
Comparative Analysis of the Inverse
Kinematics of a 6-DOF Manipula-
tor

A Comparative Study of Inverse Kinematics for the 6-DOF Saab Seaeye
eM1-7 Manipulator with Non-Conventional Wrist Configuration

Master Thesis, Spring 2023

Anton Larsson
Oskar Grönlund

ISRN: LiTH-ISY-EX–23/5597–SE

Supervisor: Luca Claude Gino Lebon, ISY
Examiner: Svante Gunnarsson, ISY

External Supervisor: Gert Johansson, Saab Dynamics

Linköping University
Division of Automatic Control
Department of Electrical Engineering
SE-581 83 Linköping, Sweden

Upphovsrätt
Detta dokument hålls tillgängligt på Internet - eller dess framtida ersättare - under 25 år från pub-
liceringsdatum under förutsättning att inga extraordinära omständigheter uppstår.

Tillgång till dokumentet innebär tillstånd för var och en att läsa, ladda ner, skriva ut enstaka kopior
för enskilt bruk och att använda det oförändrat för ickekommersiell forskning och för undervisning.
Överföring av upphovsrätten vid en senare tidpunkt kan inte upphäva detta tillstånd. All annan
användning av dokumentet kräver upphovsmannens medgivande. För att garantera äktheten, säk-
erheten och tillgängligheten finns lösningar av teknisk och administrativ art.

Upphovsmannens ideella rätt innefattar rätt att bli nämnd som upphovsman i den omfattning som
god sed kräver vid användning av dokumentet på ovan beskrivna sätt samt skydd mot att doku-
mentet ändras eller presenteras i sådan form eller i sådant sammanhang som är kränkande för
upphovsmannens litterära eller konstnärliga anseende eller egenart. För ytterligare information om
Linköping University Electronic Press se förlagets hemsida http://www.ep.liu.se/.

Copyright
The publishers will keep this document online on the Internet - or its possible replacement - for a
period of 25 years starting from the date of publication barring exceptional circumstances.

The online availability of the document implies permanent permission for anyone to read, download,
or print out single copies for his/hers own use and to use it unchanged for non-commercial research
and educational purpose. Subsequent transfers of copyright cannot revoke this permission. All other
uses of the document are conditional upon the consent of the copyright owner. The publisher has
taken technical and administrative measures to assure authenticity, security and accessibility.

According to intellectual property law the author has the right to be mentioned when his/her work
is accessed as described above and to be protected against infringement. For additional information
about the Linköping University Electronic Press and its procedures for publication and for assurance
of document integrity, please refer to its www home page: http://www.ep.liu.se/.

©Anton Larsson and Oskar Grönlund

Linköping University
Division of Automatic Control
Department of Electrical Engineering
SE-581 83 Linköping, Sweden

Abstract
This report presents various methods for solving the inverse kinematic problem for a non-conventional
robotic manipulator with 6 degrees of freedom and discusses their respective advantages and disad-
vantages. Numerical methods, such as gradient descent, Gauss-Newton and Levenberg-Marquardt
as well as heuristic methods such as Cyclic Coordinate Descent and Forward and Backward Reaching
Inverse Kinematics are discussed and presented, while the numerical methods are implemented and
tested in simulation. An analytical solution is derived for the Saab Seaeye eM1-7 and implemented
and tested in simulation. The numerical methods are concluded to be easy to implement and derive,
however, lack computational speed and robustness. At the same time, the analytical solution over-
comes the same issues, but will have difficulties in singularities. A simple path planning algorithm
is presented which plans around singular intervals, making it viable to use the analytical solution
without encountering problems with singularities.

ii

Acknowledgement
We would like to express our gratitude to all parties involved in this project. We have encountered
a lot of competent people both at the whole Saab concern as well at Linköping University who have
shared their valuable input with us.

There are however a few persons’ contributions we would like to particularly highlight.

Firstly, we would like to thank our supervisor at Saab Seaeye Joseph Molyneux-Saunders. Your
engagement in the work aided us in understanding the technical aspects of the manipulator, but
also how the results of this work could/should be implemented and used in real-world applications.

Secondly, we would like to thank our examiner Svante Gunnarsson and supervisor Luca Claude
Gino Lebon at Linköping University. The feedback you granted us during this time made us feel
comfortable with the direction of the work which in turn helped us reach our final results.

Lastly, we would like to thank the people who have assisted us at Saab Dynamics. Our manager
Jonas Wallberg for making us feel welcome and helping us get settled in at the company. Jonathan
Olofsson for your engagement as well as your aid in software-related issues that we stumbled upon
during our work.

However, our deepest gratitude goes to our Saab Dynamics supervisor, Gert Johansson. Without
your valuable input and sincerer desire for us to succeed, this project would not have been possible.
Your enthusiasm and positive energy have motivated us to put extra effort into the work which
ensured a great final result.

June 25, 2023
Anton Larsson & Oskar Grönlund

iii

Nomenclature
Abbreviations

AUV Autonomous Underwater Vehicle

CCD Cyclic Coordinate Descent

DH Denavit-Hartenberg

DHP Denavit-Hartenberg Parameters

DLS Damped Least Square

DOF Degrees of Freedom

FABRIK Forward and Backward Reaching Inverse Kinematics

HW Hardware

IK Inverse Kinematics

RHR Right Hand Rule

ROS Robot Operating System

ROV Remotely Operated Vehicle

SE(3) Special Euclidean Group

SIM Simulation

Miscellaneous

Base Frame Frame of the manipulator base

Docker Platform that allows applications to be packaged and run in isolated environ-
ments.

Gazebo 3D simulator for robotics

Pose Position and orientation of an object/frame

RV iz 3D visualizer for ROS

Tool Frame Frame of end tool

iv

Contents
1 Introduction 1

1.1 Background . 1
1.2 Problem Description . 2
1.3 Manipulator Descriptions . 2
1.4 System Architecture . 3

2 Related Work 5

3 Method 6
3.1 Mathematical Model . 6
3.2 ROS and MoveIt Implementation . 6
3.3 Path-Planning . 7

4 Theory 8
4.1 Coordinate Frames & Transforms . 8

4.1.1 Rotation Matrices . 8
4.1.2 Translation Matrices . 9
4.1.3 Homogeneous Transformation . 9

4.2 Singularities and Workspace Limitations . 10

5 System Model 12
5.1 Kinematic Representation . 12
5.2 Denavit-Hartenberg Convention . 13

5.2.1 Assignment of the Joint Coordinate Frames 13
5.2.2 Finding the DH-Parameters . 15
5.2.3 Transformation Matrices . 16

5.3 Numerical Approximation via the Jacobian . 17

6 Numerical Concept 19
6.1 Dependence on the Jacobian Inverse . 21
6.2 Gradient Descent . 21

6.2.1 Design Parameter Selection . 23
6.3 Gauss-Newton . 23
6.4 Levenberg-Marquardt . 25

6.4.1 Design Parameter Selection . 26
6.5 Other solutions . 27

7 Analytical Concept 30
7.1 Existence of Analytical Solution & Piepers Theorem 30
7.2 Finding the Analytical Solution . 31
7.3 Sub-Problem Solutions . 31

7.3.1 SP1: Global z-Axis Rotation . 31
7.3.2 SP2: 3R-Parallel Manipulator . 32
7.3.3 SP3: Tool-frame orientation . 35

7.4 Choosing Solution . 36

v

8 Singularity Free Path Generation 37
8.1 Joint-Space . 37
8.2 Cartesian-Space . 37
8.3 Implementation . 38

9 Results 40
9.1 Numerical Inverse Kinematics . 40

9.1.1 Tests on different end-effector poses . 40
9.2 Analytical Inverse Kinematics . 43
9.3 Further Validations . 45

9.3.1 Calculation Times . 46
9.3.2 MoveIT . 47

10 Analysis 49
10.1 Inverse Kinematic Solutions . 49

10.1.1 Gradient Descent Method . 49
10.1.2 Gauss-Newton Method . 50
10.1.3 Levenberg-Marquardt Method . 51
10.1.4 Analytical Method . 51
10.1.5 Path Generation . 52

10.2 MoveIt . 53

11 Conclusions 54

Appendices 58

A Test Poses for Benchmarking 58

1 Introduction
The introductory section of this report serves to provide a comprehensive foundation for the reader
to understand the context of the research presented in this thesis. This section will begin by offering
an overview of the field of robotic manipulators.

Subsequently, a descriptive analysis of the problem this thesis addresses will be presented. The pur-
pose of this section is to provide a clear and thorough understanding of the problem being addressed
and to set the stage for the subsequent sections that will present the proposed solution and the
results of the research.

Lastly, the objective of the report is briefly addressed so that it is made clear what the main purpose
of the proposed work is, as well as an overview of the robotic manipulator’s current state.

1.1 Background
Underwater sea operations and maintenance work are essential for a variety of industries, including
oil and gas, renewable energy and construction. However, such operations can be treacherous and
potentially hazardous. Traditionally, the method of carrying out such operations has been to use
divers equipped with all necessary equipment. This method poses a lot of dangers as the diver must
endure and navigate through rough conditions, such as strong underwater currents, low visibility,
extreme pressures and dangerous surroundings. Taking this into account means that divers some-
times may risk their lives for the sake of carrying out maintenance work.

However, due to the novel development of remotely operated vehicles (ROVs) and autonomous un-
derwater vehicles (AUVs), these operations can often be carried out in a much safer and more efficient
way, effectively reducing the risk associated with underwater operations. However, entirely using
an ROV or AUV will oftentimes not be enough as it will require a robotic manipulator for carrying
tools and equipment. These tools are often specially designed for the task at hand, which can be
valve turning, bolt tightening, welding and pipe cutting, which in turn requires the manipulator
to be equipped with multiple degrees of freedom (DOF). A manipulator is often controlled by an
operator above sea level and there exist multiple methods of controlling the manipulator.

The subject of robotic control is a well-researched subject which involves the whole process of
construction and design of the hardware to the actual control system, which controls the robot’s
movement. A robotic manipulator can consist of multiple joints controlled by actuators, making it
possible for the manipulator to move in space. There exist mainly two approaches for controlling
the manipulator’s movement through space:

• Joint control

• Cartesian control

During joint control, an operator adjusts each joint until the end manipulator is at the desired
pose. A Cartesian-controlled manipulator, however, requires only the manipulator’s reference pose
in Cartesian space while the joints adjust themselves to reach the desired pose. In order for a robotic
arm to calculate each joint’s reference angle to reach this position, the so-called inverse kinematic
problem must be solved.

1

Inverse kinematics can be described as the opposite of forward kinematics, which answers the ques-
tion: What is the end manipulator’s pose, given some defined joint angles? The inverse kinematic
answers the question: given a defined goal pose for the end effector, which joint angles are required
to reach that goal pose? The inverse kinematic problem is a non-linear problem and not an easy
problem to solve, as the complexity increases with the number of joints. It is therefore interesting to
examine how the inverse kinematic problem can be solved for a 6-DOF robotic manipulator. There
are multiple problems that arise when working with inverse kinematics, most prominently perhaps
the fact there may exist multiple solutions, infinitely many solutions (referred to as singularity) and
no appropriate solution at all.

1.2 Problem Description
In this thesis, the main objective is to develop and implement a robust (meaning it should be well-
behaved and generate angles within joint limits, solutions close to the current configuration as well
as not diverge in the proximity of singularities) inverse kinematic control scheme on a robotic ma-
nipulator which is equipped with 6 joints and 6 DOF. The algorithm should be able to control the
manipulator with position control, meaning the input should be a pose and the output joint angles.
Rather than implementing an arbitrary algorithm, this thesis aims to compare different methods and
techniques to find an overall solution that gives a satisfactory behaviour of the manipulator whilst
providing the best computational speed among other comparable methods. Hence, the problem
description of the master thesis can be summarized by the following questions:

• What different techniques exist for solving the inverse kinematic problem for a 6-DOF robotic
manipulator and how do they ensure numeric stability?

• How do different solving techniques perform in regard to crucial metrics, such as computational
time and stability?

• In the case of an inverse kinematic algorithm, more often than not, there exist multiple solutions
for the joint angles to reach a cartesian coordinate with the end effector. How do you choose
an appropriate solution?

• When a goal point is found, the manipulator needs to follow a certain path to move from the
initial state to the desired goal state. How can a feasible path be generated, with respect to
singularities and computational time?

The main objective of the thesis is to develop a functioning algorithm for solving the inverse kinematic
problem, making it possible to control the 6-DOF robotic manipulator in the Cartesian space with
either velocity control or position control.

1.3 Manipulator Descriptions
The robotic manipulator on which this work is based is the all-electric Saab Seaeye eM1-7, a 6-DOF
robotic manipulator intended for underwater usage. Although the eM1-7 is designed to be capa-
ble of a variety of different uses, a majority of the current intended tasks include maintenance on
offshore oil and gas wells, while mounted to an underwater ROV. This maintenance is not seldom
carried out on a depth of up to 3000 metres and includes delicate work on for example manifolds,

2

Christmas trees1 and wellheads. This intended work puts an extremely high priority on the repeata-
bility and robustness of the control algorithm, as a mishap could result in catastrophic consequences.

Contrary to its competitors, the manipulator consists only of electric actuators, instead of hydraulic
or pneumatic actuators, which is considered industry standard. The main idea for this is to achieve
more accurate control and versatility as well as decrease oil leakages (which otherwise may lower
the performance of the actuator as well as result in hefty fines for the company).

As underwater currents and other phenomena have an effect on the ROV’s position, the manipulator
should also be able to handle an unstable (moving) base reference, however, that will be beyond the
scope of this thesis. Further on, the manipulator end tip should be able to handle a jaw, making it
critical to be able to control not only the end position of the tool frame but also the orientation of
the tool frame, this will be referred to as pose.

