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Abstract

Today, the control of heat pumps aims to first and foremost maintain a comfort-
able indoor temperature. This is primarily done by deciding input power based
on outside temperature. The cost of electricity, which can be rather volatile, is
not taken into account. Electricity price can be provided on an hourly rate, and
since a house can store thermal energy for a duration of time, it is possible to
move electricity consumption to hours when electricity is cheap.

In this thesis, the strategy used in the developed controller is Model Predic-
tive Control (MPC). It is a suitable strategy because of the ability to incorporate
an objective function that can be designed to take the trade-off between indoor
temperature and electricity cost into account. The MPC prediction horizon is dy-
namic as the horizon of known electricity spot prices varies between 12 and 36
hours throughout the day. We model a residential house heated with a ground
source heat pump for use in a case analysis. Sampled weather and spot price
data for three different weeks are used in computer simulations. The developed
MPC controller is compared with a classic heat curve controller, as well as with
variations of the MPC controller to estimate the effects of prediction and model
errors.

The MPC controller is found to be able to reduce the electricity cost and/or
provide better comfort and the prioritization of these factors can be changed de-
pending on user preferences. When shifting energy consumption in time it is
necessary to store thermal energy somewhere. If the house itself is used for this
purpose, variations in indoor temperature must be accepted. Further, accurate
modeling of the Coefficient of Performance (COP) is essential for ground source
heat pumps. The COP varies significantly depending on operating conditions
and the MPC controller must therefore have a correct perception of the COP. Pub-
licly available weather forecasts are of sufficient quality to be usable for future
prediction of outside temperature. For future studies, it would be advantageous
if better models can be developed for prediction of global radiation. Including
radiation in the MPC controller model would enable better comfort with very
similar operating costs compared to when the MPC controller does not take radi-
ation into account.
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1
Introduction

Currently, the most common method for indoor climate control in buildings with
water bound radiator systems is the utilization of a heat curve. The aim of this
method is to provide a constant indoor climate regardless of outside tempera-
ture. It does however not take electricity price or future weather into account.
There are however control techniques which could possibly make advantageous
use of this information. One of them is Model Predictive Control (MPC). This
method uses an objective function which can be designed to take both comfort
and electricity cost into account. It also simulates the system during a set horizon
for which future electricity price data and weather forecasts can be used.

1.1 Motivation

Long term there is a need to lower the greenhouse gas emissions. According to
the Paris agreement, EU is committed to lower the emissions of greenhouse gas
by 55% until 2030 compared to 1990 [1]. Lowering energy consumption is a
way to contribute towards achieving this goal. In Sweden, production of elec-
tricity primarily comes from fossil free energy sources (wind, hydro, nuclear) [2].
For comparison, in Germany most of the electricity production comes from wind
power and coal-fired power plants. Electricity produced by wind power is gener-
ally cheaper than electricity produced by burning coal [3]. Hence, when there is
enough wind power production to meet the demand the electricity price tends to
go down. It would thus be beneficial both economically and environmentally to
make use of low electricity prices.

As 27% of space heating and hot water heating in Sweden in 2021 was pow-
ered by electricity (including heat pumps), it is of great interest to study ways
to provide efficient control for these applications. In 2019, 60% of one- and two-
dwelling buildings in Sweden used heat pumps for heating [4].
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2 1 Introduction

1.2 Purpose

This thesis aims to propose a solution to reduce the energy cost for spacial heat-
ing with ground source heat pumps using modern automatic control methods.
Electricity prices are normally supplied per day but as hourly prices are becom-
ing more popular there is potential for customers to make use of it in order to
reduce cost. The aim is not to reduce total energy consumption, but rather to
control the time and magnitude of energy use in heat pumps for spacial heating
to reduce the energy costs. Reducing energy cost would benefit both consumers
and society as the consumer saves money and the strain on the electricity grid is
reduced when consumption is moved to off-peak hours.

While it is an advantage if cost can reduced, comfort is also important. After
all, the main purpose of indoor heating is to make the indoor climate comfortable.
The solution must therefore also provide a comfortable indoor climate.

1.3 Problem Formulation

Currently, heat pumps for water-bound heating systems determine the tempera-
ture of the water going into the system, the flow line temperature, as a function
of outside temperature. Since they do not take weather forecasts and the cost of
electricity into account there is an opportunity to explore if doing so could be
beneficial. Modern control strategies enable the usage of such data and thus the
following question arises:

Can electricity cost for a heat pump be reduced, while maintaining
comfort, by utilizing optimal control strategies in combination with
electricity price data and weather prediction?

