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Abstract

This thesis considers the problem of using signals of opportunity (SOO) with
known direction of arrival (DOA) for aircraft positioning. SOO is a collective
name for a wide range of signals not intended for navigation but which can be
intercepted by the radar warning system on an aircraft. These signals can for
example aid an unassisted inertial navigation system (INS) in areas where the
global navigation satellite system (GNSS) is inaccessible. Challenges arise as the
signals are transmitted from non-controllable sources without any guarantee of
quality and availability. Hence, it is important that any estimation method util-
ising SOO is robust and statistically consistent in case of time-varying signals of
different quality, missed detections and unreliable signals such as outliers.

The problem is studied using SOO sources with either known or unknown loca-
tions. An extended Kalman filter (EKF) based solution is proposed for the first
case which is shown to significantly improve the localisation performance com-
pared to an unassisted INS in common scenarios. Yet, a number of factors affect
this performance, including the measurement noise variance, the signal rate and
the availability of known source locations. An outlier rejection mechanism is de-
veloped which is shown to increase the robustness of the suggested method. A
numerical evaluation indicates that statistical consistency can be maintained in
many situations even with the above-mentioned challenges.

An EKF based simultaneous localisation and mapping (SLAM) solution is pro-
posed for the case with unknown SOO source locations. The flight trajectory
and initialisation process of new SOO sources are critical in this case. A method
based on nonlinear least squares is proposed for the initialisation process, where
new SOO sources are only allowed to be initialised in the filter once a set of re-
quirements are fulfilled. This method has shown to increase the robustness dur-
ing initialisation, when the outlier rejection is not applicable. When combining
known and unknown SOO source locations, a more stable localisation solution
is obtained compared to when all locations are unknown. Applicability of the
proposed solution is verified by a numerical evaluation.

The computational time increases cubically with the number of sources in the
state and quadratically with the number of measurements. The time is substan-
tially increased during landmark initialisation.
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Abbreviations

Abbreviation Meaning

AM Artificial measurements
ANEES Average normalized estimation error squared
ANIS Average normalised innovation squared
CRLB Cramér-Rao lower bound
DOA Direction of arrival
EKF Extended Kalman filter
FIM Fisher information matrix

GNSS Global navigation satellite system
IMU Inertial measurement unit
INS Inertial navigation system
LOS Line of sight
NLS Nonlinear least squares
PDF Probability density function

RMSE Root mean squared error
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1
Introduction

This thesis is performed on behalf of Saab AB. The task is to investigate the usage
of signals of opportunity (SOO) for aircraft positioning in environments where
the global navigation satellite system (GNSS) is denied. The thesis proposes a
filter based approach where the direction of arrival (DOA) for incoming signals
are utilised for bearing-only localisation. The thesis considers both known and
unknown signal sources, where the problem becomes a simultaneous localisa-
tion and mapping (SLAM) problem. Furthermore, the robustness of the system
is analysed and measures are taken to make the state estimation more resilient
against faulty measurements.

1.1 Background

The ability to navigate is fundamental to every aircraft operation. As of today,
the most common aircraft localisation technique is to use GNSS in combination
with an inertial navigation system (INS) to get accurate position estimates. The
GNSS uses a network of orbital satellites to provide high accuracy positioning for
most places on earth, with standalone errors limited to a few meters, and is by
far the most common method for geopositioning. The INS on the other hand is
an on-board system which measures acceleration and angular rates of a vehicle
and uses the information to estimate its state. An INS/GNSS integration provide
stable and smooth localisation, as the INS provides position estimates with small
short time errors at a fast rate, usually at least 50 Hz, while the GNSS enables a
high long term accuracy at a lower rate of 1 to 10 Hz. [1]

However, the GNSS could be inaccessible in certain environments or become sub-
ject to interference from different types of jamming devices, making localisation
difficult [2]. If the GNSS signal is lost, the system relies only on the inertial mea-
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4 1 Introduction

surements for positioning, which have shown to be insufficient for longer flights
as small errors in the inertial measurements cause the position estimate to drift
over time.

SOO is a collective name for various types of signals which are not originally in-
tended for navigation, but have shown to have potential as an alternative way of
positioning. These signals can have a wide range of sources but usually originate
from different kinds of radars, cellular towers or radio transmitters [3]. The SOO
signals can be intercepted by the radar warning system on an aircraft and their
relative DOA can be measured. Using this information, and by combining several
measurements, the aircraft position relative to the signal sources could possibly
be estimated through triangulation. However, challenges arise as the signals are
transmitted from arbitrary, non-controllable sources, and not intended for this
type of usage. Therefore, there is no guarantee for a good quality of the measure-
ments.

1.2 Problem Statement

The problem is to investigate the possibilities of using SOO-DOA measurements
as an alternative aircraft localisation method in GNSS-denied environments. The
goal is to achieve a system which can improve the localisation performance com-
pared to the unassisted INS and which is robust against measurement noise and
outliers. To this end, an analysis of the performance through RMSE and statistical
consistency as well as an analysis of the computational complexity is provided.
The localisation problem is analysed for both known and unknown signal source
locations and the results are compared against one another. The following ques-
tions will be addressed:

1. Which are the dominating factors for SOO-DOA localisation performance
and robustness when SOO source locations are known?

2. Which components and processes are critical for robust SOO-DOA locali-
sation when the SOO source locations are unknown, and how is the perfor-
mance improved when some of the source locations are known?

3. How does the computational time scale in SOO-DOA with known and un-
known SOO source locations, and what factors affect the computational
time?

1.3 Related Work

Plenty of research has been conducted investigating different alternatives for solv-
ing the issue of navigating in GNSS-denied areas. One method for doing this is
to utilize SOO in various ways for localisation. In [4], the possibilities and chal-
lenges of using SOO as an alternative in GNSS-denied areas are discussed. The
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article identifies typical SOO configurations and presents three different mea-
surement models to handle the signals, received signal strength, DOA and time
difference of arrival.

Another paper on the subject is [5], where a system in proof-of-concept stage
shows promising preliminary results when using SOO-DOA. The paper also dis-
cusses several requirements to achieve good positioning and proposes challenges
with SOO, such as problems with phase and frequency stability since the signals
are not intended for navigation. This would cause problems in time of arrival
(TOA) solutions since small synchronisation mismatches could introduce large
errors.

The article in [6] uses DOA with bearing only measurements to provide a review
of passive tracking techniques and evaluates the performance. This article com-
pares the standard deviation for different cases, like when the target is far away
or when there are small angular changes. The papers [7] and [8] have similar ap-
proaches. In [7], the performance of different methods, such as extended Kalman
filter (EKF), unscented Kalman filter and particle filter (PF), are compared against
each other in a bearing-only tracking scenario. In [8], RMSE performance is eval-
uated based on the number of observation locations and different measurement
noise.

The previously mentioned research mainly focuses on the case when the signal
source locations are known. There are also several articles covering the area of
GNSS-denied localisation using SOO when the signal source locations are un-
known, resulting in a SLAM problem. In [9], this problem is covered on a more
general level. The article gives a good overview of different SLAM methods that
can be used for positioning using unknown signal source locations and discusses
different types of algorithms for solving SLAM problems such as an EKF and PF.

In [3], INS is used together with SOO to reduce the effect of INS drift while GNSS
is unavailable. The authors use EKF-SLAM and TOA to position an unmanned
aerial vehicle (UAV) using three synchronised signal transmitters with unknown
positions. In the master’s thesis [10], a problem similar to what is covered in this
thesis has been investigated and indicates promising performance. The thesis
uses DOA from unknown radar and radio transmitters to navigate a UAV with-
out access to GNSS and tests different set-ups with various numbers of transmit-
ters and placements as well as different level of noise in the signals. EKF-SLAM
is used to fuse INS data, which is updated at 100 Hz, with DOA measurements
sampled at 10 Hz. A three dimensional model is used and in addition to azimuth
angle measurements, elevation angle measurements are used to roughly estimate
the distance to the landmarks. An inverse depth representation has been used to
reduce the covariance of the landmark estimates before initiation. The method
improves accuracy but requires a larger memory capacity as more states are in-
troduced.
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The company BAE systems have developed an advanced navigation system called
NAVSOP that can utilise SOO such as Wi-Fi, TV, radio and mobile phone signals
to provide a position with an accuracy of a few meters. The system can also learn
from previously unidentified signals and GPS jammers to improve the position-
ing further. This shows that localisation using SOO is possible. [11].

1.4 Limitations and Delimitations

The project uses the following limitation.

• Only simulated data is used.

Furthermore, there are some delimitations which also are considered.

• A flat earth in two spatial dimensions is assumed.

• The orientation of the aircraft is assumed to be known.

These delimitations are used to limit the extent of the thesis, while the simplifi-
cations should not affect the results in a significant manner. The assumption of
a flat earth is made as an aircraft already have several sensors which give infor-
mation regarding the altitude. The orientation is assumed to be known as the
estimated orientation of an aircraft is measured using several sensors such as a
directional gyroscope and a magnetic compass and can be determined with fairly
high accuracy. The slight estimation errors in the heading would likely only in-
troduce a small offset in the positioning error. [12]

1.5 Division of Work

The work conducted during this thesis have largely been a collaboration of the
two authors where both have been involved in most parts of the project. However,
in order to increase efficiency, the responsibilities were divided amongst the the-
sis authors. Erik constructed the main implementations regarding the simulation
environment. He also implemented the heatmap function and calculation of the
Cramér-Rao lower bound (CRLB) and filter CRLB. Simultaneously, Sebastian first
implemented the Gauss-Newton algorithm for the nonlinear least squares (NLS)
and then proceeded with the filter algorithms. Thus, he constructed the main
code for the EKF and EKF SLAM. Both authors also worked together with the
initialisation process of the SLAM filter where several different approaches were
tested. Sebastian first implemented the artificial range measurements method
which was then extended with NLS by Erik.

The different aspects investigated in the simulation study were also divided where
Erik mainly worked with the scenario evaluation and method of landmark ini-
tialisation, while Sebastian worked on the parameter evaluation, outlier rejection
and combination of known and unknown sources. Both authors worked with the
realistic scenario.
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1.6 Thesis Outline

In Chapter 2, the general theory and models used for state estimation using sen-
sor fusion are presented. Algorithms for nonlinear localisation and filtering are
presented and the problem is then extended to a SLAM case. This chapter also
present the metrics of evaluation which are used to evaluate the performance of
the implemented method.

Chapter 3 describes the system where the theory from the previous chapter has
been applied to the specific case of navigating an aircraft using SOO. A system
overview shows a schematic view of the system and the specific models for INS
and DOA measurements used in this thesis are described and motivated.

The simulation study presented in Chapter 4 contains a description and results
of the conducted simulation experiments. In this chapter, the estimator perfor-
mance, statistical consistency and computational complexity is evaluated and dis-
cussed with respect to certain aspects. This includes an analysis of the robustness
of the system by testing the sensitivity to outliers and the method of initialisation.
Combining known and unknown sources is also analysed using different settings.
Finally, tests are also conducted to analyse the general performance for a longer
test flight with a mixture of randomly distributed known and unknown signal
sources, to get a more realistic evaluation of how well the method could poten-
tially perform in a real application.

Chapter 5 contains concluding remarks of the thesis and the achieved results. It
also describes the future work that is needed in order to implement the presented
method in a real aircraft.





2
State Estimation

This chapter presents general theory and models used for the state estimation
of an aircraft. This includes state-space models and different methods for state
estimation.

2.1 Estimation Model

The state estimation is based on state-space models which aim to describe the
behaviour of a real aircraft system and consists of models for the dynamics and
the measurements.

