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Abstract— Imagine placing an online order on your way to
the grocery store, then being able to pick the collected basket
upon arrival or shortly after. Likewise, imagine placing any
online retail order, made ready for pickup in minutes instead
of days. In order to realize such a low-latency automatic
warehouse logistics system, solvers must be made to be basket-
aware. That is, it is more important that the full order (the
basket) is picked timely and fast, than that any single item in
the order is picked quickly. Current state-of-the-art methods
are not basket-aware. Nor are they optimized for a positive
customer experience, that is; to prioritize customers based
on queue place and the difficulty associated with picking
their order. An example of the latter is that it is preferable
to prioritize a customer ordering a pack of diapers over a
customer shopping a larger order, but only as long as the second
customer has not already been waiting for too long. In this
work we formalize the problem outlined, propose a new method
that significantly outperforms the state-of-the-art, and present
a new realistic simulated benchmark. The proposed method is
demonstrated to work in an on-line and real-time setting, and
to solve the on-demand multi-agent basket picking problem for
automated shopping stores under realistic conditions.

I. INTRODUCTION

The customer experience in grocery stores has been
virtually unchanged for decades. Customers walk in, pick
up their products, and pay. Only recently, technology has
been utilized to unlock the ability to have self-checkout
registers, entirely unmanned stores, and online checkouts.
These applications reduce costs mainly by reducing labor.
In any case, humans are still picking (and restocking) the
products, whether it be the customer or the employees. The
next step towards automating grocery stores is to introduce
robot-driven order picking to satisfy customer needs (see
Figure 1). By offloading these logistical tasks onto robots, the
design and layout of grocery stores can be changed, which
can improve both energy consumption and space occupation.
Such stores can provide a greater variety of goods and keep a
larger stock than unmanned stores today, with a much smaller
spatial and environmental footprint.

An automated shopping store needs to incorporate product
pickup and delivery using multiple agents so that customers
receive their orders in a time-efficient way. In order to
achieve high customer satisfaction [1], the solution must 1)
take into account the completion of whole shopping carts;
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Fig. 1
A conceptual on-demand shopping store where several cus-
tomers are waiting for their order baskets to be collected.
Bob (top) placed his order first (#1) and is being prioritized
over Alice (middle) who placed her order (#2) after Bob.
Since neither of these have waited long, Mallory (bottom) is
also prioritized to get his single item picked. The multi-agent
system balance the ordering of basket orders and the time
it takes to complete a full basket, as to maximize customer
satisfaction through fairness and timely basket picking.

and 2) that the order of completion is experienced to be
reasonably fair by the customers [2]. No customer wants to
wait for their order for an extended time period, while the
other customers in line get their orders much faster [3], [2].
Therefore, the solution must both be efficient in completing
whole shopping carts, as well as maintain a reasonably linear
order fulfilment between customers.

The problem is similar to the well-studied automated
warehouse problem [4], where an online order is sent to
an Internet-based retail store. The order is then picked by
an automated multi-agent logistic system consisting of a
large number of robots which move between standardized
storage units of commodities without colliding with each
other. Upon completion of an order, it is dispatched by for
example mail when a courier shows up to collect the current
days shipments. The problem is known in the literature as the
Multi-Agent Pickup and Delivery (MAPD) problem [5], as
an extension to the well known Multi-Agent Path Planning
problem. To solve this problem, a wealth of approximate
methods has been devised, and many of those methods
have been deployed in real-world warehouse systems [6].
However, none of the methods in the literature considers
the basket-membership of tasks. Rather, the methods and
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the evaluation metrics treats each task (collecting one item)
in isolation. Indeed, this may be reasonable from the per-
spective of an automated warehouse for online ordering,
where it is sufficient that the online order (the basket) is
handled to completion in time for package pickup, which
may happen only once or twice per day. For a customer
waiting for the basket to be picked in a nearby store, however,
the latency between order placement and basket completion
must be low. The order of basket completion must also
be seen as fair, since the customer will observe other
customers as they get their baskets delivered. To this end,
we propose an improved formalization of the MAPD taking
into account baskets, called Basket-MAPD, and formalize
the notion of joint basket completion time and unfairness of
a waiting customer, both of which we want to minimize.
We further study state-of-the-art methods for MAPD in the
context of this novel problem formulation, and propose an
improved method that significantly outperforms state-of-the-
art. To improve evaluation methodology for the community,
we further propose a new benchmark with added realism
of lifelong Basket-MAPD derived from real data sources.
The proposed method is demonstrated to achieve real-time
performance (taking less than 1 second to update given a new
added order) on realistic scenarios which are based on real
data of customer order patterns and the setup of a real-world
on-demand automated grocery store.

