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Abstract

In recent years, the interest in flying multiple Unmanned Aerial Vehicles (UAVs)
in formation has increased. One challenging aspect of achieving this is the rela-
tive positioning within the swarm. This thesis evaluates two different methods
for estimating the relative position and orientation between two fixed wing UAVs
by fusing range measurements from Ultra-wideband (UWB) sensors and orienta-
tion estimates from Inertial Measurement Units (IMUs).

To investigate the problem of estimating the relative position and orientation us-
ing range measurements, the performance of the UWB nodes regarding the accu-
racy of the measurements is evaluated. The resulting information is then used
to develop a simulation environment where two fixed wing UAVs fly in forma-
tion. In this environment, the two estimation solutions are developed. The first
solution to the estimation problem is based on the Extended Kalman Filter (EKF)
and the second solution is based on Factor Graph Optimization (FGO). In addi-
tion to evaluating these methods, two additional areas of interest are investigated:
the impact of varying the placement and number of UWB sensors, and if using
additional sensors can lead to an increased accuracy of the estimates. To evalu-
ate the EKF and the FGO solutions, multiple scenarios are simulated at different
distances, with different amounts of changes in the relative position, and with
different accuracies of the range measurements.

The results from the simulations show that both solutions successfully estimate
the relative position and orientation. The FGO-based solution performs better at
estimating the relative position, while both algorithms perform similarly when es-
timating the relative orientation. However, both algorithms perform worse when
exposed to more realistic range measurements.

The thesis concludes that both solutions work well in simulation, where the Root
Mean Square Error (RMSE) of the position estimates are 0.428 m and 0.275 m
for the EKF and FGO solutions, respectively, and the RMSE of the orientation
estimates are 0.016 radians and 0.013 radians respectively. However, to perform
well on hardware, the accuracy of the UWB measurements must be increased.
It is also concluded that by adding more sensors and by placing multiple UWB
sensors on each UAV, the accuracy of the estimates can be improved. In simula-
tion, the lowest RMSE is achieved by fusing barometer data from both UAVs in
the FGO algorithm, resulting in an RMSE of 0.229 m for the estimated relative
position.
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1
Introduction

In this chapter, the background and aim of the thesis is introduced, as well as the
contributions of each author. Also, the available hardware is listed.

1.1 Background

Over the last couple of years, advances in the field of Unmanned Aerial Vehicles
(UAVs) have led to an interest in using them for more complex tasks. To accom-
plish these tasks, it is necessary to use teams of UAVs, leveraging the power of
cooperating intelligent agents. Teams of UAVs in formation rely on accurate rel-
ative positional data, usually provided through an Inertial Navigation System
(INS) in combination with sharing accurate positional data from Global Navi-
gation Satellite Systems (GNSS) in the formation. However, since GNSS is not
reliable indoors and since there is an interest in using UAVs in GNSS-denied loca-
tions outdoors, there is a need for other methods to reliably estimate the relative
position between UAVs.

Ultra-Wideband (UWB) is an emerging technology that is being used especially
for positioning in GNSS-denied locations and indoors, with Apple’s airtag prod-
uct being a recent success story [1]. Beyond being applicable in environments
where GNSS traditionally is not, UWB sensors are inexpensive, energy efficient
and operate at a high rate [2]. UWB technology has been successfully used for
localization indoors through the use of triangulation of data from UWB anchors
placed throughout the environment, such as in [3]. However, requiring place-
ment of sensors in the environment in advance is unsuitable for robots exploring
an unknown environment. Furthermore, as the UWB sensors have difficulties
communicating over larger distances, using anchors at fixed positions is unsuit-
able for UAVs operating outside over large areas and at high altitudes.

1



2 1 Introduction

An alternative to fixed anchors in the environment is placing anchors on one
or more of the vehicles in a formation, designated as leaders. Thus, the relative
distance to the leaders is received directly. Only using the relative distance with
a single anchor and tag leaves ambiguity as to the orientation and position of
the members of the formation. One way to resolve this ambiguity is by letting
each member of the formation be equipped with multiple UWB sensors, thus
enabling the possibility of triangulating the position and orientation using the
UWB data. This approach requires a sufficient amount of UWB nodes mounted
on the members of the formation in order for the relative positioning problem to
be observable, especially for aerial vehicles operating in a 3D environment, which
is discussed in [4]. Alternatively, fewer UWB sensors can be mounted and fusion
of the UWB data with data from Inertial Measurement Units (IMU) mounted on
each member of the formation can be utilized, such as in [5].

To fuse measurements from a UWB and an IMU, an Extended Kalman Filter
(EKF), or a variation of it, can be used. In [6] the EKF is compared to a variation
of the Iterative EKF (IEKF), where the IEKF performs slightly better at relative
positioning than the EKF in Line of Sight (LOS) scenarios, and significantly better
in Non-line of Sight (NLOS) scenarios. Because of interference in the NLOS sce-
nario, disturbances can occur, causing errors in the estimated range, which could
make the linearization more sensitive and thus favor the IEKF. Another solution
to this problem is an adaptive EKF, as studied in [7], where the process noise was
estimated online using maximum likelihood estimation. This resulted in better
performance than an EKF in NLOS situations.

An alternative to the class of Kalman estimation techniques which are usually
employed is Factor Graph Optimization (FGO), which has gained traction over
the last couple of years in some areas. The technique was first used in a SLAM
setting in 1997 [8], and now it has become one of the most popular ways to im-
plement SLAM in research [9]. As opposed to classical Kalman techniques which
are typically configured as filters (they only take into account one time step at a
time), FGO solvers usually operate as smoothers or fixed-lag smoothers, which
means they account for the history of the system during estimation. This is espe-
cially helpful in nonlinear estimation where a single poor linearization can have
a big effect on the estimation, and hence smoothing estimators which relinearize
past states during solving are helpful. A number of authors have recently seen
good success with combining UWB positioning with FGO, such as [10] and [11].

1.2 Purpose and goal

The aim of this master’s thesis is to evaluate the performance of UWB sensors for
use in relative position estimation of UAVs in formation flight. The thesis deals
with a simple formation consisting of two UAVs, denoted the leader and follower,



1.3 Hardware platform 3

in which the follower follows the leader at a close distance. The goal is to deploy
a relative positioning estimation algorithm on the follower, utilizing UWB data
and INS data to estimate the relative position and orientation of the follower with
respect to the leader. Two separate estimation algorithms are developed and eval-
uated, one EKF-based solution and one FGO-based.

Two Make Fly Easy MFE Believer - Kits equipped with Cube Orange Flight Con-
troller flight computers, and eight Makerfabs DW1000 UWB nodes are available
for the thesis. The thesis focuses on the evaluation of the relative positioning algo-
rithms based on UWB sensors with this hardware in mind. Consequently, models
of the planes are used in the simulation environment, the choice of placement of
the UWB sensors, and the use of additional sensors is motivated by the hardware.
The hardware has been purchased and assembled by Saab Dynamics.

The thesis will attempt to fulfill the following goals

1. Evaluate the performance of the hardware UWB nodes.

2. Construct a simulation environment based on the results of the evaluation
of the hardware.

3. Implement an EKF-based and an FGO-based algorithm to estimate the rela-
tive position and orientation using UWB and INS data from the flight com-
puters in the simulation environment.

4. Evaluate the effect of the placement of UWB nodes on the performance of
the developed relative positioning algorithms.

5. Investigate the effect of adding additional sensors to the overall best per-
forming relative positioning algorithm, as well as changing some of the de-
sign choices, such as the states which are estimated.

6. Evaluate the best performing algorithm on the hardware.

The estimation scenario in Goal 3, that is using UWB sensors and INS data from
the flight computers, is referred to as the base case.

1.3 Hardware platform

In this thesis, two Make Fly Easy Believers [12] equipped with Cube Orange
Flight Controller flight computers [13] and Makerfab’s ESP32 UWB Pro sensors
[14] are used for experiments.

The Believers are fixed-wing propeller-planes with a wingspan of 2 meters. One
of the Believers shown in Figure 1.1. The flight controllers use the PX4-stack for
autonomous vehicles [15] that handles navigation, control and communication
with a manual controller. The Cube Orange Flight controllers are equipped with
IMU, barometer and a Here+ RTK GPS [16].
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Figure 1.1: One of the Believers used in the thesis.

Figure 1.2: One of the Makerfabs UWB Pro sensors used in the thesis. The
white rectangle on the green extension is the antenna of the UWB sensor.

The Makerfab UWB Pro sensor is a Decawave DW1000 sensor with a more pow-
erful antenna and is embedded on an ESP32 Wrover chip Figure 1.2. The leader
plane is equipped with two UWB sensors and the follower is equipped with four.

1.4 Individual contributions

Daniel has developed the EKF-based solution and investigated different node con-
stellations, while Eric has developed the FGO-based solution and investigated
additional sensors that were added to the FGO. Both authors have contributed to
the parts of the thesis regarding the UWB nodes and the experiments done with
the hardware.
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Throughout the thesis, the authors have written the parts related to their respon-
sibilities and the part related to the UWB together. The general results in Sec-
tion 7.2 and the corresponding discussion in Section 8.2, as well as the conclu-
sions in Chapter 9, were also written by both authors.

1.5 Outline

The required theory for the thesis is presented in Chapter 2. In Chapter 3, the im-
plementation of the UWB ranging protocol and the different measurement mod-
els are described. Chapter 4 and Chapter 5 contain the implementation of the
relative positioning with EKF and FGO, including the motion model used for the
estimation. Chapter 6 covers the method used for evaluating the implementa-
tions and the experiment setups. In Chapter 7, the results from the thesis are
presented. Chapter 8 contains a discussion of the obtained results, and in Chap-
ter 9 a conclusion is presented along with future work.





2
Theory

This chapter introduces the theory behind UWB sensors, the Extended Kalman
filter and factor graph optimization. The theory regarding UWB focuses on the
ranging aspect of estimating range and using multiple devices.

2.1 Ultra-wideband sensor

UWB sensors are sensors that utilize UWB signals to transmit data. The tech-
nology has seen most success as a ranging sensor in GNSS-denied environments,
such as indoors. This type of ranging is typically carried out by an initiating
radar, referred to as a tag, initiating communication with another tag, referred to
as an anchor, to calculate its distance relative to the anchor. The names tag and
anchor are slightly misleading in that the anchors do not necessarily need to be
stationary, but the terminology has been adopted in this thesis since most of the
literature concerns localization of mobile tags in environments with stationary
anchors [2].

2.1.1 Ultra-wideband signal

As the name implies, UWB signals refers to signals with either large relative, or
absolute, bandwidth [17]. These signals are transmitted as very short pulses, typ-
ically utilizing frequency bands of 500 MHz. It is the fact that the pulses are
so short (leading to a high symbol-rate) and that they travel at the speed of light
that make UWB signals so useful for ranging.

The large frequency bands of UWB signals imply that only a few frequency bands
can be employed by local devices without causing interference and whilst adher-
ing to the guidelines regarding the available frequency band for UWB signals by

7



8 2 Theory

the Federal Communications Commission (FCC) and the European Union (EU)
[17].

2.1.2 Localization using range measurements

To localize a target, multiple range measurements are required to determine the
position. In the two-dimensional scenario, each range measurement results in a
circle, with corresponding uncertainty, where the target can be located. By com-
bining these measurements, the intersection points between the circles indicate
possible locations of the target. If there are two measurements available, there
will be two intersecting points between the circles, assuming that the sensors are
placed at different locations. This results in two possible locations, where only
one is the true position. If a third sensor is available and placed such that the
three sensors are not placed on a single line, the solution is unambiguous, since
the three circles only intersect at a single point. This is illustrated in Figure 2.1.
In general, the number of measurements needed to localize a target is n = d + 1,
where d is the number of dimensions of the space where the target is located, and
the sensor locations must form a shape with the same number of dimensions d.
Thus, the minimum of nodes needed for relative positioning in three dimensions
is four anchor nodes.

(a) Two range measurements. (b) Three range measurements.

Figure 2.1: Visualization of the localization possibilities from range mea-
surements in two dimensions. With two measurements, there are two pos-
sible locations of the target, but with three measurements, there is only one
possible location.

If a UWB node is placed in the origin of the local coordinate frame of the agent,
the range measurement between two agents only depends on the distance be-
tween them. However, by placing a node away from the origin, the range mea-
surement becomes coupled with the orientation of the agent. This means that
the distance measured between two UWB nodes does not only depend on the dis-
tance between the agents, but also the orientation of each agent. By increasing
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the distance between the node and the origin, the correlation between the orien-
tation and the range measurements is increased. By placing more than one tag
on one agent, in this thesis the leader, as in [18], [4], [6], and [11], the relative
orientation can be estimated from the measurements.

2.1.3 Time of arrival

One way of estimating distance from a pulse is by measuring the Time of Arrival
(ToA). If the ToA can be measured with enough accuracy and the time the pulse
was sent is known, the Time of Flight (ToF) can be calculated, which in turn can
be used to calculate the distance if the speed of the pulse is known. There are a
few different methods to estimate the transmission time, for example synchroniz-
ing the clocks of the devices [19]. Another way to estimate the transmission time
is to have the sending device send the initiation message itself, and by knowing
the processing time of the other device before it sends a reply, the distance can
be calculated. This is called two-way ranging.

2.1.4 Two-way ranging

Two-Way Ranging (TWR) is a technique for recovering ToF measurements from
messages passed between two independent devices with unsynchronized clocks.
This text will refer to the device that initiates communication as the tag, and the
other device as the anchor.

The single-sided TWR protocol is the simplest TWR protocol, consisting of two
messages passed between the devices, and which yields a ToF measurement for
the tag only. This is illustrated in Figure 2.2. The protocol starts with the tag send-
ing a message to the anchor, denoted Poll. When a pre-defined point in the Poll
message has left the antenna of the tag, called the R-marker, it starts measuring
the round-trip time, Tr . Due to the fact that there is a limited bit-rate, packages
take time to transmit and receive, and there will be a reply delay time, Td , which
needs to be accounted for. The anchor will measure Td from the time it receives
the R-marker in the Poll message, until it has transmitted the R-marker of its re-
ply message, denoted Range. The measured reply delay time is then appended to
the Range message. Once the tag has received the R-marker in the Range message,
it will stop measuring Tr . Using these quantities, the ToF, TT oF , can be calculated
as

TT oF =
1
2

(Tr − Td). (2.1)

Since electromagnetic waves travel at the speed of light, c, the distance measure-
ment y is trivially obtained as y = c · TT oF .