The manipulator consists of three elevation joints, two azimuth joints as well a wrist rotate joint. In
a zero joint angle configuration, meaning that the encoders of each joint are set to zero, an elevation
joint adjusts the upward movement of the manipulator (also referred to as pitch), an azimuth joint
rotates the manipulator around in the ground frame (yaw) and the wrist joint rotate the tool frame
itself (roll).

The design of the eM1-7 does not comply with the industry standard, described in [1], which means
that the so-called "Pieper’s solution" is not applicable when deriving the analytical solution for the
inverse kinematic. This could result in numerical solutions being the only suitable solution for the
inverse kinematic, making it even more relevant to investigate the suitability of those.

The main part of the project will be carried out, and validated/evaluated in a simulator which
realizes a simulation as close to real-world scenarios as possible. The system architecture will briefly
be described in the section below

1.4 System Architecture
The framework for controlling the manipulator is based on ROS Noetic, providing a fast and robust
interface for development with C++ and Python code, as well as a CAN interface for controlling
the manipulator’s joints. The system architecture is structured in such a way it should be possible
to control either a simulation model or the hardware model. The simulation is visualized in Gazebo
and the CAN interface is simulated with a Linux kernel module "vcan" which can be read about here
[2]. Furthermore, in order to control the manipulator in simulation, a GUI is provided and needs to
be run on a separate PC connected via an Ethernet cable to the simulator computer. However, the
GUI only enables control of specific joint positions and not end effector control in cartesian space,
making it difficult to control the manipulator.

1A Christmas tree is a set of valves, spools and other mechanisms to control the flow from an oil well

3

Figure 1: Caption

This architecture enables fast implementation and testing. If executed correctly, the system should
be able to control the hardware without any major changes to the design and implementation of
code and frameworks.

4

2 Related Work
This section provides an overview of existing research relevant to the current study. As previously
stated, one key factor of this report is the evaluation and implementation of different algorithms
that ensure safe travelling in the workspace without encountering any issues with regard to singu-
larities (or rather dampening the impacts of singularities). On this subject, there is a lot of research
work done, hence why it is key to compare the algorithms before full-scale implementation is started.

A lot of research dates back to the late 20th century about this matter and is based on numerical
methods. What is often stated is however that numerical methods do not prove to be fast enough,
which has made analytical methods a far more popular choice for solving the inverse kinematic prob-
lem. The drawback of an analytical solution, proven historically, is that it lacks a general solution
as the closed-form expression is based on the design of the robotic manipulator. As an analytical
solution (closed-form expression), historically has been proven to be faster than numerical methods,
limited research into the use of numerical methods for real-time robotic systems has been published.
Furthermore, that means that there may be no analytical solution possible if the manipulator is
designed poorly.

The means to solve the Jacobian, which is needed in numerical methods, involves classic optimiza-
tion such as Gradient Descent, Gauss-Newton and Levenberg-Marquardt. These methods are for
non-real-time systems, as well as for graphical animation researched and established. They have
proven to be capable of handling solutions in singularities but may lack solutions in the neighbour-
hood of singularities.

There also exist multiple heuristic methods which are favourable when working in computer anima-
tions where the accuracy of the manipulator is not deemed as important as the visuals. This is also
a well-researched subject, but the implementation of these methods into real-time manipulators is
not as well established.

Further on there exists multiple ways of computing and generating paths between two different
poses. These methods often use interpolation between the poses, but generally do not take singular
regions (which can be problematic) into account.

5

3 Method
This section provides a detailed description of the process and steps involved in finding the inverse
kinematic control and subsequently how the implementation of said control scheme will be actualized.

The main aim of this chapter is to present a clear and concise explanation of the methodology and to
provide the reader with a comprehensive understanding of the considerations that must be taken into
account when implementing the solution. However, before the formulation of the inverse kinematic
is derived, extensive research in the field of robotics is conducted. This includes well-established the-
ories as well as more modern theories and research on the subject. Additionally, extensive research
into the functionalities of Docker, ROS and MoveIt is conducted in order to realize the potential of
these tools.

As the main part of the manipulator currently communicates over ROS, the final algorithms must
be written in C++ and be able to be implemented by the tools presented. Furthermore, the MoveIt
platform [3] is a platform developed for ROS, containing a lot of functionalities for robotic control.
For this thesis, however, the algorithms developed will be included as plugins, making it possible to
analyse the performance of the written algorithms in an otherwise functioning environment. This
also implies that the "Topside" GUI and "Armcontroller" will be bypassed in the initial phase.

3.1 Mathematical Model
This part focuses on defining the inverse kinematics of the robotic manipulator. The manipulator’s
geometric properties act as a basis when defining the DHP:s (Denavit-Hartenberg parameters) for
the manipulator, and subsequently also the frame transformations and Jacobian. This will mainly be
based on the theory provided by John J. Craig in [4] and sets the framework for the forthcoming work.
The code is initially written in Python as a proof of work and will, if proven functioning be translated
into C++. The computed joint angles are at this stage compared to a simulated manipulator
created with Peter Corke’s "Robotics Toolbox" for Matlab, which not only presents a mathematical
comparison but also a visual interpretation which can be used to validate the correctness.

3.2 ROS and MoveIt Implementation
Initially, at this step, a Docker image and container will need to be defined. Docker can be compared
to a virtual machine, but presents multiple advantages. Docker containers share reassures with the
host machine and the images (of which the containers are run) are much more easily exported, which
means that other users only will need to install the docker image in order to run the simulation. The
docker container should contain all software needed for the simulation to run smoothly. When the
container is functioning, the simulation environment will need to be set up using ROS Noetic and
the files provided by Saab Seaeye. These parts should make it possible to control the manipulator
through joint control, either with a provided GUI or publishing topics for desired joint angles.

At this step, MoveIt will be configured and installed, making it possible to control the manipulator
in cartesian space with the aid of MoveIt’s pre-configured inverse kinematics solvers. The solvers
we developed should be implemented as plugins, thereby the system will be structured according to
Figure 2. Notice that MoveIt will provide the inverse kinematics plugin with the latest joint angles,
making it possible to use that information as an initial guess for the numerical algorithms. MoveIt
will additionally provide specific joint velocity for the joint’s movement.

6

Figure 2: Simplified view of how the simulations will be configured. Green indicates developed by
us and blue indicates MoveIt packages, while orange is simulation. Additionally, this architecture is
all encapsulated inside the Docker container.

At this stage, the MoveIt package is configured and set up. MoveIt provides an interface which
should make it possible to interact with the manipulator using a pre-defined inverse kinematics
algorithm. When this setup is complete, the developed algorithms are implemented as plugins to
MoveIt. They are then validated in simulation.

3.3 Path-Planning
The path planning will be developed for two reasons. Firstly, it makes it possible to control the
manipulator without using MoveIt. Secondly, it opens up possibilities for creating a singular avoiding
path, which may increase the convergence for the inverse kinematics algorithms. Initial testing of
this will be carried out in Python and in Peter Corke’s "Robotics Toolbox" for Matlab, making it
possible to validate the algorithm.

7

4 Theory
In this section, theoretical descriptions of some subjects are gathered. These are the subjects which
are deemed crucial for understanding the more advanced concepts later on in the report.

4.1 Coordinate Frames & Transforms
One returning aspect when discussing kinematic relations (not limited to manipulators) is coordinate
frames and how one goes about describing some coordinate in another frame. This process can also
be seen as finding the transformation between two different coordinate systems.

More precisely, frame transformations refer to the process of mapping vectors or points from one
coordinate system to another systematically. Frame transformations involve the use of linear trans-
formations, represented by matrices, to describe the orientation and position of one coordinate
system relative to another. The matrices used to perform these transformations are known as rota-
tion matrices and translation matrices, which then can be neatly described together within what is
called a homogeneous transformation matrix.

4.1.1 Rotation Matrices

There exist multiple methods of representing the orientation of a body in space, all with differ-
ent shortcomings and advantages. This includes Euler angles, quaternions and rotational matrices,
which mainly will be used in this work.

A rotation matrix, represented by a 3×3 matrix, defines the linear transformation that maps vectors
from one coordinate system to another. i.e. a rotational matrix describes how a frame is oriented
relative to a reference frame. Let’s call the B, the rotation matrix describing how frame B is oriented
relative to frame A would be denoted A

BR.

In turn, the rotational matrix is constructed by three separate rotations around each individual axis,
the angles of which the rotational matrices represent can be seen in Figure 3.

A
BR = A

BRx
A
BRy

A
BRz (1)

A
BRx =

1 0 0
0 cos θx − sin θx

0 sin θx cos θx

 (2)

A
BRy =

 cos θy 0 sin θy

0 1 0
− sin θy 0 cos θy

 (3)

A
BRz =

cos θz − sin θz 0
sin θz cos θz 0

0 0 1

 (4)

The resulting matrix columns can each be interpreted as a representation of each of the axes relative
to the origin frame, i.e. the first row of the matrix denotes the orientation of the x-axis in frame
B relative to frame A and so forth. As described in [5], it is known that due to the cosine rule the
angle between the old and new x-axes (and similarly for y and z) is in fact the diagonal element

8

corresponding to the axis (for x it’s the first, y the second and for z the third element of the diagonal).

Effectively, this results in a simple way of representing a vector BP expressed in the coordinate
system of B. Multiplying the vector AP with the rotational matrix A

BR, results in:

AP =A
B R BP (5)

Figure 3: Visual representation of the rotation around each axis

4.1.2 Translation Matrices

By the previously defined rotational matrices, rotational relations between two different coordinate
frames can be described. If the transformation of a coordinate frame includes some sort of displace-
ment instead one wants to use what is called a translational matrix.

Aa explained by John J. Craig [6] translational matrix describes the displacement of frame A relative
to frame B when their orientation coincides, but their respective origins do not. In order to describe
this relation, a vector AP1 is used. It describes how the origin of B is positioned relative to the
origin of A and can be represented by a 3×1 vector.

Let’s denote a vector BP , expressed relative to frame B. Spong and Vidyasagar [4] explain that in
order to represent this vector in the coordinate system of frame A, it is just the case of adding them.

AP = BP + AP1 (6)

4.1.3 Homogeneous Transformation

In the previous two sections, the transformation of a coordinate frame was described when it oc-
curred only as either a displacement or a rotation. In the case of robotic manipulators, the coordinate
transform almost exclusively will need to account for both relative orientation and relative position.
One way to represent a transformation of a complete rigid-body configuration is by using a homoge-
neous transformation matrix representation. According to Kevin M. Lynch and Frank C. Park [7],

9

the set of all real Homogeneous Transformations matrices is called the "Special Euclidean Group"
or SE(3) which these types of transform oftentimes are denoted as.

Essentially, the SE(3)-transform is a combination of the previously described rotational and trans-
lational transforms, and it can be denoted in the following manner:

T =
[
R P
0 1

]
=

r11 r12 r13 px

r21 r22 r23 py

r31 r32 r33 pz

0 0 0 1

 (7)

The bottom row of the matrix is essentially only included to make the matrix square and simplify
matrix operations.

When working with the SE(3)-transforms to properly describe the manipulator, it usually exists
multiple transforms in sequence within a kinematic chain, to properly describe these relations one can
use the fact that the SE(3)-transforms works in the same way as rotational matrices in multiplication,
i.e.:

0
N T =

N∏
i=1

i−1
i T (8)

4.2 Singularities and Workspace Limitations
When working with robotic manipulators, it is crucial to understand singularities within the manip-
ulator configuration space and how these affect the resulting movements of the manipulator.

Essentially, a robotic manipulator is in a singular configuration (or point) when the configuration
limits the possible movements of the arm, i.e. there is a loss of degrees of freedom. In a practical
sense, there are tell-tales (when studying the real manipulator movement) of when a singularity has
occurred: examples are when the manipulator appears to be unable to move in a given direction or
when some joints move extremely quick.

Where these singular points are located within the workspace is heavily dependent on the configu-
ration of the manipulator. However, there is a common way of categorizing singularities within the
workspace, mainly dividing between what is called boundary and interior singularities.

A boundary singularity can essentially be seen in Figure 4 where the manipulator is stretched out to
its fullest. This singularity is characterized by an impairment of the end effector’s movement. The
main occurrence of these singularities is elbow singularities. Essentially the manipulator will stretch
the arm to its maximum reach, i.e. to the workspace boundary. This point can be explained as
the transition between two configurations yielding the same end-effector pose, more precisely elbow-
up and elbow-down configurations2, within the singular point these configurations will look identical.

Interior singularities, often denoted as wrist singularities and shoulder singularities, are categorized
as when movement is impaired whilst the endpoint of the manipulator is located within the boundary
of the manipulator workspace.

2Elbow-up/Elbow-down configuration is exactly like it sounds, the elbow joint of the manipulator can be either in
an upright or downright position whilst finding the same final solution for the end-effector.

10

Figure 4: Illustration of the workspace for a 2 DOF robotic manipulator in 2D space

A more mathematical description of the singularities that occurs for the robotic manipulator gets
linearly dependent rows, i.e. the rank of the Jacobian drops below the #DOF for the manipulator,
seen in Equation (9).

rank J < #DOF (9)

This means that the velocities of the robot’s joints cannot be uniquely determined from the velocity
of the end-effector. In other words, the Jacobian matrix loses one or more degrees of freedom at the
singularity. As described by M. W. Spong and M. Vidyasagar in [4], a common practice to find out
whether the manipulator is in a singular configuration is to study the determinant of the Jacobian.
If a singular configuration is present, the determinant of the Jacobian will result in the value zero,
this implies that the Jacobian matrix is singular which in turn implies that the manipulator is in a
singular configuration.

det(J) = 0 (10)

11

5 System Model
This section includes a kinematic representation of the manipulator, an introduction to the Denavit-
Hartenberg convention as well as a numerical approximation of the system.