The main contributions of this work are: 1) the novel
problem of basket-aware MAPD with a consumer satisfaction
metric for on-demand automatic shopping stores is proposed
and formalized; 2) a realistic and through benchmark to
evaluate methods with respect to this problem in various
conditions constructed by simulation made realistic using
real-world data; 3) a comparative evaluation of three state-
of-the-art methods (MCA, PIBT, MLA*) on this benchmark;
and 4) a novel method B-PIBT, extending PIBT, which
significantly outperforms the state-of-the-art for this problem.

II. RELATED WORK

Advances in automated multi-agent logistics were a key
component to making automated warehouses possible [6].
Over the last decades they have changed from being a novelty
[4] to being commonplace in the online retail business [7].
These automated warehouses utilize different approaches to
solving the problems regarding the path and task planning
as well as route execution for multiple robots. Some of the
problems that arise in this field are related to collision and
deadlock avoidance. In these places, humans are typically
prohibited from entering.

Order-picking and delivery in a warehouse setting involves
simultaneously solving the task assignment problem [8] and
the multi-agent pathfinding (MAPF) problem [9]. Further-
more, new orders to pick will arrive during execution of
previously received orders. The problem is consequently an
online multi-agent problem. Online MAPF [10] and lifelong
MAPF [5] are well studied problems. In the former, all tasks
(navigation goals) are fixed (or assigned) but new agents
can appear or disappear. In the latter, new tasks are received

incrementally and task allocation between the agents become
a challenging problem.

A common view of the automated warehouse problem is
as an lifelong version of the MAPF problem, where new
tasks to be picked upped and delivered are added during the
run-time of the multi-agent system. This lifelong extension,
the Multi-Agent Pickup and Delivery (MAPD) problem [5],
has been actively studied [11], [6], [12], [13] in the literature.
It is a combination of the task allocation problem [8] and
the vehicle routing problem [14]. Among the most recent
advancements of search-based MAPD solvers are MCA [15],
heuristics-based task assignment with online improvement,
multi-label A∗ (MLA∗) [16], and priority inheritance with
backtracking (PIBT) [17].

In this work we limit the scope to robots that have a
capacity of carrying a single item (single-task). Work on
multi-item MAPD [18] and the capacity-constrained vehicle
routing [12] are extensions that considers robot capacity.
Another possible extension we do not consider is appearance
and disappearance of robots during online MAPF [10].

III. BASKET-AWARE MAPD

Informally, a Basket Multi-Agent Pickup and Delivery
(Basket-MAPD) problem instance is a MAPD problem in-
stance in which tasks are annotated with basket membership,
i.e. they are part of the same purchase order. Note that we
use the term ‘basket’ rather than ‘batch’ because the tasks are
not necessarily executed in batches. A solution to a Basket-
MAPD problem is a plan that results in the delivery of
all tasks, which is similar to solutions for ordinary MAPD
problems. The distinction lies in the solution evaluation
metric. Here, we use the novel basket ordering weighted
error (BOWE), which takes into account the time it takes to
complete a basket and how timely that basket is completed
relative to other baskets, representing fairness. This paper
seeks to adapt and compare MAPD algorithms to different
families of Basket-MAPD problem instances, where the goal
is to minimize the BOWE scores of the solutions returned
by those algorithms.