2.1.1 State-Space Model

The state estimation methods used in this thesis uses a general state-space model
each time sample k

xk+1 = f (xk , uk , wk), cov(wk) = Qk , (2.1a)

yk = h(xk) + ek , cov(ek) = Rk , (2.1b)

where (2.1a) describes a dynamic model and (2.1b) a measurement model. The fu-
ture state xk+1 is predicted using the current state xk , given input uk and process
noise wk and dynamic model. The measurement model relates a measurement yk
to the current state xk . [13]

The state is defined by

x =
[
x1 x2 v1 v2

]T
, (2.2)

9



10 2 State Estimation

where x1, x2 ∈ R
1 denote the position and v1, v2 ∈ R

1 the velocity in Cartesian
coordinates.

2.1.2 Dead-Reckoning

Dead-reckoning is a navigation method which only utilises the dynamics of the
state-space model to estimate future states. A typical dead-reckoning system is
an INS, which is commonly used in various vehicles and comprises an inertial
measurement unit (IMU) and a navigation processor [1]. The navigation proces-
sor uses a dynamic model as in (2.1a), which in a linear case can be defined as

xk+1 = Fxk + G(uk + wk), (2.3)

where F and G are matrices. The state xk in the INS case consist of position, ve-
locity, body orientation. The model input uk consists of angular rate and accelera-
tion and wk is the process noise. The body orientation is an important state since
it is needed to compensate for the gravity in the accelerations measurements.

The position estimate in an INS is achieved through integration of the input sig-
nals from the IMU, where noisy inputs lead to an unlimited increasing accumu-
lation of the estimation error. This causes the state estimation to drift over time1

and increases the estimation uncertainty for every new iteration, as illustrated in
Figure 2.1.

Distance
traveled

Known start point

Uncertainty region

Measured change
in position

x̂0, P0

x̂1, P1

x̂2, P2

x̂3, P3

x̂4, P4

Figure 2.1: Illustration of the increasing uncertainty of the dead-reckoning
method. x̂k is the estimated state, and Pk the estimated uncertainty at time
k.

2.1.3 Direction of Arrival Measurements

Direction of arrival is a method that can be used for localisation when given the
angle of incoming signals. The positioning is based on lines of sight (LOS) to two

1The rate in which the error drifts vary, but for small systems the position error tend to be in the
range of 1 to 2 nautical miles per hour. [12]
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or more known signal source locations, where each LOS forms a line of possible
positions and the solution is given by the intersection of the lines. The problem
is illustrated in Figure 2.2.

N

E

Landmark 1

(p11, p
2
1)

θ1

Landmark 2

(p12, p
2
2)

θ2

(x1, x2)

Figure 2.2: Scematic view of the DOA measurements.

In two dimensions, the measured angles between the receiver and a signal trans-
mitter can be described by simple trigonometry as

θ = atan2
p2 − x2

p1 − x1
, (2.4)

where p = [p1, p2]T denotes the position of the transmitter and x = [x1, x2]T the
position of the receiver in Cartesian coordinates. As can be seen in (2.4), the rela-
tion between the measured angle and the vehicle position is a nonlinear function,
which calls for nonlinear methods to be used. Here atan2 denotes the four quad-
rant inverse tangent function. [1]

2.2 Nonlinear Localisation

Nonlinear least squares is a common approach for nonlinear regression. It com-
bines observations with a model, and its estimate is defined as the solution to the
optimization problem

x̂NLS = argmin
x

1
2

N∑
k=1

ϵ2
k (x), (2.5)

where k is each time-sample of N observations and the residual ϵk(x) is defined
as

ϵk(x) = yk − h(xk). (2.6)

The derivatives of the residuals with respect to x are collected in the Jacobian J(x)
where



12 2 State Estimation

J(x) =

∂ϵ1
∂x1

∂ϵ2
∂x1

. . . ∂ϵN
∂x1

∂ϵ1
∂x2

∂ϵ2
∂x2

. . . ∂ϵN
∂x2

 = −∂h
T (x)
∂x

. (2.7)

To solve the optimization problem in (2.5) a numerical search method is required.
One common method used for this is the Gauss-Newton algorithm, which is a
local search algorithm that uses the gradient to find minima of a function. The
search starts at an initial guess x̂(0) and then iteratively takes steps with length
α in the direction of the function gradient. A good initialisation is generally
required, as there is a risk of the algorithm converging to local minima. The full
algorithm is described in Algorithm 1. [13]

Algorithm 1 Gauss-Newton Algorithm

Require: Initial value x̂(0), measurement function h(x) and the gradient J(x) =

−∂hT (x)
∂x .

1: i ← 0
2: α(i) ← 1
3: Solve x̂(i+1) = x̂(i) + α(i)(J(x)JT (x))−1J(x)(y − h(x))
4: if V (x̂(i+1)) > V (x̂(i)) then
5: α(i) ← α(i)/2
6: Repeat from step 3.
7: end if
8: if (V (x̂(i+1)) − V (x̂(i)) < threshold, or maximum iterations reached) then
9: Terminate

10: else
11: i ← i + 1
12: Repeat from step 2.
13: end if

2.3 Nonlinear Filtering

The information from the dynamic and measurement models in (2.1) can be fused
together in a filter to obtain a posterior state estimate x̂k|k . The posterior distribu-
tion can be computed exactly for linear Gaussian systems by using the Kalman
Filter (KF) [13]. The KF algorithm is commonly represented in a state-space form
with process noise wk and measurement noise ek as defined in Section 2.1.1. By
using the KF and measurements yk , the best possible linear filter is obtained that
minimises the covariance and results in an unbiased estimate.

2.3.1 Extended Kalman Filter

When using nonlinear models as in this thesis, the KF can be used if the nonlinear
parts of the model are linearised and Gaussian noise is assumed. However, this
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only approximates the optimal posterior distribution in an approach called the
extended Kalman filter (EKF). The linearisation can be done based on the first
order Taylor expansion around the current state estimate

h(x) ≈ h(x̂) +
∂h(x̂)
∂x

(x − x̂), (2.8)

where ∂h(x̂)
∂x is the Jacobian of h(x) evaluated in x̂.

In [13], the EKF on standard form is defined as recursive application of Algo-
rithm 2. The algorithm divides the filter into a measurement- and time update
in order to get an estimate x̂k|k of the current state given measurements, and a
prediction x̂k+1|k of the state using a dynamic model.

Algorithm 2 EKF algorithm
Assume a dynamic model according to (2.1a), measurement model (2.1b),
Jacobians Hk = ∂h(xk )

∂xk
and Fk = ∂f (xk )

∂xk
, and additive noises wk and ek , the EKF is

defined by the following recursion initialised with x̂1|0 and P1|0.

1. Measurement update

Sk = Hk|k−1Pk|k−1H
T
k|k−1 + Rk , (2.9a)

Kk = Pk|k−1H
T
k|k−1S

−1
k , (2.9b)

ϵk = yk − h(x̂k|k−1), (2.9c)

x̂k|k = x̂k|k−1 + Kkϵk , (2.9d)

Pk|k = Pk|k−1 − Pk|k−1H
T
k|k−1S

−1
k Hk|k−1Pk|k−1. (2.9e)

2. Time update

x̂k+1|k = f (x̂k|k), (2.10a)

Pk+1|k = Fk|kPk|kF
T
k|k + Qk . (2.10b)

2.3.2 Simultaneous Localisation and Mapping

The idea behind simultaneous localisation and mapping (SLAM) is that, in an
unknown environment and location, it is possible to build a map of the surround-
ing landmarks while simultaneously locating the position of a vehicle. It has been
shown that there is a high degree of correlation between estimates of the location
of landmarks in a map because of the common error in estimated vehicle position,
and that the correlation increases with successive observations. This implies that
a solution to the SLAM problem requires a joint state composed of the vehicle
and landmark positions. [14]
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EKF SLAM

The SLAM problem is commonly represented with a state-space model as defined
in Section 2.1.1 and can be solved with an EKF, so called EKF SLAM. However,
since the landmark positions need to be a part of the state, the new state becomes

z =
[
x
m

]
, (2.11)

where x is the vehicle state, as in (2.2), and m are the states of the observed
landmark locations in 2D Cartesian coordinates according to

m =


m1
m2
...

 , mi =
[
m1

i
m2

i

]
. (2.12)

Therefore, the measurement model in (2.1b) is updated to

yk = h(xk ,mk) + ek , (2.13)

which gives the Jacobian

Hk =
[
∂h(xk ,mk )

∂xk

∂h(xk ,mk )
∂mk

]
. (2.14)

The dynamic model in (2.1a) is unchanged and only updates the vehicle state x
since the landmarks are stationary. The regular EKF algorithm in Algorithm 2
can then be used to recursively approximate the mean (E) and covariance

ẑk =
[
x̂k|k
m̂k

]
= E

[
xk
mk

]
, Pk|k =

[
P xx
k|k P xm

k|k
P mx
k|k P mm

k|k

]
= E

[(
xk − x̂k
mk − m̂k

) (
xk − x̂k
mk − m̂k

)T ]
,

(2.15)

of the joint posterior distribution and update the state when initialised with ẑ1|0
and P1|0. The aircraft and landmark states are kept separated in the time update
according to

Pk+1|k =

Fk|kP xx
k|kF

T
k|k + Qk Fk|kP

xm
k|k

P mx
k|k F

T
k|k P mm

k|k

 (2.16)

in order to obtain linear complexity in the number of landmarks, instead of cubi-
cal complexity [15]. See [13] and [15] for more details.

Landmark Association

Landmark association is the problem where measurements need to be associated
with their corresponding landmark which is solved with an association algorithm.
If a measurement cannot be associated with an existing landmark, a new land-
mark can be introduced to the map. In this thesis, the association between mea-
surements and landmarks is assumed to be known, leading to no use of an asso-
ciation algorithm.
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Landmark Initialisation

The SLAM algorithm usually starts with no prior knowledge of the surroundings
and thus, has no initial landmarks to use for navigation. When a new landmark
has been observed and shall be added to the map, the state vector is extended
according to

za =

 x
m

mnew

 . (2.17)

For scenarios where an observation gives information of all degrees of freedom
of a new landmark mnew, it can be initialised by inverting the measurement func-
tion h in (2.13). The inverse is defined by g(x, y) which is a function of the sensor
position x and observations y. [16]

The covariance matrix is then updated according to

P a =


Pxx Pxm (GxPxx)T

Pmx Pmm (GxPxm)T

GxPxx GxPxm GxPxxG
T
x + GyRG

T
y

 , (2.18)

where Gx = ∂g
∂x and Gy = ∂g

∂y .

2.4 Estimator Evaluation Metrics

Several evaluation metrics for performance and robustness are given below. The
evaluations are performed using M Monte Carlo (MC) simulations where i de-
notes the ith MC run.

2.4.1 Root Mean Square Error

The root mean square error (RMSE) at time k is defined as

RMSEk =

√∑M
i=1 ∥xk(i) − x̂k(i)∥2

M
. (2.19)

For an unbiased estimator, the RMSE is the square root of the variance, and thus,
equal to the standard deviation of the residuals. [17]

2.4.2 Cramér-Rao Lower Bound

The Cramér-Rao Lower Bound is a theoretical value which provides a lower bound
of the variance of any unbiased estimate. Though, the bound is theoretical and
it may not be attainable for a finite amount of data. Furthermore, the CRLB only
applies if certain regularity conditions of the likelihood function are assumed,
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which are described in detail in [13].

The method utilises the Fisher information matrix (FIM) which, if measurement
errors are Gaussian distributed, is defined as

I (x) = HT (x)R(x)−1H(x), (2.20)

where
H(x) = ∇xh(x). (2.21)

The FIM shows that smaller measurement errors, or a larger gradient H(x) yields
more information from the measurement, which implies smaller estimation er-
rors can be achieved. The CRLB states that any unbiased estimate must have a
covariance matrix greater than or equal to the inverse of the FIM

cov(x̂) ≥ (I (x))−1 . (2.22)

This also implies a lower bound for the root mean square error of the estimate
according to

RMSE =
√
E[(x1 − x̂1)2 + (x2 − x̂2)2] ≈

√
tr(cov(x̂)) ≥

√
tr(I−1(x)). (2.23)

Parametric CRLB

CRLB can also be calculated for a filter approach to set a lower bound for any
unbiased estimate x̂k|k . The parametric CRLB, P CRLB

k|k , is a function of a specific
trajectory, x1:k , and the lower bound of the covariance can be described as

cov(x̂k|k) ≥ P CRLB
k|k (x1:k). (2.24)

The parametric CRLB is recursively calculated identically to the covariance up-
date according to (2.9e) and (2.10b) in the Kalman filter described in Algorithm 2,
but with the true state as input.