Due to the fact that TWR protocols measure the distance travelled by an elec-
tromagnetic pulse over a short time period rather than the distance itself, they
are sensitive to delays. A delay of one nanosecond roughly translates to a range
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tag anchor

Round, Tr

Poll

Range

ToF

Reply, Td

Figure 2.2: Illustration of the single-sided TWR protocol. The arrows repre-
sent messages which are passed between the tag device and anchor device.
Time moves down along the vertical axis, and the thick vertical bars are time
periods. The protocol starts with the tag sending the Poll message. Once
received, the anchor will respond with the Range message. Practically, the
Poll message may contain an instructed reply delay time timer period Td ,
which is the time between the anchor receiving the Poll message and when
the Range message is transmitted. It is also possible to keep a fixed Td , thus
bypassing the need to communicate it to the anchor, or for the anchor to de-
cide the reply delay time, but which will require the anchor to transmit this
reply delay time in the Range message. Once the Range message has been
received by the tag, it will have a measurement of the round trip time, Tr ,
which is the time from the Poll being broadcast, to the time when the Range
was received. Using the Tr and Td the time of flight can be calculated.

error of 30 cm. Therefore, the influence of imperfect independent clocks can have
a large impact on the time-of-flight measurement using TWR protocols. The in-
fluence of the clock drift on a measured time is typically modelled as linearly
dependent on the elapsed time. Using the linear model, the measured times in
the single-sided TWR would then be

T̂r = (1 + ϵt)Tr
T̂d = (1 + ϵa)Td ,

(2.2)

where T̂r and T̂d are the perturbed round-trip time and reply delay time respec-
tively, and ϵt and ϵa are the deviations from the nominal frequency for the tag
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and anchor respectively. The error in the measurement is then

1
2

(T̂r − T̂d) − 1
2

(Tr − Tr ) =
1
2

(ϵtTr − ϵaTd)

(2.1)
= ϵtTT oF +

Td
2

(ϵt − ϵa) ≈ Td
2

(ϵt − ϵa) ,
(2.3)

where in the third step the fact that TT oF is several magnitudes smaller than Td
was used (order of nanoseconds versus order of milliseconds). As seen from (2.3)
there are two ways that the magnitude of error can be kept low: through mini-
mizing the reply delay time and by reducing the clock drift. The simplest way
to reduce clock drift is to use a more accurate crystal, however to reach clock
errors below 10 parts per million (ppm) can be expensive. The largest contribu-
tion to the reply delay time is the package size and the data rate. To adjust the
package size, whilst adhering to the 802.15.4 IEEE standard [20], involves tun-
ing the preamble length or the data length. The preamble is a code of repeated
symbols which is the first part of the message and is used to estimate the channel
impulse response, and in turn allow for better long-range performance [21]. To
change the preamble length is to change the amount of repetitions of the prede-
fined code, and a longer preamble length is generally necessary to achieve longer
ranges since it affects the resolution of the impulse response, however, the effect
will diminish as the preamble length grows larger in proportion to the data rate
[21]. The data length will depend on the implementation of the protocol and
whether there is a need to send additional data as part of the protocol. Adjusting
the data rate will affect the power consumption and maximum range. A lower
data rate leads to a longer maximum range, but an increase in power consump-
tion [21]. Table 2.1 shows the estimated error based on the clock drift and reply
delay time.

Table 2.1: Effect of clock offset and reply delay time on the error in single
sided TWR. Adapted from [21]

Td

clock error
2 ppm 5 ppm 10 ppm 20 ppm 40 ppm

100µs 0.1 ns 0.25 ns 0.5 ns 1 ns 2 ns
200µs 0.2 ns 0.5 ns 1 ns 2 ns 4 ns
500µs 0.5 ns 1.25 ns 2.5 ns 5 ns 10 ns
1 ms 1 ns 2.5 ns 5 ns 10 ns 20 ns
2 ms 2 ns 5 ns 10 ns 20 ns 40 ns
5 ms 5 ns 12.5 ns 25 ns 50 ns 100 ns

An alternative to the single-sided protocol are the double-sided protocols. Double-
sided TWR (DS-TWR) protocols typically involve three to four messages passed
between the devices and use a similar method as the single-sided protocol to es-
timate the ToF. The start of a double-sided TWR protocol is a full single-sided
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TWR protocol, but involves the tag responding with an additional message. This
adds another reply delay time and round-trip time, as seen in Figure 2.3. In the
double-sided protocol, the second message is renamed Poll Ack so that the final
message remains the Range message. A fourth message can be added at the end,
denoted Range Report, in which the anchor reports the estimated range to the tag.

There are different double-sided TWR protocols which estimate the ToF using
the messages in Figure 2.3. Typically, they arise from efforts to minimize the error
caused by clock drift. One such protocol is the Symmetric Double-Sided Two-Way
Ranging protocol [20] which is a part of the IEEE 802.15.4a standard. It minimizes
the error by enforcing a fixed length reply delay time, hence the name symmetric.
While it has good performance, with errors due to clock drift below a second [22],
the fixed length reply delay time can be problematic. The Alternative double-sided
two-way ranging protocol [22] is, as the name suggests, an alternative to the classic
symmetric double-sided two-way ranging protocol. It is formed by considering
the product between the round-trip times of the tag and anchor

T t
r T

a
r = (2TT oF + T t

d )(2TT oF + T a
d ), (2.4)

which can be rearranged as

TT oF =
1
2

T t
r T

a
r − T t

dT
a
d

T t
r + T a

r + T t
d + T a

d

. (2.5)

In [22] it is shown that the error resulting from clock drift is on the order ϵTT oF ,
which is small enough to be ignored. In practice, the UWB signals are usually
transmitted and received by antennas. As a consequence, the time from the mes-
sage being sent until it is received will include the time for the signal to pass
through the transmitting and receiving antennae. While such small delays may
be ignored in most use cases, when it is added to the propagation time of a sig-
nal travelling at the speed of light it can cause large static errors in the TWR
calculation. The antenna delay of the sensors can be accounted for by subtract-
ing the propagation time through the transmitting and receiving antenna from
every message. The propagation time through the antenna varies from chip to
chip, and is therefore something that must be calibrated for each sensor. In [23]
a method of calibrating antenna delays is presented, and the result is a bias error
less than one centimeter.

The antenna delay is often modelled as linear, either as a single linear parameter
accounting for the added propagation time for sending and receiving messages
via the antenna [24], or two different parameters for sending and receiving mes-
sages via the antenna [23].
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tag anchor

Round, T t
r

Reply, T t
d

Poll

Poll Ack

Range

Range Report

ToF

Reply, T a
d

Round, T a
r

Figure 2.3: Illustration of the double-sided TWR protocol. The arrows rep-
resent messages which are passed between the tag device and anchor device,
where the dashed arrow represents an optional message. Time moves down
along the vertical axis, and the thick vertical bars are time periods. There are
two types of time periods involved in the protocol, round trip times T ∗r , and
reply delay times T ∗d . A round trip time is the time it takes for a device to
send a message to another device and receive a reply, and the round trip time
is the time from when the other device receives the message until it responds.
The protocol starts with the tag sending the Poll message. Once received, the
anchor will respond with the Poll Ack message. When the tag has received
the Poll Ack it will respond with the Range message. Optionally, the an-
chor can respond to the Range message with a Range Report, which simply
contains the estimated range from the protocol. Practically, each message
may contain an instructed reply delay time timer period for the other de-
vice. However, it is also possible to keep a fixed Td , thus bypassing the need
to communicate it to the other device. Or alternatively, for the other device
to decide the reply delay time, but this will require the other device to trans-
mit this reply delay time in the reply message. In order for the anchor to
calculate the estimated range from the message exchanges, the tag must add
the round-trip time of the first exchange, T t

r , and the reply delay time of the
second exchange, T t

d , to the Range message. Thus, after the Range message
the anchor can compute the time of flight message, and optionally transmit
it to the tag with a Range Report message.
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2.1.5 Time division multiple access

Time Division Multiple Access (TDMA) is a technique for allowing multiple users
to communicate over the same channel [2]. The exact details vary by implemen-
tation, but in general the scheme allocates the user slots over the time dimension
rather than over the frequency dimension like in Frequency Division Multiple
Access (FDMA) [2]. Of course, both techniques can be used together [2] as the
time and frequency axes are independent. However, since UWB messages oc-
cupy large parts of the frequency spectrum, they can only be split into a few
non-interferring radio frequency bands given current standards.

To use TDMA some form of scheduling is necessary in order to allocate the chan-
nel for one user at a time. When choosing a scheduling scheme, factors such as
the number of users, average use of the channel by the users and channel usage
efficiency vs. energy consumption needs to be considered. The simplest scheme
involves splitting some time period equally between the users, without taking
into account the needs of the users during the time period. This is a static schedul-
ing scheme, which may lead to inefficiency in larger networks with a lot of users
who often have varying needs for channel usage.

Alternatively, the scheduling may depend on external events, in which case it is
called dynamic scheduling. Dynamic scheduling can be used to adjust the size
of the time slots depending on the needs of the users, adjusting which users are
allowed to access the channel based on some criterion, changing the scheduling
scheme based on external events and more.

2.1.6 Data transmission

Apart from measuring distance, UWB sensors can be used to transmit data over
shorter distances. This is used in the DS-TWR protocol to transmit the times-
tamps from the tag needed to calculate the time of flight in (2.5), but can also be
used to share data between agents, as done in [18].

2.2 Motion models

In estimation theory, a central part of the problem is the system model that de-
scribes how the states evolves over time. When the model describes the motion
of a vehicle of some sort, it is called a motion model. In some cases, it may be
enough with a model that roughly describes the system, but sometimes a more
accurate model is required. For example, the motion of a car can be described
with a bicycle model with only a few parameters affecting the motion, or with a
model including friction, wheel slip and other parameters affecting a real car.

If the motion model is unknown, or the existing model is more complicated than
necessary for the task, a model describing a general motion, such as a constant
velocity model or a coordinated turn model, can be used. For a constant velocity
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model, the vehicle is assumed to move at a constant velocity with an unknown
acceleration affecting it, and for a coordinated turn model, the vehicle is assumed
to maintain velocity and turn with a constant angular velocity affected by an un-
known angular acceleration [19].

When the goal is relative positioning, one way to formulate a motion model is to
derive it from the motion models of the agents, as described for two front steered
cars in [25], but this, as stated in [25], requires the state of the leader to be avail-
able to the follower. To do this with an aircraft model, the relative motion model
would be complex, and a lot of data needs to be transferred between the agents.

To simplify the problem, it is possible to consider how the relative state should
change in a formation flight. The following agent should maintain its relative po-
sition to the leader, but the orientation of the two agents could change faster. One
way to model this is to assume constant relative velocity, which should be close
to zero when flying in formation, and constant angular velocity for each agent.
The model error is then modelled by adding a noise corresponding to changes in
velocity and angular velocity, affecting the corresponding states.

2.3 Kalman filters

For estimation of states where both the system and measurement models are lin-
ear, the Kalman filter has been the obvious choice since it was developed. For a
system with a known model affected by white Gaussian noise with known covari-
ance, the Kalman filter estimate is optimal [26].

The filter operates with two main steps, a state prediction and a measurement
update. The prediction step uses a model of the system to predict the state in
the next time step k, and updates the covariance of the state estimate accordingly,
and the measurement step updates the state by comparing the measurement with
the expected value calculated from the predicted states. The general state space
model used to describe the system is formulated as

xk = Fxk−1 + Guuk−1 + Gvwk−1, cov(w) = Q (2.6)

yk = Hxk + Duk + ek , cov(e) = R (2.7)

where x are the states, u are the input signals, y are the measurements, and the
vectors w and e are noises. With this system model, the prediction step of the
Kalman filter is defined as

x̂k|k−1 = F x̂k−1|k−1 + Guuk−1 (2.8)

P k|k−1 = FP k|kF
T + GvQGT

v (2.9)
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and the measurement step is defined as

S = HP k|k−1H
T + R (2.10)

K = P k|k−1H
T S−1 (2.11)

x̂k|k = x̂k|k−1 + Kk(yk − Hx̂k|k−1 − Duk) (2.12)

P k|k = P k|k−1 − KkHP k|k−1 (2.13)

where x̂ is the state estimate, P is the covariance of the estimate, and K is called
the Kalman gain.

2.3.1 Extended Kalman filter

An extension of the Kalman Filter (KF) for non-linear models is the Extended
Kalman Filter (EKF). A general non-linear model can be described as

xk = f (xk−1, uk−1,wk−1), cov(w) = Q (2.14)

yk = h(xk) + ek , cov(e) = R (2.15)

where f and h are possibly non-linear functions. The EKF applies the KF algo-
rithm to a linearization of the model, with either the first or second order Taylor
Transformation (TT1, TT2). This linearization is then updated with each time
step around the current state estimate x̂. Unlike the KF, the EKF has no guaran-
tee that the estimate will converge from an arbitrary initial guess [26].

The algorithm for the EKF, using TT1 and the non-linear model described in
(2.14), is presented below, with the prediction step defined as

x̂k|k−1 = f (x̂k−1|k−1, uk−1, 0) (2.16)

P k|k−1 = F k−1P k−1|k−1F
T
k−1 + W k−1QW T

k−1 (2.17)

and the measurement update defined as

Sk = HkP k|k−1H
T
k + Rk (2.18)

Kk = P k|k−1H
T
k S
−1
k (2.19)

x̂k|k = x̂k|k−1 + Kk(yk − h(x̂k|k−1)) (2.20)

P k|k = P k|k−1 − P k|k−1H
T
k S
−1
k HkP k|k−1 (2.21)

where F k and Hk are the Jacobian matrices with respect to the state defined as

F k =
∂f (x, u, 0)

∂x

∣∣∣∣∣∣
x̂k|k ,uk

(2.22)

Hk =
∂h(x)
∂x

∣∣∣∣∣∣
x̂k|k−1

(2.23)
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where x is the state, and W is the Jacobian matrix with respect to the noise, de-
fined as

W k =
∂f (x, u,w)

∂w

∣∣∣∣∣∣
x̂k|k ,uk

(2.24)

where w is the noise vector in (2.14). The filter is initialized with an initial guess
of the state x̂0|0 and the covariance P 0|0 [19].

2.4 Factor graph optimization

Factor graphs represent the factorization of a multi-variate function as a bipar-
tite graph. The recent upswing in use of graphical models, such as Bayesian
Networks [27] has sparked interest in applying graphical models to a wider set
of problems. One of these graphical models which has gained attention in the es-
timation and navigation community is the factor graph. Factor graphs intuitively
represent complex problems and offers efficient computations through a sparse
representation of the problems and through the use of algorithms such as the
sum-product algorithm.

2.4.1 Definition of factor graphs

A factor graph is a bipartite graph G = (X , F , E), where xi ∈ X is a state, fj ∈ F
is a factor and ei,j ∈ E is an edge. Thus, factor graphs have two types of nodes;
the state node xi and factor node fj . The edges ei,j can only connect between a
state node and factor node. In the Forney style of factor graphs, which this thesis
adopts, states are graphically represented as larger circles and factors as dots,
see Figure 2.4 for an example. The neighbourhood N (fj ) is the set of variables
connected to the factor fj (the set of variables that the factor fj depends on), and
for which the shorthand Xj will be used. A factor graph G is a factorization of a
global function f (X ) and can be expressed using the above notation as

f (X ) =
∏
j

fj (Xj ). (2.25)

For example, in Figure 2.4, the joint density of a simple hidden Markov model
with three time-steps, states xk and measurements zk , k = 0, 1, 2 is represented as
a factor graph.

Notice that the expression in (2.25) matches the example in Figure 2.4, since the
joint density of the Hidden Markov Model is

P (X ,Z) = P (x0)P (x1 | x0)P (x2 | x1)P (z0 | x0)P (z1 | x1)P (z2 | x2) ,

where X = {x0, x1, x2} and Z = {z0, z1, z2}, which is exactly the product of the
marginal densities represented as factors.
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x0

P (x0)

P (z0 | x0)

x1

P (x1 | x0)

P (z1 | x1)

x2

P (x2 | x1)

P (z2 | x2)

Figure 2.4: A factor graph encoding the joint density of a hidden Markov
model over three time steps. The large circles are nodes in the factor graph
and represent the hidden variables, and the smaller dots are the factors and
encode the probability densities.

