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Sammanfattning

Denna masteruppsats undersökte möjligheten att estimera temperaturberoende
parametrar i en synkronmotor med permanentmagneter med hjälp av Kalman-
filter. Fokus låg på att estimera motorns resistans och magnetiska flöde för att
övervaka temperaturvariationer under motordrift. Användningen av Kalmanfil-
ter motiverades av deras förmåga att hantera icke-linjäriteter och osäkerheter.
Detta gjorde dem lämpliga för att hantera variationerna som uppstår under en
typisk åtdragning av ett skruvförband, vid använding av ett verktyg från Atlas
Copco.

De första iterationerna av Kalmanfiltrets tillståndsmodell fokuserade främst på
att uppskatta resistansen. Därefter utvecklades en liknande version för uppskatt-
ning av det magnetiska flödet. Slutligen kombinerades dessa två versioner för
att skapa den slutgiltiga modellen, vilket möjliggjorde samtidig estimering av bå-
de resistansen och det magnetiska flödet. masteruppsatsen utforskade tre olika
varianter av Kalman-filter: Extended Kalman Filter, Adaptive Extended Kalman
Filter och Unscented Kalman Filter. Syftet med masteruppsatsen var att utvärde-
ra prestandan hos dessa filter och identifiera eventuella skillnader som uppstår
på grund av deras olikheter.

Övergången från simulerad data till verkliga data tydliggjorde begränsningarna
med att enbart förlita sig på simulerade modeller. Tester på verklig data avslöja-
de komplexiteter och osäkerheter som förbises i de förenklade simuleringsmodel-
lerna. Särskilt närvaron av brus i signalerna blev tydligt. Även om Kalmanfilter-
na kunde uppskatta resistansen och det magnetiska flödet samtidigt utan brus,
medförde närvaron av brus utmaningar för samtliga varianter av Kalmanfilter.
Estimeringsprestandan var bristfällig och indikerade att nuvarande nivå av nog-
grannhet inte var tillräcklig för att tillförlitligt övervaka temperaturförändringar
i permanentmagnet synkronmotor.

Förutom brus avslöjade datan från ett verktyg oväntade fenomen så som avvikel-
ser mellan simuleringsmodellen och det verktyg som användes i masteruppsat-
sen, samt vikten av korrekt data och motorparametrar för att Kalmanfiltrena ska
ge adekvata resultat.

Sammanfattningsvis betonade denna masteruppsats utmaningarna med samti-
dig estimering av resistans och magnetiskt flöde, samt begränsningarna i att en-
bart förlita sig på simuleringsdata. Masteruppsatsen visade potentialen hos Kal-
manfilter för temperaturberoende parameterestimering i en permanentmagnet
synkronmotor. Detta skulle i framtiden kunna möjliggöra en lösning utan senso-
rer. Ytterligare undersökningar och förbättringar krävs dock för att lösa de iden-
tifierade svårigheterna och uppnå tillförlitlig parameterestimering.
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Abstract

This thesis investigated the feasibility of estimating temperature-dependent pa-
rameters in a permanent magnet synchronous motor using Kalman filters. The
primary focus was on estimating the motor’s stator winding resistance and ro-
tor flux linkage to monitor temperature variations during motor operation. The
utilisation of Kalman filters was motivated by their capability to handle non-
linearities and uncertainties, which made them well suited for addressing the
variations encountered during the tightening operation at Atlas Copco.

The initial iterations of the Kalman filter’s state transition vector primarily fo-
cused on estimating the resistance. Subsequently, a similar version was devel-
oped for flux estimation. Eventually, these two versions were combined to create
the final model, enabling simultaneous estimation of both the resistance and flux.
The thesis explored three different variants of the Kalman filter: the Extended
Kalman Filter, the Adaptive Extended Kalman Filter, and the Unscented Kalman
Filter. The thesis aimed to evaluate the performance of these filters and identify
any differences.

The transition from simulated data to real world data illustrated the limitations
of relying solely on simulation models. Testing on real world data uncovered
complexities and uncertainties that were overlooked in the simplified simulation
models. Notably, the presence of noise in the signals. While the Kalman filters
were capable of estimating the resistance and flux simultaneously without noise,
the introduction of noise posed challenges for all the Kalman filter variants. As a
result, the estimation performance was poor, indicating that the current accuracy
levels were insufficient to reliably monitor temperature changes in the PMSM.

In addition to noise, the real world data revealed unexpected phenomena such
as discrepancies between the simulation model and the tool used in the thesis,
as well as the importance of accurate data and motor parameters for the Kalman
filters to yield adequate results.

Overall, this thesis emphasised the challenges associated with simultaneous esti-
mation of resistance and flux, and the limitations of relying solely on simulations.
This thesis demonstrated the potential of using Kalman filters for temperature
dependent parameter estimation in a permanent magnet synchronous motor. A
variant which in the future could enable a sensorless solution. However, further
research and improvements are necessary to overcome the identified challenges
and achieve reliable parameter estimation.
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Notation

Nomenclature

Notation Explanation

vsa Stator voltage in phase a
vsb Stator voltage in phase b
vsc Stator voltage in phase c
Rs Resistance in stator winding
isa Stator current in phase a
isb Stator current in phase b
isc Stator current in phase c
Ψ sa Stator flux in phase a
Ψ sb Stator flux in phase b
Ψ sc Stator flux in phase c
Ψ ra Rotor flux in phase a
Ψ rb Rotor flux in phase b
Ψ rc Rotor flux in phase c
p Number of pole pairs
θr Rotor angle
θel Electric rotor angle
Ls Stator inductance
ωr Angular velocity of rotor
ωel Electric angular velocity of rotor
iα Current in α-coordinates
iβ Current in β-coordinates
id Current in d-coordinates
iq Current in q-coordinates
Tem Motor torque in the dq-frame
TL Load torque
f Viscous damping constant
J Rotor inertia
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xii Notation

Acronyms

Abbreviation Explanation

pmsm Permanent Magnet Synchronous Motor
spmsm Surface-mounted Permanent Magnet Synchronous

Motor
foc Field Oriented Control
ekf Extended Kalman Filter
Aekf Adaptive Extended Kalman Filter
ukf Unscented Kalman Filter
ut Unscented Transform
pi Proportional Integral (regulator)



1
Introduction

Chapter 1 serves as a starting point, as it addresses the problem by delving into its
appurtenant background. Furthermore, this chapter establishes the scope of the study,
clarifying the boundaries within which the thesis is presented. The methodology is
outlining the approach and techniques employed to gather and analyse data.

1.1 Background

Electrical motors are important components of modern society, driving every-
thing from home appliances to industrial machinery. These motors consume
approximately 45% of the world’s electricity [22], making their efficiency and
reliability crucial to conserving energy and reducing our carbon footprint. As
the world continues to shift towards sustainable energy sources, the electrifica-
tion of various sectors is becoming increasingly important. In this context, the
development of robust and efficient electrical machinery is crucial.

Atlas Copco is a company that designs, develops, and manufactures electrical
assembly systems. These systems are sold and distributed worldwide and are
utilized in a variety of industries, including automotive, aerospace, and manufac-
turing.

One critical factor that impacts the lifespan of electrical motors is the operating
temperature. Motors that operate at excessively high temperatures can suffer
from irreversible demagnetization of the rotor magnets. Furthermore, the lifes-
pan of motor winding insulation is markedly reduced when temperatures exceed
the specified temperature rating. To ensure the proper functioning of electrical
motors, accurate monitoring of winding temperature is crucial.
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2 1 Introduction

1.2 Problem Definition

At Atlas Copco, mechanical temperature sensors have been used to monitor sta-
tor winding temperature. However, these sensors add size, complexity, and cost
to the machinery. Additionally, the current temperature sensor solution is often
inaccurate due to the electrical insulation requirements. This inaccuracy can lead
to premature motor failure.

To address these challenges, Atlas Copco is interested in developing tempera-
ture estimation algorithms for high-speed electrical machines used in industrial
power tools. The goal of this thesis is to investigate the possibility of monitoring
the temperature dependent parameters, winding resistance and rotor flux. This
will be done by utilising a variety of Kalman filters.

1.3 Scope

The scope of this Master thesis is to investigate the application of Kalman fil-
ters for parameter estimation in Permanent Magnet Synchronous Motor (PMSM)
controlled by a Field Oriented Control (FOC). The primary objective is to anal-
yse the performance of three different Kalman filter variants: Extended Kalman
Filter (EKF), Adaptive Extended Kalman Filter (AEKF), and Unscented Kalman
Filter (UKF).

The thesis will involve utilising both simulated and real-world data to evaluate
the applicability of the Kalman filters in estimating the flux and resistance of the
PMSM. Simulated data will be employed to assess the performance of the filters
under different conditions, while real-world data, involving an actual tightening
operation will provide insights into their behavior in practical scenarios.

However, certain boundaries and limitations exist within this thesis. The FOC
and PMSM models used will be simplified, lacking internal dynamics that are
present in real motors. The parameter estimation will focus solely on estimating
the flux and resistance. Additionally, the investigation will be simulation-based,
without implementation into an actual tool. The number of test cases will be
restricted, primarily focusing on real tightening operations. Lastly, the scope
will be specifically centered around Surface-Mounted Permanent Magnet Syn-
chronous Motor (SPMSMs).

1.4 Methodology

To address the problem formulation and gain a comprehensive understanding of
the underlying components, an extensive research effort will be undertaken. This
will involve delving into literature sources that cover topics such as FOC, PMSM,
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and Kalman filters, more specific EKF, AEKF and UKF.

The research methodology employed in this thesis primarily revolves around con-
ducting experiments using simulation models. These models offer the advantage
of flexibility and rapid prototyping, enabling swift modifications that would be
challenging to implement on a real tool. The Kalman filters, will be implemented
as Matlab scripts due to the ease of performing mathematical calculations in Mat-
lab.

Data collection for this thesis entails a combination of simulated and real world
data. The simulated data will be obtained from model simulations in Simulink.
Real world data will be acquired from an actual tool used at Atlas Copco. By em-
ploying both simulated and real-world measurements, it will be possible to con-
duct controlled experiments and compare the performance between simulated
and real world data. Simulated data will be directly exported from Simulink to
Matlab, while the real world data will be extracted using a dedicated software.

As the objective of the temperature monitoring system is to detect changes in
temperature over time, the focus will be on observing how the underlying param-
eters evolve over time and comparing them to nominal values. By doing so, the
implemented method can be evaluated.

One of the primary limitations could be the amount of relevant literature on the
topic, which may present challenges in developing the simulation models and
comprehending the chosen approach. Additionally, the data extracted from the
real tool could be a limitation. In order for a Kalman filter to be applicable, it de-
pends on how the data behaves. Furthermore, the unknown behavior of the tool
compared to the literature could be a limitation. Meaning we do not know if the
tool behaves in a similar way as it does in the literature. This is an assumption
we have to make in order to proceed with this thesis.

1.5 Outline

This thesis is divided into eight chapters. Chapter 1, introduces the problem with
appurtenant background. It also defines the scope and methodology together
with an outline. Chapter 2 presents the theory that this thesis will build upon.
In Chapter 3, the procedure of creating the FOC, PMSM and thermal model in
simulation as well as the matrices used in the different Kalman filters are intro-
duced. Chapter 4 and 5 introduces the setup for both simulation and real-world
testing. It also includes the respective test cases, data and results. In Chapter 6
challenges that were encountered are addressed. Chapter 7 discusses the results
and other miscellaneous subjects related to the thesis that the authors find impor-
tant to mention. Lastly, Chapter 8 concludes the thesis as well as suggests how to
proceed going forward.





2
Theory

In this chapter, an overview of the permanent magnet synchronous motor is provided.
The mathematical model of the motor is presented, along with an explanation of the
Field Oriented Controller’s operational principle and its schematic diagram. Further-
more, various Kalman filters utilised to estimate the temperature dependent parame-
ters are introduced. Lastly, theory that explains the simplified thermal development in
a permanent magnet synchronous motor is presented.

2.1 Permanent Magnet Synchronous Motors

This section presents the basic construction of a PMSM, provides a description of
the three-phase system, and explains the mathematical model of the PMSM. The
mathematical model includes different transforms used to simplify the calcula-
tions.

2.1.1 Working Principle of a PMSM

Like any rotating electric motor, the PMSM consists of a rotating part, the rotor
and a stationary part, the stator. A principal cross section for different types of
magnetic configurations in a PMSM is visualised in Figure 2.1.
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6 2 Theory

Figure 2.1: Principal cross section of a Surface-Mounted Permanent Magnet
Synchronous Motor (left) and an Interior-Mounted Permanent Magnet Syn-
chronous Motor (right) [16].

The air gap between the stator and rotor is essential as it enables the rotor to ro-
tate freely. It serves as a necessary space that allows for unimpeded movement
and prevents physical contact between the two components. In Atlas Copcos
PMSM construction, both the rotor and stator are equipped with iron cores. The
stator’s iron core is then wound with copper wire, while the rotor’s iron core is
encircled by neodymium magnets. This design choice facilitates the smooth flow
of magnetic flux generated by the permanent magnets.

The fundamental operational principle of a PMSM relies on the dynamic inter-
play between the magnetic fields of the stator and rotor. The rotor’s magnetic
field is established by the permanent magnets, which create a continuous mag-
netic flux. This magnetic field exhibits synchronous rotation with the field gener-
ated by the stator.

The synchronised rotation of the two magnetic fields creates an interaction that
produces a torque on the rotor. The torque generated through this interaction is
driving the rotational movement of the motor [12]. In the scope of this thesis, the
permanent magnets are attached on the surface of the rotor and based on this, the
motor is classified as a surface-mounted permanent magnet synchronous motor
(SPMSM).

2.1.2 The Y-connected Three Phase System

The magnetic field created by the stator is supplied via a Y-connected three phase
system. In a three-phase system, the coils are energised with an alternating cur-
rent, meaning that the direction of the current changes periodically. These coils
are positioned 120 degrees apart from each other in a spatial distribution. This
angular displacement ensures a balanced distribution of electrical power. Due
to the spatial arrangement of the coils, the magnetic field rotates as the current
flowing through the coils alternates.
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The arrangement of the three phases within the system is commonly referred to
as the abc-frame. In this configuration, phase a is associated with one of the coils,
phase b with another, and phase c with the remaining coil. These three phases
collectively form the foundation of the Y-connected three-phase system. Figure
2.2 illustrates the arrangement of the three phases in the abc-frame [3].