For more details regarding the CRLB, see [13].

2.4.3 Filter consistency

Filter consistency can be evaluated through analysis of the filter covariance and
innovation using the average normalised error squared (ANEES) and the average
normalised innovation squared (ANIS). The filter consistency is important as the
filter gain is calculated using estimated error covariances and thus, is necessary
for filter optimality. The ANEES is calculated for the state x with dimension nx
according to

ϵ̄2
x,k =

1
nxM

M∑
i=1

(xi,k − x̂i,k)T P −1
i,k (xi,k − x̂i,k). (2.25)
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x̂i,k is the estimate for the ground truth xi,k and Pi,k is the filter covariance matrix
at time k. Under the assumption that the filter is consistent, linear Gaussian and
that ϵ is chi-square distributed, the test is to see whether

E[ϵ̄2
x,k] = 1 (2.26)

can be accepted. The ANIS works in a similar manner, where the calculated
innovation

ϵk = yk − h(xk|k−1) (2.27)

is compared to the filter estimated innovation covariance as calculated in (2.9a).
The ANIS at time k is calculated according to

ϵ̄2
y,k =

1
nyM

M∑
i=1

ϵTi,kS
−1
i,k ϵi,k , (2.28)

where ny is the dimension of the measurement vector. Again, the following
should apply for a consistent filter

E[ϵ̄2
y,k] = 1, ϵk ∼ N (0, Sk), (2.29)

where E[ϵkϵ
T
I ] = 0 if k , I . [18]





3
Aircraft Positioning Using Signals of

Opportunity

In this chapter, the theory and models presented in Chapter 2 are used for the
specific case of positioning of an aircraft using SOO. This includes a description
of the modelled SOO signals, signal preprocessing and system descriptions for
when using known and unknown sources respectively. Furthermore, the method
of initialisation used in the SLAM algorithm is described in detail.

3.1 System Overview

A schematic overview of the system can be seen in Figure 3.1. This system utilises
a database of known landmarks, readings from the aircraft radar warning system
and the onboard INS in an EKF filter to estimate a position that can be used in
the navigation system. Since no real data is used in this thesis, the system com-
ponents are represented using a simulation environment where necessary signals
are created. The simulation environment is created in Matlab where arbitrary test
missions can be created by entering a desired flight path and signal source loca-
tions. It produces a two dimensional flight trajectory where the position, velocity
and acceleration of the aircraft is obtained at each time sample. The position and
velocity provides a true state of the aircraft, while the acceleration is passed to
an INS model to simulate IMU readings. Furthermore, the simulation outputs
the true, global, angle between the aircraft and each of the surrounding signal
sources according to (2.4), which simulates the radar readings. The simulated
measurements are used as input to an EKF which fuses the INS data with radar
readings, using a DOA model, to produce a state estimate that can be used for
navigation. A filter using EKF SLAM is also available to handle cases when the
signals source locations are not available in the database and assumed to be un-
known.

19
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Kalman Filter

Radar Readings

INS Landmark Database

Navigation System

yk

px̂k|k−1

x̂k|kPk|k

Figure 3.1: Overview of the system.

3.2 Signals of Opportunity

The SOO focused on in this thesis are different types of cellular towers and radars
with various properties. Radars operate by rotating an antenna sending signal
pulses, and the rotational speed vary for different radars. Cellular towers on the
other hand, send out signals continuously in all directions. Signals from different
sources can also reach different ranges, depending on the transmission power and
signal frequency. In Table 3.1, a summary of the rotational speed and range of
signals from different sources is presented.

Table 3.1: Properties of some SOO. Data taken from [19], [20], [21] and [22].
These values are only used as baselines for simulations.

Rotational Speed [rpm] Range [km]
4G Towers - 1.6-19

Weather Radars 2 240
Air Surveillance Radar 12-15 75-110

Military Radar < 4802 < 4002

Furthermore, the density of different signal sources vary. Cellular towers cover
approximately 90 % of the land area in Sweden [23], while there are only 12
weather radars in total [20].

3.2.1 Signal Source Characteristics

All SOO measurements are assumed to be corrupted by independent and identi-
cally distributed noise. The maximum measurement frequency that can be used
is, in the radar case, limited by the rotational speed of the sources and is calcu-
lated using

fupdate =
ω
60

, (3.1)

2A rotational speed of 480 rpm and range of 400 km can not be achieved simultaneously and is
only possible when focusing the radar on a smaller sector.
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if the rotational speed ω is in rpm. This gives 0.033 Hz for weather radars, and
a maximum of 8 Hz for the military radar. These values are used as baselines in
the simulations.

The density of 4G towers is approximated by calculating the area one tower cov-
ers using

density ≈ 1
πr2 , (3.2)

where r is the range. Here, it is assumed that 4G covers all land, and that the
coverage areas do not coincide with each other. For a range of 16 kilometres, this
gives a source density of 1.2 · 10−3, while the density of weather radars is approx-
imately 2.5 · 10−5 sources

km2 in the nordics [24]. These values are used as baselines in
simulations.

3.2.2 Signal Preprocessing and Outlier Rejection

The incoming signals are assumed to be pre-processed so that they can be asso-
ciated with their corresponding source and the signals only contain information
about the DOA. However, risk of interference and mixing of the measurements
signals can occur if multiple measurements have a similar direction of arrival in
real scenarios. Therefore signals are rejected according to

|yk,i − yk,j | < 3σe (3.3)

where i ∈ {1, ..., N − 1}, j ∈ {i + 1, ..., N } and N is the number of measured signals.
σe is the standard deviation of the measurement noise for the sensor. This means
that every signal yk,i is compared to every signal in yk,j individually and if the
inequality in (3.3) is fulfilled, both signals are rejected.

Estimation errors can have a bigger impact when the aircraft is close to a signal
source, as there is a risk of estimating a source position on the wrong side of
the aircraft path. If this happens, the expected measurements become largely
different from the actual angle measurements, which could corrupt the position
estimate of the aircraft. The problem can occur when using known sources, but
the risk is higher when unknown sources are used, as there are uncertainties both
in the aircraft position and the estimated landmark positions. To reduce the risk
of this happening, signals are rejected if√

(x̂1 − m̂1
i )2 + (x̂2 − m̂2

i )2 < dmin, (3.4)

is fulfilled, where dmin is the minimum accepted distance between the estimated
aircraft and source position, x̂ and m̂, respectively. The minimum distance is a
tuning variable, but the value 1 km has been used in this thesis.
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To reduce the effect of the DOA measurement error, an outlier rejection method is
implemented in the filters. The outlier rejection used is based on the normalised
innovation for signal source i

ϵ̄k,i =
ϵk,i√
Sk,i
∼ N (0, 1), (3.5)

where

ϵk,i = yk,i − h(xk|k−1), (3.6)

Sk,i = Hk,iPk|k−1H
T
k,i + Rk,i , (3.7)

is the innovation and its covariance, which is Gaussian distributed if a linear
Gaussian model is used and all measurements are assumed to be inliers. This
can be used since Gaussian state covariance and Gaussian measurement noise is
assumed in the filter approaches. Using this, the outlier rejection is performed
measurement by measurement where a measurement is considered to be an out-
lier if

ϵ̄2
k,i > γ, (3.8)

is fulfilled, where γ is a threshold. The normalised innovation squared is chi-
squared distributed with one degree of freedom χ2(1), since [13]

ϵ̄k,i ∼ N (0, 1) =⇒ ϵ̄2
k,i ∼ χ2(1). (3.9)

The threshold γ is chosen as the χ2(1) value corresponding to the significance
level α. pO = 1− α is the probability that a measurement is correctly classified as
an inlier.

3.3 INS Model

The INS model uses a constant velocity model [13], where the velocity is assumed
to be constant over the sample time T . The dynamic model in (2.3) is used with
F and G given by

F =


1 0 T 0
0 1 0 T
0 0 1 0
0 0 0 1

 , G =


T 2

2 0
0 T 2

2
T 0
0 T

 . (3.10)

In this simplified model, the input uk only consist of acceleration measurements
and the state xk consist of position and velocity since by assumption the orienta-
tion is known. The input is defined as

uk =
[
a1k
a2k

]
, (3.11)
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where a1
k and a2

k are the true acceleration in the global x- and y-direction. The
process noise wk is assumed to be Gaussian distributed according to

wk ∼ N (0, Qk),

and consist of both noise in the acceleration measurements and model error

wk = wk,a + wk,m. (3.12)

Since the acceleration measurements are artificial, wk,a is known and modelled
according to

wk,a ∼ N (0, Qk,a),

where Qk,a is tuned so that the INS error drift with approximately 1 nautical mile
per hour. In the simulations the INS error drift mainly depend on the sampling
rate and the speed of the aircraft which are constant and set to 5 Hz and 250 m/s
respectively, for all simulations. This resulted in a constant Qk,a = 0.0232 · I2×2,
which is used in all simulations.

The other part of the process noise wk,m is unknown and have to be accounted for
in order to achieve a good estimation of the growing uncertainty

Pk+1|k = FPk|kF
T + Qk , (3.13)

for the dead-reckoning process. In order to do this, Qk is tuned so that the calcu-
lated ANEES according to (2.25) becomes close to 1 for 1000 Monte Carlo simu-
lations for each scenario that is tested.

3.4 Aircraft Positioning with Known Source
Locations

In Figure 3.2 a flow chart is provided that illustrates the algorithm developed
for aircraft positioning using SOO-DOA with known source locations. The figure
shows that a time update is done with the INS model and IMU measurements
and when DOA measurement are available, they are preprocessed and used to-
gether with the measurement model to make a measurement update to achieve a
position estimate that can be used in a navigation system.

In this case, the measurement model in (2.1b) is used. Since DOA measurements
from SOO signals are used, the measurement function h(xk) is given by calculat-
ing (2.4) for all observed sources at time k. This gives

h(xk , S) =


atan2

p2s1−x
2
k

p1s1−x
1
k

...

atan2
p2sN −x

2
k

p1sN −x
1
k


, (3.14)
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Measurements
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Measurement model
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Time update

IMU measurements

INS model
Landmark
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x̂k|k

x̂k+1|k

Yes

yk , x̂k|k−1

p

Figure 3.2: Flow chart of the processes that occur when positioning is done
with known source locations.

and ek ∼ N (0, RS,k), where the size of RS,k depend on the number of observed
sources. The observed sources are defined by a set S = {s1,...,sN } with N incoming
signals at time k. S is used since all previously observed sources, further on
referred as global sources, might not be observed in every sample. Thereby psn
denotes the position of a signal source with global index sn, which is the global
index of the nth observed source at time k. This is illustrated in Figure 3.3, where
there are six global sources but only two observed at time k leading to N = 2.

N

E

Landmark 1

Landmark 2

Landmark 3

(p1s1
, p2s1

)

yk,1

Landmark 4
Landmark 5

(p1s2
, p2s2

)

yk,2

Landmark 6

(x1k , x
2
k )

Figure 3.3: Illustration of DOA measurements when only two out of six
sources are observed. Here s1 = 3 and s2 = 5.

The measurement model in (3.14) is then combined with the INS model in Sec-
tion 3.3 and is used in an EKF which is implemented according to Algorithm 2.
The EKF thus uses DOA measurements from sources with a known location to
make a measurement update of the current state and uses acceleration measure-
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ments to make a prediction of the state at the next sample. In this thesis, Rk is set
to the true covariance of the measurements, while Qk is a tuning variable which
is manually set for each individual scenario as explained in Section 3.3.