1.4 Delimitations

Only simulations

The experiments are only performed in simulations, no experiments are performed
on a real system. This was decided early as a real-world system was deemed to
require significant time for the implementation, time which would yield little
academic value.

Available data

This thesis uses electricity price data supplied by Nord Pool and weather data
from the Swedish Meteorological and Hydrological Institute (SMHI). Norrköping
in Sweden was chosen as the place of study due to good availability of data. Some
non-confidential data was supplied by NIBE.
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Simplified house model

House models do not take factors such as furniture, people, opening and clos-
ing doors, lights or other electric appliances into account. Moreover, walls and
windows will be modeled as flat surfaces assuming steady-state heat flow and
isotropic materials to enable the usage of the equations stated in Section 2.3.

Heat pump type

Only one ground source heat pump is modeled. There are also other types of heat
pumps, but those are not examined in this thesis.

Heat pump models

Real-world heat pumps are complex, hence when modeling the internal system
of a heat pump simplifications has been made. For example, valves, sensors, and
pumps that are not expected to affect the result significantly may be neglected
and the focus was on the energy input and output of the heat pump.

No hot water production

Heat pumps are usually used to heat warm water, which means that the heat
pump may not be available for heating radiators at all times. This is not taken
into account in this thesis. Instead, it is assumed that the heat pump is always
able to heat the radiators.





2
Theory

In this chapter, current standard practice of heat pump control is examined. This
is followed by a presentation of research into alternative methods for heat pump
control. Also, research on building modeling is reviewed. Further, theory used
in this thesis, such as heat pump Coefficient of Performance (COP), heat flow, the
electricity market, and optimal control is presented.

2.1 Related Work

Climate control in buildings has for a long time been a subject with relatively lit-
tle innovation. Control practices has remained constant as current techniques
can provide a comfortable indoor climate. Focus has been on improving en-
ergy consumption by improving building practices, such as better insulation and
reuse of thermal energy in outgoing ventilation air.

Recently however, there has been an increasing amount of research into build-
ing climate control. This includes research on how control-oriented models of
buildings can be constructed, as well as how predictions of future weather and
energy price can be used for increased comfort and/or reduced energy cost.

2.1.1 Current Standard Practice

The power output from a heat pump can be varied by changing the tempera-
ture or the mass flow rate of the water going out from the heat pump and into
the radiator system. The temperature of the water at this point is known as the
flow line temperature. In general, the flow line temperature is determined as a
function of outside temperature, known as the heat curve. The heat curve aims
to yield a constant indoor temperature independent of the outside temperature.
The heat curve can be shifted to adjust the indoor temperature. This can be done

5



6 2 Theory

either manually or by utilizing an indoor temperature sensor and letting a con-
trol system set the heat curve. If done manually, the heat curve is set for the
highest desired temperature in the house, where the radiators are also generally
overdimensioned. The temperature can then be adjusted at the thermostats on
the radiators [5].

2.1.2 Heat Pump Control Strategy Research

Research is being performed to evaluate how heat pump control can be devel-
oped. In general, there is a shift from just controlling the reference indoor tem-
perature, to weighing in more factors such as electricity cost.

Studies regarding the use of machine learning and AI for heat pump control
have been done. S. Noye et al. [6] concludes that it would be possible and benefi-
cial to use AI in an on-line application because of the complexity and difference
between real-world situations. This is however a field that needs further studies.

Using MPC for the purpose of minimizing electricity cost for heat pumps has
been studied previously. Kajgaard et al. [7] found that it was possible to reduce
the electricity cost for a typical danish house by 7% in a given month (price and
weather data from February 2012). The study found that the potential savings are
inversely correlated with required comfort. A higher acceptance for temperature
variation makes larger savings possible.

Heat pumps in conjunction with other components such as thermal storage
tanks and solar cells was studied by R. Yumrutaş and M. Ünsal [8]. Solar energy
was used for heating water in a storage tank buried below the ground. A heat
pump was then used to supply sufficient water temperature for spatial heating
with radiators. P. Wu et al. [9] performed a case study using a water tank as
thermal storage together with a heat pump. The heat pump operated only dur-
ing times of relatively high ambient temperature to heat the building and charge
the storage tank. During times of low ambient temperature the heat pump was
switched off and the thermal storage tank discharged to maintain indoor temper-
ature. The study showed that the method could maintain the indoor tempera-
ture within the range 21◦C - 23◦C while the average ambient temperature was
between −9.3◦C and 11.3◦C. They recorded an increase of seasonal Coefficient
of Performance (SCOP) of 26.1% and 14.0% daily average COP. Huchtemann [5]
found that having a thermal storage in the form of a water tank had a much
higher influence on the heating system inertia than the materials used in build-
ing walls.