5.1 Kinematic Representation
The representation of a robotic manipulator can be described in a multitude of ways. For example,
it can be described as explained in the introduction via its joint configuration or with specific names
that describe the kinematic relations in the manipulator (ex. Elbow Manipulator). For the purpose
of this report, it is most beneficial to study the kinematics representation of the manipulator, since
this is a necessary foundation for ultimately deriving the inverse kinematics. There is a multitude
of ways in which a manipulators kinematics can be represented, hence it is of high importance to
understand what’s required from a kinematic model to be deemed satisfactory.

In the paper [8] by Ruibo He et al, three basic requirements are defined that a kinematic-parameter
identification should meet:

• Completeness: A complete model must have enough parameters to describe any possible de-
viation of the actual kinematic parameters from the nominal values.

• Continuity: Small changes in the geometric structure of the robot must correspond to small
changes in the kinematic parameters. In mathematics, the model is a continuous function of
the kinematic parameters.

• Minimality: The kinematic model must include only a minimal number of parameters. The
error model for the kinematic calibration should not have redundant parameters.

There are a plethora of proposed models that satisfy these requirements, some examples are Hay-
ati model[9], Veitschegger and Wu’s model[10] and the "Complete and Parametrically Continuous"
(CPC) model[11].

While these requirements (and the subsequent models) present a good way to evaluate a kinematic
representation it slightly overlooks discrete alternatives (since continuity is required), which can
significantly lower the complexity of the representation whilst still providing satisfactory results.
Actually, the most widely used kinematic representation of manipulators, the Denavit-Hartenberg
convention, is not continuous but does satisfy the requirements of completeness and minimality.

Denavit-Hartenberg convention may not present a continuous way to describe the kinematics, but
it is advantageous in other ways, namely:

• Simplicity: Derivation of the DH parameter method is simpler than its counterparts.

• Computational Weight: Due to the discrete nature of the DH-parameter method its calcu-
lation process is simpler, which in turn leads to less computational effort if used in iterative
optimization algorithms.

• Versatility: The method is highly versatile and can disregard the structural order and com-
plexity of the robot.

12

• Well-documented: Due to the fact that DH-parameterisation is the most used method it has
been vigorously tested and documented.

For this master thesis, the model that was chosen was the Denavit-Hartenberg convention. The
method was chosen based on the aim of this master thesis, since the thesis is looking to find inverse
kinematics solutions both numerically and analytically it is of great benefit that the kinematics
model is computational "light". Furthermore, seeing as the DH convention is widely used, it makes
for a more trustworthy end result which is crucial if the algorithms were to be implemented on
hardware in the future.

For a more in-depth description of the method one can refer to most introductory literature on
robotics, some examples are the textbooks written by John J. Craig [6] and Saeed B. Niku [12].

5.2 Denavit-Hartenberg Convention
This subsection will describe in detail how the DH-Convention can be used to construct a kinematic
representation of the manipulator. This procedure is done in several steps, which will be presented
in the order in which they are to be executed.

5.2.1 Assignment of the Joint Coordinate Frames

The initial part of deriving the mathematical description of the manipulator according to DH con-
vention is to define the relevant coordinate frames for the manipulator.

As described by B. Spong and Vidyasagar [4] a robotic manipulator consists of multiple joints and
links in sequence. The joints allow for rotational movement around the joint axis. As a manipulator
consists of multiple joints and links in sequence, we need to describe their relative movement with
the help of frame transformations. This means that one frame for each link must be defined (referred
to as link frames). Assigning these frames to the links and denoting them can be done in multiple
ways, however in order to comply with the DH convention, we will have to follow a specific set of rules.

The first frame, more commonly known as the base frame, is usually designated as the reference
frame and is placed at the base of the mechanism (hence the name) as seen in Figure 5. Every
following frame i should thereafter be constructed according to the following principles described by
B. Spong and Vidyasagar [4]:

• The Zi-axis should be placed in the positive direction of the joint rotation decided by the
rotational RHR (right-hand rule), which states that if the thumb of the right-hand points
along the direction of the line of action, the fingers curl in the direction of the positive axis.

• The Xi-axis should be defined along the common normal of Zi and Zi−1, pointing away from
the previous frame. Should both axis be parallel, there is an infinite amount of common normals
between Zi and Zi−1, thus the placement of Xi is arbitrarily as long as it is perpendicular to
both Zi and Zi−1.

• The Yi-axis should complete the frame in accordance with the RHR, which states that if the
thumb of the right-hand points along the direction of the X-axis, the index finger points along
the direction of the Y-axis and the middle finger points along the Z-axis. Since the X-, and
Z-axis are already defined, this will yield the direction of the Y-axis.

13

• If the following rules are satisfied, the placement of the frame origin should be elementary.

Figure 5: Illustration of how the base frame is placed on a generic manipulator.

This method of constructing the frames within the DH-Convention scope is valid in most cases,
there is however a special case which often presents itself, which is when two sequential rotational
axes intersect one another. In this case, the previously mentioned rules do not apply. When defin-
ing a frame for intersecting rotational axes, we instead want to take the following principles into
consideration which are presented in B. Spong and Vidyasagar [4]:

• The Zi-axis should be defined as previously mentioned, which creates an intersection with the
Zi−1 axis.

• The Xi-axis should be defined as a normal to the plane containing the Zi and Zi−1 axes.
This presents multiple options since the axis can be defined as normal to the plane with two
different directions. Which direction is chosen depends on the situation (i.e. which direction
leads to simpler calculations moving forward for the specific manipulator type), although both
are valid.

• The Yi-axis should complete the frame in accordance with the RHR.

• The origin of this frame should be placed in the origin of the last frame, this placement is
important to enable satisfy derivation of the DHP moving forward.

Lastly, at the end of a robotic manipulator, it is presumed that we will have some sort of tool
attached, for example, a gripper. It is common practice that the origin of the last frame (oftentimes
recognized as the tool frame) is placed in the centre of the tool, meaning that in the case of a gripper,
it lies in the centre of the "fingers" of the gripper. Of course, this will differ slightly depending on
the application (i.e. which tool is used).

In accordance with the described convention, the frames of the robotic manipulator can be seen in
Figure 6.

14

Figure 6: Illustration of how the frames were placed for the robotic manipulator

5.2.2 Finding the DH-Parameters

By making the assumption that the frame definition in the previous section was executed properly,
then the DH-Convention provides an intricate way to describe the kinematics of the robot links by
the use of four parameters.

This is one of the major advantages of the DH convention, that it is possible to describe the full ori-
entation of each manipulator link with fewer parameters than what one would find in other common
conventions. In the standard convention, orientation is represented as a displacement vector which
includes three components (x, y, z) and a rotational matrix including the three Euler angles. This
is equivalent since we have a considerable amount of freedom in choosing the origin and coordinate
system of each link frame, even though the frame i still needs to be rigidly attached to the link i
(this method of choosing the frames was explained in the previous section). Thus, by choosing the
frame and origin in a clever way, the number of parameters needed can be decreased. In turn, this
results in a more compact representation of the manipulator, in the case of 6-DOF manipulators
DH-convention yields only 24 independent variables instead of the 36 independent variables present
in the standard approach. For a full-scale proof of this concept, please refer to the textbook "Robot
Dynamics and Control" [4] by M. W. Spong and M. Vidyasagar.

The four parameters which are present in the DH convention can be described in the following
manner:

• θi = Joint angle from Xi−1 to Xi about Zi−1, referred to as joint variable

• αi = Angle from Zi−1 to Zi about Xi

• ri = Distance between Zi−1 to Xi along Zi

• di = Joint distance, distance between Zi−1 to Xi along Zi−1

In addition to the regular DH-Parameters, a supplementary variable has been added which denotes
the joint-angle offset in the zero-configuration. What this describes is that when a specific joint
angle is applied to the joint, it needs to be reduced by a pre-set angle which is already set in place
to align the robot to its "rest" configuration.

By extract the described parameters, from the previously defined coordinate frames (Figure 6), the
manipulator can be described according to Table 1:

15

i θ [rad] α [rad] r [m] d [m] Offset [rad]
1 θ1 − π

2 r1 0 0
2 θ2 0 r2 0 0
3 θ3 0 r3 0 0
4 θ4

π
2 r4 0 0

5 θ5 - π
2 r5 0 − π

2
6 θ6 0 r6 0 0

Table 1: Table of derived DH-parameters, some parameters not shown due to secrecy

5.2.3 Transformation Matrices

Furthermore, the DH-Convention introduces a direct way of finding the Homogeneous transformation
matrices that describe the kinematic linkages of the manipulator, given that the previously described
steps have been accomplished. By inserting the values for each of the manipulator’s joints into the
matrix shown in Equation (11)3:

i−1
i T =

cθi sθicαi sθisαi ricθi

sθi cθicαi −cθisαi disθi

0 sαi cαi di

0 0 0 1

 (11)

By inserting the DH-parameters (previously denoted in Table 1) the following transformations be-
tween each of the manipulator frames are achieved:

0
1T =

cθ1 0 0 cθ1r1
sθ1 0 cθ1 sθ1r1
0 −1 0 d1
0 0 0 1

 (12)

1
2T =

cθ2 −sθ2 0 cθ2r2
sθ2 cθ2 0 sθ2r2
0 0 1 d2
0 0 0 1

 (13)

2
3T =

cθ3 −sθ3 0 cθ3r3
sθ3 cθ3 0 sθ3r3
0 0 1 d3
0 0 0 1

 (14)

3
4T =

cθ4 0 sθ4 cθ4r4
sθ4 0 −cθ4 sθ4r4
0 1 0 d4
0 0 0 1

 (15)

4
5T =

cθ5 0 −sθ5 cθ5r5
sθ5 0 cθ5 sθ5r5
0 −1 0 d5
0 0 0 1

 (16)

3c = cosine and s = sine

16

5
6T =

cθ6 −sθ6 0 cθ6r6
sθ6 cθ6 0 sθ6r6
0 0 1 d6
0 0 0 1

 (17)

By using the relation between each of the manipulator frames the relation between joint angles and
cartesian positions can be defined via the means of multiplication. The resulting matrix is more
commonly known as the Forward Kinematics.

5.3 Numerical Approximation via the Jacobian
While the forward kinematics equations relate the position of the end-effector to the joint angles,
they do not directly provide information about the velocities of the end-effector and how they are
related to the velocities of the joints. This part is crucial in calculating the inverse kinematics of a
manipulator since by relating the velocities of the end-effector to the velocities of the joints, it real-
izes the possibility to iteratively adjust the joint angles until the desired position and orientation are
achieved (which is the used practice when applying different forms of numerical inverse kinematics).
One way to describe this relation approximately is from the Jacobian.

The Jacobian is a mathematical concept used to analyse the relationship between two sets of vari-
ables. Specifically, it represents the derivative of a vector-valued function with respect to variables
used as inputs. E.g, if you have a function that takes multiple variables as inputs and produces a
vector as output, the Jacobian matrix describes how the elements of the output vector change with
respect to the elements of the input vector. This also means that each element in the Jacobian can
be seen as a partial derivative
The Jacobian can thus be used to find the relation between the velocities of the end-effector and
the velocities of the joints. By taking the partial derivatives of the forward kinematics equations
with respect to the joint angles, the Jacobian matrix describes how small changes in the joint angles
correspond to changes in the position and orientation of the end-effector.

To understand how the Jacobian relates to solving the inverse kinematics in a numerical sense, it is
important to note that the kinematic relations previously derived are of a non-linear nature. Hence,
finding the correct joint-angle configuration from a specific pose of the end-effector essentially con-
sists of finding the solution to a non-linear optimization problem.

Non-linear optimization problems have long been solved via the use of numerical methods. There
exist multiple different numerical methods, but the majority uses Taylor expansions in order to get
a first or second-order system seen in Equation (18).

f(x) = f(a) + f
′
(a)(x − a) + f

′′(a)
2 (x − a)2 + O((x − a)3) (18)

By using the Taylor expansion of a non-linear function, you effectively end up with an approximation
of the function. We will see further that some numerical methods only make use of the first-order
derivative, while some make use of the second-order derivative. In order to derive the general formula
we will for now continue with the first-order system.

f(x) = f(a) + f
′
(a)(x − a) + O((x − a)2) (19)

17

In this context (i.e. non-scalar) and with correct notation, the Taylor expansion would look accord-
ingly:

f(θd) = f(θi) +
(

∂f(θ)
∂θ

)∣∣∣∣
θi

(θd − θi) + O((θd − θi)2) (20)

Where θd denotes the desired state while θi denotes the current state which the linearization is made
around. Solving for (θd − θi) Equation (18) a while excluding the higher order terms one will end
up with:

(θd − θi) =
(

∂f(θ)
∂θ

)−1
∣∣∣∣∣
θi

(f(θd) − f(θi)) (21)

And simplifying the notation yields Equation (22) where the Jacobian Inverse presents itself as the
relation between the joint angles to the end effector pose.

∆θ = J−1(θ)∆X (22)

In the equations, ∆X is the error vector for the desired pose and current pose, while the Jacobian
represents the following matrix:

J =

∂x
∂θ1

. . . ∂x
∂θn

∂y
∂θ1

. . . ∂y
∂θn

∂z
∂θ1

. . . ∂z
∂θn

∂θx

∂θ1
. . . ∂θzx

∂θn
∂θy

∂θ1
. . .

∂θy

∂θn
∂θz

∂θ1
. . . ∂θz

∂θn

(23)

Which (in the field of robotics) can be derived in the following manner:

J =

Ri−1

0
0
1

 × (dn − di−1)

Ri−1

0
0
1

 (24)

In Equation (24) Ri−1 represents the rotational matrix while di−1 and dn represents the current and
final end effector position respectively.