2.4.2 Factor graph optimization for state estimation

Typically, factor graphs for state estimation are expressed in terms of Maximum
A Posteriori estimate (MAP) inference, though of course most estimators can be
expressed in the form of a factor graph, including Bayesian Filters [28]. The MAP
estimator is the value for which the posterior distribution of an unknown state
evolution X = {x1, x2, ..., xn}, given measurements Z = {z1, z2, ..., zm} of the states,
is maximized. To arrive at an expression for the MAP estimator, consider the pos-
terior density of the states and measurements P (X ,Z), which can be expressed
using Bayes’ law as

P (X |Z) =
P (Z|X )P (X )

P (Z)
, (2.26)

where P (Z|X ) is the measurement density, P (X ) is the prior distribution, and
P (Z) is a normalization constant. Using (2.26), the MAP estimator can be ex-
pressed as

XMAP = arg max
X

P (X |Z) = arg max
X

P (Z|X )P (X ) , (2.27)

where the normalization constant does not appear in the expression since it is
independent of X . Assuming that the measurements are conditionally indepen-
dent, the measurement density can be factorized as

P (Z|X ) =
m∏
j=1

P (zj |Xj ) , (2.28)

where Xj is the subset of states which the measurement zj depends on. Further-
more, if the measurements are assumed to be affected by Gaussian noise, then
the individual factors in (2.28) can be rewritten as

P (zj |Xj ) =
1√

2πΣj
exp(−1

2
||h(Xj ) − zj )||Σj

) , (2.29)

where h(Xj ) is the measurement model of zj , and Σj is the covariance of the Gaus-
sian noise affecting zj . Since (2.27) is phrased in terms of a maximization, the
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MAP estimate is typically rewritten as

XMAP = arg max
X

l(X ;Z)P (X ) , (2.30)

where l(X ;Z) is the likelihood of the states X given the measurements Z, and is
defined as any function proportional to P (Z|X ). Using (2.29), the likelihood can
be expressed as the product of likelihood functions:

l(X ;Z) =
m∏
j=1

l(Xj ; zj ) ,

l(Xj ; zj ) = exp(−1
2
||h(Xj ) − zj )||Σj

) .

(2.31)

Using (2.30) and (2.31), the final expression of the MAP estimate is

XMAP = arg max
X

P (X )
m∏
j=1

exp(−1
2
||h(Xj ) − zj ||Σj

). (2.32)

Since (2.32) is expressed as the product of the prior and the likelihood functions,
the MAP estimate can be expressed as a factor graph with the prior and likeli-
hood functions as factors. To compute the MAP estimate is therefore equivalent
to maximizing its corresponding factor graph. Given the problem posed as a fac-
tor graph, the estimate can be obtained by reformulating the graph in terms of
a nonlinear weighted least-squares problem and solving it using a typical opti-
mization algorithm such as Levenberg-Marquardt [29]. The problem can also be
solved using an optimizer that utilizes the graph structure, such as ISAM2 [30].

In practice, the MAP estimate is formulated using the same equations as a stan-
dard Bayesian filter, with the equations formulated as likelihood functions. The
biggest difference lies in the role of the state transition function; in a factor graph,
there is no difference between measurements and state transition functions. It is
treated as a measurement that depends on the elapsed time between two consecu-
tive states. Given enough measurements from the sensors, it is not even necessary
to use a state transition function at all. This is in contrast to Bayesian filters, in
which the state transition function is a part of a prediction step in each state up-
date, as seen in (2.16).

For the typical state estimation task using the MAP estimate in which the goal
is to estimate an unknown quantity over time, the factor graph will consist of
nodes representing the quantity over time. New nodes are added for every in-
coming measurement, so that the factor corresponding to the measurement can
be connected to the nodes. Therefore, if there are measurements that only affect
a subset of the unknown quantities, then only the nodes which are a part of the
factor will be added and connected to the new factor. Thus, the framework nat-
urally handles irregular measurements. Depending on the optimizer, the graph
will either have to be solved or iteratively updated every time a new estimate
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of the unknown quantities is required, that is, unlike a Bayesian filter in which
adding a measurement updates the estimate automatically, for the factor graph
framework it simply updates the formulation of the optimization problem.

In order for the nonlinear optimizer to solve the problem formulation, it is nec-
essary to specify the Jacobians of the factors. The Jacobian can represent a TT1
or TT2 expansion. This thesis will exclusively deal with TT1 expansions due to
the relatively well-behaved nonlinear functions treated. For a factor connected
to multiple nodes, it is necessary to specify the Jacobian with respect to every
connected node. Since the factors are implemented as likelihood functions, it is
the Jacobians of the difference between the model and measured valued which
are specified.

2.5 Lie groups

In this chapter, the basic theory of manifolds and Lie groups is established. The
theory is then applied to the state estimation problem, which will be used by the
FGO algorithm. It is by no means a thorough, or particularly mathematically
rigorous introduction to Lie theory, since the theory of Lie groups is rich, but it
explains the basics. For a more rigorous treatment, which still approaches the
theory of Lie groups from a state estimation perspective, see [31].

2.5.1 Introduction

Manifolds, M, are topological spaces that locally reassemble linear spaces. The
subset of manifolds called smooth manifolds are the manifolds which are contin-
ually differentiable. A smooth manifold can be visualized as a smooth surface
embedded in a higher dimensional space. The smoothness of these manifolds,
combined with the existence of a local linear vector space which they reassem-
ble at every point, implies that there exists a unique local tangent space at every
point [31]. Since the local tangent space is a finite vector space it is isometric to
R

n, where n is the dimensionality of the manifold, and thus smooth manifolds
can be said to represent quantities which can locally be parameterized by R

n

[31]. An important quantity for state estimation which has a manifold-structure
is the set of orientations in three-dimensional space; locally parameterized by
the triplet roll, pitch and yaw, but which is globally either represented by quater-
nions, or equivalently rotation matrices.

A Lie Group is a smooth manifold endowed with a group structure. In short,
a group (G, ◦) is composed of a set G and a composition operator ◦. Furthermore,
elements of the set G fulfill the following axioms with respect to the operator ◦:
Closure, Existence of an Identity element, Existence of an Inverse element, and Asso-
ciativity. The group structure comes with many benefits in the form of strong
properties associated with the restrictions imposed on it. A few important conse-
quences of the group structure for Lie Groups are: composition between elements
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on the manifold remain on the manifold, that each element on the manifold has
an inverse element on the manifold, and that there exists a special identity ele-
ment on the manifold with an associated special tangent space, called the Lie ale-
bra, g. Another property of the Lie groups is that they can act on other manifolds
through a group action, denoted · . A group action, a, of a Lie group (G, ◦) acting
on a manifoldM is a group homomorphism between (G, ◦) and the group of dif-
feomorphisms ofM. That is, it is a structure-preserving map between elements
of (G, ◦) and the group of all invertible functions applied to M. For example,
the Lie group S1, which is the group of complex numbers with absolute value 1
endowed with the composition operator multiplication, acts on the manifold R

2

through rotations x · p = xp, x ∈ S1, p ∈ R2.

As mentioned above, the set of orientations in three-dimensional space is rep-
resented by two equivalent smooth manifold-structures, the set of rotation matri-
ces and the set of quaternions. Both of these sets are associated with Lie groups,
known as the Special Orthogonal group, SO(3), and the Symmetric group, S4, re-
spectively. Since these groups are equivalent, only SO(3) will be discussed for the
rest of the text. The group action of SO(3) on R3 represents the rotation of a point
in three-dimensional space, that is: x · p = xp ∈ R3, x ∈ SO(3), p ∈ R3.

It is of interest to study local perturbations of quantities with a manifold-structure,
for example in the context of a noise model or to perform non-linear optimiza-
tion over the manifold. However, adding perturbations directly onto the mani-
fold will almost certainly lead to an element outside the manifold. For example,
adding a small perturbation matrix to a rotation matrix will most certainly lead
to a matrix which no longer is a rotation matrix. Hence, it would be preferable to
add increments to the local tangent vector space instead. To do so, a relationship
must be established between these local changes on the tangent space and the un-
derlying manifold. It is the Lie algebra which is the key to the relationship. The
exponential map, exp : g 7→ M, and its inverse, the logarithm map log : M 7→ g,
are defined as the operation that converts elements from the lie algebra to the
manifold, and the operation that converts elements of the manifold to the lie al-
gebra respectively.

Since the Lie algebra is a finite vector space, it is isometric to R
n, and therefore

there exists an isomorphism which maps elements from the Lie algebra to R
n,

which is denoted Vee: (.)∨, and another isomorphism which maps from R
n to

the Lie algebra, which is denoted Wedge: (.)∧. These isomorphisms are formed
through:

Wedge : x 7→ x∧ =
n∑
i=1

xie
∧
i

Vee : x∧ 7→ (x∧)∨ =
n∑
i=1

xiei ,

(2.33)
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where ei is the i:th basis vector of Rn, and e∧i is called the i:th generator of g.

For SO(3), the Lie algebra, so(3), is the space of skew-symmetric matrices [31].
A skew-symmetric matrix is a matrix which is the negative of its transpose, and
is on the form:

[ω]× =


0 −ωz ωy

ωz 0 −ωx
−ωy ωx 0

 . (2.34)

(2.34) can be rewritten to the following:

[ω]× = ωx

0 0 0
0 0 −1
0 1 0

 + ωy

 0 0 1
0 0 0
−1 0 0

 + ωz

0 −1 0
1 0 0
0 0 0

 . (2.35)

Using the form in (2.35) and identifying it with the expression in (2.33), the gen-
erators of so(3) are found to be on the following form:

e∧1 =

0 0 0
0 0 −1
0 1 0

 , e∧2 =

 0 0 1
0 0 0
−1 0 0

 , e∧3 =

0 −1 0
1 0 0
0 0 0

 . (2.36)

In state estimation there is generally little to gain in working in the Lie alge-
bra of the Lie group, therefore usually the capitalized version of the exp- and
log-operators are introduced:

X = Exp(x) = exp(x∧)

x = Log(X) = log(X)∨,
(2.37)

where X ∈ M, and x ∈ Rn. By using the Exp- and Log-operator it is possible to cir-
cumvent the lie-algebra entirely. For closed-form expressions of the capitalized
exp- and log-operators for SO(3), see [31].

2.5.2 Lie groups for state estimation

When estimating quantities that are a part of a Lie group, the underlying mani-
fold structure needs to be considered. For example, for a nonlinear optimizer it
is important to be able to iterate over the solution space without encountering
singularities, such as in the roll, pitch, yaw formulation of orientation. Secondly,
to correctly propagate noise in the estimation framework it is important to take
into account the underlying structure, otherwise the covariance will be deformed.

To use a nonlinear optimization scheme on a manifold that is part of a Lie group
is the same in principle, but differ in that some concepts, such as incremental
addition, need to be handled differently. Standard addition is not necessarily
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well-defined on a manifold, as it is not clear how to, e.g, add an incremental ro-
tation to a rotation matrix. Therefore, it is common to introduce the ⊕ and ⊖
operators, which are defined as:

Y = X ⊕ x = X ◦ Exp(x)

x = Y ⊖ X = Log(X−1Y).
(2.38)

Using the operators introduced in (2.38), adding an angular increment x to a
rotation X is simply expressed as X⊕x, which is analogous to how addition would
be used to incrementally iterate over roll, pitch, yaw in R3 using a nonlinear
optimization scheme. Additionally, these operators can be used to first define
covariance on the tangent space on the manifold, and then define how to perturb
a variable belonging to a manifold by a Gaussian variable. Covariance is defined
in the same way as in the Cartesian case, through the expectation operator:

Σ = E[(X ⊖ X̄)(X ⊖ X̄)T ] . (2.39)

Furthermore, an element X ∈ M is perturbed by a Gaussian variable ν ∼ (0nxn,Σ)
through: X ⊕ ν. Thus, the noise is specified in terms of the tangent plane rather
than the manifold directly, the difference lies in that the noise is mapped unto
the manifold.





3
System overview

This chapter covers the coordinate system, and how the states are defined in this
system, the UWB implementation, and the measurement models used. The im-
plementation of the relative positioning algorithms are presented in Chapter 4
and Chapter 5.

3.1 Coordinate frames

Two different coordinate frames are used in this thesis: the North, East, Down
(NED) coordinate frame, and the Front, Right, Down (FRD) coordinate frame.
The NED frame is defined as a local tangent plane with axes pointing north, east
and down. Since the axes have a fixed direction, the coordinate system has a fixed
global orientation. The second frame, the FRD frame, is fixed to the aircraft body,
with axes in the front, right and down directions.

The relative position is in this thesis defined as the position of the follower in
the NED frame with the origin in the leader. Hence, the relative position does
not depend on the orientations of the agents. The relative velocity is defined as
the difference in velocity between the agents in the NED frame. The orientation
of each agent is also defined in the NED frame. In other words, the agent is
pointing along the north axis if the rotation is set to zero. The angular velocity of
each agent is defined in the FRD frame.

3.2 Ultra-wideband

In this section, the implementation of the UWB protocol and the motivation be-
hind the parameters chosen is presented. Furthermore, the antenna delay calibra-
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tion methods chosen are presented.

3.2.1 Two-way ranging with multiple anchors

Due to the numerous benefits of the alternative DS-TWR discussed in Section 2.1.4,
it was used for implementing the DS-TWR in this thesis. In the standard alter-
native DS-TWR protocol, as described in Section 2.1.4, three messages are sent
between the devices. If more anchors are added to the system, the number of
messages required to estimate the ranges between the tag and all anchors can
be calculated as n = 3x, where x is the number of anchors. If four anchors are
present, a total of twelve messages are required. To decrease the number of mes-
sages, the POLL message is broadcast to multiple anchors simultaneously. Each
anchor then receives a unique delay for responding to the tag, and when the tag
has received a response from all devices, a RANGE message is broadcasted. With
this method, the number of messages sent is calculated as n = x + 2, and with
x = 4, only six messages need to be sent. Thus, this protocol is faster than the
previous one in the case of multiple anchors.

3.2.2 Scheduling

Each tag has a timer that schedules the initiation of the ranging protocol. With a
single tag, this timer must be long enough for the previous cycle to finish. Thus,
the duration of each cycle must be known.

3.2.3 Tag synchronization

The DS-TWR protocol available in the DW1000 library does not support multi-
ple tags in the network. To solve this problem, TDMA was implemented. By
having the tags synchronize each POLL message, the possibility of errors due to
interruptions is reduced. The way the tags are synchronized is by resetting the
scheduling timer each time a tag receives a POLL message from another tag. The
timer is then set to the time it takes for the second tag to finish its cycle. However,
if the cycle time depends on the number of anchors that are known to that tag, it
is not guaranteed that the timer is the correct length. To eliminate this problem,
the number of devices in the system is predefined and known to all devices. By
using this number of devices when scheduling the tags, instead of the current
number of devices that are known, both tags will always schedule such that the
other will finish its cycle before starting a new cycle. As a result of this, the sys-
tem performs measurements at a fixed frequency.