The Jacobian used in Algorithm 2 becomes

H =


Hx1

1 Hx2
1

: :
Hx1

N Hx2
N

 , (3.15)

Hx1
n =

∂hn
∂x1

=
p2sn − x

2

(p1sn − x1)2 + (p2sn − x2)2
, (3.16a)

Hx2
n =

∂hn
∂x2

=
x1 − p1sn

(p1sn − x1)2 + (p2sn − x2)2
. (3.16b)

3.5 Aircraft Positioning with Unknown Source
Locations

When the signal source locations are unknown, an EKF SLAM approach is used
instead. This method is implemented using Algorithm 2 but with the extensions
described in Section 2.3.2. This requires a slightly different measurement model
as well as an initialisation model in order to add new observed landmarks to the
state.

In Figure 3.4, a flow chart illustrating the processes that occur when positioning
is done with unknown source locations is presented. In contrast to the case with
known source locations, new sources first have to go trough an initialisation pro-
cess which is described more in Section 3.5.2.

3.5.1 Measurement Model

Since the sources are a part of the state, the measurement model depends on the
state and the set S with N observed sources that have been initialised. This means
that the measurement function in (3.14) is updated to

h(xk ,m, S) =


atan2

m2
s1−x

2
k

m1
s1−x

1
k

:

atan2
m2

sN
−x2k

m1
sN −x

1
k

 , (3.17)

where msn is the unknown location of the source sn and m(S) = [ms1, ..., msN ]. As
opposed to from when only known sources are used, the estimated source loca-
tions are also stored in the the vector m = [m1, ..., mNtot

]T . Where Ntot is the total
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Figure 3.4: Flow chart of the processes that occur when positioning is done
with unknown source locations. The area surrounded by the red line repre-
sents the initialisation process.

number of sources stored in the map.

The Jacobian of the measurement function with respect to x is

Hx =


Hx1

1 Hx2
1

...
...

Hx1
N Hx2

N

 , (3.18)

where

Hx1
n =

∂hn
∂x1

=
m2

sn − x
2

(m1
sn − x1)2 + (m2

sn − x2)2
, (3.19a)

Hx2
n =

∂hn
∂x2

=
x1 −m1

sn

(m1
sn − x1)2 + (m2

sn − x2)2
, (3.19b)

and since the sources now are a part of the state, the measurement model has to
be derived with respect to msn as well. This gives the Jacobian

Hm =

H
m
1
:

Hm
N

 , (3.20)
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where

Hm
n =

[
0 ... 0 Hm1

n Hm2
n 0 ... 0

]
, (3.21a)

Hm1

n =
∂hn
∂m1

sn

= −Hx1
n , Hm2

n =
∂hn
∂m2

sn

= −Hx2
n , (3.21b)

and sn is the global index of the nth source as illustrated in Figure 3.3.

3.5.2 Landmark Initialisation

New landmarks are initialised into the SLAM filter as described in Section 2.3.2,
where the inverse of the measurement model is used to estimate the position of
a landmark. The initialisation process is divided into two parts where an artifi-
cial range measurement is used to produce an initial guess of the landmark state,
which is then improved using NLS from several measurements. The methods are
described in detail below.

Initialisation using Range-Bearing Measurements

For a scenario where both range and bearing are measured, making yk = [rk , θk]T ,
the measurement model is invertible and where the inverse g(xk , yk), as men-
tioned in Section 2.3.2, is defined by

g(xk , yk) =
[
x1k
x2k

]
+ rk

[
cos(θk)
sin(θk)

]
, (3.22)

where x1k , x
2
k represent the aircraft position and rk and θk are the measured range

and bearing from the aircraft to the landmark at time k.
The Jacobians used in (2.18) then becomes

Gx =
[
1 0 0 0
0 1 0 0

]
, Gy =

[
cos(θ) −r sin(θ)
sin(θ) r cos(θ)

]
. (3.23)

The covariance R is defined as

R =
[
Rr 0
0 Rθ

]
, (3.24)

where Rr is the variance of the range and Rθ is the variance of the DOA observa-
tions.
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Artificial Range Measurements

However, as only information about the DOA in azimuth is provided by the SOO
observations, a delayed initialisation method is used to first estimate the range
using multiple observations. The estimated range can be seen as an artificial mea-
surement of rk and be used in (3.22) to estimate the state of the landmark. The
range estimation is illustrated in Figure 3.5 and the method is described in this
section.

β1 β2

α

p1

m

p2

r1 r2

d

u1 u2

Figure 3.5: Illustration of how the angles and vectors used to calculated the
parallax α.

In the figure, each observation point is defined as

pi =


x1i
x2i
θi

 . (3.25)

The vectors u1 and u2 are unit vectors pointing in the direction of the measure-
ment according to

ui =
[
cos(θi)
sin(θi)

]
. (3.26)

Two vectors between the two observation points can also be defined as

d1 =
[
x12 − x

1
1

x22 − x
2
1

]
, (3.27)

and the opposite vector d2 = −d1. The angles in the triangle is then calculated
using the cross product of the vectors as

β1 = arcsin
|d1 × u1|
||d1||

, β2 = arcsin
|d2 × u2|
||d2||

. (3.28)
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Using this information, the range r1 is calculated as

r1 =
d sin(β2)

sin(α)
, r2 =

d sin(β1)
sin(α)

. (3.29)

The location of the landmark is calculated using (3.22) from one of the observa-
tion points. In this thesis, the range estimate from the last measurement will be
used, thus rk = r2. The variance of this range measurement is estimated as [25]

Rr2 =
r2
2 cos2(α)Rθ + r2

1Rθ

sin2(α)
, (3.30)

and Rr = Rr2 is then used in (3.24). To achieve a good landmark estimate m̂, the
range is only estimated when the parallax angle α between two observations at
the points p1 and p2 in Figure 3.5 is larger than a specified threshold value αth.

NLS for Improved Initialisation

A drawback of this type of landmark initialisation is that the accuracy of the ini-
tialised landmark position becomes highly dependent on the two measurements
used in the triangulation process. Thus, if one, or both, of the measurements
turns out to be an outlier, the estimated landmark position risks being far off
the true position, with a too optimistically estimated covariance. As a measure
to reduce the risk of this happening and to increase the robustness of the sys-
tem, additional measurements are stored and combined by using nonlinear least
squares, as described in Section 2.2, in the initialisation. The data is stored by
stacking observation points as described in (3.25) according to

Nmeas =
[
p1 p2 . . . pn

]
. (3.31)

To avoid storing too many data points, only a fix number of measurements that
are evenly distributed over the parallax threshold are selected. An observation
point is thus only stored if

θi − θi−1 >
α

Nmeas − 1
, (3.32)

is fulfilled. The Gauss-Newton algorithm, as described in Algorithm 1, is then
used to find the optimal landmark position given Nmeas stored observations. The
algorithm is used with an initial guess of m̂(0) taken from (3.22) in the method
described above, with p1 and pN as inputs.

The illustration in Figure 3.6 describes how the initial guess m̂(0) have been cor-
rupted by an outlier in the first measurement. When the Gauss-Newton algo-
rithm is applied, the estimate moves in the direction of the gradient in order to
minimize the cost function
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V NLS (m) =
1
2

n∑
k=1

(yk − hk(x, m))2. (3.33)

m

p1

p2 pn

m̂

Outlier

Gradient

Uncertainty
region

Figure 3.6: Illustration of initialisation using NLS for several measurements.
Here, a measurement outlier have corrupted the initial guess m̂, causing a
large offset. However, the weighted average of the stored measurements in
the NLS creates a gradient and the Gauss-Newton algorithm pushes the es-
timate toward a local minima.

By doing this, the landmark estimate becomes a weighted average of all the mea-
surements and is thus not as sensitive to one measurement being an outlier. The
estimated covariance for the NLS method can be calculated as

P NLS = (HT R−1
θ H)−1 (3.34)

where the Jacobian H is calculated using (3.21b). This covariance is then com-
pared to a threshold according to

max(λ(P NLS )) < λth, (3.35)

which is yet another measure to govern the robustness of the navigation method.
The threshold stops the initialisation process if the estimated landmark covari-
ance is too high, which could be caused by too noisy measurements or a too large
distance to the source. Exceeding the threshold λth could also be a sign that
bad measurements have been used in the initial guess m̂(0), as the Gauss-Newton
algorithm requires a fairly good initial guess in order to operate as intended.
Therefore, the first observation, p1 in Nmeas is removed and the initialisation pro-
cess needs to wait for a new observation before it can try again. In this thesis,
λth = 1 · 108 is chosen, which a rather high value. This is chosen to only prevent
the NLS method from diverging, which occur occasionally.

This covariance estimation have however shown to be rather optimistic and often
leads to a too small estimated covariance. Thus it is instead used as an extension
to (2.18), resulting in the new, augmented covariance matrix



3.6 Aircraft Positioning with Known and Unknown Source Locations 31

P a =


Pxx Pxm (GxPxx)T

Pmx Pmm (GxPxm)T

GxPxx GxPxm GxPxxG
T
x + GyRG

T
y + P NLS

 . (3.36)

Choice of Parameters

Both the number of measurements used in the initialisation and the parallax
threshold can be tuned for either a faster initialisation or more accurate land-
mark mapping. As seen in (3.30), the variance of the artificial range estimate
depends on the parallax angle alpha, where a parallax angle close to 90° yields
the lowest achievable variance while a parallax close to 0° makes the variance
approach infinity. This is also illustrated in Figure 3.7.
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Figure 3.7: Illustration of how the estimation uncertainty varies with the
parallax angle. A larger parallax yield a smaller uncertainty region while a
parallax close to 0 ° may cause the uncertainty region to approach infinity.

3.6 Aircraft Positioning with Known and Unknown
Source Locations

As described above, two filters have been implemented, where one handles known
signal sources and one handles unknown sources. However, in most realistic
cases, the signals reaching the aircraft are a combination of known and unknown
sources. To handle this, the known source locations are also added to the initial
state vector with their known coordinates according to

ẑ1|0 =
[
x1|0
m1|0

]
, (3.37)
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where x1|0 are initial values of the position and velocity of the aircraft and m1|0
are the initial known source locations. The initial covariance is defined as

P1|0 =
[
P xx

1|0 0
0 P mm

1|0

]
, (3.38)

where P xx
1|0 is the initial covariance of the position and velocity of the aircraft and

P mm
1|0 is the covariance of the known source locations. Since the state is initialised

with the true source locations, the covariance is initialised close to zero. The
problem is then solved in the same way as described in Section 3.5.



4
Simulation Study

In this chapter, the models and methods used for state estimation presented in
Chapter 2 and Chapter 3 are tested. The study aims to present the results needed
to answer the questions investigated in this thesis. The performance of the esti-
mators is evaluated through the achieved RMSE over time and ANEES for the es-
timated position and velocity states. Furthermore, the filter consistency is tested
by analyses of the innovation. Also, the computational complexity of the filters
are evaluated using time analysis.

4.1 Parameter Selection

This section aims to evaluate and choose standard parameters which are used in
the rest of the simulation study.

4.1.1 Test Scenario

The standard test scenario in the simulation study can be seen in Figure 4.1a. A
total of 6 sources is used in an area of 15 000 km2 which gives a source density of
4 · 10−4 sources

km2 . The process noise covariance is set to Qk = 0.02832 · I2×2, since it
results in an average ANEES around 1 for the whole simulation, see Figure 4.1b.
The fluctuation of the ANEES over time is likely caused by a combination of the
shape of the trajectory and the simplified INS model used. The model assumes
a constant velocity between the sampled points which means that the estimation
error naturally should increase when the path is turning, meaning that the true
velocity direction changes, compared to when the path is straight. The increased
estimation error is not accounted for in the covariance update, since a fixed Q is
used, and thus the ANEES value increases.