As it proclaims to the linearization it is required to take the inverse of said Jacobian. This action
presents some issues with numerical stability in the case where the Jacobian is non-invertible. This is
true for a Jacobian which describes the relations between cartesian- and joint velocities of a robotic
manipulator when the rank of the Jacobian is less than the degrees of freedom (rank J < #DOFs).
This is known as a singularity (The effect of singularities in the field of robotic manipulators is
explained more in-depth previously in Section 4.2).

18

6 Numerical Concept
The numerical concepts all strive to minimize the error between the target pose and the current
pose according to Equation (25). This is achieved by iterating through configurations of joint angles
in a controlled manner. The iterating process as well as the method of approximating the Jacobian
inverse is what sets the different algorithms apart. The problems with the Jacobian inverse are
explained in greater detail in Section 5.3 and the different methods of computing the Jacobian
inverse can be seen in the coming sections.

arg min
θ

||Tend − H(θ)||

subject to θ ≥ θmin,

θ ≤ θmax

(25)

Where Tend is the end effector’s desired pose and H(θ) is the calculated pose, given current joint
angles, θmin and θmax are the minimum and maximum allowed joint angles for each joint respectively

The iterative process is in general the same for all three analysed methods. Figure 7 presents the
process by which the algorithm iterates through poses. The yellow coloured boxes indicate in which
steps the different algorithms differ from each other.

19

Figure 7: Flowchart for a numerical algorithm

The steps can be summarized accordingly:

1. The goal pose is initialized by the user input. This can for example be a specific pose in space
or a pose in a trajectory. The start pose can essentially be chosen arbitrarily, however, it is
generally speaking often set as the last known pose for the end effector.

2. The current end-effector pose is calculated with the forward kinematics.

3. The Jacobian is calculated according to Equation (24).

4. The inverse, or rather an approximation of the Jacobian inverse, is calculated depending on
which algorithm/method is used.

5. New joint angles are calculated according to the specific method.

6. The joints are adjusted to the maximum/minimum allowed value if they are above/under their
limits

7. The temporary pose for the calculated joint angles is calculated.

20

8. The error pose is calculated and the norm of it is used as the absolute error.

9. A check whether the calculated pose is close enough to the goal pose is done.

(a) If the pose is not close enough to the goal pose, the Jacobian is again calculated for the
new joint angles and the process repeats

(b) If the current pose is deemed close enough to the goal pose, the algorithm is finished.

Additionally, it should be noted that all numerical methods are prone to get stuck in local optima,
which makes them sensitive to their initial guesses of joint angle configurations. This means that
one has to be certain to specify a good initial guess in order to gather a satisfactory result.

6.1 Dependence on the Jacobian Inverse
As mentioned in Section 5.3, the Jacobian presents a way to relate the velocities in the joint space
to the cartesian space. Although, the problem is not that simple since the manipulator may find
itself in singular configurations in many regions within the valid workspace. Singular configurations
result in the Jacobian inverse becoming numerically unstable (according to Section 5.3), thus a way
to approximate the Jacobian inverse is required to have a feasible solution to the numerical methods.
There are two approaches which often are used to approximate the inverse of the Jacobian which
are the Moore-Penrose pseudo inverse and the Jacobian Transpose.

• Jacobian Pseudo Inverse
∆θ = J†∆X (26)

• Jacobian Transpose
∆θ = JT ∆X (27)

6.2 Gradient Descent
The gradient descent method (in robotics, often referred to as Jacobian transpose method) is a nu-
merical approach to solve a set of n non-linear algebraic equations with n unknowns. It was used
in order to solve the inverse kinematic problem in 1984 by both Balestrio [13] and Wolovich [14].
The basis for this method lies in the original optimization algorithm gradient descent but with some
clever adjustments.

The gradient descent method only makes use of the first order derivative of the Taylor expansion
(see Equation (20)) and can, in general, be formulated according to Equation (28), where n is the
n-th iteration, x is the optimization variable, ∇f(xn) the gradient of the optimization function and
α the learning rate (which is a tune-able design parameter for the gradient descent algorithm).

xn+1 = xn − α∇f(xn) (28)

In order to calculate the gradient, we can make use of the Jacobian transpose, JT and the residual,
r(x) (can also be denoted as f(x) and also referred to as the optimization function) according to
Equation (29). This is achieved by realising that the Jacobian transpose results in a matrix whose
columns correspond to the gradient vectors to each residual with respect to the parameters. By
multiplying the Jacobian transpose with the residual we essentially end up with the gradient vector.

21

xn+1 = xn − αJT r(x) (29)

The gradient descent method solves the inverse kinematic problem by iteratively adjusting the joint
angles in the direction of decreasing error between the desired and actual end-effector positions.
This is illustrated in Figure 8 in a case of only one joint. To perform this, the method makes use of
the transpose of the Jacobian matrix (hence the name) to map the error between actual and desired
end-effector positions into the joint-angle space. For the purpose of inverse kinematics, xn and xn+1
would denote joint angles, while the residual, r(x) would denote an error vector for the current pose
and the desired pose.

Figure 8: Illustration of gradient descent in a 2D case, i.e. with only one joint.

The pseudo-code for the Jacobian transpose method is provided in Algorithm 1.

Algorithm 1 Gradient Descent Method
goal_pose = y
q = current joint angles
step_size = desired step size
tolerance = set tolerance
e = goal_pose - current_pose
while norm(e) >= tolerance do

J = Jacobian(q) ▷ Compute Jacobian with method
J_T = J.transpose() ▷ Compute Jacobian transpose
gradient = alpha * J_T * e
q += step_size * gradient
q = check_joint_limits(q) ▷ Adjust to max/min value if above/under limit
e = goal_pose - ForwardKinematics(q) ▷ Compute pose with FK method

end while

22

6.2.1 Design Parameter Selection

In Equation (28) the learning rate (α) can be seen, The learning rate is a design parameter in the
gradient descent optimization algorithm that determines the size of the step taken in the direction
of the steepest descent during each iteration. If the learning rate is too high, the algorithm may
overshoot the optimal joint angles and fail to converge, while if it is too low, the algorithm may take
too long to converge to the optimal joint angles.

Common practice is to tune the learning rate of the algorithm through trial- and error, thus several
tests were run to find out a constant learning rate that yields a well-behaved and fast solver. To find
the best-suited learning rate for the algorithm tests were run for three different end-effector poses,
ranging from small to large distances from the starting angle configuration in the Cartesian space
(do note that the increasing Euclidean distances of the poses in Cartesian space do not imply that
the magnitude of the distance will be in the same order within the joint-space). For each value of
the learning rate, the test was executed five times to get the mean value of the calculation time.
The results are presented in Table 2.

α 0.5 1 1.5 2 2.5 3 3.5 4 4.5
Test 1 504 291 216 169 137 108 101 50 N.C.
Test 2 568 318 244 199 160 143 103 N.C. N.C.
Test 3 153 56 38 25 26 16 14 16 22

Table 2: Table over the computational time in milliseconds for different learning-rate values (N.C.
stands for no convergence)

Of the tested learning-rate values it could be concluded that a rate of 3.5 will yield the best perfor-
mance. In the executed tests it was shown that a learning rate which exceeds a value of four will lead
(in some cases) to the algorithm not converging to a solution within a set amount of iterations (5000
in this case). By studying the behaviour of the algorithm further, by plotting the partial responses
at each iteration, it can be seen that the non-convergence occurs due to oscillations in the algorithm
when the learning rate is too high (which coincides with the learning-rate description above).

6.3 Gauss-Newton
The Gauss-Newton algorithm is often used in optimization for finding the optimal value of a function
by finding the root of its derivative. As with the gradient descent method, Gauss-Newton starts
off by defining an initial guess xn. This is seen as the first guess of the optimal value, it then
makes use of the formula presented in Equation (30) to find a better estimate of the optimal value,
denoted xn+1. Notice however that the formula presented is for the scalar case. The idea in the
presented formula is to divide the gradient of xn with the curvature at the same point. This means
we are making use of the second-order derivative, which means this algorithm makes use of more
information than the gradient descent.

xn+1 = xn − f
′(xn)

f ′′(xn) (30)

This essentially means we are using a second-order Taylor expansion when linearizing the system.
The Taylor expansion for this system is described here:

23

f(θd) = f(θi) +
(

∂f(θ)
∂θ

)∣∣∣∣
θi

(θd − θi) + 1
2!

(
∂2f(θ)

∂θ2

)∣∣∣∣
θi

(θd − θi)2 + O((θd − θi)3) (31)

The second-order derivative described in Equation (30) (or rather second-order partial derivative for
this multi-dimensional case) is called the Hessian matrix. In the Gauss-Newton method, the Hessian
matrix is used to approximate the curvature of the cost function at the current joint configuration.
The gradient vector is used to determine the direction of the steepest descent. The Gauss-Newton
method is closely related to the Newton-Raphson method, with the biggest difference in how the
Hessian is computed. In the Newton-Raphson method, the Hessian is the exact second-order partial
derivative, while in Gauss-Newton the Hessian is approximated using the Jacobian matrix. This
approximation is done, as computing the exact Hessian matrix can be computationally expensive
and often it is not even necessary to obtain the exact Hessian.

As stated, the Gauss-Newton method uses the Jacobian matrix to approximate the Hessian matrix.
It does this by assuming that the function to be optimized can be expressed as a sum of squares
of residuals. This assumption is considered reasonable in many optimization problems, including
inverse kinematics.

Using this assumption, the Gauss-Newton approximation replaces the Hessian matrix in the Gauss-
Newton method with the product of the Jacobian matrix and its transpose. The assumption that
the residuals are small and that the Hessian is positive definite is made in this case. The left pseudo-
inverse of the Jacobian matrix, seen in Equation (32), is then used instead of the original inverse to
solve the optimization problem.

J† = (JT J)−1JT (32)

where J is the Jacobian matrix, JT is the transpose of the Jacobian matrix, and (JT J)−1 is the
inverse of the matrix product JT J . This results in the equation below, where H is the Gauss-Newton
approximation of the Hessian matrix.

xn+1 = xn − H−1∇f(xn)
= xn − J†r(x)

(33)

24

Figure 9: Illustration of how the Gauss-Newton method optimizes the problem with regard to one
joint angle.

Algorithm 2 Gauss-Newton Method
goal_pose = y
q = current joint angles
step_size = desired step size
tolerance = set tolerance
e = goal_pose - current_pose
while norm(e) >= tolerance do

J = Jacobian(q) ▷ Compute Jacobian with method
J_T = J.transpose() ▷ Compute Jacobian transpose
J_pinv = (J_T * J).inv() * J_T
delta_q = J_pinv * e
q += step_size * delta_q
q = check_joint_limits(q) ▷ Adjust to max/min value if above/under limit
e = goal_pose - ForwardKinematics(q) ▷ Compute pose with FK method

end while

6.4 Levenberg-Marquardt
The Levenberg-Marquardt method (also known as the damped least squared method or DLS). It
has its origin in the least square curve fitting and has been used with great success amongst many
manipulator configurations. It has been used in the field of robotic manipulators at least since 1986
by both Wampler [15] and Nakamura [16].

Like both the gradient descent and Gauss-Newton algorithms, Levenberg-Marquardt starts with an
initial guess xn and then iterates to the next guess xn+1. The process of which the algorithm takes
to update the estimate of the optimal value can be seen as a combination of Gauss-Newton and

25

gradient descent using the following equation:

xn+1 = xn + (JT J + λI)−1JT r(xn) (34)

where xn is the estimate of x at the n-th iteration, J is the Jacobian matrix of the function f(x) with
respect to x, r(xn) is the residual vector at xn, λ is a damping parameter and I is the identity matrix.

As stated, the Levenberg-Marquardt algorithm updates x using a combination of the Gauss-Newton
algorithm and the gradient descent algorithm. For smaller λ, the algorithm behaves like the Gauss-
Newton algorithm. For a well-behaved function, it means it will converge rather quickly. When λ is
large, the algorithm will behave like the gradient descent algorithm, which generally is a bit slower
but more robust.

The Levenberg-Marquardt algorithm uses the damping parameter λ to control the step size and
prevent the algorithm from diverging in case of ill-conditioned problems. If the Jacobian matrix is
ill-conditioned or singular, the Levenberg-Marquardt algorithm adds a damping term to the diagonal
of the matrix, which reduces the step size and makes the algorithm more robust.

6.4.1 Design Parameter Selection

In Equation (34) the damping factor (λ) can be seen, as mentioned above the damping factor
determines the behaviour of the algorithm. The damping factor is decided by means of trial- and
error with the same test cases as the ones used for deciding the learning rate in Section 6.2.1.

λ 0.05 0.1 0.15 0.2 0.25
Test 1 63 68 116 141 179
Test 2 78 93 110 181 196
Test 3 88 133 157 225 N.C.

Table 3: Table over the computational time in milliseconds for different learning-rate values (N.C.
stands for no convergence)

Algorithm 3 Pseudo Code for Levenberg-Marquardt Algorithm
goal_pose = y
q = current joint angles
step_size = desired step size
tolerance = set tolerance
e = goal_pose - current_pose
lambda = damping factor
while norm(e) >= tolerance do

J = Jacobian(q) ▷ Compute Jacobian with method
J_T = Jacobian.transpose() ▷ Compute Jacobian transpose
J_inv = (J_T * J + lambda * I).inv() * J_T
delta_q = J_inv * e
q += step_size * delta_q
q = check_joint_limits(q) ▷ Adjust to max/min value if above/under limit
e = goal_pose - ForwardKinematics(q) ▷ Compute pose with FK method

end while

26

6.5 Other solutions
Although there has not been a lot of progress in the field of robotics in regard to inverse kinematics,
there has been more research put into computer animation. This stems from the increased develop-
ment of more and more complex computer games and movies which require real-life-like movements
of (animated) humanoid robots, robotic manipulators and characters with various joints and limbs.
The main difference between robotics and computer animation is that there often exist joint limita-
tions and a need for collision avoidance as well as taking the end effector’s pose into consideration
instead of just the position for real-life manipulators. These requirements are of course relevant in
some different areas within computer animation, but often not present all at once. Additionally, it
is often more important in robotics to achieve higher accuracy, while computer animations put more
emphasis on computational power in order to simulate multiple characters/manipulators simultane-
ously, making heuristic methods a viable option.