When a tag initiates its ranging protocol and sends a POLL message, the timer
is set to the time it takes for two tags to communicate with four anchors. Thus,
if the tag does not receive the POLL message from the second tag, it is sched-
uled to not start again until the second tag has performed a ranging cycle. This
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adds robustness to the system because single misses in the synchronization can
be handled.

3.2.4 Choice of data rate and preamble length

When two or more devices receive time of flight measurements from distances
that are relatively much larger than the mutual distance between the devices, it
grows increasingly difficult to localize the source of the time of flight measure-
ment. Since the UWB devices on the UAVs differ at most two meters, the 60-
meter range reported in [21] while using the maximum data rate of 6.8 Mbps was
deemed sufficient, given that measurements beyond that range would have little
value. The preamble length was chosen to be 256 bytes, which is the maximum
recommended size of preamble length given a data rate of 6.8 Mbps, and where
a longer preamble length improves the maximum range of the UWB devices, as
described in Section 2.1.4.

The number of bytes in the transferred message is set to 90 bytes to be able to
carry all the necessary data for the DS-TWR protocol and the additional data that
needs to be shared between the agents. This length of the data in combination
with the other chosen parameters results in a message duration of approximately
400 µs according to [32]. Using these parameters, the frequency at which the
range can be measured between one tag and four anchors is 80 Hz. With two tags
present, all eight range measurements are received at 40 Hz.

3.2.5 Antenna calibration

To calibrate the antenna delays, two different methods are used. The first method
calibrates the antenna delay of three devices based on the method in [24], and
the second method calibrates one device using an already calibrated device as
reference [33]. The measured time of flight is approximated to

tmeas = tT OF + td1 + td2 (3.1)

where tT OF is the theoretical time of flight for the set distance, and td1, td2 are
the antenna delays of the two devices. In reality, the antenna delay is different for
transmitting and receiving, and the estimate depends on multiple transmissions,
as described in Section 2.1.4, and thus depends on the four different delays.

In the first method, the distance between two devices is measured, with the an-
tenna delay set to zero, by measuring about 5000 times and calculating the mean
distance. This is done between all three devices, such that six measurements are
generated by measuring the distance between two devices twice, once where de-
vice one is the tag and device two is the anchor and vice versa. The least squares
method is then used to calculate antenna delays for the devices. Because the de-
lay affecting the estimate is different depending on which one of the two devices
that initiates the ranging, measuring both ways between two devices, instead of
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only one way as in [24], should result in a more accurate estimation.

The second method uses an already calibrated device as reference and the an-
tenna delay set to zero on the device that is to be calibrated. 5000 measurements
are performed at a known distance with the reference device set as tag, and the
antenna delay is calculated with the least squares method.

3.3 Measurement models

This section describes the measurements models that are used in the estimation
algorithms.

3.3.1 Angle measurement

The global orientation of the agents are measured from the flight computer of
each agent, and the data from the leader is transferred over UWB to the follower.
As a result, these measurements can only be received at the same rate as the UWB
measurements. The angular measurements are described as

qe = q + eq (3.2)

where qe is the orientation estimate from the flight computer, q is the true orien-
tation of the agent, and eq is the error of the estimate.

3.3.2 Range measurement

As presented in [18] and [11], the distance measurements between two UWB
nodes, a tag and an anchor, are described as

dij = ||pf + Rf pfj − Rlpli ||2 + edij (3.3)

where dij is the distance between tag i and anchor j, pf is the relative position
of the follower and Rf is the rotation matrix of the follower, Rl is the rotation
matrix of the leader, pfj and pli are the local positions of the UWB nodes in re-
lation to the agents, and edij is the measurement noise. The relative position pf
is expressed in the NED frame, with the origin placed in the origin of the leader.
The node positions pfj and pli are expressed in the FRD frame of each agent. In
Figure 3.1, a graphical representation of the range measurement is presented.

The measurement noise is assumed to be Gaussian with zero mean, and the stan-
dard deviation is estimated with experiments on the hardware.

3.3.3 Barometric measurement

A barometer is a sensor that measures temperature and air pressure, and in this
thesis, it is used to measure the altitude. To calculate the altitude from barometric
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Figure 3.1: Illustration of how the measured distance between two UWB
nodes depends on the node positions and the orientations of the agents. The
dark blue and red lines represent the x-axis and y-axis of the NED frame
sharing origin with the leader. The UWB nodes are illustrated with blue
rectangles and the measured distance, the relative position of the follower,
and the local position of the UWB nodes are illustrated with arrows. All
notation in the figure is according to (3.3).
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measurements, the following expressions are used, which hold approximately in
the troposphere (the atmosphere below 11,000 meters) [34]

τ = 15.04 − 0.00649 · a

p = 101.29 · [(τ + 273.1)/288.08]5.256 ,
(3.4)

where τ is the temperature in Celsius, p is the air pressure in atmospheres, and a
is the altitude in meters. The expressions in (3.4) can be rewritten to the following
expression of the altitude as a function of the pressure

h̄(p) = a =
1

−0.00649
[288.08 · (

p

101.29
)

1
5.256 − 273.1 − 15.04]. (3.5)

Typically, barometers suffer from static biases which need to be calibrated or es-
timated online. This thesis considers the simplified case in which it is assumed
that the sensor is well-calibrated.

3.3.4 IMU measurements

This thesis employs the combined IMU factor graph from [35], which is freely
available in the GTSAM Toolbox [36]. The factor employs a measurement model
for the angular velocity ω̃(t) and acceleration ã(t) originating from a 3-axis gyro-
scope and accelerometer on the form

ω̃(t) = ω(t) + bg (t) + eg (t)

ã(t) = R⊤(t)(a(t) − g) + ba(t) + ea(t),
(3.6)

where ω(t) is the true angular velocity, a(t) is the true acceleration in the world
frame, bg (t), ba(t) are the biases of the gyroscope and accelerometer respectively,
eg (t), ea(t) is additive zero-mean Gaussian noise affecting the gyroscope and ac-
celerometer respectively, R⊤(t) is the rotation matrix from the world frame to the
body frame (NED to FRD using the notation in this thesis), and g is the gravita-
tional constant in the world frame.
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Extended Kalman filter

In this chapter, the implementation of the EKF is presented. The motion model
is defined along with the Jacobians required by the EKF.

4.1 Filter implementation

The Extended Kalman filter is implemented using a C++ library [37] and runs
offline with data collected through simulation or hardware experiments.

4.2 Motion model

Based on Section 2.2, a model with constant relative velocity and constant angu-
lar velocity is chosen for the EKF. As in [18], a frame with fixed orientation is
used as reference, and in this case, the NED frame is chosen.

The angles of an aircraft are often denoted as roll, pitch and yaw, which are easy
to interpret. However, as the aircraft rotates around its axes, there are disconti-
nuities as the angles are defined on the interval [−π, π]. To prevent this behavior,
quaternions are used to describe the orientation. In [19], the discrete time evolu-
tion of the quaternion and angular velocity is approximated to

(
qk+1
ωk+1

)
≈

(
I4 + T

2 S(ωk) T 2

2 S̄(qk)
03×4 I3

) (
qk
ωk

)
+

(
T 3

4 S̄(qk)
T I3

)
wωk

(4.1)

with T defined as the time step between k and k + 1, the unknown angular accel-
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eration w, and S(ωk) defined as the skew-symmetric matrix

S(ωk) =


0 −ωx −ωy −ωz

ωx 0 −ωz ωy

ωy ωz 0 −ωx

ωz −ωy ωx 0

 (4.2)

where ω is the angular velocity around the specified axis, and S̄(q) is defined as

S̄(q) =


−q1 −q2 −q3
q0 q3 −q2
−q3 q0 q1
q2 −q1 q0

 . (4.3)

with q = q0 + q1i + q2j + q3k where i, j, k are the basic quaternion vectors.
With (4.1), the model, with constant relative velocity and constant angular veloc-
ity, can be written as

xk+1 =



I3 T I3 0 0 0 0
0 I3 0 0 0 0
0 0 I4 + T

2 S(ωlk) T 2

2 S̄(qlk) 0 0
0 0 0 I3 0 0
0 0 0 0 I4 + T

2 S(ωf k
) T 2

2 S̄(qf k)
0 0 0 0 0 I3


xk

+



T 2

2 I3 0 0
T I3 0 0

0 T 3

4 S̄(qlk) 0
0 T I3 0
0 0 T 3

4 S̄(qf k)
0 0 T I3


wk , (4.4)

x =



p
v
ql
ω l
qf
ωf


(4.5)

where x is the state, p is the relative position, v is the relative velocity, ql and
qf are the quaternions describing the orientation of the leader and the follower,
and ωl and ωf are the angular velocities of the agents. The position, velocity and
orientation are described in the NED frame, and the angular velocities are de-
scribed in the FRD frame. The process noise wk represents the unknown relative
acceleration and the unknown angular acceleration of the leader and follower,
respectively. The process noise vector is defined as

w =
(
wvx wvy wvz wωlx

wωly
wωlz

wωfx
wωfy

wωfz

)T
. (4.6)
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4.3 Filter for the proposed model

Since the system model presented in Section 4.2 matches the nonlinear model
defined in (2.14), the prediction equations (2.16) and (2.17) are used, and the
matrix W , defined in (2.24), is calculated as

W =



T 2

2 I3 0 0
T I3 0 0

0 T 3

4 S̄(qlk) 0
0 T I3 0
0 0 T 3

4 S̄(qf k)
0 0 T I3


(4.7)

with S̄(q) defined as in (4.3). The matrix F , defined in (2.22), is for the chosen
model defined as

F =



I3 T I3 0 0 0 0
0 I3 0 0 0 0
0 0 I4 + T 2+T

2 S(ωlk) T 2+T
2 S̄(qlk) 0 0

0 0 0 I3 0 0
0 0 0 0 I4 + T 2+T

2 S(ωf k
) T 2+T

2 S̄(qf k)
0 0 0 0 0 I3


.

(4.8)

With the UWB communication implemented as described in Section 3.2, all dis-
tance measurements do not arrive simultaneously, and thus there must be sepa-
rate measurement updates for each new batch of measurements. The different
measurement functions hdi (xk) can then be defined as

hd1
(xk) =



d11
d12
d13
d14
ql
qf


, hd2

(xk) =



d21
d22
d23
d24
ql
qf


(4.9)

where dij is defined as in (3.3), and both ql and qf are defined as in (3.2). The
Jacobian for these is, according to (2.22), defined as

Hdi =



∂di1
∂p 0 ∂di1

∂ql
0 ∂di1

∂qf
0

∂di2
∂p 0 ∂di2

∂ql
0 ∂di2

∂qf
0

∂di3
∂p 0 ∂di3

∂ql
0 ∂di3

∂qf
0

∂di4
∂p 0 ∂di4

∂ql
0 ∂di4

∂qf
0

0 0 I4 0 0 0
0 0 0 0 I4 0


(4.10)
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where i = 1, 2.

4.4 Covariance matrices

The EKF utilizes two different known covariance matrices, the covariance of the
process noise Q and the covariance of the measurements R. The covariance ma-
trices are chosen as

Q =
(
42I3 0

0 0.12I6

)
(4.11)

R =
(
σ2
UWBI4 0

0 0.012I8

)
(4.12)

where the values of Q and the variance of the angle measurements are tuned from
simulations and σUWB from hardware experiments, as described in Section 6.1.1.



5
Factor graph optimization

This chapter summarizes the factor graph estimation framework used. It in-
cludes a description of the problem formulation, the library used to implement
the framework, the factors and the optimizer.

5.1 Problem formulation

The problem is formulated in two ways: one way that only estimates the relative
translation, which is the one used in the base case, and one way that estimates
the translation of the vehicles in relation to a fixed NED frame where the leader
started, and that will be denoted the local position case. Thus, the first problem
formulation matches the one used by the EKF developed in this thesis, see Chap-
ter 4. The reason that two different approaches are studied is that it is easier to
join an IMU integration scheme, such as the preintegrated IMU factor in [35], to
the local position case in which the states involved in the IMU integration are sep-
arate. This is in contrast to the base case, where the translation and velocity of
the leader and follower are joined into a single relative term. Furthermore, if the
respective states of the leader and follower can be estimated without too much
drift, then it would be useful in applications such as flying to known destinations,
exploring unknown areas, and more.

The first formulation of the estimation problem considers the relative transla-
tion of the follower with respect to the leader, the rate of change of the relative
translation. The individual orientations and angular velocities of the leader and
follower are to be estimated as well. The relative translation and the orientation
of the follower is represented as a pose, x ∈ SE(3), the orientation of the leader is
represented as a rotation matrix, r ∈ SO(3), the rate of change in relative position
and the angular velocity of the follower is represented as a 6d-vector, t ∈ R6, and
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finally, the angular velocity of the leader is represented using a 3d-vector, o ∈ R3.
Thus, the problem can be formulated as an estimation problem of the pose of the
follower and the orientation of the leader, given that the position of the mutual
coordinate system is fixed to the position of the leader.

The local position formulation is in terms of a pose estimation problem, where
the goal is to estimate the pose of the leader and the follower, xlk , x

f
k ∈ SE(3) re-

spectively. The velocities of the leader and the follower, vlk , v
f
k ∈ R

3 respectively,
are also estimated in this formulation. The goal of the formulation is to inte-
grate raw gyro and accelerometer data, as described in Section 3.3.4, instead of
the processed gyro and accelerometer data in the form of orientations from the
flight computers, which is used in the rest of the thesis. This has the advantage of
creating an estimation algorithm which only depends on sensor data, and not an
external estimator. To this end, the biases bk = [bgk , b

a
k] ∈ R

6, where b
g
k , b

a
k ∈ R

3

are the gyroscope and accelerometer biases respectively, will also need to be esti-
mated as part of the problem formulation.

5.2 Factor graph software library

The Georgia Tech Smoothing and Mapping (GTSAM) is an actively maintained
C++ library [36] which was used to implement the factor graph framework. It is
a BSD-licensed project which was started 2010 at the BORG lab at Georgia Tech
by Frank Dallaert. It has been used successfully for problems in areas such as
SLAM [9], Structure from Motion [38], and Visual Odometry [39].

5.3 Factors

For the base case, 4 different types of factors are used for the estimation: a UWB
factor, two different types of motion model factors, and an angular update factor.
In the local position formulation, 3 types of factors are used for the estimation:
a modified UWB factor, a barometer factor, and an IMU factor. To make the
comparison between the base case and the local position case fair, a version of
the barometer factor is also implemented for use in the base case, but it is only
used when comparing the base case to the local position case.

5.3.1 Ultra-wideband factor - base case

The UWB factor for the base case implements the range measurement detailed
in (3.3). It is a binary factor, connecting the nodes representing the pose of the
follower, x, and the orientation of the leader, r, at a time step. Each UWB fac-
tor represents a single range measurement between a tag on the leader and an
anchor on the follower. Formulating the factor as a single range measurement
rather than all incoming range measurements at a timestamp has the benefit of
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allowing the factor to be used even when there are lost individual measurements.