33
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(a) Map and Trajectory for standard
test scenario.

(b) ANEES of 1000 MC simulations
for INS.

Figure 4.1: Standard Test Scenario and ANEES for INS

4.1.2 Measurement Characteristics

This section aims to evaluate how the DOA localisation is affected by different
levels of measurement noise and different frequencies of the measurement up-
date. These parameters are varied individually on the scenario described in Sec-
tion 4.1.1 and the results are evaluated by comparing the RMSE over time for
the case of all known as well as unknown sources using the EKF and EKF SLAM
approach. The signal measurement error is assumed to be Gaussian distributed
noise according to

ek ∼ N (0, σ2
e ),

with equal variance Rk = σ2
e for all incoming signals.

In the first test, the magnitude of σe is varied in the range from 0.2 to 2° while all
other parameters are held constant to see how the positioning performance is af-
fected. The results can be seen in Figure 4.2a and Figure 4.2b. The RMSE is lower
for all tested noise levels in both cases compared to the RMSE of the unassisted
INS. However, a higher noise seems to increase the RMSE and lead to a slower
convergence as well as more fluctuations. These characteristics does also seem to
get more affected when using unknown sources compared to known sources.

When analysing the measurement update frequency, it is varied between 0.033
and 5 Hz while σe is kept constant at 1°. The lower frequency bound is set to the
estimated frequency of weather radars and the higher bound is set to the time
update frequency. The results can be seen in Figure 4.3a and Figure 4.3b. The
RMSE is lower for all tested frequencies in both cases compared to the unassisted
INS. Similarly as for increased noise, a decreased frequency seems to increase the
RMSE, which leads to a slower stabilisation and larger fluctuations. Again, these
characteristics are affected more when using unknown sources. Note that the
RMSE has not yet stabilised for 0.033 Hz during the studied time in Figure 4.3b.
It can also be seen that the RMSE difference decrease less when the frequency
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(a) Known source locations. (b) Unknown source locations.

Figure 4.2: RMSE of 1000 MC simulations when varying the measure noise.

approaches the maximum frequency of 5 Hz.

(a) Known source locations. (b) Unknown source locations.

Figure 4.3: RMSE of 1000 MC simulations when varying the measurement
update frequency.

It is reasonable that the estimation error increase for lower measurement frequen-
cies, since the INS is allowed to drift for a longer time before the measurements
can correct the position estimate. This also leads to a less smooth path, as the posi-
tion estimate needs to be corrected to a greater extent in the measurement update.
This can be seen in the plot where the RMSE for low frequencies is much more
sawtooth shaped compared to lower update frequencies. When the frequency is
reduced, the INS drift has more influence on the RMSE and since the INS drift is
not linear, the RMSE should not increase linearly when decreasing the frequency.
This explains why the improvement in RMSE decreases as the measurement up-
date frequency approaches 5 Hz.
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The effects of increasing the measurement noise or decreasing the measurement
frequency are more prominent when using unknown sources, which have several
explanations. Firstly, a high noise might lead to a worse initial estimate of source
position and covariance. A low frequency could also delay the initialisation since
it takes a longer time to receive the needed amount of measurements. Even when
the sources are initialised, noisy measurements can deform the map with each
update and a lower frequency leads to less measurements available to lower the
uncertainty of the sources.

4.1.3 Initialisation Parameters

Tests have shown that the performance of the SLAM algorithm is highly depen-
dent on the quality of the landmark initialisation, as the filter requires that the
estimated covariance of the landmark states correspond to the actual error in
landmark position to work optimally. If the initial position error of a landmark
is large but with a too small estimated covariance, there is a risk that the filter
trusts the measurements too much which could interfere with both the aircraft
position and the rest of the map states. If on the other hand, the covariance is es-
timated too high for a landmark, the measurements are not trusted even though
they might be accurate, which reduces the benefit of utilising the landmark. The
initialisation method presented in this thesis has been used to reduce the initial
estimation error and provide a suitable initial covariance. As described in Sec-
tion 3.5.2, the method can be tuned to achieve either faster or more accurate
initialisation and this section aims to motivate the choice of these parameters.

Evaluations of different αth and Nmeas are seen in Figure 4.4a and Figure 4.4b,
where tests are performed on a scenario similar to Figure 3.5. When evaluating
αth, the angle between p1 and p2 is increased by moving p2 along a 10 km radius
of a circle around a target m. When evaluating Nmeas, the number of measure-
ments is varied with fixed αth = 30°. The evaluation utilises CRLB for calculating
the lowest achievable estimation error, as this value have shown to be similar to
that of the NLS which is used in the initialisation process. The results show that
the estimation error decreases, with an diminishing effect, when increasing the
parallax angle and the number of measurements in Nmeas.

The result from the parallax test is consistent with the theory described in Sec-
tion 3.5, as a parallax close to 0° yields a very large estimation error and the value
seems to be minimised when approaching 90°. However, while the performance
significantly improves in the beginning, there does not seem to be any large dif-
ference between using a 30° parallax compared to 90°. One should also keep in
mind that a fast initialisation is desirable, which is why a smaller parallax could
be preferred. The test does however only show the result for when the magnitude
of the measurement noise is set to 1°. If the noise were to be increased, a larger
parallax angle would be needed, according to (3.30).

When analysing the estimation error as a function of the number of measure-
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(a) Varying the parallax angle α. (b) Varying the number of measure-
ments Nmeas.

Figure 4.4: Simple tests to evaluate different α and Nmeas, conducted using
CRLB. The scenario is set up in a similar way as in Figure 3.5.

ments used, the results show that more measurements yields a lower estimation
error. This is in accordance to the theory, as the CRLB depend on the FIM in
(2.20), which increases with the number of observations provided. The plot in-
dicates that the error keeps decreasing even after 50 measurements, but the test
was limited to this value since storing more measurements was not considered
reasonable given that both the computational power and memory capacity are
limited resources on an aircraft.

4.1.4 Choice of Parameters

The RMSE characteristics seems to be similar for different noises and as the study
aims to represent realistic results, a value in the middle of the spectrum is cho-
sen. The same applies for the measurement frequency, where a too low frequency
would not show the impact of the measurements too well and a too high fre-
quency would decrease the purpose of using the time update from the INS. The
INS is run at 5 Hz 3 in all simulations and the unassisted INS is used as a baseline
for the evaluation of the performance. The initialisation tests show that the gain
in performance is significantly reduced after a parallax around 30°. Increasing
the number of measurements used in the initialisation do continue to improve
the lower bound of the estimation error even for high values. However, as both
computational complexity and memory usage are limited assets, a rather small
value is chosen. The selected parameters are displayed in Table 4.1, and are used
as default in further tests if nothing else is stated.

The initial states are assumed to be known at start and with initial covariance

3A real INS usually have an update frequency of 50+ Hz, but 5 Hz is used to save simulation time.
This can be used since only the characteristics of the drift is used for comparison and it is tuned to
achieve a similar drift as a real INS would have.
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Table 4.1: Selected parameters

Parameter Value
σe 1.0°

Measurement frequency 1 Hz
INS frequency 5 Hz

αth 30°
Nmeas 10

Monte Carlo runs 1000

according to

ẑ1|0 =
[
xtrue
mtrue

]
, P1|0 = 10−6 ·


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 I

 , (4.1)

where I is an identity matrix twice the size of the number of known sources and
is used together with mtrue when they are included in the state.

4.2 Scenario Evaluation

In this section, tests are conducted to investigate how the DOA localisation per-
formance for known signal source locations is affected by the number of available
signal sources and how they are distributed in the surrounding environment.
Here, all signals are assumed to arrive simultaneously and none of the signals
have limitations regarding their range. Furthermore, tests are conducted to see
how the SLAM performance is affected by the flight trajectory when using sources
with unknown location.

4.2.1 CRLB for Known Sources

The tested scenarios are divided into two categories depicted as a land scenario
and a coast scenario. All tests are conducted using 100 Monte Carlo simulations
for each density by resampling the map each iteration. Initial set-up evaluations
are conducted with heatmaps where the lower bound of the estimation error ac-
cording to CRLB is calculated for each point on a grid in the investigated map
set-up. The scenarios are also evaluated with the parametric CRLB for a filter ap-
proach, as described in Section 2.4.2, for a given trajectory. For the land scenario,
the signal sources are assumed to have a uniform, random distribution with a
certain density which is varied between 1 · 10−4 and 1 · 10−3 sources

km2 in the tests. To
simulate a flight along the coast, all signal sources are placed on one side of the
flight path. Again, the number of sources are varied, but also the distance to the
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coast. The different scenarios and the result of the parametric CRLB are shown
in Figure 4.5.

(a) CRLB heatmap land scenario. (b) CRLB heatmap coast scenario.

(c) Filter CRLB land. (d) Filter CRLB coast.

Figure 4.5: Top: Examples of the different test set-ups with a heatmap de-
picting the size of the non-filter CRLB of the estimation error in different
parts of the map. Bottom: Lower bound of the estimation error according to
CRLB. The plot shows an average calculated for the entire trajectory and for
100 MC runs where the map have been resampled each iteration.

The heatmaps indicate that positioning using DOA measurements gives a fairly
even estimation error while flying inland with uniformly distributed landmarks.
The estimation error seems to increase when flying along the coast as the dis-
tance to shore is increased, which is reasonable as the uncertainty region from
each measurement should grow with the increased distance. Furthermore, the
heatmap indicates that the estimation error should increase when flying straight
in between two landmarks. This is also intuitive, as the measurements from both
signal sources only give information that the aircraft is somewhere on an line in
between the sources, and additional measurements are required to be able to pin-
point the location along the line. Thus, in a scenario where only one signal source
is available or when passing through sources with the same LOS, the localisation
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uncertainty approaches infinity and a location can not be determined using only
DOA measurements. Since the heatmap is based on a non-filter CRLB approach,
the calculated values for the lower bound of the estimation error are higher than
the estimation errors achieved when using a filter. Thus, the numerical values
presented in the heatmaps are only used as an indicator of the DOA localisation
performance.

The results of the parametric CRLB for the trajectory show that the estimation
error seems to decrease, with a diminishing effect, when the source density is
increased. This indicates that even though an increased number of sources de-
creases the estimation error, the benefits of utilising more sources at the same
time becomes less significant for higher densities. The result is reasonable since
increasing the number of measurements increases the Fisher information which
reduces the CRLB. This is also consistent with the results from the heatmaps, as
an increased amount of randomly placed sources decreases the number of uncer-
tain regions in between sources. The effect is probably less prominent for higher
densities, as when many sources are available, the level of uncertainty is rather
even throughout the map and adding an additional source does not make a big
difference. Also, a higher density increases the probability that signals have simi-
lar DOA, and are thus removed according to (3.3).

The coastal scenario show similar results with decreasing estimation error with
an increase in number of sources, and a fairly linear relationship between the
distance to the coast and the lower bound of the estimation error, which can
also be seen in the coastal heatmap. The estimation error is not significantly
increased for the coastal scenario compared to the land scenario. This is probably
because the coast is wide with evenly spread sources compared to the distance to
the aircraft, which means that the angle difference between the measurements
from sources in the top and the bottom of the map is still large enough to limit
the uncertainty region of the aircraft. The results from the filter CRLB indicate
that the best localisation accuracy when using DOA from known signal sources
should be in the range of 10 to 100 meters at this scale. This could be considered
an acceptable accuracy given the scale of the problem, even though it does not
match the accuracy of GNSS.

4.2.2 Flight Trajectory Evaluation for SLAM

This section aims to compare the EKF SLAM algorithm performance for when
flying straight through an environment and for when staying a longer time in
the same environment, according to Figure 4.6. This is done to investigate how
the trajectory affect the DOA localisation when using sources with unknown
locations. In this test case, a land scenario is used with a source density of
2 · 10−4 sources

km2 and the signal sources are placed equally in both tests.