As for robotics, analytical and numerical solutions are viable options, but additional solutions have
been developed for computer animations. Among those are CCD (Cyclic Coordinate Descent) and
FABRIK (Forward and Backward Reaching Inverse Kinematics) which are heuristic methods [17].

These methods will however not be implemented and tested, but serves only the purpose of high-
lighting different techniques and their respective advantages and disadvantages.

FABRIK

FABRIK was introduced in the 21st century by Aristidou and Lasenby [18] and is a heuristic-based
algorithm which, in theory, bypasses the use of rotational matrices, Jacobian, and frame transfor-
mations. The method has proven to be exceptionally fast in computing all the joint angles, and
it has been proven to work well in computer animation. The idea is to iterate through each joint,
starting with the last joint (joint n) and connecting it to the desired end position. The following
joint is then connected to the previous (in a straight line) until the last joint (in this case joint 1)
has been connected. The algorithm then reverses, connecting joint 1 to its fixed starting position
and iterates through to joint n. This iteration is continued until the last positional error is within
a specified tolerance. The process is illustrated in Figure 10

In its novel form, the FABRIK method does not take either joint limits or the orientation of the
end effector into consideration. Joint limits can however easily be implemented by always checking
if the issued joint angle is within the limits and setting to adjust it to be within the limits if needed
as explained by Santos et al [19]. There exist a few sources which also take the orientation of the
end effector into consideration, which results in more computation. In addition to this, the method
can be stuck in a local optimum, thereby not finding a global optimum for the problem

27

Figure 10: FABRIK illustration

CCD

The Cyclic Coordinate Descent (CCD) method, introduced in by Wang and Cheng [20] 1991, is
another popular iterative heuristic algorithm for solving inverse kinematics problems in computer
animation. It is a local method that operates by iteratively adjusting the joint angles of a robotic
manipulator to minimize the difference between the end effector’s current position and the desired
target position.

The basic idea of CCD is to start with an initial guess of the joint angles and to iteratively adjust
them, one joint at a time, to move the end effector closer to the target, illustrated in Figure 11 At
each iteration, the method starts with the last joint and computes the vector from this joint to the
end effector. It then rotates the joint by an amount proportional to the angle between this vector
and the vector from the joint to the target.

This process is repeated for all the joints in a cyclic fashion, hence the name Cyclic Coordinate
Descent. After one cycle of updating all the joints, the algorithm checks if the end effector is close
enough to the target. If it is not, the process is repeated until the error is below a certain threshold.

One of the advantages of CCD is that it is a relatively fast method and is able to converge to a
solution in many cases. However, it is important to note that the method can get stuck in local
minima, especially in complex multi-joint manipulators. Additionally, CCD does not guarantee a
globally optimal solution, and it can be sensitive to the order in which the joints are updated. CCD
can also be slower than other IK methods, such as the gradient descent or Gauss-Newton, especially
when dealing with complex robotic systems with multiple degrees of freedom.

28

Figure 11: CCD illustration

29

7 Analytical Concept
The analytical solution to the inverse kinematic problem (or the closed-form expression as it’s also
commonly referred to) presents a way to find the joint-angle configuration which represents a certain
pose in the Cartesian space in a direct fashion.

If an analytical solution can be derived there is no need for an iterative process that oftentimes
affects the performance of the control system negatively (in the sense of draining the computation
resources, resulting in a slow process which may impact the ability to run in real-time), hence why it
is the most popular approach to the problem. However, for an arbitrary manipulator configuration,
there is no guarantee that an analytical solution exists, and even so, if the solution exists it may
be severely difficult to derive. Therefore, the first step to finding the analytical solution to this
particular inverse kinematic problem is to explore the existence of the solution.

7.1 Existence of Analytical Solution & Piepers Theorem
As mentioned previously, there is no guarantee that the analytical solution exists for an arbitrary
manipulator configuration. Because of this, it has been suggested in plenty of influential works (for
example in [6] and [21]) within the field of robotic manipulators to have the design of a manipulator
follow specific standards (such as the spherical wrist for 6-DOF manipulators) in order to ensure the
existence of an analytical solution to the inverse kinematic problem.

The most common design standard when it comes to 6-DOF manipulators is that of the "spherical
wrist"-design, which implies that the last three axes of the manipulator shared a common intersec-
tion of their individual rotation axes. The paper [22] by Alexander J. Elias and John T. Wen, states
that with this manipulator design, the analytical solution to the inverse kinematic problem consists
of dividing the problem into two sub-problems, where the first three joints control the position,
whereas the last three joints control the manipulator pose.

This idea of the spherical wrist design was not the result of "trial-and-error" but rather grew forth
from a research paper published by Donald Lee Pieper [1] during the late 1960s. This paper states
that an analytical solution for the inverse kinematic problem exists if any three consecutive joint
axes intersect at a common point (note that three parallel axes are also assumed to intersect in in-
finity) and to exemplify this the analytical solution to the "spherical-wrist" manipulator was derived.

The eM1-7’s design does not comply with the "spherical wrist" design, hence the standard fashion of
deriving the analytical solution is not applicable. The reason for this particular arm not sharing the
standard of the "spherical-wrist" design is that it was originally based on other manipulators within
the field of underwater surveillance, which historically has been predominantly driven by operators,
thus making the need for inverse kinematics non-existent.

By studying the manipulator one can realize that there are in fact three concurrent axes which
share an intersection, more precisely the parallel joints 2, 3 and 4, thus the manipulator satisfies the
conditions suggested by Pieper [1].

30

7.2 Finding the Analytical Solution
Since the manipulator design is compliant with Pieper’s condition it is presumed that an analytical
solution exists. An important realization that was made was that the three parallel joints within the
eM1-7’s configuration closely resemble that of the "Three Revolute Parallel"-Manipulator for which
the analytical solution is previously derived (for example in the Advanced Robotic course given at
UCLA [23]). By dividing the kinematics problems into sub-tasks where one of the tasks is that
of the "Three Revolute Parallel"-Manipulator, the overall problem becomes much more manageable
and can be solved by studying each sub-task by itself and then compiling the final result. Due note
that there is still a coupling between the different subtasks, therefore it is required that the tasks
are executed in the order presented below.

The methodology of dividing a kinematic chain into sub-tasks when deriving a closed-form inverse
kinematics solution has been used in a multitude of previous works. Some examples can be found
in the papers written by Li Jiang [24] and Mathias Brandstötter [25], where different methodologies
are used to solve the inverse kinematics for widely different manipulator configurations.

7.3 Sub-Problem Solutions
To properly describe the solution to each of the different sub-problems, the first part of the derivation
is to denote the homogeneous transformation matrix of the wished end effector pose:

Tend =

nx ox ax px

ny oy ay py

nz oz az pz

0 0 0 1

 (35)

Each of the variable’s contributions to the overall homogeneous transformation matrix is explained
in Section 4.1.3.

Furthermore, (as covered in Section 5.2) the inverse kinematics solution does not actually find the
centre point of the end-effector, or as it is more commonly known the tool-frame origin, but rather it
finds the position and orientation of the (virtual) joint six in relation to the base coordinate system.
To increase the readability of the following parts within this section this point will be referred to as
the end-point.

7.3.1 SP1: Global z-Axis Rotation

The first sub-problem within the analytical inverse kinematics solution consists of finding the x-
and y-position of the endpoint within the global coordinate frame. Because of how the coordinate
frames are set up and how the end-point is defined it can be determined that only the first joint
will have an effect on these positions. The desired positions are denoted as px and py respectively
in the end-effector matrix (see Equation (35)). A visual representation of the first sub-problem can
be seen in Figure 12.

31

Figure 12: A top-side view of the first sub-problem.

Based on the structure of the first sub-problem, finding the solution is only a matter of solving a
simple trigonometrical problem. One key factor to note is that to ensure that all possible solutions
to the inverse kinematic problem are found we need to take into account that arctangent is only
defined for angles between [-90, 90] whilst the joint, in this case, spans over a larger interval.

To counteract this issue, two different equations are presented for joint-angle one which differs by
one period (180 deg).

θ1 = arctan(py, px)
∨

θ1 = arctan(−py, −px)
(36)

7.3.2 SP2: 3R-Parallel Manipulator

To find the solution to the second sub-problem one firstly needs to recognize the structure of the
"Three Revolute Planar" manipulator problem (which now will be referred to as 3RP), and why it
is that the joints 2, 3 and 4 can be assumed to follow these principles.

The 3RP problem states that to find the inverse kinematic solution, the following criteria need to
be full-filled:

• The orientation of the end-effector is known (within the corresponding 2D plane)

• The position of the end-effector is known (within the corresponding 2D plane)

• The first joint angle lies in the origin of the global coordinate system

32

Figure 13: A side view of the second sub-problem.

To satisfy these conditions and in turn, be able to solve the 3RP IK problem three major steps
needs to be taken, firstly the 2D plane where the planar manipulator acts need to be defined (mov-
ing forward this plane will be referred to as the 3RP-Plane), secondly the end-effector pose within
the 3RP plane needs to be derived since it is by definition defined in the three-dimensional space
(see Equation (35)) hence it needs to be projected onto the two-dimensional 3RP-plane and lastly,
the 3RP problem should be solved to find joint angles 2,3 and 4.

The 3RP plane will be oriented according to the first joint angle, and this means that when calcu-
lating distances etc. for the 3RP-manipulator problem the first joint angle needs to be taken into
consideration.

The first action of finding the endpoint’s pose within the 3RP plane is to determine the angle of
attack. To find this angle the following equation is used, and do note that in the same manner as
for the first angle, two different equations for the joint angle are defined which differ by one period
(180 deg).

θ234 = arctan(−az, ax cos(θ1) + ay sin(θ1))
∨

θ234 = arctan(az, −ax cos(θ1) − ay sin(θ1))
(37)

Equation (37) consists of two parts which can be interpreted geometrically, firstly ax cos(θ1) +
ay sin(θ1) represents the length of the resulting vector from projecting the z-axis of the end-effector
frame onto the xy-plane. Secondly, by first deriving the projection of the z-axis onto the xy-plane
both the opposite and adjacent sides of the triangle which relate to the desired angle are known.
Hence why the angle then is calculated via the use of arctangent.

To find the position of the "end-effector" in the 3RP problem one needs to calculate the x- and y-
coordinates in the 3RP-manipulator plane. This can be accomplished with the following equations:

x = px cos(θ1) + py sin(θ1) − a1 − a4 cos(θ234) (38)

y = −pz − a4 sin(θ234) (39)

33

Equation (38) and Equation (39) consist of projecting the "true" end-effectors x- and y-coordinates
onto the 3RP plane, and then removing the link lengths which are not present within the 3RP-
problem (which are link 1 between the first and second joint as well as the projection of link a4
between joint 3 and 4).

Now all the variables required to solve the 3RP Inverse kinematic problem are known, a visualization
of the problem can be seen in Figure 14.

Figure 14: The 3RP planar manipulator problem

The procedure of solving the 3RP-manipulator problem uses the fact that the previously calculated
orientation of the end-effector in the 3RP plane gives the following mathematical conjunction:

θ234 = θ2 + θ3 + θ4 (40)

Therefore, it is only needed to determine joint angles 2,3 to solve the problem. The first angle to
find is θ3 and this can be easily derived using the law of cosines. The law of cosines states that if
all sides of a triangle are known (which with the help of regular rules of trigonometry reins true in
this case) one can calculate the angle of a triangle. This in turn gives the following expression for
the third joint angle (which of course returns two values for the angle):

θ3 = arccos
(

x2 + y2 − (a2
2 + a2

3)
2 a2 a3

)
(41)

The solution for the second joint angle is not as straightforward, to find a geometrical relation which
solves for θ2 one needs to study the geometries of the first two links in further detail.

34

Figure 15: Geometrical overview of the first two links within the 3RP problem.

Two geometrical conjunctions can be found within Figure 15 and these are from triangle J2J3B:

tan(Ψ) = a3 sin(θ3)
a2 + a3 cos(θ3) (42)

From triangle J2J3A:
tan(φ) = z

x
(43)

Furthermore, in Figure 15 a relation between angles θ2, β and γ is found, hence by using Equa-
tion (42) and Equation (43) the second joint angle can be derived according to:

θ2 = arctan
(y

x

)
− arctan

(
a3 sin(θ3)

a2 + a3 cos(θ3)

)
(44)

All that remains of the 3RP-problem is now to use the known relation in Equation (40) to find the
fourth joint angle:

θ4 = θ234 − θ2 − θ3 (45)
Thus concluding the solution to the second sub-problem which has achieved the second, third and
fourth joint angles.

7.3.3 SP3: Tool-frame orientation

The last sub-problem purely affects the orientation of the end-effector, since both origins of the
coordinate frames for joints five and six interlay with the end-point. A visual representation of the
sub-problem can be seen in Figure 16.

The fifth joint angle can be determined by the following expression:

θ5 = − arccos(ay cos(θ1) − ax sin(θ1)) (46)

Equation (46) represents projecting the orientation of the end effector’s z-component into the xy-
plane, thereafter the x- and y-components are scaled in regard to the first joint angle. Then by

35

taking the cosine inverse on the resulting projection, the fifth joint angle is found.

The last remaining joint angle is found via the expression:

θ6 = − arccos (−(ox sin(θ234) cos(θ1) + oy sin(θ234) sin(θ1) + oz cos(θ234))) (47)

Figure 16: A side view of the third sub-problem.