The measurement equation (3.3) is reformulated in terms of the SE(3) Lie group
as:

h = || xk · pa − rk · pt ||2 +e, (5.1)

where pa and pt , are the anchor positions in the frame of the follower and the
tag positions in the frame of the leader, respectively. Since the follower state xk
and the leader orientation rk are elements of Lie groups (SE(3) and SO(3)) the
quantities xk · pa and rk · pt are the actions of xk , and rk on the anchor position
pa, and the tag position pt , respectively. The measurement is modelled as being
perturbed by a one-dimensional Gaussian noise e ∼ N (0, σ2

UWB).

By using the chain rule, the Jacobians for the difference between the measure-
ment and model in (5.1) with respect to xk and rk can be calculated as:

∂h
∂xk

= JnormJAction, SE(3)

∂h
∂rk

= −JnormJAction, SO(3) ,

(5.2)

where Jnorm is the Jacobian of the Euclidean norm, J action, SE(3) is the Jacobian of
the SE(3) action with respect to xk , and J action, SO(3) is the Jacobian of the SO(3)
action with respect to rk . For closed form expressions of these Jacobians, see [31].

5.3.2 Ultra-wideband factor - local position case

The local position version of the UWB factor is nearly identical to the first pre-
sented in Section 5.3.1, but instead of connecting between a pose and an orienta-
tion, it connects between the pose of the leader, xlk and the pose of the follower,

x
f
k . Thus, (5.1) is rewritten as

h = ||xfk · pa − xlk · pt ||2 + e . (5.3)

which corresponds to the norm of the difference between the anchor and tag po-
sition in the world frame. The Jacobian of the local position case is very similar
to (5.2), with the difference being that the leader state is defined in SE(3) instead
of SO(3):

∂h

∂x
f
k

= JnormJAction, SE(3)

∂h

∂xlk
= −JnormJAction, SE(3) .

(5.4)

5.3.3 Motion model factors

The motion model needs to be formulated using the theory of Lie groups to be
used in a factor graph. Using a first order Euler integration for twist integration,
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a constant twist model can be expressed as:

xk+1 = xk ⊕ tkT

tk+1 = tk ,
(5.5)

where xk ∈ SE(3) is the pose at time index k, tk ∈ R
6 is the twist at time index k,

and T is the time interval between k+ 1 and k. A constant angular velocity model
can be similarly be expressed as:

rk+1 = rk ⊕ okT

ok+1 = ok ,
(5.6)

where rk ∈ SO(3) is the orientation at time index k, and ok ∈ R
3 is the angular

velocity at time index k. All the variables are defined as in Section 5.1.

Two different types of motion models are employed in the base case factor graph.
The first is of the constant twist type, as expressed in (5.5), and is used to prop-
agate the pose xk , and the twist tk . The second one is of the constant angular
velocity type, as expressed in (5.6), and is used to propagate the orientation rk ,
and the angular velocity ok . Thus, both types of factor will be connected to four
nodes: xk , xk+1, tk , tk+1 for the first type, and rk , rk+1, ok , ok+1 for the second type.
Both factors use the elapsed time T to form the measurement. As mentioned in
Section 2.4.2, the treatment of the motion model as a factor in a MAP estimate
means that it will not be used to predict in the same way as in a Bayesian filter.
Instead, its importance lies in helping to shape the covariance to fit the model.

In [40] the continous time model of the noise Q̄ of a constant velocity model
is found to be:

Q̄ =
(

1
3T

3ΣQ
1
2T

2ΣQ
1
2T

2ΣQ TΣQ

)
, (5.7)

where ΣQ is the variance of the acceleration noise. In general, an ad hoc approxi-
mation of a discrete noise model, Q, can be attained by assuming constant noise
over the interval and integrating a continuous time noise model Q̄:

Q̄ = TQ. (5.8)

By assuming that the angular acceleration noise will affect the angular velocity
and angles in the same way as the acceleration noise affects the velocity and po-
sition, and using the ad hoc constant noise integration, the constant twist noise
model and the constant angular velocity noise model can be written as:

Q̄ =
(

1
3T

4ΣQ
1
2T

3ΣQ
1
2T

3ΣQ T 2ΣQ

)
. (5.9)

The variance ΣQ is chosen as:

twist: ΣQ = I6×6

(
64 64 64 1 1 0.64

)T
angular velocity: ΣQ = I6×6

(
64 64 64

)T
.

(5.10)
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The values were arrived at from tuning in simulation. The choice of a lower
variance of the acceleration along the z-axis in the constant twist noise model is
motivated by the fact that while maintaining a formation, the members of the
formation usually try to maintain a fixed altitude with respect to each other.

Using the chain rule, the Jacobians with respect to xk , xk+1, tk , and tk+1 of the
likelihood factor for the constant twist model, can be calculated as:

∂h
∂xk

=
(
J I−Comp, arg1 · JComp, arg1

Z6×6

)

∂h
∂xk+1

=
(
J I−Comp, arg2

Z6×6

)

∂h
∂tk

=
(
T · J I−Comp, arg1 · JComp, arg2 · JExp

−I6×6

)

∂h
∂tk+1

=
(
Z6×6
I6×6

)
,

(5.11)

where J I−Comp, arg1 and J I−Comp, arg2 are the first and second arguments of an
inverse composition X−1

arg1 ·Xarg2 between SE(3) arguments, and JComp, arg1 and

JComp, arg2 are the first and second arguments of a composition Xarg1 ·Xarg2 be-
tween SE(3) arguments, and JExp is the Jacobian of the capitalized exponential
operator. See [31] for expressions for these Jacobians. The Jacobians for the con-
stant angular velocity model are the same as (5.11), but with the Jacobians for the
inverse composition and composition being defined for SO(3), and the zero and
identity matrices being of size 3 × 3.

5.3.4 Angular update factor

The angular update factor is a simple unary measurement factor employed in the
base case. It takes a measured orientation in the form of a rotation matrix as
input and treats it as a measurement of the orientation at the time-step:

Follower: h(xk) = Rot(xk) + e

Leader: h(rk) = rk + e,
(5.12)

where Rot() is the operator which extracts the orientation from an SE(3) object. It
has the Jacobian (I3×3, Z3×3) if using the rotation first and orientation after nota-
tion. The noise is modelled as a zero-mean Gaussian with covariance 0.01 · I3×3.
In practice, this more or less instructs the optimizer to use the measured rotation
from the flight computer as its source of orientation.
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For the factor using rk ∈ SO(3) the Jacobian of the difference between the esti-
mated orientation, rk , and the measured orientation is simply I3×3. Similarly,
through the use of the chain rule, and since Jacobian of the Rot() action is (I3×3, Z3×3),
the resulting Jacobian is (I3×3, Z3×3).

5.3.5 Barometer factor - base case

The barometer factor for the base case implements a measurement of the relative
height between the leader and follower using pressure data from barometers on
the vehicles.

Using (3.5), the measurement of z-component of the state x can be expressed
as

h(pl , pf ) = h̄(pl) − h̄(pf ), (5.13)

where pl and pf are the measured pressure in atmospheres of the leader and fol-
lower, respectively.

The Jacobian representing changes of the translation of x ∈ SE(3) is on the fol-
lowing form

J trans =
(
Z3x3 R(x)

)
, (5.14)

where R(x) is the orientation of the pose x. Furthermore, extracting the z-coordinate
leads to the following Jacobian

J z =
(
0 0 1

)
· J trans, (5.15)

which is also the Jacobian of the factor with respect to the state x.

5.3.6 Barometer factor - local position case

The barometer factor defined for the local position case measures the height of
the leader and follower, rather than the relative height. While it would be pos-
sible to use a relative height measurement in the local position case as well, the
problem is that the height estimate would be able to drift in a way that is not
possible when considering two separate height measurements of the individual
agents. Therefore, the measurement function is taken to be (3.5). Since it is only
the measurement that differs between the first and local position case, the Jaco-
bian in the local position case is also (5.15).

5.3.7 Preintegrated IMU factor

The Preintegrated IMU factor from GTSAM, which is an implementation of the
IMU integration scheme presented in [35], is used to integrate the gyro and ac-
celerometer data in the local position case. The novelty of the preintegration
IMU factor lies in the fact that it combines IMU measurements over a period
of time into a single factor. For sensors such as gyros and accelerometers with
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high frequency, creating a single factor instead of one for every measurement
drastically improves the performance of the estimation algorithm. Furthermore,
the preintegrated IMU factor performs its integration on-manifold, thus avoiding
singularities and maintaining the proper covariance as discussed in Section 2.5.2.

The preintegration IMU factor connects the poses x∗k ∈ SE(3), velocities v∗k ∈ R
3,

and biases b∗k between two time steps. For more information about the specifics
of the preintegrated IMU factor, refer to [35].

5.4 The factor graphs

In Figure 5.1 the factor graph of the base case is presented, and in Figure 5.2 the
factor graph of the local position case is presented. Both figures demonstrate the
ideal case in which no data is lost, and every factor is added. In practice, if some
data needed to form a factor is not available, then the factor will simply not be
added to the graph. Notice that the graph in Figure 5.2 contains preintegrated
IMU factors for both the leader and follower, and therefore all the accelerometer
and the gyro data has to be available to add to the preintegrated measurement. Al-
ternatively, the leader measurements could be preintegrated first and then sent to
the follower, however, for the sake of simplicity all measurements are presumed
to be sent to the follower in this thesis.

5.5 Optimizer

The by now classic factor graph optimizer ISAM2 (Incremental smoothing and
mapping 2) [30] was used for the estimation. It is well-proven, including for
real-time inference [41], and is available freely as a part of GTSAM. The ISAM2
version provided in the GTSAM 4.2 version was used in the thesis.

ISAM2 is an incremental nonlinear solver, utilizing a Bayes net representation
to efficiently update the estimate. There are a few core ideas which makes the
optimizer so efficient: a Bayes tree representation of the problem which allows
for efficient algorithms for adding new measurements through editing of the tree,
only relinearizing when necessary, and partial state updates which only propa-
gate changes throughout a subset of the nodes when measurements only have a
limited effect on previous states. The biggest disadvantage to the algorithm is due
to it being an iterative algorithm, which makes it more sensitive to an improper
problem statement. Specifically, an optimizer such as Levenberg-Marquardt can
handle a slightly indeterminate system, however, ISAM2 cannot handle it at all.
In practice, this means that the states need to be observable, or partially observ-
able.
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Figure 5.1: The base case factor graph. The states consist of the pose xk ∈
SE(3) representing the orientation of the follower and its relative translation
to the leader in the NED frame, the twist tk ∈ R

6 of xk , the orientation rk ∈
SO(3) of the leader, and finally the angular velocity ok ∈ R

3 of rk . The red
factors are priors on the states. The blue factors are the UWB factors as
described in Section 5.3.1. The green factors are the angular update factors,
which are described in Section 5.3.4. The violet factors are the two different
kinds of motion models defined in Section 5.3.3. Finally, the orange dashed
factor is the barometer factor described in Section 5.3.5 and only used when
comparing to the local position case.
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Figure 5.2: The local position case factor graph. The states consist of the pose

x
f
k , x

l
k ∈ SE(3) representing the pose of the leader and follower in the NED

frame defined at the starting point of the leader, the velocities v
f
k , v

l
k ∈ R

3

of the follower and leader, and the IMU biases b
f
k , b

l
k ∈ R

6 of the follower
and leader IMUs. The red factors are priors on the states. The blue factors
are the UWB factors as described in Section 5.3.2. The orange factors are
the barometer factors, which are detailed in Section 5.3.6. The teal factors
are the preintegrated IMU factors from [35], and which are introduced in
Section 5.3.7.





6
Simulation studies and experiments

This chapter describes the methods used to obtain the results. The simulation
environment, the formation flight scenarios used and the implementation of the
range measurements are covered. The experimental setups are also described,
as well as the methods for the antenna calibration and validation. Further, the
method for investigating different node constellations and the method for com-
paring results are presented.

6.1 Experiments

In this section, the hardware experiments will be presented. All experiments are
conducted outside, on the ground, in an environment with line of sight between
all UWB nodes, except for the experiment when nodes are placed on the UAV,
where the UAV itself may be between two nodes. When measuring the actual
distance between two UWB devices, the position of the antenna, as seen in Fig-
ure 1.2, is used as the origin for each node.

6.1.1 Antenna calibration

All calibration are performed with the nodes placed seven meters apart on two
tripods, which is close to the recommended distance for calibration [21]. Each
distance is measured 5000 times and this data is split into training and valida-
tion data. The training data is then used to estimate the antenna delay with one
of the methods described in Section 3.2.5. To validate the calibration, the time of
flight is calculated using (3.1) by subtracting the delay from the measured time.
This calculated time of flight is then compared to the ground truth. Validation
is also carried out by measuring the distance between two calibrated nodes at a
known distance, with the estimated antenna delay specified in the firmware. The
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measured distance is then directly compared to the ground truth.

Throughout the calibration experiments, the standard deviation σUWB of the
range measurement is calculated. This value is used when generating simulated
range measurements.

6.1.2 Validating ranging implementation

To confirm that the ranging protocol behaves as expected, measurements are per-
formed with all six nodes, two tags and four anchors, present. In the first experi-
ment, only one tag is used, and in the second, both tags are used.

6.2 Simulation environment

The simulation engine Gazebo Classic [42] is used since it is compatible with
ROS2 [43] and the software in the loop capabilities of PX4 Autopilot [15]. This
allows the user to simulate a flight controller and its internal sensors that pro-
duce similar sensor data as the actual hardware would. Thus, all sensor data and
state estimates are available to use in the positioning algorithm. To facilitate the
development of the algorithms, all relevant data from the simulation is stored
to be able to run the algorithms offline. To further increase the similarities be-
tween simulation and experiments, a simulation model of the hardware platform
is used to achieve similar flight characteristics.

The general setup of the simulation is that two agents fly in different formations,
depending on the scenario, following a predefined path using the flight controller
to navigate to each point. When reaching the next point, both agents receive the
next destination simultaneously and corrects its course. To prevent the agents
from colliding, the two paths of the agents have a slight difference in height.

6.2.1 Simulation scenarios

To test the chosen methods, three scenarios with different characteristics are sim-
ulated. The first scenario is a close formation flight where the agents fly within
four meters of each other and the relative velocity is close to constant, which is
one of the assumption made for the system model in Section 4.2.

The second scenario is a long distance formation flight where the agents are ap-
proximately 20 meters apart. The goal for this scenario is to test the localization
capabilities of the UWB network at a distance much greater than the largest dis-
tance between two UWB nodes located on the same agent.

In the third scenario, a uniformly distributed noise, in the range [-1,1] m, is added
to each waypoint along the path of each agent. This results in sharper turns,
where the state deviates more from the constant relative velocity and constant
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angular velocity model.

6.2.2 Simulated range measurements

In simulation, the UWB measurements are generated by calculating the distance
between each anchor-tag pair and adding Gaussian noise with zero mean. To
calculate the distance, the following data is required:

• Ground truth global position for both agents.

• Ground truth attitude for both agents.

• Anchor positions on the follower with respect to the FRD frame.

• Tag positions on the leader with respect to the FRD frame.