In Figure 4.7, it becomes clear that the unknown sources do not provide any
improving effect for the localisation performance in the case where the aircraft
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(a) Straight fly-fhrough. (b) Winding flight path.

Figure 4.6: Different estimated flight trajectories using EKF SLAM in the
same test environment.

(a) Straight fly-through. (b) Winding flight path.

Figure 4.7: RMSE for the aircraft position over time for two flight paths in
the same environment.

quickly passes through the environment, while the other case show significantly
lower RMSE than the INS. When investigating the landmark position error in
Figure 4.8, one can see that for the case with the straight path, the landmarks are
initialised late relative to the total simulation time and their absolute error have
not settled until the end of the run. Thus, the aircraft has passed through the en-
vironment before it could utilise the mapped landmarks for localisation. When
circulating the environment, the effect of using the unknown sources becomes
prominent, as the filter has had time to properly map the landmarks and their
estimated covariance have become low enough to affect the state estimate of the
aircraft.

These tests indicate that the choice of flight trajectory is an important factor for
the SLAM algorithm, since the time spent in a certain environment has great in-
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(a) Straight fly-through. (b) Winding flight path.

Figure 4.8: RMSE for the landmark positions over time for two flight paths
in the same environment. Each color represents the absolute error for one
landmark.

fluence on the localisation performance. For unknown signal sources, the SLAM
algorithm needs to observe landmarks, initialise them into the filter and then re-
duce their estimated covariance before they can be used for positioning of the
vehicle itself. This process takes time, and thus, less time is left to utilise the
sources for navigation when passing through several landmarks fast. In these
cases, it might be beneficial to lower the parallax threshold so that landmarks are
initialised at an earlier stage and thus have more time to improve the navigation
performance. Reducing the parallax threshold does however increase the risk of
badly initialised landmarks which might affect the localisation negatively. A sim-
ilar effect can be achieved if the aircraft speed is reduced or if the measurement
update frequency is increased, as the landmark state estimation is highly depen-
dent on the amount of observations that is provided to the filter. However, this
does not decrease the initialisation time. Given this, a flexible solution for the
initialisation method might be useful.

Given these results, the standard case in Figure 4.1a used in the other tests have
been selected so that the DOA based positioning performance is fairly equal
throughout the map and with a path that allows the aircraft to stay a longer time
in the same area.

4.3 Outlier Rejection

This section provides an analysis of the robustness against measurement outliers
in the filters as well as an evaluation of the filter consistency. This is done by using
both measurements with and without added outliers, as a reference 4. The simula-

4The measurements used to initiate landmarks in the EKF SLAM approach do not include outliers.
This is done since a landmark position estimate is needed for (3.8) to work and to make sure that the
results only depend on how well the filters handle outliers. A separate analysis on how the landmark
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tions are performed on the scenario described in Section 4.1.1 using known and
unknown sources with EKF and EKF SLAM. The robustness against the added
outliers is evaluated using the RMSE of the aircraft position and the filter consis-
tency is evaluated using ANEES and with an evaluation of the innovation. The
difference between using pO = 90% and pO = 99% is also evaluated.

The outliers are generated using a matrix with additional noise, eO ∼ N (0, σ2
O),

where σO = 15◦, in the same size as the generated DOA measurement samples.
The samples where

|eO | < 3σO, (4.2)

is fulfilled are then set to 0, since outliers are only wanted on a small fraction of
the measurements. This matrix is then added to the DOA measurement matrix.
This means that the added outliers are angles of at least 45◦ which are distributed
over 0.3% of the DOA measurement samples.

(a) (b)

(c) (d)

Figure 4.9: RMSE when outliers are added. An EKF is used for known
sources and EKF SLAM for unknown sources. The RMSE when no outliers
are added acts as a reference.

When evaluating the RMSE in Figure 4.9, one can see that it is much higher if
no rejection is used, and that the system is even more sensitive to outliers when

initiation handles outliers is presented in Section 4.4.
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a lower noise is investigated, especially when using unknown sources. In this
scenario, pO = 99% seems to be a better setting since the RMSE is lower than
for pO = 90% in all cases. This is even more obvious when the measurement
noise is higher. In fact, almost no visible difference can be seen when compar-
ing the RMSE using pO = 99% and the reference without any added outliers.
In Figure 4.10 the ANEES after outlier rejection looks similar to that of the INS
while the ANEES if no rejection is used is higher, especially when using unknown
sources. In Figure 4.11, the ANIS is close to 1 when rejection is used and much
higher when no rejection is used. The difference between EKF and EKF SLAM
in this case is that there are higher spikes in the ANIS for the EKF SLAM. In Fig-
ure 4.12, the histograms look Gaussian with zero mean both when using rejection
and when no outliers are added. When no rejection is used, the innovation has
zero mean but is less Gaussian due to more values in the tails of the histogram
caused by the outliers. The same result is obtained when using unknown sources,
but with a slightly higher variance of the innovation when no rejection is used.

(a) (b)

Figure 4.10: ANEES over time. An EKF is used when all sources are known
and EKF SLAM is used when the sources are unknown. The ANEES for INS
is used as a reference and have an average of 1 over time.

The results indicate that the used outlier rejection improves the filter robustness
against outliers. Even though the results show that outlier rejection is important
in all cases, they also show that the error is more affected when the measurement
noise is lower and that outlier rejection is extra important in those cases. This is
reasonable since Rk in the filter is equal to the actual measurement variance that
is added to the simulated measurements. This means that if the filter is tuned
for a low noise variance, the added outliers become relatively bigger compared
to when a higher variance is expected. It is also reasonable that the EKF SLAM
approach is more affected by outliers since each time an outlier is used, the map
slightly changes. In the EKF approach, the map is stationary meaning that only
the aircraft position is affected.

Furthermore, a high ANEES which is the case without outlier rejection would
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(a) (b)

Figure 4.11: Evaluation of innovation using ANIS. An EKF is used when all
sources are known and EKF SLAM is used when the sources are unknown.
The ANIS achieved without added outliers is used as a reference.

(a) (b) (c)

Figure 4.12: Evaluation of innovation using histograms when known sources
are used.

mean that the estimated covariance is too low. This is bad since it indicates that
the position estimate is more certain than it actually is. This is reasonable since
the filter covariance Rk is constant and can thus not compensate for unexpected
deviations. With this said, the achieved ANEES has an average slightly above
1 indicating a somewhat optimistic estimated covariance. However, the spikes
causing a higher ANEES for the filter can also be seen for the unassisted INS and
is probably caused by model error in the INS. Though, compared to when no
rejection is used, the results are significantly improved and the filters are more
trustworthy. The ANIS after the outlier rejection is slightly below 1, indicating a
decent but somewhat high estimated innovation covariance. This could be caused
by the outlier rejection removing enough measurements to lower the variance.
The innovation analysis resulted in a Gaussian distribution with zero mean when
outlier rejection is used. This together with a decent ANIS and ANEES indicate
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filter consistency which is important for robustness. This does not seem to be
true without outlier rejection.

4.4 Landmark Initialisation Method

This section aims to evaluate the robustness against outliers in measurements
used for initialisation and to test how the DOA performance is affected by the
choice of initialisation method. This is performed by testing the performance
of the NLS extension in the initialisation process, as described in Section 3.5,
and compare against when only the artificial range-bearing method is used to
initialise the landmark directly. These two methods will be referred to as NLS
method and artificial measurements (AM) method respectively. The tests are con-
ducted using the same setup as in previous tests and are divided into two parts.
The first test is constructed to evaluate how the two methods perform when out-
liers are manually added to the initial observation of each of the landmarks. In
this test, the number of measurements used in the NLS method Nmeas, is also var-
ied. The second test aims to compare the DOA performance for the two methods
when the measurement noise is varied.

4.4.1 Robustness Test with Added Outliers

The resulting RMSE for the aircraft position at different level of manually added
outliers can be seen in Figure 4.13. In Figure 4.14, the ANEES for the full map
state have been plotted over time.

The plots show that the RMSE go towards lower values when using the NLS
method than the AM method, in all cases. The value of Nmeas does not seem
to affect the RMSE much for 10° added outliers, but does so for 20° outliers. In
this case, more measurements seem to have a positive effect on the performance.
The ANEES plots for the map state shows that an increased number of NLS mea-
surements tend to lead to an ANEES approaching 1. This is seen in Figure 4.14a,
where Nmeas = 50 is the only setting with an ANEES close to 1 throughout the
whole simulation. The ANEES when only using the AM method diverges to
extremely high values, indicating that the estimated covariance is substantially
smaller than the actual position estimation error. An example of this can be seen
in Figure 4.15, where one can see that the estimation and covariance is much less
accurate for the AM method than for the NLS method.

When greater outliers are added, such as in Figure 4.13c, the AM estimate have an
error very close to the INS through the simulation. An explanation for this can be
found by analysing the estimated path and mapped landmarks for the different
methods, as seen in Figure 4.16. It becomes evident that the landmarks for the
AM method have been estimated at the completely wrong location, with small
estimated covariances. This is likely caused by the 30° initialisation threshold be-
ing equal to the added outlier. When investigating the number of measurements
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(a) RMSE plot for Outlier magnitude
= 10°.

(b) RMSE plot for Outlier magnitude
= 20°.

(c) RMSE plot for Outlier magnitude
= 30°.

Figure 4.13: RMSE of the position estimate for different initialisation meth-
ods, with added outliers in the initial values.

(a) Outlier magnitude =
10°.

(b) Outlier magnitude =
20°.

(c) Outlier magnitude =
30°.

Figure 4.14: ANEES over time for the full map state

that were used in the specific scenario displayed in Figure 4.16a, almost all mea-
surements are rejected which explains why the position RMSE is almost identical
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(a) AM method. (b) NLS method.

Figure 4.15: Comparison of initial landmark position estimate for the NLS
and AM methods when an outlier of 10° have been added to one of the mea-
surements used in the initialisation. In both cases confidence regions with
a 99% confidence level for the estimated covariance have been plotted. The
black markers on the path indicate how far the aircraft has travelled at the
time of initialisation.

to that of the INS. This happens because the landmark estimates are completely
wrong, causing a large innovation with a too small estimated covariance, which
activates the outlier rejection. Therefore, the landmark estimate can not be cor-
rected during the flight. In the end of the path in Figure 4.13c, the estimation
error spikes. A measurement has therefore probably gotten past the outlier rejec-
tion since the estimated position is in a similar line of sight from the path as the
true position.

The same type of behaviour have most certainly affected the results of the NLS
method as well which is seen when investigating the absolute error of the land-
marks in Figure 4.17. Here, landmarks that have been initialised with a very
large initial error are not notably corrected during the simulation. This can also
be seen in Figure 4.16, where the final position estimates are notably better when
50 NLS measurements are used instead of 5 NLS measurements. One can also
see that the initial guess improves with the number of NLS measurements. This
increases the probability that the expected measurements are similar to the ac-
tual measurements, implying that measurements from more landmarks are used.
But, as seen in Figure 4.14c for 50 NLS measurements, the ANEES is still high,
indicating a too optimistic covariance. This probably explains why the aircraft
position RMSE for the different initialisation methods does not show the same
correlations as when smaller outliers were added.

These tests have shown that the NLS method show significant improvements to
the robustness against outliers during the initialisation and that the initial estima-
tion error is reduced with the number of measurements used. However, when the
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(a) AM method. (b) NLS with 5 measure-
ments.

(c) NLS with 50 measure-
ments.

Figure 4.16: Estimated path and map for the AM method and different num-
bers of measurements used in the NLS when the initial measurement have
been corrupted by a 30° error.

(a) NLS with 5 measure-
ments.

(b) NLS with 10 measure-
ments.

(c) NLS with 50 measure-
ments.