Figure 2.2: Three phase Y-connection [20].

2.1.3 Mathematical Model

The mathematical model consists of three separate parts describing the motor.
The first is the electrical equations, the second is the electromagnetic equation
and the third is the mechanical equation.

The electrical equations of the three-phases that constitute the stator can be writ-
ten as (2.1) - (2.3).

vsa = Rsisa +
dΨ sa

dt
(2.1)

vsb = Rsisb +
dΨ sb

dt
(2.2)

vsc = Rsisc +
dΨ sc

dt
(2.3)

where, vs,abc denotes the voltage in each stator phase, Rs represents the stator re-
sistance, is,abc corresponds to the current flowing through each stator phase, and
Ψ s,abc is the stator flux present in each stator phase.

A constant flux in the rotor is created due to the permanent magnets, and the
electromagnetic force is assumed to be sinusoidal. Hence the stator flux can be
expressed as in (2.4) - (2.6).
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Ψ sa = Lssisa + Ψ racos(pθr ) (2.4)

Ψ sb = Lssisb + Ψ rbcos(pθr −
2π
3

) (2.5)

Ψ sc = Lssisc + Ψ rccos(pθr +
2π
3

) (2.6)

where the term Lss refers to the inductance matrix specific to the stator. Ψ r,abc is
the amplitude of the flux induced in each stator phase by the permanent magnets.
The constant p denotes the number of pole pairs in the motor, and θr represents
the rotor angle [4]. Due to the machine used in this thesis, which is a SPMSM the
inductance matrix Lss can be modeled as a constant Ls [5].

By combining (2.1) - (2.3) with (2.4) - (2.6) via (2.7), it yields (2.8) - (2.10).

d
dt

(•) =
dθr

dt
d

dθr
(•) = ωel

d
dθr

(•) (2.7)

vsa = Rsisa +
d
dt

(Lsisa) + ωel
d

dθr
(Ψ ra) (2.8)

vsb = Rsisb +
d
dt

(Lsisb) + ωel
d

dθr
(Ψ rb) (2.9)

vsc = Rsisc +
d
dt

(Lsisc) + ωel
d

dθr
(Ψ rc) (2.10)

where ωel represents the electrical angular velocity of the rotor.

According to Faradays law of induction, the last component in (2.8) - (2.10) is the
back-emf induced by the rotor and can be expressed as (2.11) - (2.13).

ea = ωel
d

dθr
(Ψ ra) (2.11)

eb = ωel
d

dθr
(Ψ rb) (2.12)

ec = ωel
d

dθr
(Ψ rc) (2.13)

In order to get the electrical angular velocity, ωel and electrical angle, θel one can
multiply the rotor angular velocity, ωr and rotor angle, θr with the number of
pole pairs, p which yields (2.14) - (2.15).

ωel = pωr (2.14)

θel = pθr (2.15)
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Representing the three-phase alternating current as a two-phase direct current
is preferred due to its ability to simplify calculations and implementation. This
approach offers two main advantages. Firstly, by converting the three-phase AC
system into a two-phase DC system, the complexity of mathematical calculations
is reduced. Two-phase systems involve fewer variables and equations compared
to their three-phase counterparts. Secondly, this simplification makes it easier to
implement. The general transformation principal from three-phase AC to two-
phase DC, can be seen in Figure 2.3.

Figure 2.3: Three-phase AC to two-phase DC [3].

As depicted in Figure 2.3 the transformation from the abc-frame to dq-frame is
done via the αβ-frame by utilising the Clarke transform. The Clarke transform
is employed to convert the three stator phases, typically denoted as abc, into a
two-coordinate time-variant stator phase represented by α and β. These new
components exhibit sinusoidal variations with the same amplitude but with a
phase shift compared to the original three-phase representation.

The α-component represents the average value of the three-phases, while the
β-component represents the sum of the second and third phase divided by

√
3.

Together, these two components provide a representation of the original three-
phase system in a two-coordinate system. Figure 2.4 depicts the relationship
between the two reference frames, the original three-phase currents iabc and the
transformed two-coordinate vector iα , iβ [1].



10 2 Theory

Figure 2.4: The relationship between the αβ- frame and abc-frame.

The Clarke transform is visualised in (2.16).

[
iα
iβ

]
=

2
3

[
1 −1

2 −1
2

0
√

3
2 −

√
3

2

] isaisb
isc

 (2.16)

After the Clarke transform, the two-axis orthogonal stationary αβ-frame is con-
verted into a two-coordinate time-invariant rotor frame, meaning it rotates with
the rotor. This is achieved by using the Park transform. The Park transform re-
sults in a vector that contains two components, namely the direct (d) and quadra-
ture (q) component. The d-axis is responsible for generating flux through the field
winding. On the other hand, the q-axis is where torque is produced [12]. These
components are fixed to the rotating rotor of the PMSM.

The d-axis is aligned with the rotor and represents the component of the trans-
formed vector. It corresponds to the magnetic flux aligned with the magnetic
field of the rotor. The q-axis is positioned at a 90-degree angle from the d-axis. It
represents the component of the transformed vector, that corresponds to the mag-
netic flux which is orthogonal to the rotor magnetic field. Figure 2.5 illustrates
the relationship between the two-coordinate αβ-frame and the transformed dq-
frame [2].
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Figure 2.5: The relationship between the stator fixed αβ- and the rotor fixed
dq-reference frame.

The Park transform is presented in (2.17).[
id
iq

]
=

[
cos(θr ) sin(θr )
−sin(θr ) cos(θr )

] [
iα
iβ

]
(2.17)

when (2.8) - (2.10) are transformed using Clarke and Park respectively it yields
(2.18) - (2.19).

vd =
d
dt

idLs + Rsid − iqωelLs (2.18)

vq =
d
dt

iqLs + Rsiq + idωelLs + Ψ rωel (2.19)

which can be rewritten as (2.20) - (2.21).

d
dt

id = −Rs

Ls
id + iqωel +

vd
Ls

(2.20)

d
dt

iq = −idωel −
Rs

Ls
iq +

vq
Ls
− Ψ rωel

Ls
(2.21)

Equation (2.20) and (2.21) can be written in state-space form with the state vector
x = [id iq]T and the input vector u = [vd vq ωel]T as seen in (2.22) - (2.23).

ẋ = f (x, u) (2.22)

y = h(x) (2.23)

where
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f (x, u) =

 −Rs
Ls
x1 + x2u3 + u1

Ls
−x1u3 + −Rs

Ls
x2 + u2

Ls
− Ψ ru3

Ls

 (2.24)

h(x) =
(
x1
x2

)
(2.25)

The electromagnetic equation describing the motor torque, Tem in the dq-frame
is shown in (2.26).

Tem =
3
2
pΨ r iq (2.26)

The mechanical equation describing the mechanical rotor angular acceleration is
visualised in (2.27).

d
dt

ωr =
Tem − f ωr − TL

J
(2.27)

where J is the rotor inertia, f is the viscous damping constant and TL is the ap-
plied load torque [4].

2.2 Field Oriented Control

Atlas Copco utilises a motor with a high angular velocity and low torque. This
motor configuration is well-suited for FOC since it aims to maximise the gener-
ated torque at the expense of a slight reduction in angular velocity. Figure 2.5
illustrates the relationship, revealing that in order to optimize the current for
torque production, it is desirable for the d-current to be minimized, ideally ap-
proaching zero. The FOC’s working principle is illustrated in Figure 2.6. The
principle of this control strategy is to decouple the motor flux and torque to con-
trol them separately.

In order to implement the FOC, three requirements need to be fulfilled:

1. The angle between the d- and q-axis needs to be 90 degrees.

2. Independent control of field flux and torque producing current.

3. Instantaneous control of torque producing current.

Requirement one is fulfilled when the Clarke- and Park transform has been ap-
plied to the three phase currents, meaning we go from the abc-frame to the dq-
frame via the αβ-frame. Requirement two is inherently met since the field flux
is generated by the permanent magnets in the rotor and the torque producing
current is generated by the stator windings. Instantaneous control of the torque
producing current can be achieved via the synchronous reference frame current
regulator and the inverter [12].
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Figure 2.6: Field oriented control scheme.

The FOC constitutes of an inner and outer control loop. The inner loop begins
with the position of the rotor, received from the encoder built in to the motor.
The position together with the currents from the inverter are transformed via the
Clarke- and Park transform respectively. This yields the representative currents
in the dq-frame. The q-current is compared to the reference q-current and the
error is fed to a PI-controller which outputs the q-voltage. The space vector pulse
width modulation produces PWM-signals which is sent to the inverter. The in-
verter sends three phase signals to the PMSM. The outer loop derives the rotor
position in order to get the rotor speed. This is compared to the reference speed
and the error is fed to a PI-controller which outputs the q-current reference [15].

2.3 Signal Filtering

To handle potential noisy signals resulting from the data extraction process, em-
ploying a signal filtering technique is beneficial. Filters serve the purpose of sup-
pressing interfering signals, reducing background noise, and selectively remov-
ing specific frequencies while allowing others to pass through. The filter aims at
modifying the amplitude and/or phase characteristics of a signal in relation to its
frequency, without introducing new frequencies or altering existing components.
Instead, they adjust the relative amplitudes and phase relationships of different
frequency components.

One such filter is the Butterworth filter. It is one of the types of filtering tech-
niques used at Atlas Copco. The Butterworth filter is a type of signal processing
filter designed to achieve a flat frequency response within the passband, zero
roll-off response in the stopband and avoid ripples, see Figure 2.7. However, the
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Butterworth filter has some drawbacks, including a wide transition band when
transitioning from the passband to the stopband [13].

Figure 2.7: Butterworth filter response [13].

2.4 Extended Kalman Filter

The EKF is an extension of the Kalman filter developed in the early 1960’s. Ex-
tension here refers to the filters ability to handle non-linearities [6].

2.4.1 Mathematical Model

The EKF utilises a nonlinear model according to (2.28) - (2.29).

xk = fk(xk−1, uk) + wk (2.28)

yk = hk(xk) + vk (2.29)

E[wk , w
T
k ] = Qk (2.30)

E[vk , v
T
k ] = Rk (2.31)

where xk is the state vector, uk is the input vector and fk is the state transition
vector. yk is the measurement vector and hk is the observation vector. wk and
vk are white Gaussian noise with zero mean, where Qk is the covariance matrices
for the process noise and Rk is the covariance matrices for the measurement noise.
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The working principle of the EKF algorithm can be summarised in two steps:

1. Prediction Step
During the prediction phase, the current estimate is generated by utilising
the state estimate from the previous timestep and the input from the cur-
rent step. This estimation, known as the priori state estimate, predicts the
current state. The current covariance matrix is calculated by using the lin-
earised state transition vector and the covariance from the previous time
step, as well as adding the process noise.

2. Correction Step
In the correction phase, the state estimate is corrected by adding together
the current predicted estimate and the weighted measurement adjustment.
The adjustment is calculated by comparing the predicted measurements
with the actual measurements. In addition to updating the state estimate,
the corrected covariance matrix is also calculated. This involves subtract-
ing the weighted version of the current predicted covariance from the non-
weighted current predicted covariance.

Algorithm 1 showcases a full cycle of the EKF.

Algorithm 1 EKF

1: Initialization:
2: x̂0 = E[x0] and P0 = E[(x0 − x̂0)(x0 − x̂0)T ]
3: Prediction Step:
4: x̂k|k−1 = fk(x̂k−1|k−1, uk|k)
5: P k|k−1 = Fk(Pk−1|k−1)F T

k + Qk
6: Kalman Gain:
7: Kk = Pk|k−1H

T
k (HkPk|k−1H

T
k + Rk)−1

8: Correction Step:
9: x̂k|k = x̂k|k−1 + Kk(yk − hk(x̂k|k−1))

10: Pk|k = (I − KkHk)Pk|k−1

The first step in Algorithm 1 is to initialize the filter. This is done by an ini-
tial guess regarding the start value of each state. In this step the uncertainty
of this initial guess is also included. The vector x̂0 consists of mean values and
the covariance P0 is derived by subtracting the mean from the initial state and
then multiplying it with its transposed version. The EKF is an iterative estimator
meaning that it employs state estimation based on previous estimations and mea-
surements. Since there are no previous estimates or measurements in the first
iteration of the algorithm this initialisation step is necessary.

Once the initialization step is completed, the prediction step follows. As indi-
cated in the fourth row of Algorithm 1, the state prediction step takes the pre-
vious state estimate x̂k−1|k−1 along with the input vector. These values are then
passed through the nonlinear state transition vector, which is discretised using
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the forward Euler method. The discretisation process can be observed in equation
(2.32).

x̂k|k−1 = x̂k−1|k−1 + Tsfk (2.32)

where Ts is the discrete time step between tk and tk−1.

In order to retrieve the predicted covariance Pk|k−1, seen in row five of Algorithm
1, the state transition vector is linearised using (2.33). The linearised state tran-
sition vector which yields the state transition matrix Fk , is multiplied with the
previous covariance Pk−1|k−1 and the process noise covariance is added.

Fk =
∂x̂
∂x

∣∣∣∣∣
x̂k−1|k−1,uk

(2.33)

When the prediction step is done, the Kalman gain Kk is calculated. It utilises the
linearised observation matrix Hk , seen in (2.34) and the predicted covariance. A
measurement noise covariance is also added. The Kalman gain works as a weight
between previous and current step.

Hk =
∂h
∂x

∣∣∣∣∣
x̂k|k−1

(2.34)

During the correction step, the state estimation x̂k|k is revised by incorporating
the predicted estimate along with the Kalman gain and the adjusted measure-
ments. Simultaneously, the covariance matrix Pk|k is updated using the predicted
covariance, the Kalman gain, and the linearised observation matrix [18].

2.4.2 Adaptive Extended Kalman Filter

The AEKF is a variation of the EKF that offers the capability to automatically
adapt the values of the process noise covariance and measurement noise covari-
ance. This variant follows the overall algorithm of the EKF, with an additional
step for calculating the noise covariance matrices.

The calculation of Qk can be observed in (2.35) and Rk in (2.36).