Heat pump manufacturers have implemented other means of reducing en-
ergy cost. These may have limited foundation in theory, but can still provide
significant savings. For example, NIBE has a function called Smart Price Adap-
tion which offsets energy usage to hours when the electricity price is lower [10].
These algorithms are however generally confidential and therefore hard to study
academically.
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2.1.3 Building Modeling

While MPC has shown to be effective for climate control of a building, it has not
been widely used. Oldewurtel et al. [11] argues that this is due to the difficul-
ties/costs associated with obtaining a model of an individual building, and the
fact that energy has been cheap, thus not making the investment pay off. Using
MPC also introduces requirements on the type of model that is used. Computer
aided modeling tools such as TRNSYS, EnergyPlus, and ESP-r, which are often
used for modeling buildings, create models which are very complicated and thus
not easily usable for control purposes [12].

If there is ample measurement data available for the building, it is preferred
to use a purely statistical model [12]. Some statistical methods are presented
in [13], including sub-space methods, prediction error methods, and MPC relevant
identification. These will not be considered in this thesis due to the lack of mea-
surement data.

One technique which is useful for modeling buildings for control purposes is
Resistance-Capacitance (RC) modeling. Similar to an electrical circuit, the ther-
mal resistance can be modeled as a resistor and the thermal capacity as a capac-
itor [12]. These models can easily be made more or less complex depending on
requirements. They are also very easy to describe analytically and are therefore
easy to use for MPC. This technique has been used by several projects for using
MPC for heating control, at among others UC Berkley, ETH Zürich, and KU Leu-
ven [13].

2.2 Heat Pump

The objective of a heat pump is to move thermal energy from one place to another,
which is realized in a compressor cycle. The benefit compared with other types
of heat generation is that much of the desired thermal output does not have to be
converted from another form of energy. Instead, thermal energy can be moved
from a place where there is an abundance of thermal energy to the place where it
is desired.

Figure 2.1 illustrates the working principle of the compressor cycle. The sys-
tem contains a fluid which carries thermal energy. The compressor raises the
pressure of the fluid under constant entropy. The fluid then passes through the
condenser which emits heat to its surrounding environment, for example by pass-
ing a heat exchanger and transferring heat to water which heats radiators in a
building. After this, the fluid passes through the expansion valve causing the
pressure and temperature to drop. At last, thermal energy is transferred from
the source to the fluid as it passes the evaporator [14]. Thermal energy can be
transferred to the evaporator with a radiator in the case of an air source heat
pump or with a heat exchanger in the case of a ground source heat pump.



8 2 Theory

Evaporator

Condenser

CompressorExpansion
valve

QH

QL

Win

Figure 2.1: Schematics of a compressor cycle.

2.2.1 Heat Pump Types

Different means can be used to move thermal energy to the evaporator and to ex-
tract thermal energy from the condenser. In a ground source heat pump, a fluid
which circulates in pipes in the ground outside the building transfers thermal en-
ergy to the evaporator through a heat exchanger. Energy can also be transferred
to the evaporator by forced convection, where the evaporator is a radiator over
which a fan blows air. In this case, the evaporator can be located either outside
the building, or inside the building if it is an exhaust air heat pump.

2.2.2 Coefficient of Performance

The performance of a heat pump is evaluated by the Coefficient of Performance
(COP). The COP is the factor between heat output QH and work input Win [14]
and is

COP =
QH

Win
(2.1)

The COP is not constant for a heat pump but changes depending on operat-
ing conditions. Current state of the art residential ground source heat pumps
can have COP-values around 4 to 5 [15]. In specification sheets for heat pumps,
COP is defined for specific operating conditions. These operating conditions do
however not represent the usual operating conditions. To enable better compari-
son between heat pumps, seasonal COP (SCOP) has been defined in standard EN
14825:2022 [16] as

SCOP =
QH

QHE
(2.2)
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where QH is the reference annual heating demand and QHE is the annual energy
consumption for heating. SCOP is thus the average COP for the whole year.

2.3 Heat Flow

There are three basic types of heat flow: conduction, convection, and radiation.
Conduction takes place within substances as more energetic particles transfer
heat to less energetic adjacent ones. Convection is the heat flow within a fluid in
motion. Radiation is energy which is emitted from objects in the form of electro-
magnetic waves [14].

The models for heat flow presented in this section are valid for steady state.
The system in this thesis will not be in steady state, but is expected to be so slow
that these models represent reality good enough.