Figure 4.17: Estimation error of the landmark positions for different num-
bers of measurements used in the NLS when the initial measurement have
been corrupted by a 30° error.

measurement outliers are too large, the initial guess can become too poor, even
when the NLS method is used. This either leads to a bad aircraft position esti-
mate because of an optimistic covariance or triggers the outlier rejection and thus
removes measurements. Therefore, the implemented outlier rejection method is
not adapted for handling these types of large position errors, and another method
would be necessary to fully compensate for bad initialisation performance before
measurements are removed. One possible way of getting around the problem
could be to utilise a second filter where the landmark positions and covariances
are estimated before initialisation. The landmarks are then only included in the
main filter if their estimated covariances are low enough.
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4.4.2 Initialisation for Different Magnitude of Measurement Noise

When varying the measurement noise, tests are conducted with σe = 1◦ and
σe = 2◦, and Nmeas = 10. The resulting RMSE is displayed in Figure 4.18. In
Figure 4.19, the RMSE for each initialised landmark have been plotted over time
for when the noise magnitude is set to 2°.

(a) RMSE plot for σe = 1°. (b) RMSE plot for σe = 2°.

Figure 4.18: Comparison of aircraft position RMSE with and without NLS in
the initialisation.

(a) RMSE for the landmark positions
using NLS initialisation.

(b) RMSE for the landmark positions
using AM method.

Figure 4.19: Comparison of landmark position RMSE with and without NLS
in the initialisation for σe = 2°.

The results indicate that the positive effects of using the NLS method are small
when σe = 1◦, but become more evident when σe = 2◦, since the final RMSE is
about 100 meters higher without the NLS extension. This indicates that a robust
initialisation method is an important process to achieve a better DOA localisation.
This can also be seen in Figure 4.19, where there are significant improvements in
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the initial estimated landmark positions when using the NLS method. One can
also see that the position error quickly drops to fairly low values. For the AM
method however, one of the landmark continues to have a significant position
error at the end of the simulation. This is probably the result of a too small es-
timated covariance or bad initialisation which, as discussed earlier, activates the
outlier rejection. Furthermore, the ANEES for the full state of the landmark po-
sitions resulted in very high values, reaching 350 in the end, indicating a too
low estimated covariance. In comparison, the ANEES for the NLS approach stays
around 1 for the entire simulation.

4.5 Combining Known and Unknown Sources

This section provides an analysis on the advantages of utilising a combination
of sources with known and unknown locations. The test scenario can be seen
in Figure 4.20, where known sources have been placed with a density of 2 · 10−4

sources
km2 and unknown sources with a density of 6 · 10−4 sources

km2 . A higher density
of sources with unknown locations is chosen since this is probably true in realis-
tic scenarios. The position is estimated using EKF SLAM and known sources are
added to the filter using the approach described in Section 3.6. This scenario is
analysed using three different cases. One where only the known sources in Fig-
ure 4.20 are used, one where both known and unknown sources are used and one
where all 16 sources are classified as unknown. The measurement frequency as
well as the measurement noise is altered to see how the performance is affected.

Figure 4.20: Trajectory and map with known and unknown sources.

In Figure 4.21a, it can be seen that only using known sources at a frequency of
0.03 Hz seems to only slightly increase the performance compared to the INS.
There also only a slight difference between the combination and when all sources
are unknown, indicating that using known sources with a low measurement fre-
quency does not show significant advantages compared to when all are unknown.
A higher frequency of either known or unknown signals results in a more con-
stant RMSE over time. This can be seen in Figure 4.21b where the frequency of
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known sources is increased to 1 Hz. This indicates that the advantages of utilising
a combination of sources become more prominent when they can be used with
a higher measurement frequency. Finally, the results show that in this scenario,
the final RMSE value of only unknown sources is at least as good as the RMSE
achieved when using only known sources in all cases. This is likely because there
are 4 times more unknown than known sources and when they have decent esti-
mation, a higher accuracy can be achieved.

(a) (b)

Figure 4.21: RMSE when varying the measurement update frequency for
only known sources, a combination of known and unknown sources and for
only unknown sources.

In Figure 4.22a, when a lower measurement noise is evaluated, the combination
still gives the best performance, although the difference is less significant. On the
contrary, when increasing the noise as in Figure 4.22b, a more fluctuating RMSE
with higher peaks is achieved for all cases. The difference in RMSE between the
combination and the other cases individually also becomes larger, showing the
advantages of using a combination of sources.

The results indicate that the advantages of using a combination of sources de-
pends on what measurement frequency they can be updated with. With a higher
frequency, the known sources can be used to get an absolute position, which is
especially important before the unknown sources have converged to a decent es-
timate. This behaviour can be clearly seen in Figure 4.21b, where the RMSE stays
around the same value throughout the simulation even though the RMSE for the
two other cases fluctuates significantly during the simulation. This indicates that
when utilising a combination, the performance always seems to be better than the
two other cases individually. The behaviour seems to remain the same regardless
of the measurement noise. Although, the effect of utilising known sources seems
to be more valuable if the measurement noise is high, as the accuracy of the ini-
tial estimates of unknown source have been proven to correlate with the level of
noise. However, in this case the aircraft remains in the area a longer time, giv-
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(a) (b)

Figure 4.22: RMSE when varying the measurement noise for only known
sources, a combination of known and unknown sources and for only un-
known sources.

ing the EKF SLAM enough time to get a decent estimate of the unknown sources.
If instead a trajectory more similar to the one in Figure 4.6a would have been
used, the result when only using unknown sources would probably be worse.
Therefore, by having some known sources, the absolute aircraft position could be
maintained since the estimate does not drift as much as it would with an unas-
sisted INS. This would also improve the estimates of the unknown sources since
they depend on the aircraft position.

Furthermore, to get an even better understanding of the advantages of known
sources, future tests could investigate how the performance is affected when the
ratio between unknown and known sources is altered but the total number of
sources is fixed. It would for example be interesting to investigate how the
unknown source estimates are affected when increasing the number of known
sources.

4.6 Realistic Flight

In this section, the overall performance of two longer, more realistic scenarios is
tested, where the signal sources are a mixture of known and unknown sources.
An analysis of the filter consistency is also provided. The sources are roughly
based on the different types described in Section 3.2 and are divided into 4 cate-
gories. The sources are categorised as weather radars, 4G cellular towers, mixed
known radars and mixed unknown radars and their definitions are presented
in Table 4.2. The characteristics of these types differ as they have different sig-
nal range, signal rate and are spread with different densities over the map. The
mixed sources aim to represent the vast range of different types of civilian and
military radars. The availability of sources with unknown locations are assumed
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to be significantly higher than sources with known locations.

Table 4.2: Traits of the different source categories used in realistic test flight.

Type Signal Range Signal Rate Density
Weather Radars 250 km 0.033 Hz 1 · 10−4

4G Towers 16 km 1 Hz 1.2 · 10−3

Unknown Mix 100 km 1 Hz 4 · 10−4

Known Mix 100 km 1 Hz 1 · 10−4

Furthermore, the performance is evaluated for when using only the known signal
sources, using a combination of all available sources, and when assuming that all
sources are unknown. This is done to see if the results are consistent with the
results in Section 4.5.

4.6.1 Scenario Descriptions

The tested flight paths and source maps for the two scenarios are shown in Fig-
ure 4.23. The first scenario is constructed to replicate a flight where the aircraft
is starting over land, then flies over the sea and then back to land.

The second test differs from the first as the aircraft returns to its starting position
at the end of the run, and the map has a region in which only unknown sources
are available. This is done to see if the results are consistent with the results in
Section 4.2.2.

The process noise is tuned to Qk = 0.02312 · I2×2 for both scenarios.

(a) Scenario 1. (b) Scenario 2.

Figure 4.23: Test set-up for realistic scenarios. Here, different types of
sources have been distributed with various characteristics and are plotted
with different colors.
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4.6.2 Simulation Results

The results of the first realistic scenario can be seen in Figure 4.24a, where the
RMSE of the aircraft position estimate is plotted over time for the different cases.
Also, the parametric CRLB for the trajectory when only utilising known sources
is plotted in order to evaluate the filter performance. The plot shows that all
cases outperform the unassisted INS over time, although the case when known
sources are used perform significantly better than when only unknown sources
are utilised. The position error drifts for all cases in the middle of the simulation.
Here, only some of the weather radars with a range of 250 km can be used for nav-
igation, and these signals arrive with a very low rate, causing the estimate to drift
with the INS between the measurement updates. However, when returning back
to land, the position error drops to its previous values of about 100 meters when
utilising known sources. This indicates that an absolute position can be found
again even though the estimate has drifted during a period. The rate of drift
seems to be approximately the same for the case with unknown signals. When
the aircraft returns to land, the error seems to stop drifting and stabilises at a
high position error of 1000 meters. Moreover, the RMSE for the case with only
known source locations is close to the lower bound according to the parametric
CRLB for the trajectory, with some exceptions.

In the second realistic scenario, the RMSE for when only the known sources are
used is higher but has similar characteristics as in the first scenario, as seen in
Figure 4.24b. The main performance difference can be seen when all sources are
assumed to be unknown, as the RMSE does not stabilise at a high value as in the
first test but instead drops down to the same low levels of around 100 meters as
when when using known sources. Also, the combination of known and unknown
sources show greater improvements in this scenario, as the error drift is reduced
at t = 2500 compared to when no unknown sources are used.

In Figure 4.25, the resulting flight path estimate is shown together with the
mapped landmarks for the cases where both known and unknown sources are
used. Here, one can see how the SLAM algorithm has estimated the landmark
positions and estimated a covariance, which can be seen as covariance ellipses.

In the first scenario, the error does not drop down to the same low levels as when
using known sources, as the SLAM algorithm can only relate the mapped land-
marks to its own estimated position. The error in the aircraft position causes all
new landmarks to be initialised with a certain offset from their actual position,
which distorts the map. This means that while the algorithm has no way of find-
ing back to the absolute position of the aircraft and thus decrease the error, as for
the case with known sources, the relative position to the landmarks is enough to
cause the error to stop drifting.

In the second scenario however, the aircraft takes a more similar path back to the
starting point, passing through environments that have already been discovered
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(a) Scenario 1. (b) Scenario 2.

Figure 4.24: RMSE over time for the position estimates from the tested sce-
narios and compared to the unassisted INS. For the first scenario, the para-
metric CRLB for the trajectory is plotted as a reference.

(a) Scenario 1. (b) Scenario 2.

Figure 4.25: Estimated map and trajectory for realistic flights where a com-
bination of known and unknown sources have been used. All visible sources
have been added to the map of the SLAM algorithm.

and mapped. When entering these previously visited areas, the RMSE of the po-
sition quickly drops and the error in the final position is even lower than when
using only known sources. This shows promising results for the method to work
even in completely unknown environments, although, one could achieve almost
the same performance when using only a few known sources.

One can see that the overall performance for both scenarios is quite poor for a
large part of the simulation, with estimation errors rising to several hundreds
of meters in all cases. This is however caused by the long flight path where the
DOA signals are few and arrive at a low rate, and as seen in the first scenario, the
RMSE of the case with only known source locations is close to the lower bound
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stated by the parametric CRLB. This indicates that the filter performance is close
to the best achievable estimation error, while the SOO-DOA method is not very
suited for longer flights over open sea where the source availability is low. How-
ever, there are some spikes in the RMSE which are not present in the parametric
CRLB and indicates that the estimated covariance does not match the actual er-
ror at all times. Similar spikes can be seen for the second scenario, which is
further discussed when analysing the filter consistency. Furthermore, utilising a
combination of sources with known and unknown locations could improve and
stabilise the performance compared to using either separately. For known source
locations, the achieved RMSE is generally lower and an absolute position can be
reestablished, but the number of available SOO could be limited as the method
requires a database with stored locations. The availability of sources with pre-
viously unknown locations is likely much higher, which yields a more uniform
signal coverage throughout environments where sources with known locations
are sparse. All cases do however outperform the unassisted INS and the estima-
tion error when flying over land is kept around 100 meters when using known
sources.