α1 =
NQ − 1
NQ

ω̂k = x̂k − x̂k|k−1

ω̄k = α1ω̄k−1 +
1
NQ

ω̂k

∆Qk =
1

NQ − 1
(ω̂k − ω̄k)(ω̂k − ω̄k)T +

1
NQ

(
(Pk|k−1) − (FkPk−1|k−1Fk

T )
)

Qk = |diag(α1Qk−1 + ∆Qk)|

(2.35)
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α2 =
NR − 1
NR

ēk = α2 ēk−1 +
1
NR

ek

∆Rk =
1

NR − 1
(ek − ēk)(ek − ēk)T − 1

NR
HkPk|k−1H

T
k

Rk = |diag(α2Rk−1 + ∆Rk)|

(2.36)

where NR and NQ are tuning variables and ek = yk − Hx̂k|k−1.

The AEKF utilises (2.35) - (2.36) to iteratively update its estimates and adap-
tively account for uncertainties in the process and measurement models. These
equations allow the filter to continuously incorporate the differences between pre-
dicted and measured values, as well as weighted averages, enabling it to dynami-
cally adjust the covariance matrices Q and R. This adaptive adjustment helps the
filter to reflect the actual uncertainties, hopefully leading to improved accuracy
in the estimation process [8].

2.5 Unscented Kalman Filter

The UKF, presented in [11], alternates the algorithm compared to the EKF by util-
ising the unscented transform (UT). The UT allows for use of the state transition
vector without linearisation by propagating the sigma points through the state
transition vector [21], as shown in Figure 2.8.
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Figure 2.8: Example of the UT and how it affect the sigma points, mean and
covariance [17].

A complete cycle of the UKF can be seen in Algorithm 2.
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Algorithm 2 UKF

1: Initialization:
2: x̂0 = E[x̂0] and P0 = E[(x0 − x̂0)(x0 − x̂0)T ]
3: Sigma Points:
4: X k−1 = [x̂k−1 x̂k−1 + η

√
Pk−1 x̂k−1 - η

√
Pk−1 ]

5: Prediction Step:
6: X k|k−1 = fk[X k−1, uk−1]

7: x̂−k =
∑2L

i=0 W
(m)
i X i,k|k−1

8: P̂ −k =
∑2L

i=0 W
(c)
i [X i,k|k−1 − x̂−k][X i,k|k−1 − x̂−k]T + Qk

9: Y k|k−1 = hk[X k|k−1]

10: ŷ−k =
∑2L

i=0 W
(m)
i Y i,k|k−1

11: Correction Step:

12: Pỹk ỹk =
∑2L

i=0 W
(c)
i [Y i,k|k−1 − ŷ−k ][Y i,k|k−1 − ŷ−k ]T + Rk

13: Pxkyk =
∑2L

i=0 W
(c)
i [X i,k|k−1 − x̂−k][Y i,k|k−1 − ŷ−k ]T

14: Kk = PxkykP
−1
ỹk ỹk

15: x̂k = x̂−k + Kk(yk − ŷ−k)
16: P̂k = P̂ −k + KkPỹk ỹkK

T
k

The first step in Algorithm 2 is to initialise the algorithm with an initial guess
regarding the states and the uncertainty of the initial state guess. x̂0 is a vector
consisting of mean values, and the covariance P0 is calculated by subtracting the
mean from the initial guess and multiplying it with its transposed version. After
that the sigma points, Xk−1 are calculated. There are 2L + 1 (L is the number of
states) number of sigma points. The first sigma point is called the zero point and
is the mean of the previous estimate. The other 2L sigma points are calculated
according to (2.38) - (2.39) where the first L sigma points utilizes the zero point
and scales them by a positive factor and the Cholesky decomposition of the co-
variance (2.38). In the same way, the last L sigma points also utilises the zero
points and scales them by subtracting a negative factor and the Cholesky decom-
position of the covariance (2.39). This gives the sigma points a spread around the
zero point.

x̂
(0)
k−1 (2.37)

x̂
(L)
k−1 + η

√
Pk−1 (2.38)

x̂
(2L−L)
k−1 − η

√
Pk−1 (2.39)

where η is the scaling parameter [21] and can be seen in (2.49).
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Cholesky Decomposition

The Cholesky Decomposition calculates the square root of a matrix. To define the
decomposition, we consider a symmetric matrix A of size K ×K . A has a Cholesky
decomposition if and only if it can be expressed as a lower triangular matrix L of
the same size, where the diagonal entries are strictly positive real numbers and it
satisfies (2.40).

A = LLT (2.40)

For a Cholesky decomposition to exist, the matrix A must also be positive defi-
nite. Assuming all the conditions mentioned earlier are satisfied, the Cholesky
decomposition can be computed by solving (2.40). Specifically, one can use ma-
trix multiplication to derive (2.41).

Atv =
K∑

u=1

LtuL
T
uv =

K∑
u=1

LtuLvu (2.41)

In Atv , each entry is located on the t:th row and v:th column, where both t and v
range from 1 to K . Since L is lower triangular, when u > v, Lvu = 0, resulting in
(2.42).

Atv = LtvLvv +
∑
u<v

LtuLvu (2.42)

By utilising the rules stated below the entries to L can be derived.

• Solve one column at a time, starting with v = 1 and then progress from 2
up to K .

• For each column, compute the diagonal entry Lvv and the diagonal entries
Ltv but only for t > v since Ltv = 0 when v < t.

The diagonal entries are given by solving (2.41) yielding (2.43), always choosing
the positive root.

Lvv =

√
Avv −

∑
u<v

LvuLvu (2.43)

The entries that are not in the diagonal are given in (2.44) [19].

Ltv =
1
Lvv

Atv

∑
u<v

LtuLvu

 (2.44)

After the sigma points are calculated, the prediction step of the UKF is performed.
As seen in row six of Algorithm 2, the UT is used to propagate the sigma points
and inputs uk−1 through the state transition vector fk . This is the same state tran-
sition vector that is used in the EKF.
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The weights, Wi used throughout the UKF algorithm can be calculated according
to (2.45) - (2.47).

W
(m)
0 =

λ
λ + L

(2.45)

W
(c)
0 =

λ
λ + L

+ (1 − α2 + β) (2.46)

W
(m)
i = w

(c)
i =

1
2(λ + L)

(2.47)

where α and β are scaling factors, and

λ = L(α2 − 1) (2.48)

η =
√
λ + L (2.49)

The updated sigma points are used together with the weights to obtain the state
estimate mean, x̂−k in row seven in the Algorithm 2. The covariance, P̂ −k is also cal-
culated by subtracting the state estimate mean from the propagated sigma points
and weighted. The process noise covariance Qk is also added as seen in row eight
in the Algorithm 2. The final part in the prediction step is to propagate the sigma
points obtained in row six through the observation vector, hk and weigh them in
a similar way as for the states.

When the prediction step is complete the correction step is performed. The first
thing that is performed is the calculation of the covariance, Pỹk ỹk for the mea-
surement and the cross covariance Pxkyk . They are calculated by subtracting the
measurement mean from the propagated sigma points Yk|k−1 seen in row nine.
The measurement noise covariance Rk is also added to the covariance for the
measurement. Both of these are used to calculate the Kalman gain, Kk . Finally
the updated state estimation x̂k is obtained by using the predicted state mean and
adding a weighted measurement adjustment. The adjustment is determined by
comparing the predicted measurement mean against the actual measurements.
The covariance is obtained by adding the predicted covariance from the predic-
tion step with the covariance from the measurement mean in the correction step,
as well as weighing it with the Kalman gain [21].

2.6 Power Losses in a PMSM

Both the winding resistance and the rotor flux linkage was assumed to have a
linear relationship between the temperate increase and the variation of the state
[10]. In this thesis, only losses related to the winding resistance and the rotor
flux linkage are considered. The loss in the winding resistance can be modeled
according to (2.50).

PRs =
3
2
Î2Rs (2.50)
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where PRs is the power generated when current is flowing through the stator wind-
ing. Î is the peak-current for the q and d-axis, but since the d-axis current is
mostly zero it is not considered. Rs is the stator winding resistance. The loss
related to the rotor flux linkage can be model according to (2.51).

PΨ r
=

∫
V

σE2 dV =
∫
V

J2

σ
dV (2.51)

where PΨ r
is the power generated due to the induced Eddy currents. Eddy cur-

rents are loops of electrical current induced within conductors by a changing
magnetic field [14], σ is the material conductivity, E is the electric field, J is the
Eddy current density and V is the volume of the material [9].

2.7 Parameter Temperature Dependency

The temperature relationship was assumed to be linear according to [23]. If we
denote both the estimates of resistance and flux as x, the linear relationship can
be seen in (2.52).

T = T0 +
x − x0

αx0
(2.52)

where x0 is the nominal value of both resistance and flux. T and T0 is the temper-
ature and starting temperature respectively, and α is the temperature coefficient
for the respective materials, in this case copper and neodymium.
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Implementation

In this chapter, Simulink was utilised to develop several models, including the PMSM,
FOC and thermal model. Two different state space models were created. The first model
employed separate state transition vectors, one for each parameter of interest, while the
second model incorporated combined state transition vectors. Subsequently, the latter
model was chosen for implementation in each Kalman filter employed in the thesis.

3.1 PMSM Model

The PMSM model was implemented in Simulink, and a visual overview of the
model is provided in Figure 3.1. The motor operates based on voltage inputs
in the abc-frame. The motor generates current outputs in the abc-frame, which
are then transformed to the dq-frame along with the electrical rotor position θel
using the Clarke and Park transforms, as described in (2.16) and (2.17). The final
two outputs of the model are the motor torque Tem and the rotor angular velocity
ωm.

Figure 3.1: Overview of the PMSM model in Simulink.

23
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As outlined in Section 2.1.3, the PMSM’s internal systems, namely the electrical,
electromagnetic, and mechanical systems, are characterised by different sets of
equations. Each of these systems has been implemented as separate blocks. An
overview of how these systems were integrated within the simulation environ-
ment is presented in Figure 3.2. Furthermore, Figure 3.3 - 3.5 provide individual
illustrations of the three systems mentioned.

Figure 3.2: An overview of the components constituting the PMSM in
Simulink.

The block Electrical System in Figure 3.2 was derived using (2.20) and (2.21) yield-
ing the d and q-axis currents as shown in Figure 3.3. This block uses the trans-
formed dq-voltages and the rotor angular velocity, ωm as inputs.
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Figure 3.3: Electrical system implemented in Simulink.

In Figure 3.4, the block Electromagnetic System, which was based on (2.26) is de-
picted. The input is the q-axis current from the Electrical System. The output
from the block is the produced torque Tem.

Figure 3.4: Electromagnetic system implemented in Simulink.

The produced torque from the Electromagnetic System is then used as input to the
Mechanical system which represented (2.27) in the simulation environment and
can be seen in Figure 3.5. The applied load torque TL is also an input to the
system. This system yields the rotor angular velocity ωm.
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Figure 3.5: Mechanical system of the PMSM implemented in Simulink.

The parameters used in the PMSM are viewed in Table 3.1.

Table 3.1: Parameter values for a specific PMSM, which were provided by
Atlas Copco.

Nominal Parameter Value [Unit]

Winding resistance (Rs) 0.03774[Ω]
Rotor flux linkage (Ψ r ) 0.00831 [Wb]
Inductance (Ls) 0.03264e-3 [H]
Pole pairs (p) 1 [-]
Rotor inertia (J) 3.51e-6 [kg ·m2]
Viscous damping (f ) 3.45e-6 [Ns

m ]

3.2 Field Oriented Control

The FOC was created in Simulink. An implementation of the controller is dis-
played in Figure 3.6. The controller uses the d and q-axis currents from the motor
together with the rotor angular velocity ωm as input. It also utilises a reference
angular velocity as well as a reference d-axis current, set by the operator as input.
The controller outputs voltages in the dq-frame.
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Figure 3.6: FOC implemented in Simulink.

The decoupling block, depicted in Figure 3.7, was utilized to mitigate the effects
of coupling. The interdependencies can be observed in (2.18) - (2.19), where the
q-axis current influences the d-axis voltage and the d-axis current impacts the
q-axis voltage. The d and q-axis currents, in conjunction with the rotor angular
velocity ωm, serve as inputs to the decoupler, which yields decoupled d and q-axis
voltages.

Figure 3.7: Decoupling block implemented in Simulink.

The PI-controllers were tuned according to (3.1) - (3.3), the method [7] utilises
the motor parameters seen in Table 3.1.
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wm =
Rs

Ls
(3.1)

wc = 5 ∗ wm (3.2)

ws =
wc

10
(3.3)

The parameters used in the FOC can be seen in Table 3.2.

Table 3.2: Tuning parameters for FOC.

Parameter Value

KiSpeed 10 ∗ w2
s ∗ J

KpSpeed 10 ∗ ws ∗ J

KiCurrent
w2
c ∗ Ls

KpCurrent
wc ∗ Ls

3.3 Thermal Model

In this thesis, the thermal model employed focused on the losses associated with
the winding resistance and rotor flux linkage. The thermal model was created
since the simulation model lacked internal dynamics that a real PMSM possesses.
Its purpose was to simulate the impact of temperature rise on the motor by con-
sidering the corresponding variations in winding resistance and rotor flux link-
age.

Figure 3.8: Thermal model implemented in Simulink using the Simscape
library.

By observing Figure 3.8 and starting from the left, the effect loss created by the
Eddy currents, seen in (2.51) was fed to the system. The thermal generation
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to the surrounding area was generated via the first thermal mass and thermal
resistance. After that the effect loss from the winding resistance, seen in (2.50)
was provided. Its thermal generation was provided with the next thermal mass
and thermal resistance. The final thermal mass symbolised the air surrounding
the whole rotor and stator package.

3.4 Implementation of Kalman Filters

In this section, the implementation of the state space vectors for the estimation of
the winding resistance Rs and rotor flux linkage Ψ r are described for the different
Kalman filters.

3.4.1 Separate State Transition Vectors

Initially, the concept of separate Kalman filters was implemented, wherein the
winding resistance and rotor flux linkage were treated as distinct entities within
two different Kalman filters. Subsequently, the estimation of the winding resis-
tance and rotor flux was accomplished by implementing corresponding functions
in Matlab. The initial implementation involved the utilization of two parallel
Kalman filters, with the first filter dedicated to estimating the winding resistance
and the second filter focused on estimating the rotor flux.