All ground truth data is published by the simulated flight controllers to ROS2
topics. The position published is expressed in relation to the starting position
of the agent, and the difference between the global origin and the start position
needs to be added to get the global position of the agent. To calculate the global
position of the nodes, the node positions need to be rotated to the same orienta-
tion as the agent. The global position of a UWB node is calculated as

pglobal = plocal + pstart + Rpnode (6.1)

where plocal is the position of the agent relative to its starting position on the
ground expressed in the NED frame, pstart is the initial position of the agent,
pnode is the position of the UWB node in the FRD frame and R is the rotation
matrix describing the orientation of the agent. The expression Rpnode gives the
rotated position of the node that can be added to the position of the agent to get
the global position. The distance is then calculated with the norm and added
noise as

dij = ||pi − pj ||2 + edij (6.2)

where pi and pj are the calculated global positions of tag i and anchor j.

In Table 6.1, the positions of all UWB nodes used in the simulations are presented.
These positions are chosen by placing UWB nodes on the hardware in the desired
locations. On the follower, A1 and A2 are placed on the wing tips to maximize
the difference along the y-axis. A3 is placed in the front of the follower as high
up as possible without elevating the node above the body of the UAV, and A4 is
placed in the back as low down as possible. This results in the largest possible
difference along the z-axis, and an almost maximized distance between the nodes
on the x-axis. On the leader, T1 and T2 are placed on the wing tips. These are the
tags mainly used in the simulation. T3 is placed in the same position as A3, and
T4 is placed as close to the origin of the agent as possible. These tags are used
when examining node constellations.
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Table 6.1: The placement of the UWB nodes in simulation. All positions are
expressed in the FRD frame.

UWB node x [m] y [m] z [m]

A1 0.13 0.92 -0.04
A2 0.13 -0.92 -0.04
A3 0.50 0 -0.04
A4 -0.15 0 0.18
T1 0.12 -0.91 0
T2 0.12 0.92 0
T3 0.50 0 -0.04
T4 0.1 0 -0.04

6.2.3 Calibration error and missed measurements

The measurements on the hardware does not only depend on the distance and
zero mean Gaussian noise, but also a static noise as a result of inaccurate calibra-
tions of the antenna delay. The measurements can be described as

d = ctT OF + cterror + e, (6.3)

where d is the measured distance, c is the speed of light, tT OF is the time of flight,
and e is zero mean Gaussian noise. The constant terror is the total antenna calibra-
tion error for both devices, and the distance cterror is the static error caused by
the calibration error. This static noise is simulated with a different error added
to each range measurement, since each pair of nodes has a different total antenna
calibration error. The static errors are chosen from the results of the calibration
experiments. With this added static noise, the assumptions made about the range
measurements in both the EKF and the FGO are incorrect. For the EKF, the ex-
pected standard deviation for the range measurements is specified in (4.12), and
for the FGO, the standard deviation is a part of the UWB factor described in
Section 5.3.1. Because of the incorrect assumptions, two different choices of the
expected standard deviation of the range measurements are tested, one that is
the chosen σUWB, as described in Section 6.1.1, and one that is larger.

When measuring on hardware, some measurements are lost. By counting these,
a probability of losing a measurement can be estimated. This is added to the
simulation, where single measurements between nodes can be lost with this pre-
defined probability.

6.3 Investigating node constellations

To answer the question regarding how the estimate is affected by number of nodes
and their placement on the agent, the simulation environment is used. Since
the minimal setup for achieving localization from range measurements is four
anchors and one tag, no less than this number of nodes is examined.
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6.4 Investigation additional sensors

Barometer and IMU data is investigated in this thesis as a part of the local posi-
tion case formulation of the FGO, which is discussed in Chapter 5. Whilst the
barometer and IMU data technically is fused with the orientation factors used in
the base case formulation, the local position formulation investigates using the
unfiltered data. Both the IMU model and barometer model used in simulation
to generate the data are the same ones which generate the data for the simulated
flight computer in simulation, and which are a part of the PX4 Software In The
Loop stack [15].

Practically, the IMU model generates combined accelerometer and gyro data at
250 Hz and consists of a 4 Byte time stamp, three 4 Byte gyro data, and three 4
Byte accelerometer data, totaling 28 Bytes of data. As mentioned in Section 5.4,
the follower will need to use the gyro and accelerometer data generated by the
leader in the combined IMU factor. The Barometer generates data at a rate of
40 Hz, and only the pressure data is used, which is 4 Bytes of data. In order
to keep it simple, simulated losses in data or simulated biases, such as those
discussed in Section 6.2.3 will not be considered when evaluating the estima-
tion algorithm based on the new sensors. Therefore, since UWB measurements
are published at 80 Hz, each ranging protocol will need to transmit ⌈250/80⌉ =
⌈3.125⌉ = 4 IMU messages containing 28 bytes of data, and a single barometer
message at 4 Bytes, totaling 116 Bytes. Every message in the protocol has room
for 90 Bytes, and the Poll message in the DS-TWR protocol only needs to transmit
a single Byte identifying it as a poll message. Furthermore, the Range message
only needs to transmit 4 round trip time stamps (16 Bytes), 4 timer delay time
stamps (16 Bytes), and a byte identifying it as a Range message, totaling 33 bytes,
leaving 57 Bytes, which is well enough to send the remaining data that cannot fit
in the Poll message. Therefore, it would be possible to send all the collected data
as part of the TWR protocol. Another strategy would be to mount an additional
UWB node on the leader and on the follower, connect them to another channel,
and to continuously stream the IMU and barometer data from the leader (which
would more than cover the need). Since the investigation into the extra sensors
will be carried out in simulation, it is sufficient to conclude that it is possible to
receive the required data for the estimation algorithm.

6.5 Comparing results

To compare the results, the root-mean-square error (RMSE) is calculated as

RMSE =

√∑N
k=1(x̂k − xk)2

N
(6.4)

where x is the ground truth of the state, x̂ is the state estimate, and N is the
number of samples. As the first seconds of the datasets include the takeoff of
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the agents, and thus not flying in formation flight, the first 1000 samples are
excluded from the RMSE.
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Results

This chapter presents the results in this thesis. Firstly, the results from the UWB
calibrations are presented. Secondly, the results from the different simulated
scenarios described in Section 6.2.1 are presented along with the results from
the simulations with added noise, described in Section 6.2.3. Finally, the results
from both the evaluations of the different constellations of UWB nodes, and the
evaluation of additional sensors are presented.

7.1 Calibration of Ultra-wideband nodes

In this section, the results of the calibration of the UWB nodes are presented.
Firstly, the results from the three-way method are presented. Secondly, the re-
sults from the second method are presented. Both methods are described in Sec-
tion 3.2.5. In both sections, two different types of validation data is used, as is
described in Section 6.1.1. Throughout this section, the different UWB nodes are
referred to with the abbreviation T1 and A1, where T1 is tag number one, and A1
is anchor number one.

7.1.1 Calibration with three devices

In Figure 7.1, the estimated antenna delay is applied to the validation data using
the approximate model in (3.1). The resulting mean values are presented in Ta-
ble 7.1 and are within three centimeters of the true distance.

To further evaluate the calibration, the estimated antenna delay is set in the
firmware of the UWB nodes, as previously described in Section 6.1.2, and the
results are presented in Figure 7.2 where the mean distance is 6.972 m. The
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Figure 7.1: Validation data for three-way calibration. In the subplot showing
the measured distance between T2 and T1, there is a shift in the measured
range around sample 600. This is the result of some kind of disturbance,
internal or external, that affects the measurements.
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Table 7.1: The mean distance for validation data.

Measurement T1 to T2 T1 to A1 T2 to T1 T2 to A1 A1 to T1 A1 to T2

Mean [m] 7.008 7.009 6.997 6.979 6.977 7.012
Standard deviation [m] 0.053 0.034 0.046 0.036 0.035 0.033

Figure 7.2: Validation of three-way calibration at 7 m, with estimated an-
tenna delay set in the firmware of T1 and A1. The mean distance is 6.972 m
and the standard deviation is 0.050 m.

difference between the theoretical and experimental result for the measured dis-
tance between T1 and A1 is then 3.7 cm. The measurements are also evaluated
at the distance 4.85 m shown in Figure 7.3, where the measured mean distance is
4.823 m.
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Figure 7.3: Validation of three-way calibration at 4.85 m, with estimated
antenna delay set in the firmware of T1 and A1. The mean distance is 4.823
m and the standard deviation is 0.020 m.



7.1 Calibration of Ultra-wideband nodes 55

Figure 7.4: Validation data for calibration of A2 at 7 m. The mean distance
is 7.006 m and the standard deviation is 0.030 m.

7.1.2 Calibration with reference device

By using T1 as reference device, A2 is calibrated using the second method de-
scribed in Section 3.2.5. The estimated antenna delay is applied to the validation
data and the result is presented in Figure 7.4. The measured distance between the
calibrated devices is shown in Figure 7.5. Here, the difference in mean distance
is 3.9 cm. With this method, A2 is calibrated assuming that the set antenna delay
of T1 is the true value, and it is therefore affected by previous calibration errors.
In Figure 7.6, the distance between T2 and A2 is measured, using the estimated
antenna delay, and a mean distance of 7.073 m is observed. This is a larger error
than the error observed between T1 and A2 in Figure 7.5.
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Figure 7.5: Measured distance between T1 and A2 with calibrated antenna
delays. The mean distance is 7.045 m and the standard deviation is 0.044 m.

Figure 7.6: Measured distance between T2 and A2 with calibrated antenna
delays. The mean distance is 7.073 m and the standard deviation is 0.033 m.
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7.1.3 Verification with all devices

In Appendix A, the results from experiments with all UWB devices are presented.
It is concluded that the system works as expected with two tags and four anchors.
However, when the antennas of the UWB nodes were rotated, the measured range
changed drastically and the maximal error observed was 0.42 m.

7.1.4 Measurement properties

Throughout the experiments, the standard deviation of the measurements is be-
tween two and six centimeters. Thus, the standard deviation of the measure-
ments in simulation is chosen as σUWB = 0.06 m. From the calibration results,
the static noise for each measurement is chosen, as presented in Table 7.2.

The amount of lost range measurements is also measured, and the resulting prob-
ability of loosing a measurement between a tag and an anchor is 5%. This value
is used in the simulation scenario described in Section 6.2.3.

Table 7.2: The static noises added to the range measurements. The values
are chosen to mimic the results from Section 7.1.2.

Range measurement Static noise [cm]

T1 to A1 -2.7
T1 to A2 -5.4
T1 to A3 8.2
T1 to A4 -8.4
T2 to A1 2.6
T2 to A2 4.8
T2 to A3 1.4
T2 to A4 6.9
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7.2 Simulation

In this section, the results from simulation are presented, comparing the EKF
algorithm to the FGO algorithm.

7.2.1 Close formation flight

In Figure 7.7-7.9 the plots of the estimated relative position, relative velocity, and
relative orientation for the close formation flight scenario are presented, and in
Table 7.3 the RMSE of the estimates is presented. The distance between the agents
is calculated from the estimates and is shown in Figure 7.10. Position-wise, both
estimates are more or less equivalent. However, the FGO seems to have a problem
with estimating the relative velocity. The relative angles seem quite close, the
difference being that the estimates from the FGO have some small bumps where
the estimate is worse compared to the EKF.

Figure 7.7: Relative position estimates for the close formation flight. The
vertical black line denotes the sample from which the RMSE calculations
start.

Table 7.3: RMSE for close formation flight.

Estimate Position [m] Velocity [m/s] Roll, Pitch, Yaw [rad]

EKF 0.165 0.444 0.0048
FGO 0.170 1.0499 0.13
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Figure 7.8: Relative velocity estimates for the close formation flight. The
vertical black line denotes the sample from which the RMSE calculations
start.

Figure 7.9: Relative orientation estimates for the close formation flight. The
vertical black line denotes the sample from which the RMSE calculations
start.
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Figure 7.10: Estimated distance between the agents for the close formation
flight. The distance is calculated from the relative position estimates.
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Figure 7.11: Relative position estimates for the distant formation flight. The
vertical black line denotes the sample from which the RMSE calculations
start.

7.2.2 Distant formation flight

In Figure 7.11-7.13 the plots of the estimated relative position, relative velocity,
and relative orientation for the distant formation flight scenario are presented,
and in Table 7.4 the RMSE of the estimates is presented. The distances between
the agents are calculated from the estimates and is shown in Figure 7.14. The
estimates of the relative position and the relative velocity are comparably simi-
lar. The FGO estimate displays some small bumps along the relative orientation
estimate.

Table 7.4: RMSE for distant formation flight.

Estimate Position [m] Velocity [m/s] Roll, Pitch, Yaw [rad]

EKF 0.755 0.758 0.0052
FGO 0.669 0.859 0.011
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Figure 7.12: Relative velocity estimates for the distant formation flight. The
vertical black line denotes the sample from which the RMSE calculations
start.

Figure 7.13: Relative orientation estimates for the distant formation flight.
The vertical black line denotes the sample from which the RMSE calculations
start.
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Figure 7.14: Estimated distance between the agents for the distant formation
flight. The distance is calculated from the relative position estimates.
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7.2.3 Noisy formation flight

In Figure 7.15-7.17 the plots of the estimated relative position, relative velocity,
and relative orientation for the noisy formation flight scenario is presented, and
in Table 7.4 the RMSE of the estimates is presented. The distance between the
agents is calculated from the estimates and is shown in Figure 7.18. The FGO
estimates the position slightly better than the EKF in this scenario, but has a poor
estimate of the relative velocity in comparison to the EKF as seen in Table 7.5 and
Figure 7.15. The estimates of the relative orientation are near-identical.

Figure 7.15: Relative position estimates for the noisy formation flight. The
vertical black line denotes the sample from which the RMSE calculations
start.

Table 7.5: RMSE for noisy formation flight

Estimate Position [m] Velocity [m/s] Roll, Pitch, Yaw [rad]

EKF 0.428 0.845 0.016
FGO 0.275 2.010 0.013
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Figure 7.16: Relative velocity estimates for the noisy formation flight. The
vertical black line denotes the sample from which the RMSE calculations
start.

Figure 7.17: Relative orientation estimates for the noisy formation flight.
The vertical black line denotes the sample from which the RMSE calculations
start.
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Figure 7.18: Estimated distance between the agents for the noisy formation
flight. The distance is calculated from the relative position estimates.



7.2 Simulation 67

7.2.4 Calibration errors and missed measurements

From the results in Section 7.1.2, static noises are added to each range measure-
ment in the noisy formation flight according to Table 7.2, as described in Sec-
tion 6.2.3. In Figure 7.19-7.21 the estimated relative states are presented, and
in Table 7.6 the RMSE for all estimates are presented. These estimations are
generated assuming that the standard deviation of the range measurements is
σUWB = 0.06 m. In Figure 7.22-7.24, and Table 7.7, the results from the filters
are presented, but in this case, the standard deviation used in the EKF and the
FGO is increased to σ = 0.15 m.

With σUWB = 0.06 m, the FGO estimate is significantly worse than the EKF es-
timate. When increasing the used standard deviation, the RMSE for the FGO
position estimate decreases to approximately the same as the EKF position esti-
mate in Table 7.6. When increasing the standard deviation, the RMSE for the
EKF position and velocity estimates increases slightly. Overall, the estimates are
worse than for the standard scenario presented in Section 7.2.3, which is expected
since the measurements deviate more from the model.