A. Formalization of the Basket-MAPD Problem

A Basket-MAPD problem instance Γ = (G,A, T ) can
be formalized as a set of agents A = {a1, a2, . . . , an} in
an environment represented by an undirected reflexive graph
G = (V,E), consisting of locations V that can be traversed
via edges E. We let V ⊥ ⊂ V denote the non-empty set
of pick-up locations and V ⊤ ⊂ V the non-empty set of
delivery locations, where additionally V ⊥ ∩ V ⊤ = ∅. A
(time-invariant) task τj ∈ T is a tuple (tr, lp, ld, b) consisting
of a task release time tr ≥ 0, a pick-up location lp ∈ V ⊥,
a delivery location ld ∈ V ⊤, and a incrementing basket
identifier b ∈ N. We use the corresponding short-hand
funtions tr(τ), lp(τ), ld(τ), and b(τ) for any task τ . Two
tasks τi, τj ∈ T belonging to the same basket are required to
have the same release time, i.e. b(i) = b(j)→ tr(i) = tr(j).
We can then also define an aggregation function β(T , b′) =
{τ ∈ T | b(τ) = b′}, which allows us to group all tasks
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contained within any given basket identified by b′. Note that
an ordinary MAPD problem instance can be extended to a
Basket-MAPD problem instance by setting b(τi) = i for
every task τi ∈ T .

Let ΓI denote the set of valid solutions for a problem
instance Γ. A valid solution γ to a Basket-MAPD problem Γ
(i.e. γ ∈ ΓI), is modeled as a tuple (Γ,V,L, T ), where V =
{ρ1, ρ2, . . . , ρn} is the set of agent position histories, L =
{ℓ1, ℓ2, . . . , ℓn} is the set of agent load histories, and T ⊂ N
represents a timeline as a sequence of discrete time-points.
Here ρi = (v1, v2, . . . ) represents a path as a sequence of
edge traversals in (v1, v2) ∈ E by agent ai. The location of
an agent ai at a given time-point is formalized as a mapping
li : T 7→ V from time-points to locations for each agent
ai ∈ A. Agents are allowed to traverse one edge each time-
point, and may not collide, either by ending up in the same
location or by traversing the same edge, e.g. to swap places;

li(t) ̸= lj(t),

li(t+ 1) = lj(t)→ li(t) ̸= lj(t+ 1),

for all agents ai, aj and time-points t ∈ T . Each agent ai
furthermore has a carrying capacity, denoted by cap(ai) > 0,
specifying the number of tasks agent ai is able to carry at
any given time-point. Recall that we limit our scope to robots
that have a carrying capacity of one, i.e. cap(ai) = 1 for all
agents ai. The load histories ℓi = (l1, l2, . . . ) represent the
tasks lk ⊆ T that an agent ai is carrying, where |lk| ≤
cap(ai) for all values of k. An agent is allowed to pick up
a task τ from a pickup location lp(τ) on or after that task’s
release time tr(τ) if its carrying capacity allows it, and the
agent will keep carrying the task until dropping it off at a
drop-off location ld(τ), where the time-point of the drop-off
is denoted by td(τ). A task that is held by one agent cannot
be held by another agent. A solution is valid if it adheres to
all of the aforementioned constraints and all tasks in T have
a defined drop-off time.

B. Basket Ordering Weighted Error (BOWE)

We can use various quality metrics to compare valid
solutions. In this paper, we consider the basket ordering
weighted error (BOWE) metric, which combines basket
service time (BST) measuring boredom, i.e. how long it
takes to complete a basket); and basket linearity error (BLE)
measuring fairness, i.e. how timely the basket is completed
relative to other baskets. Let γ ∈ ΓI denote a valid Basket-
MAPD solution and let b denote a basket identifier. BST
requires knowledge of when the tasks belonging to a basket
of interest were delivered, and can thus be formalized as

BST(γ, b) =def max
τ∈β(T ,b)

(td(τ)− tr(τ)) . (1)

Similarly, BLE requires knowledge of when tasks within a
basket were delivered relative to when they were released,
but additionally depends on ranked orderings for basket
finishing times and basket release times, i.e. the time-point
at which the final task in a basket was completed and the
time-point at which the first task in a basket was released

respectively. Let rankf and rankr represent the rankings
of basket finishing times and basket release times respec-
tively; the first basket b to be finished receives a ranking
rankf (γ, b) = 1, the second basket b′; rankf (γ, b

′) = 2,
and so on, with the same holding for rankr-scores. Then
the BLE score for a basket b is defined as

BLE(γ, b) =def max(0, rankf (γ, b)− rankr(γ, b)). (2)

If all baskets are finished in the same order they are released,
the BLE will be 0 for every basket.