2.3.1 Conduction

In the context of this thesis, conduction takes place within the walls, roof, and in
the ground surrounding a house. The heat flow through a homogeneous wall is
[14]

Q̇cond,wall = kA
T1 − T2

L
(2.3)

where k is the thermal conductivity, A is the wall area, L is the thickness of the
wall, T1 is the temperature on the high temperature side and T2 is the tempera-
ture on the low temperature side.

Thermal resistance can be defined

Rwall =
L
kA

(2.4)

such that

Q̇cond,wall =
T1 − T2

Rwall
(2.5)

The heat flow in a wall consisting of several layers with different thermal con-
ductivity and thickness can be calculated similarly to how current is calculated
in an electrical circuit with resistors connected in series. The heat flow for a wall
with N layers is then

Q̇cond,wall =
T1 − T2

Rwall,1 + Rwall,2 + ... + Rwall,N
(2.6)

where T1 and T2 is the temperatures on the surface of the high temperature side
and the low temperature side of the whole wall, respectively. Thermal resistance
is evaluated for each layer of the wall.
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2.3.2 Convection

Convection is the heat flow which takes place in a fluid in bulk motion [14]. Con-
vection is referred to as natural if the motion is caused by temperature differences
within the fluid and as forced if the motion is caused by external factors such as a
fan.

For the convective heat flow between a surface such as a wall and a fluid,
Newton’s law of cooling states that [14]

Q̇conv = hA(Tw − T∞) (2.7)

where h is the heat transfer coefficient of the fluid, A is the area of the wall, Tw
is the temperature on the surface of the wall, and T∞ is the temperature in the
surrounding fluid. The thermal resistance for convection can be written

Rconv =
1
hA

(2.8)

2.3.3 Radiation

The heat flow to a surface by global radiation is

Q̇rad = AG (2.9)

where A is the area of the surface and G is the global radiation, i.e., radiation
from the sun hitting a surface on earth, measured in W/m2.

2.3.4 Heat Conservation for the Steady Flow of a Fluid in a Tube

If a fluid is in steady flow in a tube, the heat flow to or from the fluid is [14]

Q̇ = ρcpV̇ (T2 − T1) (2.10)

where ρ is the density of the fluid, cp is the specific heat capacity of the fluid, V̇
is the volumetric flow rate, T1 is the temperature of the water at the inlet of the
tube, and T2 is the temperature of the water at the outlet of the tube.

2.4 Electricity Market

The price which Swedish consumers pay for electricity is made up of several dif-
ferent fees and taxes. The consumer price consists of spot price, emission al-
lowances, and energy tax. The proportions between these can vary depending on
the spot price, however, in January 2023 each of those constituted about one third
of the consumer price. The consumer price also includes an electricity certificate
which constitutes about 1% of the consumer price. On top of the consumer price,
the grid owner charges a fee for using the grid [17]. These fees are regulated by
the Swedish Energy Markets Inspectorate (Ei). On July 1 2022, Ei imposed new
grid tariffs which should be implemented before January 1 2027. These tariffs
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will be higher for higher power consumption, aiming to promote the consumer
to use electric power more evenly throughout the day and thus reducing their
peak power consumption [18]. Finally, all of these fees are subject to 25% VAT,
known as moms in Sweden.

Historic and future spot price data is available at Nord Pool [19]. Bidding on
the day-ahead trading market Elspot is done until 12:00 CET each day. The spot
prices of each bidding area for every hour the following day is then announced
at 12:45 CET or later at Nord Pool.

Norrköping, which is the geographical location for the case study in this thesis,
is located in price zone SE3. The spot price in this zone has historically been
higher during the autumn and winter. Figure 2.2 shows the average price for
each week during the period 2011 - 2021.

5 10 15 20 25 30 35 40 45 50

Week

0.25

0.3

0.35

0.4

0.45

0.5

0.55

S
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t p
ric

e 
[S

E
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/k
W

h]

Average weekly spot prices in SE3 2011-2021

Figure 2.2: Weekly average spot prices of SE3 for the 11 year period 2011-
2021.

The electricity prices rose during 2021 and 2022. See Figure 2.3.

The spot price is generally higher during the day than during the night. On
average it peaks in the morning around 08:00 CET and in the evening around
17:00 - 18:00 CET. See Figure 2.4.
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Figure 2.3: Weekly spot prices of SE3 for the years 2020, 2021, and 2022.
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Figure 2.4: Hourly average spot prices in SE3 for the 11 year period 2011-
2021.



2.5 Optimal Control 13

2.5 Optimal Control

In optimal control the aim is to control a system such that an objective is opti-
mized. As this thesis aims to find a control strategy for heat pumps such that
electricity cost is minimized while comfort is maintained it is fair to say that this
is an optimal control problem.