Table 7.6: RMSE for noisy formation flight with added calibration error and
missed measurements to range measurements. In the filters, the standard
deviation of the measurements is assumed to be 0.06 m.

Estimate Position [m] Velocity [m/s] Roll, Pitch, Yaw [rad]

EKF 0.860 0.862 0.016
FGO 2.893 2.353 0.014

Table 7.7: RMSE for noisy formation flight with added calibration error and
missed measurements to range measurements. In the filters, the standard
deviation of the measurements is assumed to be 0.15 m.

Estimate Position [m] Velocity [m/s] Roll, Pitch, Yaw [rad]

EKF 1.171 0.971 0.016
FGO 0.839 2.030 0.014
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Figure 7.19: Relative position estimates for scenario with added static noise
and missed measurements. The standard deviation used in the EKF and the
FGO is σUWB = 0.06. The vertical black line denotes the sample from which
the RMSE calculations start.

Figure 7.20: Relative velocity estimates for scenario with added static noise
and missed measurements. The standard deviation used in the EKF and the
FGO is σUWB = 0.06. The vertical black line denotes the sample from which
the RMSE calculations start.
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Figure 7.21: Relative orientation estimates for scenario with added static
noise and missed measurements. The standard deviation used in the EKF
and the FGO is σUWB = 0.06. The vertical black line denotes the sample
from which the RMSE calculations start.

Figure 7.22: Relative position estimates for scenario with added static noise
and missed measurements. The standard deviation used in the EKF and the
FGO is σ = 0.15. The vertical black line denotes the sample from which the
RMSE calculations start.
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Figure 7.23: Relative velocity estimates for scenario with added static noise
and missed measurements. The standard deviation used in the EKF and the
FGO is σ = 0.15. The vertical black line denotes the sample from which the
RMSE calculations start.

Figure 7.24: Relative orientation estimates for scenario with added static
noise and missed measurements. The standard deviation used in the EKF
and the FGO is σ = 0.15. The vertical black line denotes the sample from
which the RMSE calculations start.
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7.3 Node constellations

In this section, the results from different constellations of tags are presented. In
Section 7.3.1, both filters are examined with different number of tag on the leader,
and in Section 7.3.2, different placements of the tags are examined. All results in
this section are generated from the noisy formation flight.

7.3.1 Number of tags

Figure 7.25-7.27 presents the estimates when only one tag is used, and Figure 7.28-
7.30 presents the estimates when three tags are used. In Table 7.8 the RMSE for
one, two and three tags are presented for both filters. The results for two tags are
taken from Table 7.5.

As the number of tags increase in the system, the frequency that all tags performs
measurements is decreased. In the standard case, with two tags, this frequency
is 40 Hz. With one and three tags, this frequency becomes 80 Hz and 26.8 Hz,
respectively. However, the frequency at which the filter receives measurements
from a tag is 80 Hz, no matter how many tags are in the system. In Table 7.8, a de-
crease in RMSE of the relative position estimate is observed for both filters. The
relative velocity estimate becomes better for the EKF when increasing to three
tags, but no significant difference can be seen for the FGO. Throughout all of
these results, the RMSE for the orientation estimates are unchanged.

Table 7.8: RMSE for the noisy formation flight with different number of tags.
Node positions are specified in Table 6.1.

Estimate Tags Position [m] Velocity [m/s] Roll, Pitch, Yaw [rad]

EKF T1 0.430 0.845 0.016
EKF T1, T2 0.428 0.845 0.016
EKF T1, T2, T3 0.343 0.780 0.016
FGO T1 0.338 2.028 0.014
FGO T1, T2 0.275 2.010 0.013
FGO T1, T2, T3 0.255 2.010 0.014
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Figure 7.25: Relative position estimates using T1. The vertical black line
denotes the sample from which the RMSE calculations start.

Figure 7.26: Relative velocity estimates using T1. The vertical black line
denotes the sample from which the RMSE calculations start.
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Figure 7.27: Relative orientation estimates using T1. The vertical black line
denotes the sample from which the RMSE calculations start.

Figure 7.28: Relative position estimates using T1, T2 and T3. The vertical
black line denotes the sample from which the RMSE calculations start.
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Figure 7.29: Relative velocity estimates using T1, T2 and T3. The vertical
black line denotes the sample from which the RMSE calculations start.

Figure 7.30: Relative orientation estimates using T1, T2 and T3. The vertical
black line denotes the sample from which the RMSE calculations start.
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7.3.2 Tag placement

In this section, two cases with two different tag placements are considered. In the
first case, one tag is placed on the leader, and in the second, two tags are used.
The tags are placed according to Table 6.1.

In the first case, the standard placement for one tag, as presented in Section 7.3.1,
is compared to estimates shown in Figure 7.31-7.33 where the tag is placed closer
to the origin of the leader. The RMSE for both placements are presented in Ta-
ble 7.9. For both the EKF and the FGO, the second placement of the tag results
in worse position and velocity estimates. The RMSE for the orientations are un-
changed.

In the second case, where two tags are used with two different placements, the
resulting estimates are presented in Section 7.2.3 and Figure 7.34-7.36, and Ta-
ble 7.9 contains the resulting RMSE. For the EKF, the RMSE of the position and
velocity estimates are lower for the second configuration, but for the FGO, the
results are the opposite.

Table 7.9: RMSE for the noisy formation flight with different tag placements.
Node positions are specified in Table 6.1.

Estimate Tags Position [m] Velocity [m/s] Roll, Pitch, Yaw [rad]

EKF T1 0.430 0.845 0.016
EKF T4 0.522 0.893 0.016
FGO T1 0.338 2.028 0.014
FGO T4 0.364 2.053 0.014
EKF T1, T2 0.428 0.845 0.016
EKF T1, T3 0.381 0.795 0.016
FGO T1, T2 0.275 2.010 0.013
FGO T1, T3 0.305 2.018 0.014
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Figure 7.31: Relative position estimates using T4. The vertical black line
denotes the sample from which the RMSE calculations start.

Figure 7.32: Relative velocity estimates using T4. The vertical black line
denotes the sample from which the RMSE calculations start.
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Figure 7.33: Relative orientation estimates using T4. The vertical black line
denotes the sample from which the RMSE calculations start.

Figure 7.34: Relative position estimates using T1 and T3. The vertical black
line denotes the sample from which the RMSE calculations start.
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Figure 7.35: Relative velocity estimates using T1 and T3. The vertical black
line denotes the sample from which the RMSE calculations start.

Figure 7.36: Relative orientation estimates using T1 and T3. The vertical
black line denotes the sample from which the RMSE calculations start.
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7.4 Investigation of additional sensors

In this section, the results from the investigation into the additional sensors in the
FGO algorithm are presented. One difference between the investigated method
and the standard case is that in the investigated method, the individual pose and
velocity of the leader is estimated, yielding six additional plots. The dataset used
was gathered using the same noisy route as in Figure 7.18, but while publishing
and saving IMU and barometer data. The RMSE of the comparison between the
ground truth and the estimates is presented in Table 7.10. In Figure 7.37-7.39
the modified version of the base case using a barometer factor is compared to the
base case. The standard version using the barometer factor is used to evaluate
the local position case estimation algorithm.

The results in Figure 7.37-7.39 and Table 7.10 show that the estimate employing
the barometer has slightly better position estimation, especially in the z-position,
but is otherwise similar to the estimate without the barometer.

In Figure 7.40-7.42 the base case using the barometer is compared to the local
position case algorithm. The base case using the barometer factor has a slight
edge over the local position case algorithm. On the other hand, the difference
between the estimated relative velocity is very large, with the algorithm utilizing
the unfiltered accelerometer data clearly performing better. The relative orienta-
tion estimates are almost exactly the same.

Finally, in Figure 7.43-7.48 the estimate of the leader and follower from the lo-
cal position case is evaluated against ground truth data. The plots show that the
estimated z-position, which is supported by the barometer factor, does not drift,
but the x- and y-positions drift during execution of the algorithm.

Table 7.10: RMSE for flight in which barometer data and IMU data was pub-
lished. The flight scenario is of the close noisy type as described in Sec-
tion 6.2.1.

Estimate Position [m] Velocity [m/s] Roll, Pitch, Yaw [rad]

FGO no baro 0.272 2.566 0.012
FGO with baro 0.229 2.557 0.012

FGO local position case 0.339 0.152 0.012
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Figure 7.37: Relative position when using the base case and when using
the base case with the barometer factor. The vertical black line denotes the
sample from which the RMSE calculations start.

Figure 7.38: Relative velocity when using the base case and when using the
base case with the barometer factor. The vertical black line denotes the sam-
ple from which the RMSE calculations start.
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Figure 7.39: Relative orientation when using the base case and when using
the base case with the barometer factor. The vertical black line denotes the
sample from which the RMSE calculations start.

Figure 7.40: Relative position when using the IMU preintegration factor,
barometer factor, and UWB factor. The vertical black line denotes the sample
from which the RMSE calculations start.
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Figure 7.41: Relative velocity when using the IMU preintegration factor,
barometer factor, and UWB factor. The vertical black line denotes the sam-
ple from which the RMSE calculations start.

Figure 7.42: Relative orientation when using the IMU preintegration factor,
barometer factor, and UWB factor. The vertical black line denotes the sample
from which the RMSE calculations start.
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Figure 7.43: Leader position when using the IMU preintegration factor,
barometer factor, and UWB factor. The vertical black line denotes the sam-
ple from which the RMSE calculations start.

Figure 7.44: Leader velocity when using the IMU preintegration factor,
barometer factor, and UWB factor. The vertical black line denotes the sam-
ple from which the RMSE calculations start.
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Figure 7.45: Leader orientation when using the IMU preintegration factor,
barometer factor, and UWB factor. The vertical black line denotes the sample
from which the RMSE calculations start.

Figure 7.46: Follower position when using the IMU preintegration factor,
barometer factor, and UWB factor. The vertical black line denotes the sample
from which the RMSE calculations start.
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Figure 7.47: Follower velocity when using the IMU preintegration factor,
barometer factor, and UWB factor. The vertical black line denotes the sample
from which the RMSE calculations start.

Figure 7.48: Follower orientation when using the IMU preintegration factor,
barometer factor, and UWB factor. The vertical black line denotes the sample
from which the RMSE calculations start.
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Discussion

In this chapter, the results presented in Chapter 7 regarding the hardware and
performance in simulation are discussed.

8.1 Antenna calibration

From the results in Section 7.1, the expected accuracy from the calibration meth-
ods used is a static error of a few centimeters. When the antenna delay is set in
the firmware of the UWB nodes, similar results are obtained. This confirms that
the model (3.1) is somewhat accurate and that the method can be used to get a
static error of a few centimeters. For the second method, the accuracy of the mea-
surement between the calibrated device and the referece device is the same as
the first method. However, when measuring the distance to a device other than
the reference device, the accuracy decreases. In this case, the calibration error
from T1 is compensated for in the calibration of A2. This error is present when
measuring the distance between T2 and A2, where the error becomes larger. This
can be prevented by calibrating all devices using the first method. However, this
requires five sets of measurements for each device, and a total of 30 measure-
ment sets. When combining the two methods, only nine measurement sets are
required. However, by using the method that the first method is based on, [24],
only one set of measurements between each device is required, resulting in a total
of 15 sets of measurements.

Overall, the results are worse than the results in [23] presented in Section 2.1.4,
but since the method used in this thesis is more simple, this is expected. Roughly
the same performance is achieved as in [24], thus it could be enough to only
measure the distance between two devices once. If the calibration was to be auto-
mated, there is a point in requiring less measurements to speed up this process,
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for example if the system would calibrate itself on startup. However, since the
accuracy of the measurements heavily rely on the calibration, a more advanced
method as in [23] may be the best option in either case.

The results presented in Appendix A show significant measurement errors for
the UWB nodes when the orientation of the antenna changes. The errors change
from a few centimeters to almost half a meter when the nodes are rotated. This
indicates that the UWB nodes used are sensitive to changes in orientation of the
antenna, which must be considered during calibration and deployment. Since
the measured distance in Figure A.1-A.6 is lower than the ground truth in most
cases, it is possible to conclude that the nodes are rotated in a non-optimal way
during calibration. A measured distance that is shorter than expected indicates
that the estimated antenna delays are too large, resulting in tT OF being too small
in (3.1). During calibration, the measured time, tmeas, is larger than it should
be because of the orientation of the nodes, resulting in estimated antenna delays
that are too large.

If the measured range depends on the relative orientation between the anchors
and the tags, in addition to the measurement noise and the static noise caused by
the antenna calibration error, the measurements are harder to model. This could
cause problems when estimating the relative position. A solution to this problem
could be to examine the performance of other antennas. Another solution could
be to find the appropriate orientation of the antennas, and limiting the forma-
tion flight to only fly in formations where the range measurements are accurate.
However, this is a significant limitation of the system and should be avoided.

8.2 Simulation

In this section, the results from the simulations are discussed in the same order
as they are presented in Section 7.2.

8.2.1 Close, distant and noisy formation flights

For the close formation flight, the RMSE of the EKF and the FGO estimates are
calculated as 0.165 m and 0.170 m respectively. These are significantly lower
than for the estimates for both the distant and the noisy formation flight. Two
different factors play a part in this good result, the short distance between the
agents and the close to constant relative velocity. At a short distance, it is possi-
ble to achieve a more accurate position estimation than at larger distances. This is
a result of the theory described in Section 2.1.2. In the two-dimensional scenario,
each range measurement corresponds to a circle with some uncertainty where
the tag could be located. At a shorter distance, the intersecting areas from dif-
ferent measurements where the target could be located is smaller than at larger
distances. Thus, the estimates are better for the close formation flight than for the
distant formation flight. When comparing the close formation flight to the noisy
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formation flight, the reason the first performs significantly better is that the flight
more closely resembles the constant velocity model. In Figure 7.8 small changes
in velocity are observed compared to Figure 7.15, where larger changes in veloc-
ity are present. Thus, the noisy formation flight deviates more from the model,
resulting in less accurate estimations than for the close formation flight. As seen
in Figure 7.10, the distance between the agents is approximately two meters dur-
ing formation flight. This could be deemed as too close since the wingspan of
each agent is two meters. Thus, this is not a realistic scenario.

The results for the distant formation flight are good, considering that the distance
between the agents is around 20 meters, as seen in Figure 7.14. However, the posi-
tion estimates are highly relying on the fact that the orientation estimates for each
agent are accurate. A lower accuracy in the estimated orientations would result
in larger error for the position estimation, since these are highly correlated. In
Figure 7.11, larger errors are observed for the estimates of the position along the
z-axis, than for the other axes. As the UWB anchors are placed such that the max-
imum distance between two anchors along the z-axis is only 0.22 m, compared to
0.65 m and 1.84 m for the x-axis and the y-axis, the accuracy of the estimations
along this axis is decreased, assuming that both agents are flying horizontally.
This problem is hard to prevent using only UWB nodes. To increase the accuracy,
the distance between the anchors along the z-axis must be increased, but that
would require a node being placed on a stick above the aircraft or on one of the
tail fins. However, this can impact the aerodynamics of the UAV, causing further
problems.