EKF

The implementation of the EKF followed Section 2.4.1 and specifically referred
to Algorithm 1. In this implementation, the state vector was defined as x =
[id iq Rs]T , and the input vector as u = [vd vq ωel]T . To discretise the system,
the forward Euler method was employed. As a result, the state transition vector
utilised for the resistance estimation is shown in (3.4). The formulation of this
function was based on (2.20) - (2.21), as well as adding winding resistance as a
state.

fRs
(x, u) =


(1 − Tsx3

Ls
)x1 + Tsu3x2 + Tsu1

Ls
−Tsu3x1 + (1 − x3Ts

Ls
)x2 + Tsu2

Ls
− TsΨ ru3

Ls
x3

 (3.4)

The linearised form of the vector presented in (3.4) is depicted in (3.5).

FRs
=


1 − TsRs

Ls
Tsωel − Ts id

Ls

−Tsωel 1 − TsRs
Ls

− Ts iq
Ls

0 0 1

 (3.5)

The observation vector is illustrated in (3.6).

hRs
(x) =

(
x1
x2

)
(3.6)



30 3 Implementation

The linearisation of the observation vector can be seen in (3.7).

HRs
=

(
1 0 0
0 1 0

)
(3.7)

The second Kalman filter was implemented in the same way as the first. However,
this filter employed a different state transition vector, specified by (3.8). The
state vector was defined as x = [id iq Ψ r ]T , while the input vector consisted of
u = [vd vq ωel]T .

fΨ r
(x, u) =


(1 − TsRs

Ls
)x1 + Tsu3x2 + Tsu1

Ls
−Tsu3x1 + (1 − TsRs

Ls
)x2 + Tsu2

Ls
− Tsu3x3

Ls
x3

 (3.8)

The linearised matrix of (3.8) is presented in (3.9).

FΨ r
=


1 − TsRs

Ls
Tsωel 0

−Tsωel 1 − TsRs
Ls

− Tsωel
Ls

0 0 1

 (3.9)

The observation vector (3.6) and the linearised observation matrix (3.7) from the
first filter were still viable.

UKF

The implementation of the UKF was carried out in accordance with Section 2.5,
following Algorithm 2. The UKF utilised identical state transition vectors, as de-
scribed in (3.4) and (3.8). Additionally, the UKF employed the same observation
vector for both filters, as presented in (3.6).

3.4.2 Combined State Transition Vectors

Once the individual Kalman filters were implemented and tested to assess their
functionality, a combined version was tested. This combined version entailed
fusing together the two the state transition vectors (3.4) and (3.8), into a unified
vector that was used for simultaneously estimating both the winding resistance
and rotor flux.

EKF

The implementation of the EKF followed Section 2.4.1 and adhered to Algorithm
1. In this implementation, a single filter was employed, which utilised a fused
state transition vector. The equations defining the state transition function incor-
porated (2.20) and (2.21) together with the states Rs and Ψ r . The state vector was
defined as x = [id iq Ψ r Rs]T , while the input vector consisted of u = [vd vq ωel]T .
Following the discretisation process using the forward Euler method, the result-
ing state transition vector can be observed in (3.10).
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fRs ,Ψ r
(x, u) =


(1 − Tsx4

LS
)x1 + Tsu3x2 + Tsu1

Ls
−Tsu3x1 + (1 − Tsx4

LS
)x2 + Tsu2

Ls
− Tsu3x3

Ls
x3
x4

 (3.10)

The linearisation of (3.10) is featured in (3.11).

FRs ,Ψ r
=


1 − TsRs

Ls
Tsωel 0 − Ts id

Ls

−Tsωel 1 − TsRs
Ls

− Tsωel
Ls

− Ts iq
Ls

0 0 1 0
0 0 0 1

 (3.11)

The observation vector is shown in (3.12).

hRs ,Ψ r
(x) =

(
x1
x2

)
(3.12)

The linearisation of (3.12) is displayed in (3.13).

HRs ,Ψ r
=

(
1 0 0 0
0 1 0 0

)
(3.13)

AEKF

The AEKF employed an identical state transition vector (3.10) and observation
vector (3.12) as the EKF. It followed the implementation outlined in Section 2.4.1,
particularly Algorithm 1. However, Section 2.4.2 highlights the disparity in the
computation of noise covariance matrices.

UKF

The implementation of the UKF adhered to Section 2.5 and followed Algorithm 2.
It employed the identical state transition vector described in (3.10) and utilised
the same observation vector as presented in (3.12).





4
Simulation

In this chapter, the process of data extraction from simulation is explained, along with
a specific test case centered around a tightening operation. The obtained simulation
data and the results of the Kalman filters are showcased to demonstrate the perfor-
mance of the parameter estimation.

4.1 Simulation Setup

The sampling time, Ts used for simulation in Simulink was set to 1.25e-4 s. A
complete simulation and estimation cycle were run according to Appendix A.0.1.

4.2 Test Case

The test case was constructed based on angular velocity and applied load torque.
The outer loop in the FOC requires a reference angular velocity in order to con-
trol the voltages sent to the motor, as depicted in Figure 3.6. The applied load
torque was used as a reference in order for the PMSM to produce the demanded
torque. It was implemented according to Figure 3.2.

The standard tightening operation consisted of two distinct phases: the rundown
phase and the tightening phase. During the rundown phase, the screw was
threaded down until the screw head made contact with the material. Meanwhile
the primary focus of the estimation was to estimate the flux. Once the rundown
phase was completed, the tightening phase was initiated. In this phase, the screw
was torqued according to the specifications provided by the customer. In this
phase the emphasis of the estimation was on estimating the resistance.

33
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(a) (b)

Figure 4.1: Reference angular velocity and reference load torque for the sim-
ulation test.

As seen in Figure 4.1b, the reference torque ramped up from 0 to 0.1 during the
initial 0.05 seconds, indicating the need for a small torque to thread down the
screw. During the rundown period, the angular velocity reference was ramped
up to its maximum limit and maintained, simulating a rundown procedure as
shown in Figure 4.1a. At around 0.95 seconds, the angular velocity dropped sig-
nificantly, signifying a switch from rundown to tightening. The tightening proce-
dure was initiated by ramping up the torque to its target value. To simulate the
rotation of the screw, a low angular velocity was used.

4.3 Simulated Raw Data

The simulated data utilised in this thesis incorporated noise free operations, and
operations using noise levels that reflected those present in the actual motor. To
determine the noise levels, measurements from a real motor were analysed, al-
lowing for identification of the noise component. Figure 4.1 illustrates the test
case, with the rundown phase spanning between 0 − 1 seconds and the tighten-
ing phase spanning between 1.2 − 1.7 seconds. The time interval between 1 and
1.2 seconds corresponds to the resting phase. The relevant data extracted from
the measurable parameters as well as the input parameters is shown in Figures
4.2 - 4.6.
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(a) (b)

Figure 4.2: Simulated d-axis current with and without noise.

(a) (b)

Figure 4.3: Simulated q-axis current with and without noise.
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(a) (b)

Figure 4.4: Simulated d-axis voltage with and without noise.

(a) (b)

Figure 4.5: Simulated q-axis voltage with and without noise.



4.4 Kalman Filter Evaluation 37

(a) (b)

Figure 4.6: Simulated ωm with and without noise.

4.4 Kalman Filter Evaluation

In this section, an evaluation of the Kalman filters was conducted using simu-
lated data. The temperature dependent parameters are presented in plots. Note,
since the results appeared very noisy a moving mean utilising a sliding window
of 2000 data points was applied for the temperature dependent parameters. The
moving mean was used to determine the parameter levels by finding the highest
and lowest levels within the respective phase. The estimated temperature depen-
dent parameters are summarised in Table 4.1. The evaluation encompassed two
distinct cases, each aimed at examining the filters performance under different
conditions. The first case involved applying the Kalman filters directly to un-
filtered data without any tuning or adjustments. This approach allowed for an
assessment of the filters performance in their default configuration. In the sec-
ond case, the filters were utilised with filtered data that had undergone a prepro-
cessing step to mitigate noise. Additionally, the Kalman filters themselves were
tuned. This approach enabled an evaluation to determine whether there was an
improvement in performance.

4.4.1 EKF - Default Configuration

In this case, the performance of the EKF was investigated under its default config-
uration. The default configuration comprised of the initialisation matrices seen
in (4.1) and the noise covariance matrices in (4.2).

x0 =


0
0
0
0

 , P0 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (4.1)
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Q =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , R =
(
1 0
0 1

)
(4.2)

The results from this case can be seen in Figure 4.7.

(a) (b)

Figure 4.7: The EKF was used to estimate the Flux and Resistance without
any data filtering or tuning.

The flux estimation remained consistent in the rundown part, as shown in Fig-
ure 4.7a. It fluctuated between 0.0042 − 0.0111 Wb. The resistance remained
relatively unchanged throughout the entire operation, as observed in Figure 4.7b.
During the tightening phase the resistance fluctuated between 0.250 − 0.294 Ω.

4.4.2 EKF - Modified Configuration

The data in this case was subjected to filtering using a third-order Butterworth
filter, with a cutoff frequency of 200 Hz. The Kalman filter was initialised with
(4.3), and was tuned using an ad-hoc method, which yielded the noise covariance
matrices presented in (4.4).

x0 =


0
0
0
0

 , P0 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (4.3)

Q =


500 0 0 0

0 500 0 0
0 0 0.005 0
0 0 0 0.005

 , R =
(
0.1 0
0 0.1

)
(4.4)

The results from this case are depicted in Figure 4.8.
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(a) (b)

Figure 4.8: Flux and Resistance estimated using the EKF with tuning and
filtered data.

Figure 4.8a indicated that the flux estimation remained consistent during the run-
down phase of the operation, with values ranging between 0.0078 − 0.0113 Wb.
However, for the resistance estimation, the resistance steadily increased through-
out the tightening phase, as depicted in Figure 4.8b. It ranged between 0.064 −
0.089 Ω.

4.4.3 AEKF - Default Configuration

The data was left unfiltered in this case. The Kalman filter was initialised using
(4.5) and the tuning parameters was set to NQ = 2 and NR = 2. This was due to
the fact that if NQ = 1 and NR = 1 had been used, it would have been a standard
EKF based on (2.35) - (2.36).

x0 =


0
0
0
0

 , P0 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (4.5)

The results from this case are visible in Figure 4.9.
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(a) (b)

Figure 4.9: The estimation of Flux and Resistance was carried out using the
AEKF without any filtering of the data or tuning.

In Figure 4.9a, it could be observed that the flux estimation increased in the be-
ginning but settled down later during the rundown phase. It spanned between
0.0032 − 0.0077 Wb. In the tightening phase, the resistance decreased as shown
in Figure 4.9b, it spanned between 0.234 − 0.255 Ω.

4.4.4 AEKF - Modified Configuration

A third-order Butterworth filter with a cutoff frequency of 200 Hz was applied to
filter the data in this case. The Kalman filter was initialised using (4.6), and the
tuning parameters were determined using the ad-hoc method. The values of NQ
and NR were set to 10.

x0 =


0
0
0
0

 , P0 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (4.6)

The results from this case can be observed in 4.10.
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(a) (b)

Figure 4.10: The estimation of Flux and Resistance was carried out using
the AEKF with filtering and tuning.

The flux remained more or less constant in the rundown phase, as observed in
Figure 4.10a. It fluctuated between 0.0072 − 0.0110 Wb. As for the resistance
estimation it increased in the tightening phase, as depicted in Figure 4.10b. It
fluctuated between 0.069 − 0.096 Ω.

4.4.5 UKF - Default Configuration

In this case, the UKF was investigated with unfiltered data. It was initialised
using (4.7) and the noise covariance matrices used can be seen in (4.8).

x0 =


0
0
0
0

 , P0 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (4.7)

Q =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , R =
(
1 0
0 1

)
(4.8)

The results from this case can be seen in 4.11.
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(a) (b)

Figure 4.11: The Flux and Resistance were estimated using the UKF without
any data filtering or tuning.

During the rundown phase, the flux was consistent and it ranged between 0.0050−
0.0112 Wb as illustrated in Figure 4.11a. In the tightening phase, the resistance
had a similar behavior as the flux. It ranged between 0.250− 0.300 Ω as depicted
in Figure 4.11b.

4.4.6 UKF - Modified Configuration

The data underwent filtering using a third-order Butterworth filter with a cutoff
frequency of 200 Hz in this case. Additionally, tuning was applied, and the ma-
trices associated with the tuning were determined using the ad-hoc method, as
presented in (4.10). The Kalman filter was initialised with (4.9).

x0 =


0
0
0
0

 , P0 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (4.9)

Q =


100 0 0 0

0 100 0 0
0 0 100 0
0 0 0 100

 , R =
(
0.03 0

0 0.03

)
(4.10)

The results for this case is evident in Figure 4.12.
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(a) (b)

Figure 4.12: The Flux and Resistance were estimated using the UKF with
data filtering and tuning.

Figure 4.12a illustrates the flux which were consistent throughout the rundown
phase, and it spanned between 0.0058 − 0.0091 Wb. The resistance was more
or less constant through the tightening phase, as depicted in Figure 4.12b, with
levels spanning between 0.106 − 0.129 Ω.

Table 4.1: Estimated temperature dependent parameters.

Kalman filter Configuration Flux [Wb] Resistance [Ω]

EKF Default 0.0042 − 0.0111 0.250 − 0.294
EKF Modified 0.0078 − 0.0113 0.064 − 0.089

AEKF Default 0.0032 − 0.0077 0.234 − 0.255
AEKF Modified 0.0072 − 0.0110 0.069 − 0.096

UKF Default 0.0050 − 0.0112 0.250 − 0.300
UKF Modified 0.0058 − 0.0091 0.106 − 0.129





5
Real World

In this chapter, the process of real world data extraction is explained. Additionally, a
specific test case focusing on a tightening operation will be presented. The acquired
real-world data, along with the outcomes of the Kalman filters, will be presented to
showcase the performance of the parameter estimation techniques.