2.5.1 Model Predictive Control

Model Predictive Control (MPC) is an optimal feedback control method that uti-
lizes a dynamic model of the system under control to make predictions of how
the system will behave over a finite horizon. The predictions are used together
with an objective function which is optimized. The objective function is generally
chosen to be minimizing some value or maximizing efficiency while being subject
to specified constraints. The solution to the optimization is what generates the
control signal [20].

When making the predictions of future states, the controller uses a feedback
of the current state which is either measured and/or estimated. The predictions
over the finite horizon creates a sequence of control signals which will give the
final state. The sequence that optimizes the objective function is used and the
first control signal is chosen and applied for a specified time period. The process
is then repeated [20].

Dynamic model

When predicting the future state of the system, the dynamic model is used. It is a
mathematical representation of the system under control. In discrete time, with
the time step Ts, it is often written on state-space form [20]

xk+1 = Axk + Buk + Ewk

yk = Cxk + Duk
zk = Mxk

(2.11)

where xk ∈ R
n, uk ∈ R

m, wk ∈ R
p, yk ∈ R

q, and zk ∈ R
r are the system states,

control signal, disturbance, system output signal, and measured signal to control.
Predictions are then produced by using the model in Equation (2.11) to simulate
time steps forward.

Objective function

The objective function is used to specify the performance criterion of the con-
troller. The definition of the objective function decides in what sense the control
signal is optimal. The function often includes some state of the system and the
control signal in some way. For an MPC controller a prediction horizon (N ) is
included. A general description of an objective function is specified in Equation
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(2.12) where z ∈ R
r is the measured state(s) and u ∈ R

m is the control signal(s)
[20].

JN (k) =
N−1∑
j=0

ℓ(zk+j |k , uk+j |k) (2.12)

For example, in an application where deviation of y ∈ R from a reference
r ∈ R is to be minimized, and penalties γ ∈ R and δ ∈ R are applied on the error
and input signal, the objective function may be

JN (k) =
N−1∑
j=0

γ |yk+j |k − rk+j |k | + δ|uk+j |k | (2.13)

Constraints

An advantage of using MPC is the ability to incorporate system constraints when
optimizing [20]. Systems are often limited with regards to the control signal (u).
For example, a constraint on u can be given as

u ∈ [umin, umax]

Constraints can be applied to multiple signals in the control problem. For
example, keeping a system state below some value, limiting control signal change
rate, and deviation from a reference. They can either be hard or soft meaning that
a hard constraint is not allowed to be violated. A soft constraint is a constraint
that may add a penalty to the objective function if it is to be violated. It often
contains a slack variable which is equal to zero as long as the soft constraint is
not violated and thus do not add anything to the objective function.

2.5.2 MPC Problem Formulation

With an objective function, constraints, and the dynamic model, a simple illustra-
tive MPC problem can be formulated according to Equation (2.14). w is predicted
disturbances made at the time k. More constraints may be added to the control
problem depending on design criteria.

min
u

N−1∑
j=0

γ |zk+j |k − rk+j |k | + δ|uk+j |k |

s.t. uk+j |k ∈ [umin, umax] ∀j = 0, ..., N − 1

zk+j |k = Mxk+j |k ∀j = 0, ..., N − 1

xk+j+1|k = Axk+j |k + Buk+j |k + Ewk+j |k ∀j = 0, ..., N − 1

(2.14)
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2.5.3 MPC Algorithm

The MPC is then implemented according to Algorithm 2.1.

Algorithm 2.1 MPC

1. Measure xk
2. Calculate u by solving the optimization problem (2.14)
3. Apply the first element of u as control signal
4. Update the time k := k + 1
5. Go to step 1





3
Modeling and Control

Included in this chapter is a description of the way the house used in the sim-
ulations is modeled. The house structure used is described and a state-space
representation is produced. The heat pump is modeled using data from a heat
pump operating in the real world. There are two controllers developed of which
one is a baseline heat curve controller and the other is an MPC controller. Finally
the weather forecasts used in the controller is analysed and evaluated.

3.1 Data Acquisition

The simulations are not run in real time, but for dates in the past. This means
that the simulation time is only limited by computing power, thus enabling sim-
ulations to run much faster than real time. For this reason, historic weather data
is collected from the SMHI open data source. Two types of weather data are col-
lected; observation data and forecasts. Observation data is easily collected for
temperature, wind speed, and solar radiation.

It was not possible to obtain historic weather forecasts from SMHI. For this
reason, forecasts were sampled once every hour between 2023-01-24 and 2023-
02-15. These dates are therefore the available time window on which simulations
can be run.

Historic electricity spot prices are provided from Nord Pool [19], that pro-
vides this data for free for academic purposes.