As for the noisy formation flight, the estimates are slightly worse than for the
close formation flight, as described previously. However, the estimate is still
rather good with respect to the distance between the agents. During the flight,
the distance is approximately five meters as seen in Figure 7.18, and the RMSE
of the relative position estimates are 0.428 m and 0.275 m for the EKF and the
FGO, respectively. In Figure 7.15, the position estimates only deviate from the
true position when the relative velocity changes rapidly, as seen in Figure 7.16.

One important detail from the plots is the poor performance of the FGO solution
in estimating the relative velocity compared to the EKF solution. One possible
cause could be that there is some other unobservable variable which is coupled
with the velocity, and that the estimation algorithm controls the unobservable
variable through the velocity. Alternatively, since the FGO solver used works like
a smoother, and since the motion model is not used for prediction explicitly, there
might be an issue in the solver trying to enforce a single constant velocity over a
large period, which clearly does not match reality. Finally, there might simply be
a small error in the implementation.

One oddity is that the angle estimate of all the estimation algorithms is nearly the
same, but that is explained by the fact that all the estimators use the angles from
the flight computers as measurement updates with a low associated measurement
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noise. Therefore, the problem is that the angle estimates from the flight comput-
ers are unrealistically good, seeing as there is no drift or particularly much noise
affecting the measurements.

8.2.2 Calibration errors and missed measurements

With the added calibration errors and missed measurements used in the simula-
tion, the performance decreases for both algorithms. For the EKF estimate, the
RMSE of the relative position is doubled, and for the FGO estimate it increases
from 0.275 m to 2.893 m. As the range measurements are affected by different
static noises, the position is more difficult to estimate. As seen in Figure 7.19,
the FGO estimates have large errors during a short period in the first half of the
simulation, as well as in the end. The EKF estimates are fairly good most of the
time, but as seen for the noisy formation flight in Figure 7.15, there are errors
when relative velocity changes rapidly, as seen in Figure 7.20.

With the expected standard deviation of the range measurements set to σ = 0.15
m, the FGO algorithm performs much better in comparison to when it was set
to σUWB = 0.06 m. The RMSE of the relative position estimates is only 0.839
m, whilst the EKF performs slightly worse than with the standard deviation set
to σUWB = 0.06 m. In Figure 7.22, the large errors previously observed for the
FGO estimate are gone. However, the errors observed for the EKF estimate have
increased slightly.

When it comes to missed measurements, the FGO algorithm is more robust than
the EKF. If a measurement is missed, the FGO still adds the other measurements
to the graph and only excludes the missed measurement. The EKF on the other
hand skips the measurement update if not all measurements are received. Be-
cause of this, the FGO is expected to perform better than the EKF in this scenario,
but this is not the case. The EKF performs approximately 80% of all measure-
ment updates, which at 40 Hz is 32 measurement updates per second. Thus, the
problem is probably caused by the antenna calibration error.

One possible explanation as to why the antenna calibration error affects the FGO
more than the EKF, and especially why the performance of the FGO improves
so much after increasing σUWB, is that the FGO may be tuned to be less reac-
tive. Essentially, it could be the case that the estimator is not reactive enough
to move the estimate away from what the faulty measurements indicate. By in-
creasing the noise of the estimate, there is added reactiveness, as the covariance
is more evenly spread around the states indicated by the faulty measurements. It
is, however, unexpected that the EKF should perform worse when the noise is in-
creased. It could be that the increased covariance results in the EKF trusting the
prediction more, and since the model is very uncertain, the accuracy is decreased.

As discussed in this section, the accuracy of the estimates decrease if there are
calibration errors present in the range measurements. In Section 7.1.3, results
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indicate that large errors appear when the UWB nodes are rotated, as seen in Fig-
ure A.1-A.6. With these results in mind, it is concluded that in order to achieve
good position estimates on hardware, better methods for calibration and a better
antenna which distributes the effect more evenly are needed.

8.3 Node constellations

In this section, the results regarding different node constellations are analyzed.

8.3.1 Number of tags

As seen in Table 7.8, the RMSE for the position estimates is reduced when more
tags are added to the system. For the EKF estimates, the largest change in RMSE
is when a third tag is added, and for the FGO estimates it is when a second tag
is added. The increased precision for both algorithms is expected, since adding
more tags results in more information available to the system. Furthermore, the
algorithms receive range measurements at the same rate for all three constella-
tions, and the increase in accuracy must be a consequence of the additional infor-
mation.

Each set of four ranges between a tag and all four anchors is enough to estimate
a relative position, and with three tags, three positions can be estimated. This
should increase the accuracy of the system. However, if the frequency of the
range measurements is lower, the relative position could change too much be-
tween measurements for the additional tags to help. Following this logic, if more
followers are added to the system, which reduced the frequency of the range mea-
surements, then there might not be any benefit in having more than a single tag
on each follower. Furthermore, with a lower frequency, the algorithms rely more
on the motion model, requiring a more accurate model than the one that is used
in this thesis.

Also, with three tags available, the relative orientation can be estimated from the
UWB measurements. If the orientations are not measured as accurately, the UWB
measurements could increase the accuracy of the relative orientation estimates. A
common problem with orientation estimates is that the estimate drifts over time.
With these additional measurements from a third tag, drifts can be reduced.

8.3.2 Tag placements

In Section 7.3.2, the results for the tag placement evaluation are presented. For
the scenarios with only one tag, both algorithms perform worse when the tag is
placed close to the origin of the leader compared to when it is placed on one of
the wing tips. As the tag is placed closer to the origin of the agent, the orientation
of the leader affects the measurements less. This could explain the less accurate
estimations when the node is placed closer to the origin, since the orientation
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estimates are very accurate. If the case was that the orientation of the leader is
estimated more poorly, the results should be the opposite. In the equation de-
scribing the range measurements, (3.3), the position of the tag depends on the
orientation of the leader and its local position on the leader. Thus, if the orienta-
tion is less accurate, placing the tag closer to the origin increases the accuracy of
the estimations.

Two different constellations with two tags are examined. For the EKF estimate,
the RMSE is lower when using T1 and T3 compared to when using T1 and T2.
As specified in Table 7.9, T1 and T2 are placed on the wing tips, and T3 at the
front of the leader. T1 and T2 are placed along the y-axis of the leader. Thus,
the local position of both tags, as calculated in (3.3), mainly depends on the roll
and yaw angles of the leader. T3 is placed along the x-axis of the leader, and the
position of the tag mainly depends on the pitch and yaw angles. The fact that the
tags depend on different angles can be the reason the estimate improves. For the
FGO estimate, the RMSE of the relative position is higher when using T1 and T3.
This is the opposite result from the EKF. One possible explanation for this is that
the distance between T1 and T3 is shorter than between T1 and T2, and that this
benefits the FGO more than the EKF.

8.4 Additional sensors

From the results presented in Section 7.4, a few conclusions can be drawn. Firstly,
the proposed local position case estimation algorithm had some only partially ob-
servable states that drifted over time. This is not particularly surprising given
that the scenario has many more states to estimate, and few additional equations
to compensate with in comparison to the base case. Therefore, additional sensors,
such as an airspeed sensor, or a good motion model for the vehicles would need
to be added to improve the performance. However, a part of the appeal of the
UWB nodes is their cheap price. To require additional expensive sensors in order
to get a good estimate of the position may be in direct opposition to many use
cases. If adding additional sensors beyond the UWB sensors, barometer and IMU
is not possible, then the results clearly indicate that the base case estimation of
the relative states is better than forming the relative states from the estimates of
the individual poses of the vehicles.

Secondly, the barometer had a positive impact on the estimated position in the
base case. However, the base case already has a good estimate of the relative z-
position in the scenario, so it would be interesting to apply the barometer factor
to a case in which the base case FGO implementation struggled with the relative
position estimate, such as with the biases in Section 7.2.4.

An interesting note is that there was very little drift in the orientations, even
while dead-reckoning the IMU data, as was done in Appendix B, with the result-



8.4 Additional sensors 93

ing estimates presented in Figure B.6 and Figure B.9. This would indicate that
there was very little noise in the gyro measurements, which would otherwise
cause cumulative errors to build up into drift errors. This would help explain the
observation made in Section 8.2.1 about how the estimated orientations from the
flight computer (which uses the same data) are excellent over time. It would be
interesting to investigate whether noisier gyro measurements could be kept from
causing drifts in the estimate by using the estimated relative orientation from the
UWB measurements.
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Conclusions and future work

In this thesis, estimation of relative position and orientation by fusing UWB mea-
surements and IMU data has been studied using two different methods: an ex-
tended Kalman filter and factor graph optimization. In this chapter, the findings
are summarized.

9.1 Conclusions

In this section, the conclusions and the results of the goals presented in Sec-
tion 1.2 are presented.

In this thesis, the performance of the UWB nodes was evaluated. Using a simple
method for the antenna calibration, a static error of a few centimeters is achieved,
matching the results from other works using similar methods. The measured
standard deviation of the range measurements is also within a few centimeters.
With the DS-TWR protocol used along with the TDMA implementation, measure-
ments from two tags with four anchors connected are made at 40 Hz. However,
the thesis discovered that the measurements are very sensitive to the orientation
of the antennas on the UWB nodes, resulting in errors as large as 0.42 meters.
Also, about 5% of all measurements are lost.

Based on the performance of the UWB nodes, the range measurements were im-
plemented into the simulation, where one EKF-based and one FGO-based solu-
tion were developed. Using orientation estimates from the flight computers fused
with the UWB measurements, both the EKF and the FGO estimates the relative
position within half a meter during close formation flight, and within one meter
during formation flight further away from each other. Overall, the FGO solution
results in a better estimation of the relative position, but with worse estimation
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of the relative velocity. It was not concluded if using two tags over one tag re-
sults in a better orientation measurement, since the simulated gyro data used by
the flight computer lead to too accurate orientations. With the added antenna
calibration error and the missed measurements to the range measurements, both
algorithms have a lower accuracy. The FGO solution is affected more when the
measurements deviate from the model, and performs worse than the EKF in this
case.

The thesis also evaluated the performance of the algorithms with different tag
constellations. It was concluded that the system performs better with three tags
than with one or two tags. However, the results from using two tags in two dif-
ferent placements are not clear. The EKF performs better with the tags placed
along different axes on the leader, while the FGO performs better when the tags
are placed on each wing tip, where the distance between the tags is maximized.

The results in regard to the IMU preintegration version of the FGO indicate that
more additional sensors than an IMU and a barometer would have to be used in
order to get a better estimate. However, the results do indicate that the barometer
helped the base case relative z position estimate.

Since the performance of the estimation algorithms declines when the antenna
calibration error is introduced in combination with the large errors observed
when rotating the UWB antennas, the thesis did not evaluate the algorithms on
the hardware. As the error caused by the rotation is significantly larger than the
antenna calibration error, the estimates from the algorithms would be useless.

9.2 Future work

The results presented in this thesis indicates that it is possible to estimate rel-
ative position and orientation by fusing UWB measurements and IMU data for
two fixed wings UAVs. Multiple tags on the leader can increase the accuracy of
the estimations, and a simple motion model can be enough to achieve good esti-
mations.

To run the estimation algorithm on hardware, a more accurate method to esti-
mate the antenna delay must be used. Furthermore, the choice of antenna on the
UWB nodes should be evaluated to decrease the errors caused by rotations of the
antenna.

To improve the estimates, more test regarding node placements can be conducted
to determine the best possible positions of the UWB nodes. A fifth anchor can be
added to the leader to evaluate if this improves the robustness of the system when
range measurements are lost.
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To further improve the estimates, additional sensors can be added. For exam-
ple, if accurate height measurements are available, the estimations of the relative
positions could be reduced to two dimensions.
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A
Experiment with all Ultra-wideband

devices

To verify that the system works as expected, measurements with one or two tags
and all four anchors are performed. In Figure A.1, the measured distance be-
tween T1 and all anchors are shown. In the figure, the black lines above each
measurement are the actual distance between the tag and the anchor. In Fig-
ure A.2 and Figure A.3, T2 is added to the system. As seen in these figures, the
system continues to perform as expected, with measurements received from all
four anchors for both the tags. Worth noticing is that in Figure A.1, the frequency
is twice as high as in Figure A.2 and Figure A.3, since there is only one tag in the
system. Throughout these experiments, there is a static error present for all range
measurements. To further examine this, all anchors are rotated such that their an-
tenna points at the tag, and additional measurements are performed with one tag.
The results are shown in Figure A.4. With new orientations of the anchors, the
tag is rotated to point in the direction of the anchors, and the measurements are
shown in Figure A.5. As a last test, the tag is rotated to point away from the an-
chors, which is shown in Figure A.6. The error of the mean measured ranges for
each experiment is summarized in Table A.1. It is clear that the measured range
is dependent on the orientation of the antennas of the nodes, and that relatively
large errors can occur because of this.

Table A.1: The error of the mean measured distance for different orienta-
tions of the UWB nodes.

Measurement Unaligned case Straight anchors Straight tag Backwards tag

T1 to A1 [m] 0.33 0.09 0.22 -0.19
T1 to A2 [m] 0.08 0.01 0.20 -0.14
T1 to A3 [m] 0.42 0.07 0.27 0.00
T1 to A4 [m] 0.42 0.12 0.29 0.04
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Figure A.1: Measured distances between T1 and all anchors, with only one
tag present in the system.The black lines above each measurement represent
the measured ground truths.

Figure A.2: Measured distances between T1 and all anchors, with two tags
present in the system.The black lines above each measurement represent the
measured ground truths.
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Figure A.3: Measured distances between T2 and all anchors, with two tags
present in the system. The black lines above each measurement represent
the measured ground truths.

Figure A.4: Measured distances between T1 and all anchors, with the anchor
antennas pointing toward the tag. The black lines above each measurement
represent the measured ground truths.
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Figure A.5: Measured distances between T1 and all anchors, with the an-
chor antennas pointing toward the tag and the antenna of the tag pointing
toward the anchors. The black lines above each measurement represent the
measured ground truths.

Figure A.6: Measured distances between T1 and all anchors, with the anchor
antennas pointing toward the tag and the antenna of the tag pointing away
from the anchors. The black lines close to each measurement represent the
measured ground truths.



B
Estimating UAV poses using only the

preintegration factor

In this Appendix the results from estimating the position and orientation of the
UAVs using only the preintegration factor from [35] in combination with ISAM2
[30] is presented.

B.1 Results

In Figure B.1-B.9 the results from running only the IMU preintegration factor
from [35] on the IMU data are presented. As the figures show, the position and
velocity estimate starts drifting quite quickly, and after a while the ISAM2 opti-
mizer stopped the estimation due to detecting an under determined system. The
orientation estimate does not display the same drift tendencies, but there is some
error in the estimate.

105



106 B Estimating UAV poses using only the preintegration factor

Figure B.1: Relative position when using only the IMU preintegration factor.

Figure B.2: Relative velocity when using only the IMU preintegration factor.
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Figure B.3: Relative orientation when using only the IMU preintegration
factor.

Figure B.4: Leader position when using only the IMU preintegration factor.
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Figure B.5: Leader velocity when using only the IMU preintegration factor.

Figure B.6: Leader orientation when using only the IMU preintegration fac-
tor.
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Figure B.7: Follower position when using only the IMU preintegration fac-
tor.

Figure B.8: Follower velocity when using only the IMU preintegration factor.
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Figure B.9: Follower orientation when using only the IMU preintegration
factor.
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