5.1 Real World Setup

The setup used for real world measurements can be seen in Figure 5.1. This setup
consisted of the tool (red arrow) that was being investigated, a computer with the
data acquisition program (green arrow). The data from the tool was acquired via
a converter box (orange arrow) which converted data in order for the DEWEsoft
hardware (yellow arrow) to be able to read the data. Finally the screw joint (blue
arrow) was used to simulate a tightening operation in a controlled environment.
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Figure 5.1: An overview of the setup used for data acquisition.

The necessary steps that were used in order to conduct measurements of a tight-
ening operation are summarised in Appendix A.0.2.

5.2 Test Case

This test case followed a similar approach as described in Section 4.2, using the
same references but with a difference in their implementation, the implemen-
tation being an Atlas Copco specific tool configuration. It involved a standard
tightening operation, but with different reference levels due to the constraints
imposed by the construction of the tool, which limited the achievable maxima.
As with Section 4.2, the flux remained the parameter of interest during the run-
down phase and the resistance over the tightening phase.
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(a) (b)

Figure 5.2: Reference angular velocity and reference torque for the real
world test.

As depicted in Figure 5.2b, the reference torque initially applied a small value
to thread down the screw. From 0 to 0.6 seconds, the angular velocity gradually
increased to its maximum limit and remained constant, simulating the rundown
phase, as evident in Figure 5.2a. Around 0.6 seconds, the rundown phase was
finished, followed by a resting phase lasting for the subsequent 0.4 seconds. The
tightening phase commenced at approximately 1 second and extended until 1.6
seconds, as observed in Figure 5.2a, where the angular velocity dropped to zero.
Concurrently, the load torque gradually decreased, as shown in Figure 5.2b.

5.3 Real World Raw Data

The raw data was obtained in a 16-bit format, where one bit was allocated for
representing the sign of the data, indicating whether it was positive or negative.
In other words, the data was represented using 15 bits, allowing for a maximum
value of 32768. However, the specific maximum value represented varied de-
pending on the type of measured data. For instance, in the case of current mea-
surements, the maximum value corresponded to 187.5 A, while for angular ve-
locity, the maximum value was 4000π rad

s . To convert the data into SI units,
conversion factors provided in (5.1) - (5.6) were applied.
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id =
id,Measured(

32768
187.5

) (5.1)

iq =
iq,Measured(

32768
187.5

) (5.2)

vBat = vBat,Measured ·
(

84
32768

)
(5.3)

vd =
vd,Measured(

32768
vBat

) (5.4)

vq =
vq,Measured(

32768
vBat

) (5.5)

we =
we,Measured(

32768
4000∗π

) (5.6)

The duration of the rundown phase extended from approximately 14 − 14.7 sec-
onds, while the tightening phase spanned from around 15 − 15.7 seconds. The
interval between these two phases constituted the resting phase. Both the raw
data extracted from DEWEsoft and the data converted using equations (5.1) -
(5.6) resulted in the measurements depicted in Figure 5.3 - 5.7.

(a) (b)

Figure 5.3: In 5.3a the raw id measurement can be observed while in 5.3b
the converted id is illustrated.



5.3 Real World Raw Data 49

(a) (b)

Figure 5.4: In 5.4a the raw iq measurement can be observed while in 5.3b
the converted iq is illustrated.

(a) (b)

Figure 5.5: In 5.5a the raw vd measurement can be observed while in 5.5b
the converted vd is illustrated.
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(a) (b)

Figure 5.6: In 5.6a the raw vq measurement can be observed while in 5.6b
the converted vq is illustrated.

(a) (b)

Figure 5.7: In 5.7a the raw ωm can be observed while in 5.7b the converted
ωm is illustrated.

5.4 Kalman Filter Evaluation

In this section, an evaluation of the Kalman filters was conducted using real
world data. The evaluation process was done in the same way as in Section 4.4
and the estimated temperature dependent parameters are summarised in Table
5.1.
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5.4.1 EKF - Default Configuration

In this case, the EKF was evaluated under the default configuration with the ex-
ception of a small tune that was applied in order to avoid a singularity issue,
which rendered itself in (5.8). The Kalman filter was initialised using (5.7).

x0 =


0
0
0
0

 , P0 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (5.7)

Q =


1.5 0 0 0
0 1.5 0 0
0 0 1 0
0 0 0 1

 , R =
(
1 0
0 1

)
(5.8)

The results for this case can be seen in Figure 5.8.

(a) (b)

Figure 5.8: The estimation of Flux and Resistance was carried out using the
EKF, without applying filtering to the data and with a small tune.

In the area of interest, the flux estimation was consistent and fluctuated between
0.0098 − 0.0168 Wb based on Figure 5.8a. The resistance remained relatively
constant throughout the tightening phase, as illustrated in Figure 5.8b. The resis-
tance fluctuated between 0.079 − 0.126 Ω.

5.4.2 EKF - Modified Configuration

The data underwent a filtering process using a third-order Butterworth filter with
a cutoff frequency of 200 Hz in this case. The Kalman filter was initialised with
(5.9) and tuned using an ad-hoc method, resulting in the matrices presented in
(5.10).
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x0 =


0
0
0
0

 , P0 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (5.9)

Q =


100 0 0 0

0 100 0 0
0 0 0.1 0
0 0 0 0.1

 , R =
(
10 0
0 10

)
(5.10)

The results for this case are shown in Figure 5.9.

(a) (b)

Figure 5.9: The estimation of Flux and Resistance was carried out using the
EKF, with a tune and filtering of the data.

The flux estimation was more or less constant and ranged between 0.0122 −
0.0163 Wb in the rundown phase, indicated in Figure 5.9a. For the tightening
part, the resistance decreased in the beginning and increased towards the end. It
variated between 0.042 − 0.119 Ω, observed in Figure 5.9b.

5.4.3 AEKF - Default Configuration

In this case, the data was not filtered. The Kalman filter was initialised with
(5.11), and the tuning was done in a similar manner as in Section 4.4.3.

x0 =


0
0
0
0

 , P0 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (5.11)

The results from this case are presented in Figure 5.10.
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(a) (b)

Figure 5.10: The estimation of Flux and Resistance was performed using
the AEKF without any filtering and with a small tune.

The flux estimation decreased in the beginning but settled quickly in the run-
down phase which is observed from Figure 5.11a, it spanned between 0.0126 −
0.0169 Wb. The resistance was decreasing until around the middle of the tight-
ening phase and then increased towards the end, which is depicted in 5.11b. It
spanned between 0.038 − 0.124 Ω.

5.4.4 AEKF - Modified Configuration

In this case, the data was filtered using a third-order Butterworth filter with a
cutoff frequency of 200 Hz . A tune was found using the ad-hoc method and
resulted in NQ = 3 and NR = 100. The Kalman filter was initialised using (5.12).

x0 =


0
0
0
0

 , P0 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (5.12)

The results from this case can be seen in Figure 5.11.
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(a) (b)

Figure 5.11: The estimation of Flux and Resistance was performed using
the AEKF with filtering and tuning applied.

The flux estimation from the rundown phase was consistent and fluctuated be-
tween 0.0083−0.0181 Wb, which can be seen in Figure 5.11a. The resistance was
more or less constant through the tightening phase which could be observed in
Figure 5.11b. It fluctuated between −0.086 − −0.018 Ω.

5.4.5 UKF - Default Configuration

The data was not filtered in this case. The UKF was initialised using (5.13). A
default tune was applied which can be seen in (5.14).

x0 =


0
0
0
0

 , P0 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (5.13)

Q =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , R =
(
1 0
0 1

)
(5.14)

The results from this are shown in Figure 5.12.
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(a) (b)

Figure 5.12: The estimation of Flux and Resistance was conducted using
the UKF without applying any data filtering techniques or tuning.

In Figure 5.12a, it could be seen that the flux estimation remained more con-
sistent throughout the rundown phase. It ranged between 0.0024 − 0.0193 Wb.
The resistance estimation increased, to then decrease and lastly increase towards
the end of the tightening phase, as depicted in Figure 5.12b. It ranged between
0.258 − 0.516 Ω.

5.4.6 UKF - Modified Configuration

In this case, the data was filtered using a third-order Butterworth filter with a
cutoff frequency of 200 Hz. The Kalman filter was tuned using the ad-hoc method
and the matrices can be seen in (5.16). The Kalman filter was initialised using
(5.15).

x0 =


0
0
0
0

 , P0 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (5.15)

Q =


10 0 0 0
0 10 0 0
0 0 0.1 0
0 0 0 0.1

 , R =
(
0.03 0

0 0.03

)
(5.16)

The results for this case are showcased in Figure 5.13.
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(a) (b)

Figure 5.13: The estimation of Flux and Resistance was conducted using
the UKF by applying data filtering techniques and tuning.

Figure 5.13a illustrated the consistency of the flux estimation throughout the
rundown phase. The estimation spanned between 0.0096 − 0.0160 Wb. The re-
sistance was more or less constant through the tightening phase as depicted in
Figure 5.13b. The estimation spanned from −0.034 − 0.112 Ω.

Table 5.1: Estimated temperature dependent parameters.

Kalman filter Configuration Flux [Wb] Resistance [Ω]

EKF Default 0.0098 − 0.0168 0.079 − 0.126
EKF Modified 0.0122 − 0.0163 0.042 − 0.119

AEKF Default 0.0126 − 0.0169 0.038 − 0.124
AEKF Modified 0.0083 − 0.0181 (−0.086) − (−0.018)

UKF Default 0.0024 − 0.0193 0.258 − 0.516
UKF Modified 0.0096 − 0.0160 (−0.034) − 0.112



6
Potential Estimation Challenges

This chapter treats the potential information deficiency apparent in Kalman filters for
this type of application. It also includes potential problems such as fluctuating id ,
conversion errors and output discrepancy.

6.1 Estimation Difficulties

Due to the estimations not correlating with the nominal values an investigation
regarding potential problems was conducted in this section.

6.1.1 Test 1 - Information Deficiency

This case was created based on the EKF to showcase the problems that possibly
occurred when there was an insufficient amount of information present for the
Kalman filters to converge. This situation occurred when the value of the d-axis
current was equal to zero. The data used for this case was generated without any
noise in the measurements. The filter was initialised using (6.1) and the noise
covariance matrices used can be seen in (6.2).

x0 =


0
0
0
0

 , P0 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (6.1)

Q =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , R =
(
1 0
0 1

)
(6.2)
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The results of this case can be seen in Figure 6.1.

(a) (b)

Figure 6.1: Flux and Resistance estimated under insufficient amount of in-
formation.

It could be seen from Figure 6.1a and 6.1b that this case created difficulties for
the EKF to find the nominal values of both the flux and resistance.

Adding Information

The potential information deficiency was handled by injecting a current of id =
0.5 A into the d-axis. This case generated the results observed in Figure 6.2.

(a) (b)

Figure 6.2: Flux and Resistance estimated using added information.

The estimated flux and resistance found the nominal values throughout the tight-
ening operation, with some exceptions when there were sudden changes in the
angular velocity reference.
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6.1.2 Test 2 - Fluctuating d-axis Current

A large current injection was used to test the hypothesis that a d-axis current
fluctuating around zero aggravated the estimation of flux and resistance.

EKF - Default Configuration

The data was not filtered in this case. The Kalman filter was initialised using (6.3)
and the noise covariance matrices used can be seen in (6.4).

x0 =


0
0
0
0

 , P0 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (6.3)

Q =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , R =
(
1 0
0 1

)
(6.4)

When observing the d-axis current, it was apparent that in order to push the d-
axis current to be strictly positive, an injection of 30 A in the d-axis was necessary.
This resulted in Figure 6.3.

(a) (b)

Figure 6.3: A positive injection in the d-axis and its effect on Flux and
Resistance.

Both the flux and resistance were consistent in their respective phases which
can be seen in Figure 6.3a and 6.3b respectively. The flux fluctuated between
0.0034 − 0.0092 Wb in the rundown phase, while the resistance ranged between
0.018 − 0.023 Ω in the tightening phase.
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When observing the d-axis current, it was apparent that in order to push the
d-axis current to be strictly negative, an injection of −30 A in the d-axis was nec-
essary. This resulted in Figure 6.4.

(a) (b)

Figure 6.4: A negative injection in the d-axis and its effect on Flux and
Resistance.

Similar to the positive injection variant, both estimates were more or less constant
as depicted in Figure 6.4a and 6.4b. The flux spanned between 0.0015−0.012 Wb
in the rundown phase. The resistance fluctuated between 0.020 − 0.022 Ω in the
tightening phase.

EKF - Modified Configuration

In this case, the same filter and tune as in Section 4.4.2 were used. By observing
the d-axis current, it was apparent that in order to push the d-axis current to be
strictly positive, an injection of 6 A in the d-axis was necessary. This resulted in
Figure 6.5.
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(a) (b)

Figure 6.5: The impact of a positive injection in the d-axis on the estimation
of Flux and Resistance when the data was filtered and the EKF was tuned.

The flux was consistent in the rundown phase as seen in Figure 6.5a and exhibited
fluctuations between 0.00829 − 0.012 Wb. The resistance however decreased in
the tightening phase, evident from Figure 6.5b. It varied between 0.036−0.039 Ω.

It could be observed that in order to ensure a strictly negative d-axis current,
an injection of −6 A in the d-axis was required. Consequently, Figure 6.6 were
generated.

(a) (b)

Figure 6.6: The impact of a negative injection in the d-axis on the estimation
of Flux and Resistance when the data was filtered and the EKF was tuned.

A similar behaviour could be observed for the flux as in the positive injection case,
it can be observed in Figure 6.6a. The flux spanned between 0.0083−0.012 Wb in
the rundown phase. The resistance however was this time more or less constant
compared to the positive injection case, as depicted in Figure 6.6b. The resistance
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varied between 0.037 − 0.04 Ω in the tightening phase.

6.1.3 Test 3 - Conversion Discrepancies

By comparing the simulated angular velocity, seen in Figure 4.6b, against the real
world angular velocity, seen in Figure 5.7b, a discrepancy was identified. This
could indicate that the conversion factors found in (5.1) - (5.6) might have had an
influence on the estimations. A sensitivity analysis on simulated data was used
to test a hypothesis that the conversion factors could influence the estimations.

The first part of this test was to keep the angular velocity unchanged while the
rest of the inputs were manipulated in order to simulate a deviation. By compar-
ing the figures from Section 4.3 against 5.3 one could observe that there was a
difference in the levels within the data. Hence the gains were arbitrarily chosen
to somewhat reflect the difference. They were set to id = 1.07, iq = 1.05, vd = 1.03
and vq = 1.05. The same settings as in Section 4.4.2 were used.