3.2 Overall System Description

The system includes a controller, a heat pump, and a house. Because of the way
the two different heat pump controllers work, two systems are developed. The

17
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heat curve controller takes the indoor reference temperature (r) and outside tem-
perature (Tout) as inputs and calculates the electrical power (u) needed for the
heat pump with regards to maintaining the temperature at the chosen reference.
The heat pump converts the electrical input power to heat flow (Q̇H ) which is
transferred to the house model. The house model is a state-space representation
derived using RC modeling with the indoor temperature (Tin) as the measured
output. Outside temperature (Tout) and solar radiation (G) are considered distur-
bances that affect the house through walls and windows. A block diagram of the
system using the heat curve controller is shown in Figure 3.1.

Heat curve
controller

Heat pump House
r

Tout

Tout G

Q̇Hu Tin

Figure 3.1: System overview when using the heat curve controller.

The system design, where MPC instead of the standard heat curve controller
is used, takes some additional inputs to the controller. The inputs are indoor ref-
erence temperature (r), electricity cost (ce), the current indoor temperature (Tin),
and the outside temperature weather forecast (Tout,f orecast). See Figure 3.2. The
electricity cost and weather forecasts are vectors of between 12 and 36 elements.

The acquired data is provided to the controller in hourly intervals. The spot
price is fixed for every whole hour while the temperature data is interpolated for
each time step. This is done to reflect reality, where spot price is fixed for every
hour, while the weather is of course changing continuously.

MPC Heat pump House
r
ce

Tout,f orecast

Tout G

Q̇Hu Tin

Figure 3.2: System overview when using the Model Predictive Controller.

3.3 House Model

Modeling of the house is done using RC modeling, depicted in Figure 3.3. Here,
Re represents the thermal resistance between the outside temperature and the
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envelope. The envelope is the encapsulation of the house, including the walls
and the roof. Re is including heat flow in the form of convection between outside
air, solar radiation on the outside walls, and conduction inside the envelope. Ri
is the thermal resistance between the envelope and the indoor temperature in-
cluding convection between the inside wall and air, solar radiation through the
windows, and conduction in the wall. Between the thermal resistances, there is
a capacitor, Ce representing the thermal mass of the envelope which also allows
for an envelope temperature state, Te. Ci is the interior thermal capacitance. Q̇H
represents the heat flow output from the heat pump into the interior. Choosing
to model this as a second order state-space model provides a way to include solar
radiation heat flow on both the outside walls (GAwall) and through the windows
(GAwindow).

Figure 3.3: Two state RC-model.

To use the state-space model in simulation, values for resistances and capaci-
tances have to be included. These are specific for every house and can be found
either analytically through very specific knowledge about the house components
and material or experimentally using parameter estimation. Doing such experi-
ments requires a house where it is possible to control factors such as heating, and
having doors and windows closed. Also, the house should not be inhabited to
minimize the risk of errors. This is not within the scope of this thesis and values
from a danish study [7] are used. They used parameter estimation to find the
resistance and capacitance of a typical danish house with a first order state-space
model. The average values from five different experiments were R = 5.3 · 10−3

◦C/W and C = 24.5 · 106 J/◦C. In our application with a second order system we
divide the resistance and capacitance between the inside and envelope with a 1:1
ratio resulting in Ri = Re = 2.65 · 10−4 ◦C/W, Ci = Ce = 12.25 · 106 J/◦C.

State-space house model

From the RC-model in Figure 3.3 a state-space model with two states, indoor
temperature (Tin) and envelope temperature (Te) representing the temperature
on the surface of the outside wall, is derived. Tin is measured while Te is not.
The controlled input signal, heat flow (Q̇H ), and two measured disturbances, out-
side temperature (Tout) and solar radiation (G), affect the house. This gives the
differential equations

Ṫin =
1

CinRin
(Te − Tin) +

1
Cin

Q̇H +
Awindow

Cin
G (3.1)
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Ṫe =
1

CeRin
(Tin − Te) +

1
CeRe

(Tout − Te) +
Awall

Ce
G (3.2)

The differential equations can be written on state-space form (in continuous time,
unlike in section 2.5.1 where it was written in discrete time.)

ẋ = Ax + Bu + Ew

y = Cx + Du

where

x =
[
Tin
Te

]
, u =

[
Q̇H
0

]
, w =

[
Tout
G

]

A =


−

1

CinRin

1

CinRin
1

CeRin
−

1

CeRin
−

1

CeRe

 , B =


1

Cin
0

 , E =


0

Awindow

Cin
1

CeRe

Awall

Ce


C =

[
1 0

]
, D = 0

3.4 Heat Pump Model

The heat pump is modelled as a function Q̇H = f (Pin). The internal dynamics
of the heat pump are thereby not taken into account. There are several reasons
for this. Primarily, this is done to make the model less complex and piecewise
linear. The relationship between electrical input power and heat output power is
nonlinear, as COP changes depending on operating conditions.