Averaging over linear combinations of different cost met-
rics is common in the literature. However, combining ranking
and non-ranking matrices is nontrivial, and uncommon. A
suitable weighting parameter between BST and BLE pose a
potentially difficult design choice. In this work we opt for
weighting BLE with BST, capturing the intuition that being
more out-of-order is substantially worse if the completion
time is also larger. Consequently, we define BOWE as

BOWE(γ, b) =def (BLE(γ, b) + 1)BST(γ, b) (3)

An optimal solution to a Basket-MAPD problem instance is
one which minimizes its basket-averaged BOWE score:

argmin
γ∈ΓI

(∑B
b=1 BOWE(γ, b)

B

)
, (4)

where B = maxτ∈T b(τ).

IV. SOLVERS

A Basket-MAPD Solver is an algorithm that takes a
Basket-MAPD problem Γ and produces a solution γ ∈ ΓI

that can then be evaluated using evaluation metrics such as
BOWE. There already exist a number of MAPD solvers,
but recall that these do not take into account baskets. We
therefore first consider a pre-existing approach to handling
‘singleton’ baskets, i.e. baskets containing a single item,
before extending it to larger basket sizes.

A. Priority Inheritance with Backtracking (PIBT)

The Priority Inheritance with Backtracking (PIBT) [17]
algorithm (shown in Algorithm 1) is an iterative algorithm
that solves MAPF and MAPD using priority inheritance and
backtracking. PIBT starts by updating each agent’s priority.
The priority is increased with one if the agent has not arrived
at its destination yet, else it is reset to its starting value,
the tie-breaker ϵ. The next step is to determine the agents’
next location, which is done sequentially in decreasing order
from highest priority agents to lowest priority agents. When
doing this, agents with lower priority try to avoid nodes that
agents with higher priority have reserved. This updating of
priorities and calculation of next locations is called the top-
level procedure and is repeated every timestep.

PIBT is guaranteed [17] to deliver each task an agent is
assigned to its destination within a finite number of time
steps, if it is possible to do so. Collisions are solved using
the backtracking procedure of the algorithm.
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Algorithm 1 PIBT

Require: Problem instance Γ with agent goals {g1, . . . , gn}
For each time-point τ ; repeat until terminates

1: Update priorities for all agents A and sort accordingly
2: while there are agents that has not planned a path do
3: ai ← highest priority free agent in A
4: PIBT(ai,⊥)
5: end while

6: procedure PIBT(ai, aj)
7: C ← neighboring vertices for li(τ)
8: sort C in increasing order of d(u, gi) where u ∈ C
9: for v ∈ C do

10: Avoid vertex conflict or continue
11: Avoid swap conflict with aj or continue
12: li(τ + 1)← v
13: if ∃ak s.t. lk(τ) = v ∧ lk(τ + 1) = ⊥ then
14: if PIBT(ak, aj) is invalid then
15: continue
16: end if
17: end if
18: return valid
19: end for
20: li(τ + 1)← li(τ)
21: return invalid
22: end procedure

B. Basket-PIBT (B-PIBT)

Because PIBT is designed for MAPD problems, it is un-
ware of tasks’ basket-membership and consequently handles
each task in isolation. The selection of the highest priority
agent-task pair is done at line 3 in Algorithm 1. Basket-
awareness is introduced by replacing line 3 with Algorithm 2
where basket prioritization is used instead of basket-unaware
task prioritization:

(1−K) · BOWE

K · dist+ 1
, (5)

where BOWE is the BOWE-value for the potential agent–
task-allocation, and K is a weighting parameter. If K =
0 then only BOWE matters: if K = 1 then only the
distance between the agent and the current task matters. The
parameter K may be tuned for a given map using Bayesian
optimization over the search space K ∈ [0; 1]. Bayesian
optimization [19] is a gradient-free optimization method
powered by probabilistic inference, where the uncertainty of
the objective function is modelled across the input range.
HyperOpt [20] is a widely used parameter optimization
library implementing Bayesian optimization. It is most often
used for parameter tuning in machine learning, but the
applicability of Bayesian optimization is widespread [19],
[21] and in this work it is used as an automatic method to
adapt the MAPD algorithm to the specific domain. One major
advantage of using Bayesian optimization is that there is no
longer a need for the ad-hoc hand-tuning of parameters.

