning and regular con-
trol methods, 2019. URL https://hdl.handle.net/20.500.12380/
300526.

[7] Jaeoh Lee, Seongik Han, and Jangmyung Lee. Decoupled dynamic control
for pitch and roll axes of the unicycle robot. IEEE Transactions on Industrial
Electronics, 60(9):3814–3822, 2013. doi: 10.1109/TIE.2012.2208431.

[8] Lennart Ljung. System identification : theory for the user. Prentice-
Hall information and system sciences series. Prentice Hall, 1999. ISBN
0136566952.

[9] Lennart Ljung and Torkel Glad. Modeling and identification of dynamic
systems. Studentlitteratur, 2016. ISBN 9789144116884.

69

https://login.e.bibl.liu.se/login?url=https://search.ebscohost.com/login.aspx?direct=true&AuthType=ip,uid&db=edsbl&AN=vdc.100145682935.0x000001&lang=sv&site=eds-live&scope=site
https://login.e.bibl.liu.se/login?url=https://search.ebscohost.com/login.aspx?direct=true&AuthType=ip,uid&db=edsbl&AN=vdc.100145682935.0x000001&lang=sv&site=eds-live&scope=site
https://login.e.bibl.liu.se/login?url=https://search.ebscohost.com/login.aspx?direct=true&AuthType=ip,uid&db=edsbl&AN=vdc.100145682935.0x000001&lang=sv&site=eds-live&scope=site
https://login.e.bibl.liu.se/login?url=https://search.ebscohost.com/login.aspx?direct=true&AuthType=ip,uid&db=edsbl&AN=vdc.100145682935.0x000001&lang=sv&site=eds-live&scope=site
https://hdl.handle.net/20.500.12380/300526
https://hdl.handle.net/20.500.12380/300526

70 Bibliography

[10] M. Lorenzen, F. Dabbene, R. Tempo, and F. Allgower. Constraint-
tightening and stability in stochastic model predictive control. IEEE
Transactions on Automatic Control, Automatic Control, IEEE Transactions
on, IEEE Trans. Automat. Contr, 62(7):3165 – 3177, 2017. ISSN 0018-
9286. URL https://login.e.bibl.liu.se/login?url=https:
//search.ebscohost.com/login.aspx?direct=true&AuthType=
ip,uid&db=edseee&AN=edseee.7733074&lang=sv&site=
eds-live&scope=site.

[11] Olalekan Ogunmolu, Xuejun Gu, Steve Jiang, and Nicholas Gans. Nonlinear
systems identification using deep dynamic neural networks. 2016.

[12] Saša V. Raković and William S. Levine. Handbook of model predictive
control. Control Engineering. Springer International Publishing, 2019.
ISBN 9783319774893. URL https://login.e.bibl.liu.se/login?
url=https://search.ebscohost.com/login.aspx?direct=
true&AuthType=ip,uid&db=cat00115a&AN=lkp.977327&lang=
sv&site=eds-live&scope=site.

[13] Murat Sahin, Halil Bulbul, and Ilhami Colak. Position control of a DC motor
used in solar panels with artificial neural network. pages 487–492, 12 2012.
ISBN 978-1-4673-4651-1. doi: 10.1109/ICMLA.2012.216.

[14] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg
Klimov. Proximal policy optimization algorithms. 2017.

[15] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg
Klimov. Proximal policy optimization algorithms. 2017.

[16] Indrazno Siradjuddin, Budhy Setiawan, Ahmad Fahmi, Zakiyah Amalia,
and ROHADI Erfan. State space control using LQR method for a cart-
inverted pendulum linearized model. 17:119–126, 02 2017.

[17] Jonas Sjöberg, Håkan Hjalmarsson, and Lennart Ljung. Neural networks in
system identification. LiTH-ISY-R: 1622. Univ., 1994. ISBN 1400-3902.

[18] Richard S. Sutton and Andrew G. Barto. Reinforcement learning : an
introduction. Adaptive computation and machine learning. The MIT
Press, 2018. ISBN 9780262039246. URL https://login.e.bibl.
liu.se/login?url=https://search.ebscohost.com/login.
aspx?direct=true&AuthType=ip,uid&db=cat00115a&AN=lkp.
1079275&lang=sv&site=eds-live&scope=site.

[19] Mario Zanon and Timm Faulwasser. Economic mpc without terminal
constraints: Gradient-correcting end penalties enforce asymptotic sta-
bility. Journal of Process Control, 63:1–14, 2018. ISSN 0959-1524.
doi: https://doi.org/10.1016/j.jprocont.2017.12.005. URL https://www.
sciencedirect.com/science/article/pii/S0959152417302275.