COP can be modelled as a function of source and flow temperature. The
source temperature is the temperature of the thermal fluid from the ground
source, while the flow temperature is the temperature of the fluid going into the
radiator system, measured directly after the heat pump. Source temperature can
be assumed to be constant, but flow temperature is correlated to input power.
Introducing flow temperature as a state in the model would in this case mean
that the input heating power would be a factor of a state and the input electrical
power.

However, as the indoor temperature is maintained around 21◦C, the heat-
ing power in a specific system will be relatively constant for specific flow tem-
peratures. This means that for each specific system, it is possible to derive a
function Q̇H = f (Pin). The nonlinearity will then be contained to the input, i.e.
ẋ = Ax + Bf (u) + Ew.

3.4.1 Identification of the COP Model

Sensor readings were retrieved from a heat pump which operates in a single fam-
ily home. The readings were sampled in intervals of 5 minutes between 2022-12-
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21 and 2023-03-16. The following signals were sampled: input power, brine tem-
perature, condenser temperature, return line temperature and volumetric flow. The
input power does not include losses before the inverter which means that some
losses will be disregarded. The samples are filtered such that only readings for
when the heat pump is in pure heating mode are used (the heat pump can also
heat tap water which is not of interest here). Further, only samples with input
power above 700 W, brine temperatures between 3 and 7 ◦C, and with flows over
5 l/min are included. This was done after recommendations from the supervi-
sors at ALTEN, in order to not include unordinary readings which might skew
the result. The selected samples have brine temperatures with an average of 4.24
◦C and a variance of 0.74 ◦C. The heating power at each sample can be calculated
using Equation (2.10). Properties for water (ρwater and cp,water ) are used as this
is the fluid used in the radiator system. The heating power is the difference be-
tween the outgoing heat flow (calculated using the condenser temperature) and
the return heat flow, see Equation (3.3).

Q̇H = ρwatercp,water V̇ (Tcondenser − Treturn) (3.3)

Figure 3.4 shows the samples with their respective measured input power Pin
and calculated heat output Q̇H . In the operating region [700, 3500] W, an affine
correlation between Pin and Q̇H can be identified. A model Q̇H = kPin+m is fitted
to the data by using the least squares method. For the case that Pin = 0 W it is
assumed that Q̇H = 0 W. In conclusion, Q̇H = f (Pin) is noncontinuous piecewise
affine over a disjoint domain, i.e.

Q̇H =



undefined when Pin < 0
0 when Pin = 0
undefined when 0 < Pin < 700
3.404Pin + 1380.4W when 700 ≤ Pin ≤ 3500
undefined when Pin > 3500

(3.4)

Since Q̇H = f (Pin) is nonlinear, the heat pump cannot be modelled as a linear
model (i.e., the form in Equation 2.11 cannot be used). Also, since m is posi-
tive, the COP is higher for lower input powers and decreases as the input power
increases. See Figure 3.5.

Constant COP

For the purpose of making a model with constant COP (such that the model is
linear), the data is also fitted to a model Q̇H = COPconst · Pin. Using the least
squares method returns COPconst = 4.5195.
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Figure 3.4: n = 18275 samples to which a model is fitted with linear re-
gression. The model is Q̇H = 3.404Pin + 1380.4 [W ] for Pin ∈ [700, 3500] W.
Evidently, there are some samples with values which deviate significantly
from the model. Those are however few compared to the total amount of
samples.
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Figure 3.5: COP at varying input powers for the identified model.
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3.5 Controller

In this section, the implementation of two different controllers is described. The
heat pump controllers used are a standard controller, which uses a heat curve to
find the appropriate heat input to the house, and an MPC controller which uses
weather forecasts and future electricity prices to optimize comfort and electricity
cost based on a weight parameter.

3.5.1 Heat Curve Controller

The heat curve controller is used to enable comparisons between a standard heat
pump controller and the developed MPC controller. Normally, the supply water
temperature is a function of outside temperature. Since the supply flow rate is
constant and the indoor temperature is relatively constant, the heat flow from the
heat pump to the house can be assumed to be a function of the supply water tem-
perature. Therefore, the standard way of implementing a heat curve controller
is analogue to determining input power as a function of outside temperature. In
this implementation, the water temperature is not modeled. Instead, the heat
transfer from the heat pump to the house is determined directly as a function of
outside temperature.