Algorithm 2 Task Assignment of B-PIBT

Require: Unassigned tasks Tu, Agent set A
1: H ← Assignment heaps per agent
2: Initialize each agent heap Ha with |Tu|
3: for every pair of agent and unassigned task do
4: ha ← (agent, task) assignment
5: Insert ha in Ha using basket prioritization Eq. (5)
6: end for
7: while there are unassigned tasks left do
8: Assign best ha assignment (agent, task) ∀Ha ∈ H
9: Remove ha from the heap Ha

10: end while

V. EVALUATION

To evaluate the effectivenes of B-PIBT, we compare it
against other MAPD solvers using various metrics including
BOWE. We also vary the Basket-MAPD problem instances
to be solved by restricting the values for G, A, and T .

A. Measuring Floorplan Configuration Impact

For the first set of evaluations we consider the impact
of restricting G to three classes: 1) single-dropoff, where
there exists a single dropoff location in V ⊤; 2) column-
dropoff, where the dropoff locations form a line; and 3)
frame-dropoff, where the dropoff locations follow the entire
perimeter of the environment. Instances of the three different
classes are illustrated in Figure 2.

(a) Single (b) Column (c) Frame

Fig. 2
The three types of delivery points. The orange squares are
delivery points, the green are pickup locations, the blue are
agents and the white ones are empty locations

To test the impact of various floorplan configurations, we
first fix G to the shown 11x11 grid-shaped floorplans in
accordance with the Single, Column, and Frame classes. We
then fix the number of tasks to be |T | = 50, where each task
belongs to a unique basket, making the problem equivalent
to an ordinary MAPD problem. Basket release times are
also assumed to follow a release frequency of 1; meaning a
basket is released at every time-point. The number of agents
is varied such that |A| ∈ {1, 3, 5, 10, 20}. This yields a set
of Basket-MAPD problem instances {Γ1,Γ2, . . . }; one for
each permutation, which can further be broken down into
Γsingle ∪ Γcolumn ∪ Γframe for the three classes of floorplans
described by G.

Table I shows the evaluation of the results produced by
the MCA, MLA∗, and PIBT algorithms grouped by problem
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TABLE I
Results showing Service Time (ST), Makespan (MS) and
runtime for the three floorplan classes Γsingle, Γcolumn, and
Γframe, using a 11x11 map with frequency of 1, 50 tasks total,
aggregated over the number of agents in {1, 3, 5, 10, 20}. The
†-symbol indicates the best values across floorplan classes.

ST MS runtime

MCA 957 2897 537533
Γsingle MLA∗ 3185 8432 467455

PIBT 935 2836 46
MCA 805 2558 533365

Γcolumn MLA∗ 860 2771 7837
PIBT 839 2602 37
MCA †624 2077 515292

Γframe MLA∗ 721 2064 352
PIBT 720 †2061 †26

sets Γsingle, Γcolumn, and Γframe. The metrics shown for each
algorithm are averaged over five runs and include Service
Time (ST), Makespan (MS), and runtime (in seconds). The
Service Time is calculated similar to BST but for individual
tasks:

ST(γ) =def

∑
τ∈T

(tf (τ)− tr(τ)) . (6)

The Makespan metric is calculated to be the number of
timesteps between the first released task to the last finished
task:

MS(γ) =def max
τ∈T

(tf (τ))−min
τ∈T

(tr(τ)). (7)

Note that while MCA and MLA∗ perform poorly runtime-
wise, the latter improves significantly in the Frame class of
floorplans compared to Column and Single. PIBT has far
lower runtimes and performs comparably to MCA and MLA∗

in the ST and MS metrics.

B. Simulating Realistic Baskets

To evaluate the performance of the different solvers on
realistic data, we need to simulate varying basket sizes and
times between basket releases in a way that follows real-
world behavioral patterns. For this reason, we made use of
two datasets: 1) the Instacart Market Basket Analysis [22];
and 2) the average number of daily orders of a prototype
automated grocery store. Instacart’s dataset contains data on
over 3 million grocery store orders from from more than
200,000 customers. Data pertaining to groceries (rather than
clothing, for example) was used to model baskets. Figure 3
shows a histogram of order sizes (i.e. the number of tasks
per basket) and the frequency of orders (i.e. basket releases)
across a 24-hour period, and consequently models temporal
behavioral patterns of customers.