7.4 Choosing Solution
When deriving the analytical solution for inverse kinematics, trigonometrical equations are frequently
used. Due to the nature of these functions, most of the times there are often multiple solutions,
for instance, arccos(θ) = arccos(−θ). Hence why there can exist multiple solutions (32 solutions) to
choose from, this is an issue since the algorithm should return one angle configuration, and it should
do so without any assistance from an operator. Thus, the algorithm needs a way to determine the
most suitable candidate for the available solutions.

Firstly, all the solutions need to be validated, since some "solutions" will not be compliant with the
final end-effector pose for which the algorithm was searching. The algorithm can validate this by
using forward kinematics on the found angle configuration and comparing the pose with the desired
end-effector pose. Another constraint is to check that the given angle configuration is within the
boundaries of the angle constraints. If no angle configuration satisfies the constraints, angle clip-
ping can be used to return an estimate of how close the manipulator can go within its limitations.
Clipping is a method where one sets an angle which exceeds its boundary conditions to either the
maximum or minimum value, depending on which boundary was exceeded.

The remaining angle configurations, after confirming the validity of the suggested solutions, can all
be deemed appropriate candidates for the resulting angle configuration. Depending on what the aim
of the manipulator control is, the method of choosing an angle configuration can differ. The most
direct and easy approach is to choose the angle which results in the least amount of movement in
joint space, and this should in practice yield the least amount of energy consumption whilst also
resulting in the shortest time duration for the manoeuvre. Of course, in some specific applications
it could be crucial that the manipulator is following a trajectory with an elbow-up configuration, in
cases like these the optimal way to choose the solution is subject to change.

36

8 Singularity Free Path Generation
The inverse kinematics of a manipulator realizes the possibility to describe a certain position of
the end-effector in Cartesian space with a set of angles in the joint space. However, to ensure the
feasible motion of the manipulator it is often not enough to simply state the final joint configura-
tion, and instead a more detailed description of the path between the initial- and final state is needed.

Recalling the problem description in Section 1.2 one goal of the master thesis is the implementa-
tion of the said path with respect to singular configurations. Essentially the problem boils down
to creating a path which can, in an appropriate amount of time, find its way from an initial- to
a final state whilst avoiding singular regions which could yield unwanted behaviour from the ma-
nipulator. In the case of this master thesis trajectory generation is not covered, and this would be
a further development of the path-planning where one would introduce velocity and time constraints.

One of the most common practices when working with path-creation for manipulators, which is
brought up in John J. Craig’s textbook [6] for example, is that of via-point creation. By having
intermediate via-points between the initial- and goal state one can, by requiring that the manipu-
lator traverses through these via-points, control the path taken by the manipulator with a discrete
approach.

Furthermore, path-planning for the manipulator can be separated into two different types depending
on in which space the path will be described, joint- or cartesian-space paths. Join-space paths are
described as intermediate angle configurations from an initial state to a goal state while cartesian-
space paths are instead described as intermediate poses (SE3).

8.1 Joint-Space
When planning a path within the joint space the inverse kinematics only needs to be derived for our
end- and starting states, i.e. it is required to know the joint angle configurations at the beginning
of the path and in the end (can also be extended to intermediate goals which are required to be
visited). This in turn makes the joint-angle path planning much less computationally heavy since
inverse kinematics is rarely needed.

To find the intermediate points on the path when working in joint-space it is beneficial to use joint-
angle interpolation between the end- and starting state. This way a smooth path can be created
where each joint makes appropriately large steps to end up in the goal state thus completing the path.

8.2 Cartesian-Space
In contrast to joint-space path planning cartesian-space planning opens up a lot more design choices,
for instance, the path can take numerous amount of shapes and the most common is a straight line
motion of the end-effector which is what has been implemented in this master thesis.

Straight-line motion can be created in different ways where the truest form would include parame-
terizing the motion of the end effector to ensure that every time step would apply a straight motion
(this is effectively a trajectory implementation). A more simple approach is to have an approximately
straight cartesian path by ensuring that each via-point is created in proximity to one another which

37

makes it possible to interpolate between the angle configuration of each via-point whilst having the
end result still resembling a straight cartesian path.

8.3 Implementation
In this master thesis, the goal with the path planner was to have a simple implementation that
would realize smooth movement in the Cartesian space, which essentially is finding a path between
an end- and staring-state which successfully can avoid singularity regions.

The first part of creating the path is finding the intermediate point via the means of interpolation. It
is ill-advised to directly interpolate between different SE3-poses hence why the interpolation contains
separately interpolating the end-position and the orientation. The position is linearly interpolated
between the start and end position whilst the orientation is converted to quaternions and thereafter
interpolated in the same manner.

To ensure that the motion of the end-effector mimics that of a straight line in Cartesian space the
intermediate poses need to be in close proximity to one another, as mentioned above. Thus, the
number of interpolated points is decided by looking at the Euclidean distance between the end and
starting state.

The next step is adapting the cartesian path to reference values which the actuators (joints) can
follow. To realize this any of the inverse kinematics solutions that have been developed can be
used. Applying the inverse kinematics will yield a number of joint-angle configurations equal to the
number of points on the path. The following step is to ensure that no singular configurations are in
play when following the path. To realize this the Jacobian (which describes the relations between
cartesian and joint velocities in the system) is used.

In Section 5.3 it is stated that when the manipulator is in a singular configuration the determinant of
the Jacobian will yield zero as a result. In addition to being able to identify singular configurations,
the determinant can also be studied to find out whether the manipulator is approaching a singular
configuration, i.e. when the manipulator is entering a singular region. This manner of searching the
path for singularities introduces a design parameter which is the threshold for which the determi-
nant should not cross for a configuration to be deemed "valid" (if the goal is to have a well-behaved
smooth motion). This design parameter is a trade-off between how well the manipulator follows the
specified Cartesian path and how smooth the joint velocities will be.

To overcome the unwanted behaviour of the manipulator when trying to traverse the singular regions
one makes use of the fact that the path can be planned in both joint- and cartesian-space. Since
singularities are a problem that occurs when trying to define joint angle configurations from a carte-
sian position the path planner switches over to joint-angle interpolation within the singular regions.
This results in a path which the manipulator can follow which closely resembles straight-line motion
but ensures that no singularities of the manipulators occur (where the quality of the result depends
on the chosen threshold which was defined earlier).

A pseudocode over the path planning can be seen in Section 8.3, furthermore a visual representation
of the resulting path is included in Figure 17 where the threshold has been exaggerated to more
clearly show the inner workings of the path-planner.

38

Algorithm 4 Pseudo Code for Singularity Free Path Planning
SE3Poses = linspace(Tstart, Tend, n)
angles = InverseKinematics(SE3Poses)
for idx in angles do

if idx in SingularConfigs then
skip

end if
detJ = Determinant(Jacobian)
if detJ < threshold then

SingularityStart = idx
j = idx
while Determinant(Jacobian[j]) < threshold do

SingularConfigs.append(j)
j += 1

end while
SingularityEnd = j
InterpolateAngles = linspace(angles[SinuglarityStart:SingularityEnd], [idx:j])
angles[SinuglarityStart:SingularityEnd] = InterpolateAngles

end if
end for

Figure 17: Visual representation of the generated path. The red line represents the straight cartesian
path whilst the yellow line represents the singularity-free path.

39

9 Results
This chapter aims to present the results of the work conducted. It has been separated into two
different parts, one for the three numerical inverse kinematic solutions and a separate section for
the analytical solution. The validation is separated since the different approaches to the problem
are fundamentally different, hence why it would not make sense to compare them in detail to each
other. In addition, when looking to validate the different approaches to the inverse kinematic so-
lution different tests are of importance whether the solution is numerical or analytical. However,
the average computational times will be compared together since it clearly shows why the analytical
solution to the inverse kinematic is superior.

9.1 Numerical Inverse Kinematics
For the validation of numerical inverse kinematics, the interesting factors are essentially how well it
can converge to a solution and if convergence happens within a reasonable time frame.

So to test the solutions it is relevant to have different test cases where the desired end pose differs
since the initial guess within the optimization algorithms can have a large impact on the end result.
Therefore, multiple test cases are created where each represents different distances between the end-
and start-state, where the start-state remains constant in the zero-configuration (the starting point
of the manipulator) and the end-states chosen at different distances away from the start in cartesian
space. For the first test that was conducted, the aim is to understand the behaviour of each algo-
rithm, hence there is no time aspect included, to begin with. Later on in the results chapter, each
algorithm will be tested through a multitude of different test-case to properly time the algorithms.

In the results tested below it should be noted that the iteration limit was set at 5000 iterations,
although for the purpose of more clearly showing the behaviour of each algorithm the diagrams will
only show the first 650 iterations of each test.

9.1.1 Tests on different end-effector poses

The first test case represents an end-effector position which is located in a non-singular region as
well as having a joint-angle solution close to the initial guess (zero-config).

40

0 100 200 300 400 500 600

Iterations [-]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

E
rr

o
r-

n
o

rm
 [

-]

Gradient Descent

Gauss-Newton

Levenberg-Marquardt

Methods

Figure 18: In numerical solutions to the IK-problem for the first test case, all methods converge
within a set interval of 5000 iterations.

The second test case represents an end-effector position which is located within a singular region (i.e.
in close proximity to a singular configuration), more precisely the end-effector position is located
close to the zero-configuration in Cartesian space.

41

0 100 200 300 400 500 600

Iterations [-]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

E
rr

o
r-

n
o

rm
 [

-]

Gradient Descent

Gauss-Newton

Levenberg-Marquardt

Methods

Figure 19: Numerical solutions to the IK-problem for the second test case, all methods converge
within a set interval of 5000 iterations. The Gauss-Newton algorithm appear to diverge initially,
but eventually converge. It should be noted that the figure is zoomed in in order to see the initial
behaviour, thus not showing when the gradient descent method converges.

The third test case represents an end-effector position which is located in a non-singular region as
well as having a joint-angle solution which is located far away from the initial guess.

42

0 100 200 300 400 500 600

Iterations [-]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

E
rr

o
r-

n
o

rm
 [

-]

Gradient Descent

Gauss-Newton

Levenberg-Marquardt

Methods

Figure 20: Numerical solutions to the IK-problem for the third test case, all methods except the
Gauss-Newton method converge within a set interval of 5000 iterations. One can see that Gauss-
Newton diverges quickly and does not converge any closer.

9.2 Analytical Inverse Kinematics
Due to the nature of the analytical solution, there is not any computational speed or accuracy to
worry about. The analytical solution is created in a way that gives a direct response to a position
request, in contrast to the numerical solutions where the error will decrease with each iteration,
hence the major part of the results in this section will be validating that the algorithm manages to
follow trajectories appropriately, i.e. the right solution is chosen from a set that is non-zero (choosing
solutions is covered in Section 7.4).

By once more using the singularity-free path generator together with the inverse kinematic solution
the result will present a way to validate whether the analytical inverse kinematics solution yields
appropriate results when running on a Cartesian trajectory. A satisfactory result would be that the
trajectory is followed whilst no drastic changes are made in the joint space (this is what is deemed
as a smooth movement, for example, the algorithm should not change midway during a trajectory
execution from elbow-up to elbow-down configuration).

Hence the presented results will consist of a MATLAB visualisation of the manipulator trail after
execution of the singularity-free path (same path as visualized in Figure 17) as well as each joint-angle
during the execution of the trajectory.

43

Figure 21: Manipulator trail after executed trajectory

44

0 50 100 150 200

Iteration [-]

-2

-1

0

1

2

J
o

in
t

1
 (

ra
d

)

0 50 100 150 200

Iteration [-]

-2

-1

0

1

2

J
o

in
t

2
 (

ra
d

)

0 50 100 150 200

Iteration [-]

-2

-1

0

1

2

J
o

in
t

3
 (

ra
d

)

0 50 100 150 200

Iteration [-]

-2

-1

0

1

2

J
o

in
t

4
 (

ra
d

)

0 50 100 150 200

Iteration [-]

-2

-1

0

1

2

J
o

in
t

5
 (

ra
d

)

0 50 100 150 200

Iteration [-]

-2

-1

0

1

2

J
o

in
t

6
 (

ra
d

)

Figure 22: Joint-angles during the path execution with the analytical inverse kinematics

9.3 Further Validations
This section will present some tests executed for numerical and analytical solutions. These tests
aim to further validate the behaviour of the solutions in regard to the speed at which a solution
can be calculated. This is of the highest importance in real-life applications since the manipulator
should essentially be able to decide the joint angles from the inverse kinematics solution in real-time
(real-time can be assumed a response frequency of above approximately 20Hz).

45

9.3.1 Calculation Times

As previously mentioned calculation times are compared between each of the numerical algorithms
as well as the analytical. To ensure that the results of these tests are reliable every test case was run
a set number of times and the mean computational times were derived, this is to take into consid-
eration that the optimization algorithms have a tendency to differ slightly in time to convergence.
The specifications of the test benchmark environment are presented in Table 4.

Computer MacBook Pro 2017
Processor 2.3 GHz Dual-Core Intel Core i5
Memory 8GB
Compiler Apple Clang 14.0.0
Version C++11

Compiler option O2
External libraries Eigen3

Table 4: Presentation of the computer and compiler used for compiling and executing the tests

A maximum number of iterations were set to 10000 with a threshold of 0.01 (meaning that the norm
of the error pose should be lower than 0.01 for convergence.). The step size was set to 0.1 for all
algorithms.

46

Test # Gradient
Descent [µs]

Levenberg-
Marquardt [µs]

Gauss-
Newton [µs]

Analytical
Solution [µs]

1 84 7757 304 45
2 243 7186 272 35
3 450 24300 229 32
4 278 7818 206 42
5 352 4778 218 33
6 468 5131 856 32
7 499 4602 F 31
8 383 2577 207 33
9 122 1188 240 33
10 503 4863 983 33
11 662 9553 268 32
12 342 3242 5042 32
13 1569 9781 242 38
14 657 6237 F 32
15 3051 26372 364 31
16 289 2399 F 32
17 287 3855 F 31
18 559 5899 F 32
19 809 9749 130 34
20 1083 8296 391 34
21 1412 F 378 31
22 298 13130 F 32
23 1950 6771 405 35
24 577 1285 416 33

Table 5: Time for solving the inverse kinematics for multiple different poses, in case of no conver-
gence, it is denoted as F.