https://login.e.bibl.liu.se/login?url=https://search.ebscohost.com/login.aspx?direct=true&AuthType=ip,uid&db=edseee&AN=edseee.7733074&lang=sv&site=eds-live&scope=site
https://login.e.bibl.liu.se/login?url=https://search.ebscohost.com/login.aspx?direct=true&AuthType=ip,uid&db=edseee&AN=edseee.7733074&lang=sv&site=eds-live&scope=site
https://login.e.bibl.liu.se/login?url=https://search.ebscohost.com/login.aspx?direct=true&AuthType=ip,uid&db=edseee&AN=edseee.7733074&lang=sv&site=eds-live&scope=site
https://login.e.bibl.liu.se/login?url=https://search.ebscohost.com/login.aspx?direct=true&AuthType=ip,uid&db=edseee&AN=edseee.7733074&lang=sv&site=eds-live&scope=site
https://login.e.bibl.liu.se/login?url=https://search.ebscohost.com/login.aspx?direct=true&AuthType=ip,uid&db=cat00115a&AN=lkp.977327&lang=sv&site=eds-live&scope=site
https://login.e.bibl.liu.se/login?url=https://search.ebscohost.com/login.aspx?direct=true&AuthType=ip,uid&db=cat00115a&AN=lkp.977327&lang=sv&site=eds-live&scope=site
https://login.e.bibl.liu.se/login?url=https://search.ebscohost.com/login.aspx?direct=true&AuthType=ip,uid&db=cat00115a&AN=lkp.977327&lang=sv&site=eds-live&scope=site
https://login.e.bibl.liu.se/login?url=https://search.ebscohost.com/login.aspx?direct=true&AuthType=ip,uid&db=cat00115a&AN=lkp.977327&lang=sv&site=eds-live&scope=site
https://login.e.bibl.liu.se/login?url=https://search.ebscohost.com/login.aspx?direct=true&AuthType=ip,uid&db=cat00115a&AN=lkp.1079275&lang=sv&site=eds-live&scope=site
https://login.e.bibl.liu.se/login?url=https://search.ebscohost.com/login.aspx?direct=true&AuthType=ip,uid&db=cat00115a&AN=lkp.1079275&lang=sv&site=eds-live&scope=site
https://login.e.bibl.liu.se/login?url=https://search.ebscohost.com/login.aspx?direct=true&AuthType=ip,uid&db=cat00115a&AN=lkp.1079275&lang=sv&site=eds-live&scope=site
https://login.e.bibl.liu.se/login?url=https://search.ebscohost.com/login.aspx?direct=true&AuthType=ip,uid&db=cat00115a&AN=lkp.1079275&lang=sv&site=eds-live&scope=site
https://www.sciencedirect.com/science/article/pii/S0959152417302275
https://www.sciencedirect.com/science/article/pii/S0959152417302275

Index

dof
abbreviation, xi

lqr
abbreviation, xi

mpc
abbreviation, xi

mse
abbreviation, xi

nn
abbreviation, xi

ospq
abbreviation, xi

pid
abbreviation, xi

ppo
abbreviation, xi

rf
abbreviation, xi

roa
abbreviation, xi

trpo
abbreviation, xi

71

	Abstract
	Acknowledgments
	Contents
	Notation
	1 Introduction
	1.1 Background
	1.2 Problem formulation
	1.3 Related work
	1.4 Delimitations
	1.5 Thesis outline

	2 Control using physics-based model
	2.1 Mathematical description
	2.1.1 Rotation coordinates

	2.2 Description of the unicycle model characteristics
	2.3 Lagrange dynamics
	2.3.1 Lagrangian
	2.3.2 Potential energy
	2.3.3 Kinetic energy
	2.3.4 External forces
	2.3.5 Lagrange equation

	2.4 Simulation environment
	2.5 LQR control theory
	2.5.1 Linearization
	2.5.2 Infinite-horizon discrete time LQR
	2.5.3 Controllability

	2.6 LQR control
	2.6.1 Penalty matrices
	2.6.2 Control gain
	2.6.3 Simulation
	2.6.4 Characterizing region of attraction neighborhood

	2.7 Disturbance reaction
	2.7.1 Real world test

	2.8 Summary

	3 Learning-based model
	3.1 System Identification
	3.2 Neural Network
	3.2.1 Basic structure
	3.2.2 Activation function
	3.2.3 Loss function
	3.2.4 Backpropagation
	3.2.5 Student-Teacher learning

	3.3 Neural network to system description
	3.4 Dataset
	3.5 Training
	3.5.1 Loss function
	3.5.2 Epochs

	3.6 Models
	3.6.1 Model structure
	3.6.2 System matrices
	3.6.3 Student Network
	3.6.4 Model validation

	3.7 Simulation
	3.8 LQR control
	3.8.1 Model 1
	3.8.2 Model 2
	3.8.3 Model student network

	3.9 Characterizing region of attraction neighborhood
	3.9.1 Model 1
	3.9.2 Model 2
	3.9.3 Student model

	3.10 Disturbance reaction
	3.10.1 Model 1
	3.10.2 Model 2
	3.10.3 Student model

	3.11 Comparison
	3.12 Summary

	4 MPC controller
	4.1 State prediction
	4.2 Constraints
	4.3 Control synthesis
	4.4 End penalty
	4.5 Simulation
	4.6 Physics-based model
	4.7 Learned models
	4.7.1 Model 1
	4.7.2 Model 2
	4.7.3 Student model

	4.8 Summary

	5 Control by reinforcement learning
	5.1 Reinforcement learning
	5.1.1 Policy gradient method
	5.1.2 Reward
	5.1.3 Environment

	5.2 Proximal Policy Optimization
	5.2.1 Observation and action spaces
	5.2.2 Policy method
	5.2.3 Reward
	5.2.4 Simulation
	5.2.5 Training

	5.3 Controller performance
	5.4 Summary

	6 Discussion
	6.1 Control based on the physics-based model
	6.1.1 LQR controller
	6.1.2 MPC controller

	6.2 Control based on the learned model
	6.2.1 LQR controller
	6.2.2 MPC controller

	6.3 Control based on reinforcement learning
	6.4 The different penalty matrices
	6.5 System identification
	6.6 Results

	7 Conclusions
	7.1 Answers to the problem formulation
	7.2 Future improvements

	A Constants for mathematical description
	Bibliography
	Index