In order to simulate realistic baskets, we first need to
approximate the behavioral data indicating when customers
place orders and how large those orders are. Each arriving
order contains a number of products that are represented
as baskets and tasks respectively. The number of products
(i.e. tasks) sold per order (i.e. basket) vary throughout the
day. The basket size is modeled using a negative binomial
distribution, denoted NB(r, p), with different parameters for

0 5 10 15 20

Time of day (h)
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Fig. 3
One-hour histograms of basket (order) counts and sizes
compared to time of day based on Instacart’s dataset.
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Fitted

Fig. 4
Fitted probability mass function of the aggregate of all time
points in the Instacart dataset, showing the (time-invariant)
probability of drawing a particular basket size.

each one-hour period of the simulation, informed by the
observed behavioral patterns in the dataset. The parameters
are estimated using maximum-likelihood:

ph =
Xh

Var(Xh)
, (8)

rh =
phXh

(1− ph)
, (9)

where Xh is a set of observed order sizes during the hour
h. Since the support of the negative binomial distribution
contains 0, which is not a valid basket size, 1 is subtracted
from the basket sizes when estimating the parameters, and 1
is added during sampling. An example distribution showing
the probability of a particular basket size is shown in Figure 4
for a specific one-hour period during the day, where the
distribution has been fit against the data for a specific hour.

While the above model contains information on an hourly
basis, the available data needed to determine the exact timing
of when orders arrive to the system—corresponding to basket
release times—is unfortunately scarce. Here an assumption
is therefore made that orders arrive in bursts rather than
uniformly throughout any given hour. The number of orders
arriving at a time interval Nt is therefore modeled using a
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TABLE II
The Γproto-benchmark configuration space representing sce-
narios in the prototype automated grocery store.

Symbol Description Distribution
|V | Map size {11× 37}
|V ⊥| Number of pickups {165}
|A| Number of agents {5, 10, 15, 20}
|T | Number of tasks {500}
λh Frequencies {0.2, 0.5, 1, 2, 5}
B Basket sizes {2, 6, 10, 14, 18}

Poisson distribution, again with different parameters for each
hour of the simulation:

Nt ∼ Poisson(λh), (10)

where λh = Nph; ph = Nh/c
∑20

i=8 Ni; and c denotes the
(configurable) number of intervals in an hour. This assumes
that the orders’ arrivals are independent, that the rate is
constant and that the rate itself is independent from any order
arriving. In our simulation each interval lasts for a second.

Fig. 5
The real-world prototype automated grocery store’s 11× 37
floorplan with 5 agents and 170 pickup locations.

We now have models that allow us to simulate realistic
order times and sizes across a 24-hour period. These models
have been used to generate a collection of Basket-MAPD
problem instances Γproto that have been varied in accordance
with Table II, and where the floorplan is modeled after
the prototype automated grocery store, shown in Figure 5.
For these problem instances, the map size is assumed to
remain constant as it follows the floormap of the prototype
automated grocery store. Applying Bayesian optimization to
BOWE’s weighting parameter yields K = 6.6×10−3 for this
map, which shows that BOWE heavily influences the allo-
cation without completely excluding distance information.

As with the previous set of experiments for the Basket-
MAPD problem instances, the solvers MCA, MLA∗, PIBT,
as well as B-PIBT are applied to the Basket-MAPD problem
instances in Γproto, and the results are evaluated against ST,
MS, runtime, BST, and BOWE. For the Off-line simulations,
the calculations are performed sequentially for each agent.
The Lifelong simulations are long-running on-line scenarios
that cover a subset of the permutations defined in Table II.
The number of agents |A| is fixed to 20 agents, and the map
is the same 11×37 map as before, but the scenario durations
are increased to 12 hours of 1-second time-steps, resulting
in |T | = 43, 200. The simulation thus models the timing and
size of orders arriving to the store during a 12-hour interval
(08:00–20:00) during which the simulated store is open. The

TABLE III
Results showing Service Time (ST), Makespan (MS), run-
time (sec), Basket Service Time (BST), and Basket Ordering
Weighted Error (BOWE) for the prototype automated grocery
store MAPD problem instances Γproto.