All test poses can be seen in Section A.

9.3.2 MoveIT

By implementing the inverse kinematics solutions into the ROS package MoveIt one can use visual-
ization tools such as RViz to validate the behaviour of the inverse kinematics. RViz gives the user the
ability to grab onto the end-effector of the manipulator and move it around within the workspace, at
each iteration the underlying inverse kinematics needs to provide a solution to accurately represent
the visualization of the manipulator in the RViZ GUI. This lets the user tests a lot of different
positions in the workspace efficiently, and this is what has been done for the solutions presented in
this report.

To try to visualize the results Figure 23 and Figure 24 were captured when working with the
GUI to show off how this type of testing was executed. It could be concluded that for all inverse
kinematic solutions, the inverse kinematics could be calculated accurately and fast enough to enable
the manipulator to be dragged around in the workspace in "real-time", for well-behaved poses (i.e.
in singular configurations or heavily singular regions the quality behaviour dropped).

47

Figure 23: A snapshot of how the RViz GUI looks, notice that the end-effector is highlighted meaning
that it is being moved by the user.

Figure 24: A snapshot of terminal output whilst moving the end-effector.

48

10 Analysis
This section will provide an analysis of the earlier presented results. First and foremost the different
methods to solve the inverse kinematic problem have been evaluated and compared to one another
to be able to place a verdict on whether or not the method is sufficient to use in a real application.
Furthermore, a brief analysis of the MoveIt-tool (which was used for implementation in this project)
will be included, which will include what we felt were the advantages and disadvantages, as well as
if the software package could have been used differently in order to achieve better results.

10.1 Inverse Kinematic Solutions
To be able to place a verdict on the developed solutions it makes the most sense to analyse each
individual part, both the inverse kinematic solvers as well as the singularity path-planning (since
this is essentially an extension of the inverse kinematics in this case).

10.1.1 Gradient Descent Method

The developed solution which used the Gradient Descent method could from the obtained results
be deemed as a valid numerical option for solving the IK problem, seeing as it yielded a valid angle
configuration for all well-behaved poses.

The interesting part with this specific method beforehand was the approximation that the transpose
of the Jacobian essentially could work in the same manner as the inverse (with appropriate scaling).
This approximation was made to ensure numerical stability in the presence of singular regions or
singularities. The result shows that this was in fact the case, the method did not have trouble
converging to a correct joint angle configuration when working within singular regions (as could be
seen from Figure 19, which essentially is just moving within a singular region).

In addition to exhibiting robustness in regards to singularities the method also proved to be well-
behaved when dealing with poor initial state approximations (as seen in Figure 20), but convergence
was slow (in relation to having a good initial guess) which would negatively impact its use in real-
time applications. Although it is worth mentioning that in real applications the gap between the
initial- and final state is rarely as poor as in some of the testing since the complete solution in both
joint-space and Cartesian space works with via-point creation, similar to that of the path generation
in Section 8. By using the algorithm on the generated path it can be ensured that the initial guess
is not too far from the actual answer.

Furthermore, when the method was implemented into the MoveIt package it was deemed that the
algorithm could in fact run well in "real-time" meaning that convergence to a solution of the algo-
rithm happened sufficiently fast enough so that a update frequency of over 20hz could be upheld
(the testing was done according to Section 9.3.2). This would make the drawbacks of the algorithm
essentially obsolete since the major trade-off to the stability of using the Jacobian Transpose is that
the convergence time is affected. The convergence time increase relates to the fact that the Trans-
pose of the Jacobian is a very rough approximation of the actual inverse.

One interesting aspect that was not explored within the limits of this work is that of a dynamic
learning rate, the method we used was a constant learning rate decided by means of trial- and error.
When choosing the learning rate it was obvious that a compromise needed to be taken since no
specific rate was the best option for all different test cases this of course could be solved if one let

49

the learning rate be dynamic instead of constant. Dynamic implementations of the learning rate
have been mentioned in works regarding the Jacobian Transpose method and are said to provide an
improvement to the convergence times of the algorithm [26]. Therefore this could be of use if one
would like to further improve the computational speed, which in the case of this work was deemed
good enough.

10.1.2 Gauss-Newton Method

In contrast to the Gradient Descent method the Gauss-Newton method showed to be a lot less
numerically stable, it is especially sensitive to poor initial guesses.

The Gauss-Newton method for inverse kinematics uses the pseudo-inverse as an approximation of
the regular Jacobian inverse. In contrast to the Jacobian transpose, the pseudo-inverse is a lot closer
to the actual inverse of the Jacobian, which turned out to have both advantages and disadvantages.

The regular Jacobian inverse is heavily unstable in singular regions (meaning that it may yield
extremely high values) and at the exact singular configuration the Jacobian is non-invertible, the
pseudo inverse is meant to solve this problem by making the matrix invertible in the presence of
singularities. What was found was that by using the pseudo-inverse (and also introducing a damping
factor to the Jacobian inverse) the algorithm sometimes manages to find solutions in the proxim-
ity of singularities, however, the behaviour of the algorithm becomes very oscillatory and thus for
some singular configurations convergence was not possible within the set amount of iterations (the
oscillative behaviour is very clear in Figure 19.

This behaviour is further proven when using the inverse kinematic algorithm as a plugin for the
MoveIt package. Within non-singular areas of the workspace, the algorithm achieves valid solutions
within an appropriate time frame, making it so that the manipulator essentially moves in real time.
However, in close proximity to singularities, the solver still has problems finding correct solutions
within the specified time frame.

From the results, it could also be concluded that the initial guess plays a crucial part in the nu-
merical instability of the algorithm. This however has less to do with the pseudo-inverse of the
Jacobian and more to do with the fact that the Gauss-Newton optimization method is known for
having convergence issues if the initial guess is at a large distance away from the optimum (as men-
tioned in Section 6.3). From the results in Figure 20, where the initial guess was located far off the
joint-angle solution of the algorithm, the unstable behaviour is presented and as a consequence of
this the method does not converge.

There are however some upsides to this method of solving the inverse kinematics, mainly when the
task is located in the non-singular areas of the workspace and when used with the path generator for
example which would ensure that the initial guess is at an appropriate distance in the joint-space.
For these cases, the convergence times are generally faster than for the other numerical methods, as
can be seen in Table 5.

Finally, the Gauss-Newton method was also implemented into the ROS package MoveIt is tested
according to Section 9.3.2. Within MoveIt it could be concluded that the algorithm could work in
"real-time", as long as the task which was to be executed was not located within singular-regions.
The issue of bad initial guesses is essentially redundant in MoveIt since it works in a similar fashion

50

to path generation where the inverse kinematic algorithms are at intermediate points with only a
short distance between them.

10.1.3 Levenberg-Marquardt Method

The Levenberg-Marquardt method is supposed to offer the best of both worlds of the previous
algorithms. Mainly that the convergence times should be faster than that of the Gradient Descent
method whilst the convergence rate should be higher compared to the Gauss-Newton method.
By only studying the three graphs in Section 9.1.1 the anticipated behaviour could be confirmed
since it is clear that the Levenberg-Marquardt method of solving the inverse kinematics is faster
than the Gradient-Descent methods whilst still yielding convergence in all three cases (in contrast
to the Gauss-Newton method).

However, when further tests were made (For the computational times in Table 5) the implementation
of the algorithms was made in C++ (in relation to the previously implemented Python algorithms
which were used to analyze the behaviour of each algorithm) to ensure that the tests yielded appro-
priate speeds which could be compared to having the algorithms run on the actual hardware. The
results showed that once implemented in C++ the calculations times relative to that of the gradient
descent algorithm were in-fact larger. By researching the reasoning behind this the conclusion was
drawn that when the translation was not written in an optimized way making the additional matrix
multiplications present in the Levenberg-Marquardt method decreased the computational speed so
that the Gradient descent method in most cases yielded better performance. Seeing as the computa-
tional times still were appropriately fast to achieve the goal of running the algorithm at a minimum
frequency of 50hz no further time was spent on optimizing the algorithm.

Furthermore if one were to improve this method the first thing is to look into writing a more opti-
mized algorithm in C++ another big factor that has made a negative impact on the algorithm is that
the damping parameter, which is described in Section 6.4.1, was made constant instead of dynamic.
The reasoning behind this was to decrease the computational efforts of the algorithm since this was
a concern early on in the project. Since the result showed that the algorithms perform extremely
well against the computational time constraint one could instead look into having a dynamic learn-
ing rate. This could improve the overall performance since in singular regions the algorithm would
have varied the damping parameter to more closely mirror the Gradient Descent behaviour which
could have increased the possibility of convergence as well as in non-singular regions achieving faster
calculation times. There are also a lot more ways the damping parameter can be introduced instead
of the trial- and error method used in this thesis, many papers have researched the topic and in
the paper "On damping parameters of Levenberg-Marquardt algorithm for nonlinear least square
problems" [27] a multitude of examples for choosing the damping parameter is covered.

10.1.4 Analytical Method

Initially, it was clear that a well-working analytical approach to inverse kinematics would be su-
perior in almost all instances. The issue at hand was that far from all manipulator configurations
have existing analytical/closed-form solutions to the inverse kinematic problem. Fortunately, the
analytical solution for this specific manipulator configuration was possible to derive.

Ensuring the validity of an analytical solution is actually a rather simple process, it’s essentially just
to compare the initial homogeneous transformation matrix (input/goal) to the forward kinematics of

51

the returned joint angle configuration. For the solution presented in this report, this step is included
in the solution selection since one of the few issues with the analytical approach is that it will (in a
majority of cases) yield multiple solutions.

Our goal with the solution selection was to ensure that the manipulator achieves smooth movement
and no abrupt changes in joint-angle configuration happened during task execution. This behaviour
is essentially what is proven in Figure 21 and Figure 22. In Figure 21 it is shown that the manip-
ulator has successfully followed the specified path, one may notice that the path is not a straight
line which is a result of the singularity-free path generation to ensure that the manipulator does not
traverse within singular regions. Furthermore, in Figure 22 the results show that each joint exhibits
continuous movement in the joint space and no drastic joint changes are made (which could have
been the case if the solution selection was faulty).

In addition to the above-mentioned results, it was concluded in Table 5 that for all the constructed
test cases the analytical inverse kinematics found an appropriate solution. This result is important
since a faulty analytical model of the inverse kinematics could in theory work very well in some areas
of the workspace whilst missing solutions in other areas (for example by recalling to Section 7.3.1 it
is mentioned that multiple equations exist for determining a single joint angle, solely dependent on
which area the manipulator is working within).

It was also shown when implemented into MoveIt that this method yielded the best computational
speed as well as proved to give stable results for almost all cases. The same result is also present
when benchmarking for different poses. In other words, it proves to be much quicker than the
numerical methods as well as more precise.

10.1.5 Path Generation

The path generation created in this master thesis aims to provide a solution to the last question
within the problem description (Section 1.2). Even though the approach taken here is a simple
one, it does satisfy the conditions of a singularity-free path generation in cartesian space (without
generating a large computational load) which can be seen both in Figure 17 as well as in Figure 21
where the path was executed using the analytical approach to the IK-problem.

This approach to path generation will ensure that the movement of the manipulator is limited to
that of non-singular regions, which is of great benefit to the overall system. Traversing singular
regions with the manipulator can have a negative impact on the motion of the manipulator and
even in some cases damage the hardware or its surroundings due to the abrupt increases in joint
velocities (as described in Section 4.2).

Furthermore, since the method of generating the path is based on a user-defined threshold level,
which determines where a singular region begins, it gives the user the option to weigh singularity-
free movement with the path following accuracy.

Of course, with this simple implementation, there is no planning element to the path which would
be beneficial, or in some cases necessary, if for example, obstacles are present within the manipulator
workspace. But in its current state, it is deemed to be a good starting point for further development
of a more complex path-planning approach.

52

10.2 MoveIt
MoveIt is generally an excellent tool for controlling robotic manipulators and provides an intricate
interface for a user without knowledge of inverse kinematics and path planning. The interface pro-
vides a rather quick setup of the package and the GUI makes it easy to command the manipulator
to execute certain tasks and move into different poses. The implementation part of an inverse
kinematics plugin is also a rather straightforward process. The problems faced when using MoveIt
are first and foremost the problem of not knowing much about the underlying code. It is abso-
lutely possible to research much of the source code for Moveit to gather a deeper understanding, but
knowing how everything connects is not a straightforward task. This becomes a problem when work-
ing with critical systems where each part of the code must be proven to work in a foreseeable manner.

Another problem encountered during the project is the fact that MoveIt defines coordinate frames
and frame transformations according to how the robot URDF4 is specified. This is in contrast to
how we defined the coordinate frames for each link which is done according to the DH convention.
The major difference this results in is that MoveIt defines all coordinate frames with the z-axis in
the direction of the global z-axis while the DH convention specifies the z-axis in the direction of the

4URDF stands for Unified Robot Description Format which is a format for defining a robot structure

53

11 Conclusions
To draw conclusions from the presented work, it is beneficial to recall the questions that this master
thesis aimed to solve (which are presented in Section 1.2).

The first posed question, and probably the most important as well, was in what ways the inverse
kinematic problem could be solved for the eM1-7’s manipulator configuration. The approach that
was taken from the beginning was to study both numerical and analytical approaches to the prob-
lem, with the main reason being that there was no certainty that an analytical solution would exist.