(a) (b)

Figure 6.7: Flux and Resistance under the influence of chosen gains, re-
sulted in small deviations from nominal levels.

Based on Figure 6.7a the flux was consistent and ranged between 0.0087−0.0125 Wb
during the rundown phase. During the tightening phase the resistance ranged be-
tween 0.036 − 0.04 Ω. It was more or less constant, which can be seen in Figure
6.7b.

The tightening program constructed in Section 5.2 yielded a maximum angular
velocity of around 22400 rpm which in rad

s was roughly 2350 rad
s . In Figure 5.7b

it could be observed that the angular velocity were roughly half of the angular
velocity in the constructed program. This lead to the second part of this test
where the angular velocity was halved but the gains from the first part were set
to one, in order to study its effect on the estimation results.
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(a) (b)

Figure 6.8: Flux and Resistance estimated under the influence of half the
angular velocity.

As shown in Figure 6.8a, the flux did not change a lot during the rundown phase
and ranged between 0.0172− 0.0241 Wb. Observed in Figure 6.8b, the resistance
decreased during the tightening phase. It spanned between −0.042 − 0.023 Ω.

6.1.4 Test 4 - Output Discrepancies

Observations of Figure 4.4b and 5.5b showed a discrepancy between the signs for
the d-axis voltage. In simulation, the d-axis voltage was negative during rundown
whereas it was positive in the real measurements. The sign in front of u1 in (2.24)
was switched, to test the hypothesis that the wrong sign could affect the accuracy
of the estimates. The same settings as in Section 5.4.2 were used. First, the variant
with the plus sign in front of u1 in (2.24) was used.

(a) (b)

Figure 6.9: The estimation of Flux and Resistance was carried out using the
state transition function with a plus sign in front of u1.
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The estimation of flux was more consistent during the rundown phase of the
tightening operation, as can be seen in Figure 5.9a. The flux fluctuated between
0.0122 − 0.0163 Wb. The resistance decreased in the beginning of the tightening
phase, to then bottom out in the middle and then increase towards the end as
showcased in Figure 5.9b. The resistance ranged between 0.042 − 0.119 Ω.

After the variant with the plus sign in front of u1, the negative sign was used.

(a) (b)

Figure 6.10: The estimation of Flux and Resistance was carried out using
the state transition function with a minus sign in front of u1.

The estimation of flux demonstrated consistent behaviour during the rundown
phase, as depicted in Figure 6.10a. It exhibited fluctuations within the range of
0.0125−0.0157 Wb. In Figure 6.10b it could be seen that the resistance decreased
during the tightening phase and varied between 0.026 − 0.148 Ω.



7
Discussion

This chapter will discuss the implementation, results as well as the challenges found.
Other findings that occurred as the work progressed, affecting the process are also dis-
cussed.

7.1 Discussion

The following sections will discuss the implementation and results obtained dur-
ing this thesis. It will also discuss the estimation challenges that were encoun-
tered throughout the process.

7.1.1 Implementation and Results

Kalman filters were selected for parameter estimation in the PMSM application
due to their ability to handle non-linearities and uncertainties. Given the dy-
namic nature of the typical tightening operation at Atlas Copco, it was suitable
to employ estimation algorithms capable of adapting to changing conditions. The
filter’s tunability further supported this decision, since it allowed for adaptabil-
ity. The investigation of three different Kalman filters, aimed to identify if one
Kalman filter was deemed better than the other ones with respect to estimating
resistance and flux. Although the EKF, UKF, and AEKF are all Kalman filter vari-
ants, Sections 2.4 - 2.5 showcased a difference in the state transition. The EKF
linearises the state transition and observation vectors based on the current esti-
mate, while the UKF utilises the UT to propagate the state mean and covariance
without requiring linearisation. It was of interest to see if this difference had any
effect on the performance of the different Kalman filter variants.
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The initial decision was made to develop only a Kalman filter that could estimate
the resistance, based on the construction of the motor in consideration. The tem-
perature sensor that this thesis aimed at replacing with estimation algorithms
was placed within the copper wires, hence the resistance was of interest. Once
the estimation of the resistance was deemed to work, the question arose as to
whether it was possible to estimate the flux simultaneously. Further investigation
was conducted, and the model was extended to include the flux, as can be seen
in (3.10). Even though the inductance Ls is a temperature dependent parameter,
it was kept constant since it would otherwise have created an underdetermined
problem. This was due to the fact that there would only be two equations avail-
able, but three unknown parameters.

By observing Section 4.4 and 5.4 we could see that all Kalman filters had prob-
lems with estimating the flux and resistance. It should be mentioned that there
was not enough time to test all combinations, with that we mean that we did not
try to only filter the data but not tune the data and vice versa. Neither did we put
in a lot of time to find the optimal tuning for each and every Kalman filter. This
means that perhaps there is better tuning options that has not been tried due to
the amount of time it takes to tune a filter using the ad-hoc method.

The significance of correct PMSM parameters had a big impact on the behavior of
the PMSM system. Specifically, these parameters influenced the system’s outputs.
Initially, we received a Simulink Data Dictionary containing parameter values,
which were assumed to be in SI-units and implemented accordingly. However, it
was discovered that this was not the case. For instance, when we implemented
a viscous damping value from the dictionary, it affected the current required
to overcome resistive forces. Consequently, the motor model demanded signif-
icantly higher current in the q-axis to generate the desired torque, compared to
using the correct viscous damping value. The nominal flux parameter was an-
other example. An incorrect value not only resulted in inaccurate flux estimation
but also impacted the resistance. This confusion led us to question the model and
the Kalman filter. It turned out that the nominal flux parameter had an incorrect
value, affecting the entire PMSM model. Hence, correct parameters were very
important.

Considering the unsatisfactory results obtained from the real world data tests,
it was decided to not convert the estimated temperature-dependent parameters,
namely resistance and flux, into actual temperature values. The conversion would
have involved employing a linear relationship utilising temperature coefficients.
Although the temperature coefficients for copper (windings) and neodymium
magnets (used in the rotor) are small, accurate estimates are important due to
the magnification effect of even small deviations, see (2.52). Inaccurate estimates
could lead to significant temperature deviations that exceed the desired level of
usefulness.

The thermal model was introduced when the simulation model was considered
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finished. Since the simulation model of the PMSM lacked internal dynamics, all
parameters were kept static throughout the simulation. In order to test the filters
ability to trace changes, a simplified thermal model was constructed. This model
allowed simulation of a theoretical temperature increase within the tool based
on the losses generated during a run. This temperature increase was then used
to create a linear increase in the temperature dependent parameters. The filter
was then tested and the tests concluded that it is possible for the Kalman filters
to estimate an increase of certain parameters during a run. Making it a viable
option for temperature monitoring.

7.1.2 Estimation Challenges

The first result presented in Chapter 6, more specifically Section 6.1.1 was per-
haps the most unexpected. If one observe Figure 6.1 it could be seen that the
estimations did not converge towards the nominal values but instead the seemed
to deviate each time the motor experienced changes in the angular velocity.

Internal discussions took place in order to rule out possible sources of error. Af-
ter some reasoning and testing, it was found that one possible source of the error
could be due to the lack of information available for the estimation. The source
behind this was the combination of a FOC together with a PMSM. The FOC had
by default a zero current as its reference in the d-axis. By injecting a small current
into the d-axis we could see that it significantly improved the estimation of the
resistance and flux, which could be observed in Figure 6.2. This implied that the
information scarcity was a factor behind the poor estimates, however we are not
certain that this is the sole reason for the poor estimates. Further investigation is
needed to confirm that this is the case. One way to address this problem could be
to perform a rigorous observability analysis of the whole system.

When utilising a FOC, the idea was to keep the d-axis current as close to zero as
possible. This was because an increase in the amount of current flowing through
the d-axis corresponds to a decrease in the amount of current flowing through
the q-axis, see Figure 2.5. This relationship was a consequence of converting the
currents from the abc-frame to the dq-frame. Something that was necessary to do
in order to simplify working with the equations constituting the FOC, PMSM and
Kalman filter. With other words, if a current injection was to be used, it should
be as small as possible to not impede the performance of the motor.

Due to the project time being limited, only a constant current injection was con-
sidered. A current injection could be done in multiple ways, e.g a square or sinus
wave could be used. The best way we believe would be to only inject a current
when a sample would be taken. What we mean by this is that we were only inter-
ested in estimating the flux during the rundown phase of the tightening operation
and the resistance during the tightening phase. We were not even interested in
the whole segment but only the end of each phase since the application intended
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was temperature monitoring. This could be explained using an example: if we e.g
ran 50 consecutive tightening operations, we would not be interested in monitor-
ing the temperature during the complete sequence, since this information would
only be used to not destroy the tool. We could then minimise the information
by only taking samples in the end of each rundown and tightening phase. This
would be sufficient to monitor the temperature increase and shut of the motor in
case of overheating. One could argue that, "what about the time in between the
samples, could the temperature not increase during that time period?".

This is because the temperature in the magnets increases as the rotor spins, mainly
due to Eddy currents and friction that both increases with angular velocity. When
the rotor does not spin as fast during the tightening operation, the induced Eddy
currents and friction are not as prominent. The same idea applies for the resis-
tance. When a tightening operation is conducted, more current are induced into
the copper wires, increasing the temperature in the wires. During the rundown
phase, a smaller amount of current is induced meaning that the wires do not get
heated up as much. Hence only injecting a current in the end of each phase would
be sufficient to get information to monitor the temperature increase in the motor
during operation.

Unfortunately a large current injection might have been necessary in this case.
One reason behind this is the amount of noise in the signals. We could not imag-
ine that the noise levels would be as great as they turned out to be. In the litera-
ture that constituted this thesis, most cases were only done on simulated data or
when real data was used the noise levels were quite small. Leaving us to believe
that that would also be the case for our application as well.

However, by observing Section 6.1.2 we could see that a sufficiently larger current
injection into the d-axis was able to significantly improve the result of the estima-
tion. The best results were found when both a Butterworth filter was utilised and
the Kalman filter was tuned. By getting the d-axis current to become strictly pos-
itive or negative it seemed to solve the issue with bad performance. Why this is,
we do not know unfortunately. We could take a guess but it would not bring any
more light onto the problem.

In Section 6.1.3 it was showcased how the conversion factors affected the results.
It was found after some testing that the angular velocity seemed to be low com-
pared to the expected angular velocity set in the tightening program. This lead
to an uncertainty analysis being conducted in order to determine how much a
deviation in those factors could affect the results. When it comes to the first part
of test 2 the small gains did not affect the result that much, it arguably became
slightly worse compared to when no gains were used. In the second part of test 2,
the influence of an incorrect angular velocity on the results was investigated. It
was observed that when the angular velocity was reduced to half of its expected
value, there was a significant impact on the results, particularly on the estimation
of resistance. This suggests that it is important that the conversions are correct
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in order to ensure estimations that are reasonably close to the expected nominal
values.

Section 6.1.4 was done since there existed a difference in the data extracted from
simulation compared to the real world. The simulation model was based on Sec-
tion 2.1.3. Despite that, the data looked similar for most of the variables except
for the voltage in the d-axis, which can be observed by comparing Section 4.3 to
5.3. For the simulated data, the d-axis voltage was negative during the rundown
phase while it was positive in the data from the real world. It could be seen that
utilising a different sign in (2.24) affected the results. It was tested on real world
data, suggesting that the variant with the minus sign was to be used. The results
were still not as expected, however using a negative sign seemed to help the filter
estimate both flux and resistance closer to the nominal values as well as making
the range in which the estimations fluctuated tighter.





8
Conclusion

In this concluding chapter, the insights derived from this thesis are summarised. Po-
tential areas for future investigation are also presented.

8.1 Conclusion

The thesis aimed to explore the feasibility of monitoring temperature dependent
parameters in a PMSM using Kalman filters. For ideal simulation conditions, it
was possible to monitor these parameters. However, non-ideal conditions posed
challenges, limiting the applicability of the three Kalman filters since they per-
formed equally for estimation of the temperature dependent parameters. The
Kalman filters could work as intended if the presented challenges were to be re-
solved in an efficient manner, meaning that the performance of the PMSM is not
sacrificed.