Off-line Γproto ST MS runtime BST BOWE
MCA 264 1593 116704 604 5441
MLA∗ 326 1602 781 646 5645
PIBT 334 1589 175 691 8417
B-PIBT 565 1898 806 649 1125
Lifelong Γproto
PIBT-600 26 46711 3492 43 47
B-PIBT-600 73 46723 4652 91 95
PIBT-5000 6273 57430 162916 22293 12519080
B-PIBT-5000 12247 66349 6277099 12645 36139

results are shown in Table III, where the algorithm suffixes
‘–600’ and ‘–5000’ refer to problem instances with 600 and
5000 orders (i.e. baskets) per day.

The results show that B-PIBT performs well on the BOWE
metric in the off-line case. For the on-line cases, PIBT
performs better than B-PIBT for lower daily basket counts,
covering more quiet days at the grocery store. However, for
busier days, B-PIBT heavily outperforms PIBT, which does
not appear to scale very well.

VI. CONCLUSIONS

While there exist many solvers for MAPD problems,
none consider the basket-membership of individual tasks.
Basket-membership awareness is an important property when
considering automated shopping stores, in which agents are
tasked with picking the items in customer orders while
keeping customer satisfaction high.

This paper therefore presented the novel problem of
Basket-MAPD, along with a consumer satisfaction met-
ric BOWE based on waiting times and perceived fair-
ness. To find solutions to Basket-MAPD problem instances
that minimize BOWE, an algorithm based on PIBT called
Basket-PIBT (B-PIBT) was presented and compared against
other state-of-the-art solvers. The Basket-MAPD problem
instances were also designed to follow real-world behavioral
patterns associated with order placements, and considered
various shop floorplans in order to study their impacts. We
showed that B-PIBT significantly outperforms state-of-the-
art alternatives when considering BOWE, while not perform-
ing significantly worse in other (basket-unaware) metrics.
Since the evaluations were performed in simulations, future
work could consider field robotic experiments.
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[10] J. Švancara, M. Vlk, R. Stern, D. Atzmon, and R. Barták, “Online
multi-agent pathfinding,” in Proceedings of the Thirty-Third AAAI
Conference on Artificial Intelligence (AAAI), vol. 33, no. 01, 2019,
pp. 7732–7739.

[11] O. Salzman and R. Stern, “Research challenges and opportunities
in multi-agent path finding and multi-agent pickup and delivery
problems,” in Proceedings of the 19th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS), 2020, p.
1711–1715.

[12] A. Farinelli, A. Contini, and D. Zorzi, “Decentralized task assignment
for multi-item pickup and delivery in logistic scenarios,” in Proceed-
ings of the 19th International Conference on Autonomous Agents and
Multiagent Systems (AAMAS), 2020, pp. 1843–1845.

[13] H. Ma, W. Hönig, T. S. Kumar, N. Ayanian, and S. Koenig, “Lifelong
path planning with kinematic constraints for multi-agent pickup and
delivery,” in Proceedings of the Thirty-Third AAAI Conference on
Artificial Intelligence (AAAI), 2019, pp. 7651–7658.

[14] G. B. Dantzig and J. H. Ramser, “The truck dispatching problem,”
Management Science, vol. 6, no. 1, pp. 80–91, 1959.

[15] Z. Chen, J. Alonso-Mora, X. Bai, D. D. Harabor, and P. J. Stuckey,
“Integrated task assignment and path planning for capacitated multi-
agent pickup and delivery,” IEEE Robotics and Automation Letters
(RA-L), vol. 6, no. 3, pp. 5816–5823, 2021.

[16] F. Grenouilleau, W.-J. van Hoeve, and J. N. Hooker, “A multi-label
A∗ algorithm for multi-agent pathfinding,” in Proceedings of the
Twenty-Ninth International Conference on Automated Planning and
Scheduling (ICAPS), vol. 29, 2019, pp. 181–185.

[17] K. Okumura, M. Machida, X. Défago, and Y. Tamura, “Priority
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