4.6.3 Filter Consistency Results

For the second realistic scenario, some tests were also conducted to test the con-
sistency of the EKF filter. In Figure 4.26, the 4D state ANEES for the aircraft as
well as the ANIS for the filter have been plotted throughout the simulation. Also,
the mean and variance of the innovation in the different cases are investigated
using histograms as displayed in Figure 4.27.

(a) ANEES for the 4D vehicle state. (b) ANIS for the filter.

Figure 4.26: Test of filter consistency using ANEES and ANIS.

The plot of the ANEES shows that the INS stays at a value around 1 for the whole
simulation, which indicates that the variable Qk has been properly tuned. The
ANEES for when only unknown sources are used is also low throughout the sim-
ulation, with a peak of 1.5 halfway into the flight. However, for the cases where
known sources are utilised, the ANEES is much more fluctuating and has high



58 4 Simulation Study

(a) Innovation for known
sources.

(b) Innovation for com-
bined sources.

(c) Innovation for un-
known sources.

Figure 4.27: Histograms of the innovations for the different cases.

spikes, indicating that the estimated covariance has not matched the actual state
estimation error. When compared to the plot of the RMSE, one can see that the
estimation error has spikes that seems to correlate to the spikes in the ANEES.
The error propagates faster than the INS drift in these cases, indicating a too low
estimated covariance. The problem only appears when known sources are used
and in specific cases. When resampling the map, the peaks appear at new loca-
tions which indicate that the problem occurs in certain parts of the map. One
theory is that the problem is caused by the fact that the filter uncertainty can
only be increased by the INS, which means that if the measurement conditions
rapidly worsen, the estimated covariance can not be increased to compensate for
this. This could happen if the aircraft suddenly passes through a bad part of the
map, for instance in between two sources, where the localisation performance is
reduced, as shown in Section 4.2.1. This could cause linearisation errors, and the
effects are probably more visible when using known sources as these measure-
ments are more trusted than the unknown sources and therefore have a higher
impact on the aircraft state. This is not a good behaviour, but the spikes seems to
be temporary and the ANEES does recover to low levels after a short while. The
cause of the spikes needs to be further investigated in order to achieve a fully
robust system.

Figure 4.26b shows that the ANIS values for all different cases are centred around
0.95 and do not fluctuate much. This indicates that the estimation of the innova-
tion covariance is good but slightly high, which likely is a result of the outlier
rejection, as discussed in Section 4.3. When the innovations are further anal-
ysed, one can see that innovation mean is approximately zero for all tested cases,
and show clear indications of being normally distributed with approximately the
same variance for all tests. However, when using unknown sources, the amount
of outlier values are increased, which might be caused by the outlier rejection let-
ting more noisy measurements through. Though, when comparing to the results
presented in Section 4.3, where the same type of histogram has been presented
for the case when not using outlier rejection, one can see that the amount of out-
lier values have significantly decreased. Considering the very low frequencies
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in the outlier regions, the innovation can arguably be accepted as white for the
finite amount of data.

4.7 Computational Complexity

The computational complexity is analysed by comparing the average computa-
tional time of one measurement update for the different algorithms when varying
the number of observed sources. The computational time for the two different ini-
tiation methods in Section 4.4 are also compared.

When analysing the computational time in Figure 4.28, one can see that the time
seems to increase when the amount of sources is increased. This is slightly less
noticeable when using known sources which are not included in the state. The
computational time when sources are included in the state is notably longer than
when not. The time is about twice as long in the beginning and about 8 times
as long in the end. Also, using unknown sources takes longer time than using
known sources, even if they are included in the state.

Figure 4.28: Computational time when varying the number of observed
sources. ”EKF with sources in state” represent the case when all sources
are known but are included in the state as described in Section 3.6. EKF and
EKF SLAM is used when the sources are known and unknown respectively.
The x2- and x3-curves are fitted when there are 250 sources for EKF without
respectively with sources in state.

It is reasonable that it takes longer time when sources are included in the state
than when they are not. This is mainly because the state covariance matrix in-
creases with each new source while matrix multiplications scale as n3. It is also
reasonable that the EKF SLAM takes longer time when the sources are unknown
compared to known. When the sources are known, they are instantly initialised
in the state with a predefined starting covariance. This can be compared to when
they are unknown, where the initial position and covariance first need to be esti-
mated using the NLS method before they can be added to the state. Even though
this only increases the time during the initialisation, it results in a longer average
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time.

The computational time should theoretically increase cubically with the state di-
mension for the EKF and EKF SLAM algorithms and quadratically with the num-
ber measurements, if the sparseness of the H-matrix is utilised [13]. From the re-
sults, it is seen that the computational time increases when increasing the number
of sources and that the trend looks cubical when the sources are in the state and
quadratic when not. This coincides with the theory since the state is unchanged
when the sources are not in the state. However, even for sources in the state, the
trend looks more linear in the beginning. This could be caused by the fact that the
prediction step in SLAM algorithm scales linear with the number of landmarks,
due to the separation between vehicle and landmark states [15]. There are also
other calculations apart from the regular EKF and EKF SLAM, such as the outlier
rejection. These could thereby damp the characteristics of a cubical increase in
the beginning if their complexities are lower. This effect would however be neg-
ligible when the number of sources approach infinity. The inconsistencies, for
example the big jump between 170 and 190 sources, is possibly caused by the
fact that Matlab can perform calculations and save data differently depending on
the size of the data, and interference from other processes can occur some times
during the tests.

The results in Figure 4.29 show a clear increase in the computational time for
the case when NLS is used compared to the AM method, especially in the early
stage of the simulation. By comparing the time against the number of sources ini-
tialised in the filter, a higher time in the beginning seems to coincide with more
sources in the initialisation stage. It then drops notably when the last landmark
has been added. After this, the computational time stabilises at approximately
the same level for both cases.

Figure 4.29: Computational time during the simulation when using an ini-
tiation with and without NLS (AM method). The total number of initialised
sources is also displayed.

A longer computational time when using the NLS initialisation is reasonable
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since this approach uses the AM method to get a first guess for the Gauss New-
ton algorithm, which in turn also takes time. A longer computational time in
the beginning correlates with the number of initiated sources. This indicates
that the initialisation process takes longer time when more sources are being ini-
tialised, which is reasonable. Especially since the computational time drops when
all sources have been initialised.





5
Concluding Remarks

In this chapter, the results from the simulation study are summarised. Also, some
recommended future work needed is discussed.

5.1 Summary

Using SOO for aircraft positioning has proven to be an alternative to using an
unassisted INS in GNSS denied environments. Instead of an unlimited drift in
position error, the error can be stabilised, even if the signal source positions are
unknown. In realistic scenarios, using the standard parameters in this thesis, the
best achieved RMSE is around 100 meters. However, the performance is highly
affected by a number of factors.

SOO-DOA Localisation for Known Source Locations

The DOA localisation performance is mainly dependent on the measurement
noise, the measurement update frequency and the availability of sources, if the
signal source locations are known. The estimation error seems to scale linearly
with the distance to sources while the error drops with a diminishing effect when
the amount of sources used simultaneously is increased. Measurement outliers
have also been proven to have a big impact on the performance and thus, good
outlier rejection is needed. The method for outlier rejection used in this thesis
effectively reduces the impact of measurement outliers in the filter and thus in-
creases the robustness. Furthermore, the absolute position of the aircraft can
be reestablished even after a substantial amount of position drift has occurred.
Therefore, knowledge about source locations should be incorporated whenever
possible. However, the availability of SOO from known source locations is prob-

63
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ably limited and the number of unknown sources is often larger. The EKF indi-
cates consistency, as the ANIS values are close to 1 for the tested cases and the in-
novation can be accepted as white as it has zero mean and is normally distributed.
The ANEES is also close to 1 in most cases, however, the value is fluctuating in
some specific scenarios when known sources are used. Thus, further work is
needed in order to achieve an even more robust system.

SOO-DOA Localisation for Unknown Source Locations

If unknown sources are to be utilised, several further factors are important in
order to achieve a robust system with good performance. The initialisation of
new sources is very important since a good initial estimate is needed for them
to make a difference in aircraft position estimate. Their initial covariance is es-
pecially important since estimates with a too high covariance does not seem to
contribute to an improvement of aircraft position estimate, while a too low co-
variance on sources with bad initial estimates can deform the map and cause an
even worse aircraft position estimate. With this background, reasonable covari-
ance estimates is an important quality for the filter and a key factor in order to
achieve a robust system. Moreover, the method for outlier rejection cannot be
utilised before landmarks have been added to the state in the SLAM case and
thus, the initialisation method also needs to be robust against outliers. A NLS
method which utilises several measurements before a source is initialised in the
filter seems to work in most cases. However, large outliers might still be difficult
to handle.

The SLAM algorithm is also greatly influenced by the number of observations
from initialised sources and has thereby shown to yield limited improvements in
performance compared to the unassisted INS when quickly passing through dif-
ferent environments with new sources. This means that the choice of trajectory is
an important factor for the SLAM performance, and the effect is also amplified by
the delayed initialisation as it takes longer time before new sources are initialised.
When entering new areas after a previous drift in estimation error, the error only
seems to stabilise and not decrease, since new landmarks are initialised with an
offset caused by the error in aircraft position. Sources with unknown locations
could however be very useful when flying in the same area for a longer period
of time or revisiting previously discovered areas. The EKF SLAM also indicates
filter consistency and do not seem to have the same problem with a fluctuating
ANEES when only unknown source locations are used.

Using a combination of known and unknown source locations can improve the
performance, as the benefit of using many sources can be combined with the fact
that an absolute position can be established when known source locations are
utilised. This is especially important before the unknown sources have converged
to a decent estimate, as a more stable localisation solution is obtained compared
to using only unknown source locations.
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Computational Time

The computational time scales cubically with the number of states used in the
filter, and approximately quadratically with the number of measurements used
in the EKF. The time is longer when using unknown source locations because of
the initialisation process and is increased when the NLS method is used for ini-
tialisation compared to when only artificial measurements are used.

5.2 Future Work

The initiation of new sources has been proven to affect the performance of the
SLAM algorithm significantly and is therefore an aspect that could be studied
further. A good start would be some sort of outlier rejection that can detect out-
liers on measurements not yet initialised in the filter, something not possible with
the current rejection method. Instead, this is handled by using several measure-
ments and by adding extra uncertainty to the landmarks. If the initial certainty
could be increased, the sources would increase the performance of the aircraft
position faster. This is also true if an undelayed initiation method is used. An
example is to investigate the possibility of using measurements for the elevation
angles to roughly estimate the distance between sources and the aircraft. By do-
ing this, only one measurement is required to initialise a landmark if the altitude
is known. Furthermore, a separate filter for landmarks could be implemented to
increase source estimation accuracy before they are integrated in the filter for the
aircraft position. However, this would also delay the initialisation process. The
benefits of such an approach is that bad initial estimates can be improved with-
out affecting the aircraft state. Currently this does not happen since the outlier
rejection classifies their measurements as outliers, meaning that their position
estimate remain unchanged since no measurements comes through.

Regarding the filter consistency, the ANEES showed that the estimated covari-
ance does not match the actual variance of the estimation error in all cases. Thus,
further investigation is needed in order to be able to fully trust the covariance
provided by the filter.

To save memory in the aircraft, a limitation of the number of states saved in
the filter could be implemented. In a real application, it is unnecessary to save
sources not used for a long time or which have low certainties. In [26], reducing
the map is proven to significantly increase the computational efficiency while the
statistical consistency and error in estimated vehicle position are not significantly
compromised.

The minimum distance to sources can also be further investigated since the value
of 1 km as used in this thesis was chosen without a concrete analysis. One pos-
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sibility could be to have a minimum value depending on the uncertainty of each
individual source. This is an important parameter since without a minimum, it
was discovered that sources could be initiated on the wrong side of the aircraft
which caused significant problems. Using a maximum distance could also be in-
vestigated to see if the performance is affected, as the localisation error seem to
linearly increase with the distance to the sources.
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