8.2 Future Work

If this thesis is continued up on in the future, it would be wise to conclude if
the problems identified in this thesis could be resolved or not. Resolving these
issues could enable the utilisation of Kalman filters and expansion of the models
to include parameters for sensorless solutions, eliminating the need for physical
sensors. Furthermore, by combining the motor model with a comprehensive ther-
mal model it could allow for simulation of temperature variations, which are not
present today due to the lack of internal dynamics. If the problems could not be
resolved, alternative methods such as Model Reference Adaptive System (MRAS),
Recursive Least Square (RLS), and Comprehensive Learning Particle Swarm Op-
timization with Opposition Based Learning (CLPSO-OBL) could be explored for
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estimating temperature dependent parameters.
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Matlab Code EKF

Simulation and Motor Parameters

1 %Simulation and Motor Parameters , ITB−A61
2 Rs = 0.03774; % Nominal Winding r e s i s t a n c e
3 Ls = 0.03264e −3; %Nominal Induction
4 p = 1 ; %Pole P a i r s
5 J = 3.51 e −6; %Rotor I n e r t i a
6 f_sim = 3.45 e −6; %Viscous Damping C o e f f i c i e n t
7 Flux0 = 0.00831; %Nominal Rotor Flux Linkage
8 Ts = 1.25 e −4; %Sampling Time for Simulation
9

10 %Fie ld Oriented Control Parameters :
11

12 %PI−gain
13 wm = Rs/Ls ;
14 wc = 5∗wm;
15 ws = wc/10;
16

17 %Speed Contro l l e r Gain
18 spdKi = 10∗ (ws^2) ∗ J ;
19 spdKp = 10∗ws∗ J ;
20

21 %Current Contro l l e r
22 Ki = 1∗ (wc^2) ∗Ls ;
23 Kp = 1∗wc∗Ls ;
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Main EKF-Code

1

2 %For tuning of process noise matrix (Q) , see
CovariancePredict ion .m

3 %For tuning of measurement noise matrix (R) , see
KalmanGain_res .m and KalmanGain_flux .m

4

5 %Load data from simulat ion
6 load ( ’ parameters . mat ’ )
7

8 %S e t t i n g s for Butterworth f i l t e r applied on id , iq , vd , vq ,
we

9 [ b , a ] = but ter ( 3 , 0 . 0 5 , ’ low ’ ) ;
10

11 %I n i t i a l condi t ions for s t a t e s and covar iance
12 x0 = [ 0 ; 0 ; 0 ; 0 ] ;
13 P0 = diag ( [ 1 , 1 , 1 , 1 ] ) ;
14

15 %Alloca te memory for es t imat ions
16 x_predict = zeros ( 4 , length ( ans ) ) ;
17

18 %Input parameters :
19 % vd = d−a x i s Voltage
20 % vq = q−a x i s Voltage
21 % we = E l e c t r i c a l Angular Veloc i ty
22

23 %S t a t e parameters :
24 % id = d−a x i s Current
25 % iq = q−a x i s Current
26

27 % x3 = Estimated Flux
28 % x4 = Estimated Res i s tance
29

30 %Main loop for both es t imat ions
31 %Loops through the simulated data
32

33 fo r i = 1 : length ( time )
34

35 %Predic t ion Step
36

37 %Use i n i t i a l condi t ions for f i r s t loop , ( i = 1)
38 %else , use previous est imate
39

40 i f i == 1
41 xk_1_k_1 = x0 ;
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42 e l s e
43 xk_1_k_1 = xk ;
44 end
45

46 Ts ( i ) = Ts ( i ) ;
47 vd ( i ) = vd ( i ) ;
48 vq ( i ) = vq ( i ) ;
49 we( i ) = we( i ) ;
50

51 %S t a t e Pred ic t ion Function , see S t a t e P r e d i c t i o n .m
52 xk_k_1 = S t a t e P r e d i c t i o n ( vd ( i ) , vq ( i ) ,we( i ) , Ts ( i ) ,

xk_1_k_1 ) ;
53

54 %Covariance pred i c t ion
55 %Use i n i t i a l condi t ions for f i r s t loop , ( i = 1)
56 %else , use previous covar iance
57

58 i f i == 1
59 Pk_1_k_1 = P0 ;
60 e l s e
61 Pk_1_k_1 = Pk ;
62 end
63

64 %Covariance p r e d i c i t i o n function , see
CovariancePredict ion .m

65 Pk_k_1 = CovariancePredict ion ( Pk_1_k_1 , we( i ) , Ts ( i ) ,
xk_1_k_1 ) ;

66

67 %Kalman Gain function , see KalmanGain .m
68 K = KalmanGain ( Pk_k_1 ) ;
69

70 %Correct ion step
71

72 id ( i ) = ans ( 2 , i ) ; %d−a x i s current
73 iq ( i ) = ans ( 3 , i ) ; %q−a x i s current
74

75 %S t a t e c o r r e c t i o n function , see S t a t e C o r r e c t i o n .m
76 xk = S t a t e C o r r e c t i o n (K, xk_k_1 , id ( i ) , iq ( i ) ) ;
77

78 %Covariance Correct ion function , see
CovarianceCorrect ion .m

79 Pk = CovarianceCorrect ion ( Pk_k_1 ,K) ;
80

81 %Save es t imat ions in x_predict
82 x_predict ( : , i ) = xk ;
83 end
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84

85 %S e t t i n g s for moving mean of Flux and Res i s tance
86 Flux_mean = movmean( x_predict ( 3 , : ) ,2000) ;
87 Rs_mean = movmean( x_predic t ( 4 , : ) ,2000) ;
88

89 f i g u r e ( 1 )
90 plot ( ans ( 1 , : ) , id ) ;
91 hold on
92 plot ( ans ( 1 , : ) , x_predict ( 1 , : ) ) ;
93 x l a b e l ( ’ Time [ s ] ’ ) ;
94 y l a b e l ( ’ Current d−a x i s [A] ’ ) ;
95 t i t l e ( ’ Current d−a x i s ’ ) ;
96 legend ( ’ Measured $i_d$ ’ , ’ Estimated $i_d$ ’ , ’ I n t e r p r e t e r ’ ,

’ l a t e x ’ ) ;
97

98 f i g u r e ( 2 )
99 plot ( ans ( 1 , : ) , iq ) ;

100 hold on
101 plot ( ans ( 1 , : ) , x_predict ( 2 , : ) ) ;
102 x l a b e l ( ’ Time [ s ] ’ ) ;
103 y l a b e l ( ’ Current q−a x i s [A] ’ ) ;
104 t i t l e ( ’ Current q−a x i s ’ ) ;
105 legend ( ’ Measured $i_q$ ’ , ’ Estimated $i_q$ ’ , ’ I n t e r p r e t e r ’ ,

’ l a t e x ’ ) ;
106

107 f i g u r e ( 3 )
108 plot ( ans ( 1 , : ) , x_predict ( 3 , : ) ) ;
109 hold on
110 plot ( ans ( 1 , : ) , Flux_mean ) ;
111 x l a b e l ( ’ Time [ s ] ’ ) ;
112 y l a b e l ( ’ Flux [Wb] ’ ) ;
113 t i t l e ( ’ Estimated Flux ’ ) ;
114 legend ( ’ Estimated Flux ’ , ’ Moving Mean ’ , ’ I n t e r p r e t e r ’ , ’

l a t e x ’ ) ;
115

116 f i g u r e ( 4 )
117 plot ( ans ( 1 , : ) , x_predict ( 4 , : ) ) ;
118 hold on
119 plot ( ans ( 1 , : ) , Rs_mean ) ;
120 x l a b e l ( ’ Time [ s ] ’ ) ;
121 y l a b e l ( ’ Res i s tance [Ohm] ’ ) ;
122 t i t l e ( ’ Estimated Res i s tance ’ ) ;
123 legend ( ’ Estimated Res i s tance ’ , ’ Moving Mean ’ , ’ I n t e r p r e t e r ’

, ’ l a t e x ’ ) ;
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State Prediction Step

1

2 funct ion xk_k_1 = S t a t e P r e d i c t i o n ( vd , vq , we , Ts , xk_1_k_1 )
3

4 %Parameters , ITB−A61
5 Ls = 0.03264e −3; %Nominal Inductance
6

7 %Estimated S t a t e s
8 x1 = xk_1_k_1 ( 1 ) ; % id
9 x2 = xk_1_k_1 ( 2 ) ; % iq

10 x3 = xk_1_k_1 ( 3 ) ; % Flux
11 x4 = xk_1_k_1 ( 4 ) ; % Rs
12

13 %S t a t e t r a n s i t i o n matrix
14 fk = [( − x4/Ls ) ∗x1 + we∗x2 + vd/Ls ;
15 −we∗x1 − ( x4/Ls ) ∗x2 + vq/Ls − ( x3 ∗we) /Ls ;
16 x3 ;
17 x4 ] ;
18

19 xk_k_1 = xk_1_k_1 + Ts ∗ fk ;
20 end
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Covariance Prediction Step

1

2 funct ion Pk_k_1 = CovariancePredict ion ( Pk_1_k_1 , we , Ts ,
xk_1_k_1 )

3

4 %Parameters , ITB−A61
5 Ls = 0.03264e −3; %Nominal Inductance
6

7 %Estimated s t a t e s
8 x1 = xk_1_k_1 ( 1 ) ; %id
9 x2 = xk_1_k_1 ( 2 ) ; %iq

10 x3 = xk_1_k_1 ( 3 ) ; %Flux
11 x4 = xk_1_k_1 ( 4 ) ; %Rs
12

13 %Linear ized S t a t e Trans i t ion Matrix
14 Fk = [1 −( x4 ∗Ts/Ls ) we∗Ts 0 −Ts ∗x1/Ls ;
15 −we∗Ts 1−(x4 ∗Ts/Ls ) −we∗Ts/Ls −Ts ∗x2/Ls ;
16 0 0 1 0 ;
17 0 0 0 1 ] ;
18

19 %Process Noise Matrix
20 Q = diag ( [ 1 , 1 , 1 , 1 ] ) ;
21

22 Pk_k_1 = Fk∗Pk_1_k_1 ∗Fk ’ + Q;
23 end
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Kalman Gain

1

2 funct ion K = KalmanGain ( Pk_k_1 )
3

4 %Linear ized Observation Matrix
5 H = [ 1 , 0 , 0 , 0 ;
6 0 , 1 , 0 , 0 ] ;
7

8 %Measurement Noise Matrix
9 R = diag ( [ 1 , 1 ] ) ;

10

11 K = Pk_k_1 ∗H’ ∗ inv (H∗Pk_k_1 ∗H’+ R) ;
12 end
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State Correction Step

1

2 funct ion xk = S t a t e C o r r e c t i o n (K, xk_k_1 , id , iq )
3

4 %H∗x
5 y_prim = [ xk_k_1 ( 1 ) , xk_k_1 ( 2 ) ] ’ ;
6

7 %Measurements
8 y = [ id ; iq ] ;
9

10 xk = xk_k_1 + K∗ ( y−y_prim ) ;
11 end
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Covariance Correction Step

1 funct ion Pk = CovarianceCorrect ion ( Pk_k_1 ,K)
2

3 %Linear ized Observation Matrix
4 H = [ 1 , 0 , 0 , 0 ;
5 0 , 1 , 0 , 0 ] ;
6

7 Pk = ( eye ( 4 ) − K∗H) ∗Pk_k_1 ;
8 end
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Matlab Code AEKF

Main AEKF-Code

1

2 % Load Data From Simulation
3

4 load ( ’ parameters . mat ’ )
5

6 %I n i t i a l condi t ions
7 x0 = [ 0 ; 0 ; 0 ; 0 ] ;
8 P0 = diag ( [ 1 , 1 , 1 , 1 ] ) ;
9 Q0 = diag ( [ 1 1 1 1 ] ) ;

10 R0 = diag ( [ 0 0 ] ) ;
11 e0 = [ 0 ; 0 ] ;
12

13 % S e t t i n g s for Butterworth f i l t e r applied on id , iq , vd , vq
, we

14 [ b , a ] = but ter ( 3 , 0 . 0 5 , ’ low ’ ) ;
15

16 %Alloca te memory for es t imat ions
17 x_predict = zeros ( 4 , length ( time ) ) ;
18

19

20 % Input parameters :
21 % vd = d−a x i s vol tage
22 % vq = q−a x i s vol tage
23 % we = e l e c t r i c a l angular v e l o c i t y
24

25 %S t a t e parameters :
26 % id = d−a x i s current
27 % iq = q−a x i s current
28

29 % Main loop for es t imat ions
30 % Loops through the simulated data
31

32 fo r i = 1 : length ( time )
33

34 %Predic t ion step
35

36 %Use i n i t i a l condi t ions for f i r s t loop , ( i = 1)
37 %Else , use previous est imate
38

39 i f i == 1
40 xk_1_k_1 = x0 ;
41 e l s e
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42 xk_1_k_1 = xk ;
43 end
44

45 %In order to use the adaptive EKF , one needs to run two
or more

46 %i t e r a t i o n s , hence the i f −statement below
47

48 i f i >= 2
49 omega_k_1_bar = omega_k_bar ;
50 Q_1 = Q;
51 R_1 = R ;
52 ek_1_bar = ek_bar ;
53

54 e l s e
55 omega_k_1_bar = x0 ;
56 Q = Q0;
57 R = R0 ;
58 Q_1 = Q0;
59 R_1 = R0 ;
60 ek_1_bar = e0 ;
61 end
62

63 Ts ( i ) = 1.25 e −4;
64 vd ( i ) = ans ( 4 , i ) ;
65 vq ( i ) = ans ( 5 , i ) ;
66 we( i ) = ans ( 6 , i ) ;
67

68 %S t a t e Pred ic t ion Function , see S t a t e P r e d i c t i o n .m
69 xk_k_1 = S t a t e P r e d i c t i o n ( vd ( i ) , vq ( i ) ,we( i ) , Ts ( i ) ,

xk_1_k_1 ) ;
70

71 %Covariance pred i c t ion
72 %Use i n i t i a l condi t ions for f i r s t loop , ( i = 1)
73 %else , use previous covar iance
74

75 i f i == 1
76 Pk_1_k_1 = P0 ;
77 e l s e
78 Pk_1_k_1 = Pk ;
79 end
80

81 %Covariance p r e d i c i t i o n function , see
CovariancePredict ion .m

82 [ Pk_k_1 , Fk ] = CovariancePredict ion ( Pk_1_k_1 , we( i ) , Ts ( i )
, xk_1_k_1 ,Q) ;

83



87

84 %Kalman Gain Function , see KalmanGain .m
85 K = KalmanGain ( Pk_k_1 , R) ;
86

87 %Correct ion Step
88

89 id ( i ) = ans ( 2 , i ) ; %d−a x i s current
90 iq ( i ) = ans ( 3 , i ) ; %q−a x i s current
91

92 %S t a t e Correct ion Function , see S t a t e C o r r e c t i o n .m
93 [ xk , ek ] = S t a t e C o r r e c t i o n (K, xk_k_1 , id ( i ) , iq ( i ) ) ;
94

95 %Covariance Correct ion Function , see
CovarianceCorrect ion .m

96 Pk = CovarianceCorrect ion ( Pk_k_1 ,K) ;
97

98 %Process noise (Q) , Adaptive Tuning
99 Nq = 1 ; %Tuning v a r i a b l e

100 alpha1 = (Nq−1) /Nq;
101 omega_k = xk − xk_k_1 ;
102 omega_k_bar = alpha1 ∗omega_k_1_bar + (1/Nq) ∗omega_k ;
103 delta_Q = ( 1 / (Nq−1) ∗ ( omega_k−omega_k_bar ) ∗ ( omega_k−

omega_k_bar ) ’ ) + (1/Nq) ∗ ( Pk_k_1 − Fk∗Pk_1_k_1 ∗Fk ’ ) ;
104 Q_diag = abs ( diag ( [ alpha1 ∗Q_1+delta_Q ] ) ) ;
105 Q = diag ( [ Q_diag ( 1 ) Q_diag ( 2 ) Q_diag ( 3 ) Q_diag ( 4 ) ] ) ;
106