The conducted work resulted in well-working numerical -as well as analytical solutions presented,
where the analytical solution is superior due to its nature of being non-iterative as well as finding
all possible solutions. It is also mentioned in the problem description that a valid solution to the
problem should ensure numeric stability. Based on the validation principles that were run as well
as how the solutions were formed it could be concluded that the final result would ensure numerical
stability within the non-singular areas of the workspace. Even though the heuristic methods were
not implemented, they presented a lot of advantages, such as avoiding problems with ill-defined Ja-
cobians. It would in the future be interesting to compare the performance of these to the evaluated
numerical ones.

Even though the analytical solution is far superior to its numerical counterparts having a multitude
of solutions to choose from led to a more interesting result where the benefits of the analytical
solution could be more clearly presented. This ties into the second posed question in the problem
formulation regarding the performance of the algorithms. Regarding performance the key factor is
the computational speed, ensuring that the algorithm can yield solutions at a fast enough rate to
enable the manipulator to be controlled in essentially real-time speed. It can be concluded from the
result that both the numerical and analytical methods provide excellent performance when it comes
to computational speed.

Another important performance measure is the precision (and convergence) of the inverse kinemat-
ics solutions. Both of the presented methods (analytical and numerical) provide high accuracy,
although they differ in how this accuracy is achieved (numerical methods have a set threshold whilst
the analytical method is accurate in its nature).

Furthermore, the issue of the inverse kinematics yielding multiple solutions to a single task was also
mentioned as something that should be answered within this report. For the numerical algorithms,
there is an issue with the dependence on the initial guess and subsequently, if the correct local
minimum will be found. To counteract this problem the introduction of a path generation where the
steps between intermediate positions will in most cases yield the correct solution for the numerical
algorithms but in extreme cases may not converge correctly. In contrast, for the analytical solution
this is fully controlled by the algorithm and the solution is chosen based on principles set up in the
algorithm which eliminates the problem of finding the appropriate solution.

The last thing that is highlighted in the problem description is the problem of generating paths with
respect to singular regions. We believe that the provided solution and subsequently the presented
results of the algorithm give an answer to the posed question and, even if the solution is a simple
one, should effectively eliminate singularity issues when traversing within the workspace.

54

To summarize we believe that this report has presented a well-working methodology to solve the
problem of the inverse kinematics for the eM1-7 manipulator, where using the analytical solution
together with the singularity-free path generation could be applied to the manipulator with good
effect. Additionally, it was proven that even though analytical methods are superior, it is fully
reasonable to take a numerical approach to solve the inverse kinematic problem for this specific
manipulator configuration.

55

References
[1] Donald Lee Pieper. The Kinematics of Manipulators Under Computer Control. Computer

Science Department. Stanford Artificial Intelligence Laboratory - Stanford University: Stanford
University, 1968.

[2] NetModule. CAN. https://netmodule-linux.readthedocs.io/en/latest/howto/can.
html. Accessed: 2023-04-25.

[3] MoveIt - Moving robots into the future. https://moveit.ros.org/l. Accessed: 2023-04-25.
[4] M. W. Spong and M. Vidyasagar. Robot Dynamics and Control. New York: John Wiley and

Sons, 1989.
[5] Kris Hauser. Robotic Systems - Chapter 4: 3D Rotations. Mar. 2018.
[6] J.J. Craig. Introduction to Robotics: Mechanics and Control. Third. Addison-Wesley series in

electrical and computer engineering: control engineering. Pearson/Prentice Hall, 2005. isbn:
9780201543612. url: https://books.google.se/books?id=MqMeAQAAIAAJ.

[7] Kevin M. Lynch and Frank C. Park. Modern Robotics: Mechanics, Planning, and Control.
Cambridge University Press, 2017.

[8] Ruibo He et al. “Kinematic-Parameter Identification for Serial-Robot Calibration Based on
POE Formula”. In: IEEE Transactions on Robotics 26.3 (2010), pp. 411–423. doi: 10.1109/
TRO.2010.2047529.

[9] Samad A. Hayati. “Robot arm geometric link parameter estimation”. In: The 22nd IEEE
Conference on Decision and Control. 1983, pp. 1477–1483. doi: 10.1109/CDC.1983.269783.

[10] W. Veitschegger and Chi-Haur Wu. “Robot accuracy analysis based on kinematics”. In: IEEE
Journal on Robotics and Automation 2.3 (1986), pp. 171–179. doi: 10 .1109 /JRA .1986 .
1087054.

[11] H. Zhuang, Z.S. Roth, and F. Hamano. “A complete and parametrically continuous kinematic
model for robot manipulators”. In: Proceedings., IEEE International Conference on Robotics
and Automation. 1990, 92–97 vol.1. doi: 10.1109/ROBOT.1990.125952.

[12] Saeed B.Niku. Introduction to Robotics - Analysis, Control, Applications Third Edition. Hobo-
ken, NJ : John Wiley & Sons, Inc., 2020.

[13] A. Balestrino, G. De Maria, and L. Sciavicco. “Robust Control of Robotic Manipulators”.
In: IFAC Proceedings Volumes 17.2 (1984). 9th IFAC World Congress: A Bridge Between
Control Science and Technology, Budapest, Hungary, 2-6 July 1984, pp. 2435–2440. issn:
1474-6670. doi: https://doi.org/10.1016/S1474-6670(17)61347-8. url: https://www.
sciencedirect.com/science/article/pii/S1474667017613478.

[14] W. A. Wolovich and H. Elliott. A computational technique for inverse kinematics. 1984. doi:
10.1109/CDC.1984.272258.

[15] Charles W. Wampler. “Manipulator Inverse Kinematic Solutions Based on Vector Formula-
tions and Damped Least-Squares Methods”. In: IEEE Transactions on Systems, Man, and
Cybernetics 16.1 (1986), pp. 93–101. doi: 10.1109/TSMC.1986.289285.

[16] Yoshihiko Nakamura and Hideo Hanafusa. “Inverse kinematic solutions with singularity ro-
bustness for robot manipulator control”. In: Journal of Dynamic Systems Measurement and
Control-transactions of The Asme 108 (1986), pp. 163–171.

56

https://netmodule- linux.readthedocs.io/en/latest/howto/can.html
https://netmodule- linux.readthedocs.io/en/latest/howto/can.html
https://moveit.ros.org/l
https://books.google.se/books?id=MqMeAQAAIAAJ
https://doi.org/10.1109/TRO.2010.2047529
https://doi.org/10.1109/TRO.2010.2047529
https://doi.org/10.1109/CDC.1983.269783
https://doi.org/10.1109/JRA.1986.1087054
https://doi.org/10.1109/JRA.1986.1087054
https://doi.org/10.1109/ROBOT.1990.125952
https://doi.org/https://doi.org/10.1016/S1474-6670(17)61347-8
https://www.sciencedirect.com/science/article/pii/S1474667017613478
https://www.sciencedirect.com/science/article/pii/S1474667017613478
https://doi.org/10.1109/CDC.1984.272258
https://doi.org/10.1109/TSMC.1986.289285

[17] Matilda Richardsson. Most efficient Inverse Kinematics algorithm for Quadruped models. Stock-
holm, Sweden, 2022.

[18] Andreas Aristidou and Joan Lasenby. “FABRIK: A fast, iterative solver for the Inverse Kine-
matics problem”. In: Graphical Models 73.5 (Sept. 2011), pp. 243–260. issn: 1524-0703. doi:
https://doi.org/10.1016/j.gmod.2011.05.003.

[19] Phillipe Santos et al. “M-FABRIK: A New Inverse Kinematics Approach to Mobile Manipulator
Robots Based on FABRIK”. In: IEEE Access 8 (Jan. 2020), pp. 208836–208849. doi: 10.1109/
ACCESS.2020.3038424.

[20] L.-C.T. Wang and C.C. Chen. “A combined optimization method for solving the inverse kine-
matics problems of mechanical manipulators”. In: IEEE Transactions on Robotics and Au-
tomation 7.4 (1991), pp. 489–499. doi: 10.1109/70.86079.

[21] Bruno Siciliano and Oussama Khatib. Robotics: Modelling, Planning and Control. Springer,
2016.

[22] Alexander J. Elias and John T. Wen. “Canonical Subproblems for Robot Inverse Kinematics”.
In: IEEE Access (Oct. 2022).

[23] Jacob Rosen. Advanced Robotic - MAE 263B. Jan. 2019.
[24] Li Jiang et al. “An integrated inverse kinematic approach for the 7-DOF humanoid arm with

offset wrist”. In: 2013 IEEE International Conference on Robotics and Biomimetics (ROBIO)
(2013), pp. 2737–2742.

[25] Mathias Brandstötter, Arthur Angerer, and Michael W. Hofbaur. An Analytical Solution of
the Inverse Kinematics Problem of Industrial Serial Manipulators with an Ortho-parallel Basis
and a Spherical Wrist. 2014.

[26] Samuel R. Buss. Introduction to Inverse Kinematics with Jacobian Transpose, Pseudoinverse
and Damped Least Squares methods. 2009.

[27] A O Umar et al. “On damping parameters of Levenberg-Marquardt algorithm for nonlinear
least square problems”. In: Journal of Physics: Conference Series 1734.1 (Jan. 2021), p. 012018.
doi: 10.1088/1742-6596/1734/1/012018. url: https://dx.doi.org/10.1088/1742-
6596/1734/1/012018.

57

https://doi.org/https://doi.org/10.1016/j.gmod.2011.05.003
https://doi.org/10.1109/ACCESS.2020.3038424
https://doi.org/10.1109/ACCESS.2020.3038424
https://doi.org/10.1109/70.86079
https://doi.org/10.1088/1742-6596/1734/1/012018
https://dx.doi.org/10.1088/1742-6596/1734/1/012018
https://dx.doi.org/10.1088/1742-6596/1734/1/012018

Appendices
A Test Poses for Benchmarking

Test # Position Quaternions
x [m] y [m] z [m] x [-] y [-] z [-] w [-]

1 1.5230 -0.1267 0.0815 -0.5015 0.4979 -0.4991 0.5015
2 1.5041 -0.0843 0.1244 -0.4999 0.4965 -0.4999 0.5037
3 1.4462 -0.1011 -0.2105 -0.6974 -0.1681 -0.2430 0.6529
4 1.4610 -0.0400 0.2920 -0.5020 0.4980 -0.4980 0.5020
5 1.1980 -0.5950 0.3110 -0.5050 0.4940 -0.4960 0.5030
6 1.2360 -0.3160 0.5650 -0.5070 0.4910 -0.4950 0.5060
7 0.9780 -0.0940 1.0070 -0.5090 0.4890 -0.4940 0.5070
8 0.9770 -0.0940 1.0050 -0.7030 0.0060 -0.0710 0.7050
9 0.8180 -0.4960 1.0760 -0.3000 0.0290 -0.0910 0.9490
10 0.0440 1.3560 0.3640 -0.3030 0.0260 -0.0890 0.9480
11 -0.3110 1.3760 0.6160 -0.3070 0.0200 -0.0860 0.9480
12 1.2510 -0.0220 0.4460 0.5650 -0.5080 0.4580 -0.4620
13 1.4580 -0.4510 0.3640 -0.5040 0.4960 -0.4970 0.5030
14 1.3990 0.2100 0.4340 -0.2650 0.4600 -0.5250 0.6650
15 1.2730 -0.3690 0.4960 -0.7340 -0.1380 -0.2790 0.6030
16 1.2050 -0.6340 0.6640 -0.7120 -0.0720 -0.3130 0.6240
17 1.2370 -0.3640 0.4300 0.5870 -0.5550 0.4300 -0.4030
18 1.2360 -0.3640 0.4300 -0.3720 0.3380 -0.6160 0.6070
19 1.5321 0.0035 0.1586 -0.5014 0.4986 -0.4982 0.5016
20 1.5555 0.1073 0.2355 -0.5033 0.4965 -0.4968 0.5034
21 1.5477 0.1023 0.3089 -0.5047 0.4951 -0.4957 0.5045
22 1.5324 0.0968 0.3046 -0.3599 0.3529 -0.6026 0.6187
23 1.5350 -0.1861 0.3000 -0.5295 0.1484 -0.4628 0.6953
24 1.3528 -0.1917 0.6136 -0.5308 0.1445 -0.4623 0.6955

Table 6: Positions used in each of the test cases for the calculation time tests

58

	Introduction
	Background
	Problem Description
	Manipulator Descriptions
	System Architecture

	Related Work
	Method
	Mathematical Model
	ROS and MoveIt Implementation
	Path-Planning

	Theory
	Coordinate Frames & Transforms
	Rotation Matrices
	Translation Matrices
	Homogeneous Transformation

	Singularities and Workspace Limitations

	System Model
	Kinematic Representation
	Denavit-Hartenberg Convention
	Assignment of the Joint Coordinate Frames
	Finding the DH-Parameters
	Transformation Matrices

	Numerical Approximation via the Jacobian

	Numerical Concept
	Dependence on the Jacobian Inverse
	Gradient Descent
	Design Parameter Selection

	Gauss-Newton
	Levenberg-Marquardt
	Design Parameter Selection

	Other solutions

	Analytical Concept
	Existence of Analytical Solution & Piepers Theorem
	Finding the Analytical Solution
	Sub-Problem Solutions
	SP1: Global z-Axis Rotation
	SP2: 3R-Parallel Manipulator
	SP3: Tool-frame orientation

	Choosing Solution

	Singularity Free Path Generation
	Joint-Space
	Cartesian-Space
	Implementation

	Results
	Numerical Inverse Kinematics
	Tests on different end-effector poses

	Analytical Inverse Kinematics
	Further Validations
	Calculation Times
	MoveIT

	Analysis
	Inverse Kinematic Solutions
	Gradient Descent Method
	Gauss-Newton Method
	Levenberg-Marquardt Method
	Analytical Method
	Path Generation

	MoveIt

	Conclusions
	Appendices
	Test Poses for Benchmarking