107 %Measurement noise (R) , Adaptive Tuning
108 Nr = 1 ; %Tuning v a r i a b l e
109 H = [1 0 0 0;0 1 0 0 ] ;
110 alpha2 = ( Nr−1) /Nr ;
111 ek_bar = alpha2 ∗ ek_1_bar + (1/Nr ) ∗ek ;
112 delta_R = ( 1 / ( Nr−1) ) ∗ ( ek−ek_bar ) ∗ ( ek−ek_bar ) ’ − (1/Nr ) ∗

H∗Pk_k_1 ∗H’ ;
113 R_diag = abs ( diag ( [ alpha2 ∗R_1+delta_R ] ) ) ;
114 R = diag ( [ R_diag ( 1 ) R_diag ( 2 ) ] ) ;
115

116 %Save Est imat ions In x_predict
117 x_predict ( : , i ) = xk ;
118 end
119

120 c l o s e a l l
121 Flux_mean = movmean( x_predict ( 3 , : ) ,2000) ;
122 Rs_mean = movmean( x_predic t ( 4 , : ) ,2000) ;
123

124 f i g u r e ( 1 )
125 plot ( ans ( 1 , : ) , id ) ;
126 hold on
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127 plot ( ans ( 1 , : ) , x_predict ( 1 , : ) ) ;
128 x l a b e l ( ’ Time [ s ] ’ ) ;
129 y l a b e l ( ’ Current d−a x i s [A] ’ ) ;
130 t i t l e ( ’ Current d−a x i s ’ ) ;
131 legend ( ’ Measured $i_d$ ’ , ’ Estimated $i_d$ ’ , ’ I n t e r p r e t e r ’ ,

’ l a t e x ’ ) ;
132

133 f i g u r e ( 2 )
134 plot ( ans ( 1 , : ) , iq ) ;
135 hold on
136 plot ( ans ( 1 , : ) , x_predict ( 2 , : ) ) ;
137 x l a b e l ( ’ Time [ s ] ’ ) ;
138 y l a b e l ( ’ Current q−a x i s [A] ’ ) ;
139 t i t l e ( ’ Current q−a x i s ’ ) ;
140 legend ( ’ Measured $i_q$ ’ , ’ Estimated $i_q$ ’ , ’ I n t e r p r e t e r ’ ,

’ l a t e x ’ ) ;
141

142 f i g u r e ( 3 )
143 plot ( ans ( 1 , : ) , x_predict ( 3 , : ) ) ;
144 hold on
145 plot ( ans ( 1 , : ) , Flux_mean ) ;
146 x l a b e l ( ’ Time [ s ] ’ ) ;
147 y l a b e l ( ’ Flux [Wb] ’ ) ;
148 t i t l e ( ’ Estimated Flux ’ ) ;
149 legend ( ’ Estimated Flux ’ , ’ Moving Mean ’ , ’ I n t e r p r e t e r ’ , ’

l a t e x ’ ) ;
150

151 f i g u r e ( 4 )
152 plot ( ans ( 1 , : ) , x_predict ( 4 , : ) ) ;
153 hold on
154 plot ( ans ( 1 , : ) , Rs_mean ) ;
155 x l a b e l ( ’ Time [ s ] ’ ) ;
156 y l a b e l ( ’ Res i s tance [Ohm] ’ ) ;
157 t i t l e ( ’ Estimated Res i s tance ’ ) ;
158 legend ( ’ Estimated Res i s tance ’ , ’ Moving Mean ’ , ’ I n t e r p r e t e r ’

, ’ l a t e x ’ ) ;
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Matlab Code UKF

Main UKF-Code

1

2 %Load data from simulat ion
3 load ( ’ parameters . mat ’ )
4

5 %Parameters , ITB−A61
6 n = 4 ; %Number of s t a t e s
7 Ls = 0.03264e −3; %Nominal Induction
8 Ts = 1.25 e −04; %Time Step
9

10 %Process Noise Matrix , can be tuned
11 Q = diag ( [ 1 , 1 , 1 , 1 ] ) ;
12

13 %Measurement Noise Matrix , can be tuned
14 R = diag ( [ 1 , 1 ] ) ;
15

16 %S t a t e Trans i t ion Function
17 f = @( x , u ) [ (1 −( Ts ∗x ( 3 ) ) /Ls ) ∗x ( 1 ) + Ts ∗u ( 3 ) ∗x ( 2 ) + ( Ts ∗u ( 1 ) )

/Ls ;
18 −Ts ∗u ( 3 ) ∗x ( 1 ) + (1 −( Ts ∗x ( 3 ) ) /Ls ) ∗x ( 2 ) + ( Ts ∗u

( 2 ) ) /Ls + (−Ts ∗x ( 4 ) ∗u ( 3 ) ) /Ls ;
19 x ( 3 ) ;
20 x ( 4 ) ] ;
21

22 %Observation Matrix
23 h = @( x ) [ x ( 1 ) ;
24 x ( 2 ) ] ;
25

26 %I n i t i a l condi t ions for s t a t e and covar iance
27 x0 = [ 0 , 0 , 0 , 0 ] ’ ;
28 P0 = diag ( [ 1 , 1 , 1 , 1 ] ) ; %Can be tuned
29

30 %Loop v a r i a b l e
31 N = length ( time ) ;
32

33 %Memory for s t o r i n g es t imates and measurements
34 xV = zeros ( n ,N) ;
35 zV = zeros ( 2 ,N) ;
36

37 %S e t t i n g s for Butterworth f i l t e r applied on id , iq , vd , vq ,
we

38 [ b , a ] = but ter ( 3 , 0 . 0 5 , ’ low ’ ) ;
39
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40 %Input parameters :
41 % vd = d−a x i s vol tage
42 % vq = q−a x i s vol tage
43 % we = e l e c t r i c a l angular v e l o c i t y
44

45 %S t a t e parameters :
46 % id = d−a x i s current
47 % iq = q−a x i s current
48

49 fo r k = 1 :N
50

51 z ( 1 , k ) = id ( k ) ;
52 z ( 2 , k ) = iq ( k ) ;
53

54 u ( 1 , k ) = vd ( k ) ;
55 u ( 2 , k ) = vq ( k ) ;
56 u ( 3 , k ) = we( k ) ;
57

58 %Use i n i t i a l condi t ions for f i r s t loop , ( i = 1)
59 %else , use previous est imate
60

61 i f k == 1
62 [ x , P ] = ukf ( f , x0 , P0 , h , z ( : , k ) ,Q, R , u ( : , k ) ) ; %Main UKF

−funct ion
63 e l s e
64 [ x , P ] = ukf ( f , x , P , h , z ( : , k ) ,Q, R , u ( : , k ) ) ; %Main UKF−

funct ion
65 end
66

67 xV ( : , k ) = x ;
68 zV ( : , k ) = z ( : , k ) ;
69 end
70

71 %S e t t i n g s for moving mean of Flux and Res i s tance
72 Rs_mean = movmean(xV ( 3 , : ) ,2000) ;
73 Flux_mean = movmean(xV ( 4 , : ) ,2000) ;
74

75 f i g u r e ( 1 )
76 plot ( ans ( 1 , : ) , z ( 1 , : ) ) ;
77 hold on
78 plot ( ans ( 1 , : ) , xV ( 1 , : ) ) ;
79 x l a b e l ( ’ Time [ s ] ’ ) ;
80 y l a b e l ( ’ Current d−a x i s [A] ’ ) ;
81 t i t l e ( ’ Current d−a x i s ’ ) ;
82 legend ( ’ Measured $i_d$ ’ , ’ Estimated $i_d$ ’ , ’ I n t e r p r e t e r ’ ,

’ l a t e x ’ ) ;
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83

84 f i g u r e ( 2 )
85 plot ( ans ( 1 , : ) , z ( 2 , : ) ) ;
86 hold on
87 plot ( ans ( 1 , : ) , xV ( 2 , : ) ) ;
88 x l a b e l ( ’ Time [ s ] ’ ) ;
89 y l a b e l ( ’ Current q−a x i s [A] ’ ) ;
90 t i t l e ( ’ Current q−a x i s ’ ) ;
91 legend ( ’ Measured $i_q$ ’ , ’ Estimated $i_q$ ’ , ’ I n t e r p r e t e r ’ ,

’ l a t e x ’ ) ;
92

93

94 f i g u r e ( 3 )
95 plot ( ans ( 1 , : ) , xV ( 3 , : ) ) ;
96 hold on
97 plot ( ans ( 1 , : ) , Rs_mean )
98 x l a b e l ( ’ Time [ s ] ’ ) ;
99 y l a b e l ( ’ Res i s tance [Ohm] ’ ) ;

100 t i t l e ( ’ Estimated Res i s tance ’ ) ;
101 legend ( ’ Estimated Res i s tance ’ , ’ Moving Mean ’ , ’ I n t e r p r e t e r ’

, ’ l a t e x ’ ) ;
102

103 f i g u r e ( 4 )
104 plot ( ans ( 1 , : ) ,xV ( 4 , : ) ) ;
105 hold on
106 plot ( ans ( 1 , : ) , Flux_mean ) ;
107 x l a b e l ( ’ Time [ s ] ’ ) ;
108 y l a b e l ( ’ Flux [Wb] ’ ) ;
109 t i t l e ( ’ Estimated Flux ’ ) ;
110 legend ( ’ Estimated Flux ’ , ’ Moving Mean ’ , ’ I n t e r p r e t e r ’ , ’

l a t e x ’ ) ;
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UKF-Function

1 funct ion [ x , P]= ukf ( f , x , P , h , z ,Q, R , u )
2

3 L = numel ( x ) ; %Number of s t a t e s
4 m = numel ( z ) ; %Number of measurements
5

6 %Weights
7 alpha=10e −3;
8 ki =0;
9 beta =2;

10 lambda=alpha ^2∗(L+ki )−L ;
11 c=L+lambda ;
12 Wm=[lambda/ c 0.5/ c+zeros (1 ,2∗L ) ] ;
13 Wc=Wm;
14 Wc( 1 )=Wc( 1 ) +(1− alpha^2+beta ) ;
15 c=s q r t ( c ) ;
16

17 %Sigma points , see sigmas .m
18 X = sigmas ( x , P , c ) ;
19

20 %Unscented transformation of process , see ut .m
21 [ x1 , X1 , P1 , X2 ] = ut ( f , X ,Wm,Wc, L ,Q, u ) ;
22

23 %Unscented transformation of measurements , see ut1 .m
24 [ z1 , ~ , P2 , Z2 ] = ut1 ( h , X1 ,Wm,Wc,m, R) ;
25

26 %Transformed cross −covar iance
27 P12 = X2∗ diag (Wc) ∗Z2 ’ ;
28

29 %Kalman gain
30 K = P12∗ inv ( P2 ) ;
31

32 %S t a t e update
33 x = x1+K∗ ( z−z1 ) ;
34

35 %Covariance update
36 P = P1−K∗P2∗K ’ ;
37 end
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Sigma Points

1 funct ion X=sigmas ( x , P , c )
2 %Sigma points around r e f e r e n c e point
3 %Inputs :
4 % x : r e f e r e n c e point
5 % P : covar iance
6 % c : c o e f f i c i e n t
7 %Output :
8 % X : Sigma points
9

10 A = c ∗ chol (P ) ’ ; %chol i s the Cholesky decomposition
11 Y = x ( : , ones ( 1 , numel ( x ) ) ) ;
12 X = [ x Y+A Y−A ] ;
13 end
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Unscented Transform

1 funct ion [ y , Y , P , Y1]= ut ( f , X ,Wm,Wc, n , R , u )
2 %Unscented Transformation
3 %Input :
4 % f : nonl inear map
5 % X : sigma points
6 % Wm: weights for mean
7 % Wc: weights for covraiance
8 % n : numer of outputs of f
9 % R : a d d i t i v e covar iance

10 %Output :
11 % y : transformed mean
12 % Y : transformed sampling points
13 % P : transformed covar iance
14 % Y1 : transformed d e v i a t i o n s
15

16 L=s i z e (X, 2 ) ;
17 y=zeros ( n , 1 ) ;
18 Y=zeros ( n , L ) ;
19 for k=1:L
20 Y ( : , k )=f (X ( : , k ) ,u ) ;
21 y=y+Wm( k ) ∗Y ( : , k ) ;
22 end
23 Y1=Y−y ( : , ones ( 1 ,L ) ) ;
24 P=Y1∗ diag (Wc) ∗Y1’+R ;
25 end
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Unscented Transform of Measurements

1 funct ion [ y , Y , P , Y1]= ut1 ( f , X ,Wm,Wc, n , R)
2 %Unscented Transformation
3 %Input :
4 % f : nonl inear map
5 % X : sigma points
6 % Wm: weights for mean
7 % Wc: weights for covraiance
8 % n : numer of outputs of f
9 % R : a d d i t i v e covar iance

10 %Output :
11 % y : transformed mean
12 % Y : transformed sampling points
13 % P : transformed covar iance
14 % Y1 : transformed d e v i a t i o n s
15

16 L=s i z e (X, 2 ) ;
17 y=zeros ( n , 1 ) ;
18 Y=zeros ( n , L ) ;
19 fo r k=1:L
20 Y ( : , k )=f (X ( : , k ) ) ;
21 y=y+Wm( k ) ∗Y ( : , k ) ;
22 end
23 Y1=Y−y ( : , ones ( 1 ,L ) ) ;
24 P=Y1∗ diag (Wc) ∗Y1’+R ;
25 end

A.0.1 Simulation Steps

1. Open the folder where the chosen filter is located.

2. Run the file motor_parameters.m. For more details, see Appendix Section
Matlab code

3. Open the simulation file simulation_model.slx. Choose test case, set the cor-
rect simulation time and run the simulation.

4. Run the chosen filter for parameter estimation, appropriate graphs will be
generated.

A.0.2 Real World Steps

1. Connect the USB cable from DEWEsoft to the lab computer and start the
DEWEsoft application.

2. Connect the tool to the computer with a micro-usb cable.
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3. Start a web browser and visit the site for the tool interface, on this site the
tightening program can be programmed.

4. In DEWEsoft, browse to the tab "Measurements" and go to the tab called
"CAN", make sure that the channels are activated.

5. Arm the measurement function.

6. Place the tool head on the screw joint and press the trigger.

7. Stop the measurement when the tightening is complete.

8. Export the measurements to appropriate format.
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