For a regular heat pump there are several heat curves to choose from. The
choice of heat curve is made based on the need of the house. The heat curves can
also be offset depending on desired reference indoor temperature. The reference
indoor temperature is in this thesis chosen to be 21◦C, meaning that only one
heat curve is needed for the modeled house.

Calculating the heat curve for the linear state-space model of the house is
done by finding the power demand, Q̇H , that satisfies a steady state indoor tem-
perature equal to the reference temperature. Assuming zero solar radiation, steady
state indoor temperature in Equation (3.1) and (3.2) gives

Q̇H =
Tin − Tout
Rhouse

(3.5)

where Rhouse = 5.3 · 10−3◦C/W is the total thermal resistance of the house.
The heat curve is described by the equation

Q̇H,demand = kTout + m (3.6)

With a linear fit of the values Tin = 21◦C, Tout = [−21, 21]◦C the coefficients
of the heat curve is calculated to be [k, m] = [−188.6792, 3962.3], see Figure 3.6.

Heat pumps are generally not run on less than about 20% of their maximum
input power. Instead, if the heat flow demand corresponds to an input power
which is less than 20% of the maximum input power, the heat pump is run in
bursts on its lowest input power. The lowest input power (u = 700W ) corre-
sponds to an output heat flow of 3.7635 kW. There will be one burst every hour
since weather data (and thus heat flow demand) is only changing once every hour.
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Figure 3.6: Theoretical heat curve ranging from −21◦C to 21◦C fully cov-
ering the temperature span used in this thesis. Temperatures are shown as
decreasing according to industry standard.

The length of the bursts will vary between 0 and 60 minutes and for the remain-
der of the hour the heat pump will be turned off. Given a certain heat flow de-
mand (Q̇H,demand), the theoretical electric power demand (Q̇elec,theoretical) is cal-
culated by dividing the heat flow demand with the COP at u = 700W . The length
of the bursts (in seconds) are calculated according to Equation (3.7). For the du-
ration of one hour this will provide an equal amount of heat transferred into the
house system as if the heat pump would run constantly at a lower rate.

Burst time = 3600 ·
Q̇elec,theoretical

Q̇elec,min
(3.7)

In real-world applications, the heat curve may be adjusted manually to match
the specific house that the heat pump is used for. A simulation with real-world
weather data is conducted to evaluate and shift the heat curve to match the power
demand of the house. The evaluation is done for the whole period of acquired
forecast data. See Figure 3.7.

Figure 3.7 shows a steady increase in indoor temperature as time progresses in
the period. For this reason, the heat curve is adjusted with resulting coefficients
[k, m] = [−188.6792, 3652.3], giving indoor temperatures seen in Figure 3.8. The
resulting heat curve is shown in Figure 3.9 and the burst time in Figure 3.10.
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Figure 3.7: Evaluation of the theoretical heat curve neglecting disturbances
due to solar radiation.

Jan 25 Jan 28 Jan 31 Feb 03 Feb 06 Feb 09 Feb 12 Feb 15

Time [s] 2023   

18

19

20

21

22

23

24

25

26

In
do

or
 te

m
pe

ra
tu

re
 [°

C
]

Heat curve evaluation

Figure 3.8: Evaluation of the heat curve after adjustment due to the distur-
bance of solar radiation.
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Figure 3.9: The heat curve after adjustment due to disturbances and with
regards to the minimal operating input power.
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Figure 3.10: Burst time calculated for heat pump operating levels below the
minimum threshold.
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3.5.2 MPC Controller

To utilize an MPC controller, a few different components are used. Practically, the
controller is implemented in MATLAB with the optimization toolbox YALMIP
[21]. This enables the usage of Simulink for the simulations. A simplified house
model is developed to be used as the internal plant for the MPC controller. MAT-
LAB is used for data handling as well as setting up the optimization objects in
YALMIP for use in the MPC controller.

Dynamic model - RC modeling

The MPC requires a dynamic model representation of the system that is con-
trolled. RC modeling is used in the same way as in Section 3.3. For this model,
the solar radiation will be neglected since there is no forecast data which could
be used when simulating. Attempts to use cloudiness forecast data to model so-
lar radiation forecasts were conducted, but the correlation did not prove strong
enough to be usable, see Appendix B. Thus there is no need to have a second de-
gree model and hence a first degree model is used. Temperature, however, is of
course included in the weather forecast. The RC model is shown in Figure 3.11.

Figure 3.11: The one state RC-model which is used in the standard, constant
COP, and perfect prediction MPC controllers.

The values used for resistance and capacitance is the same as for the house
model, Rhouse = 5.3 · 10−3 ◦C/W and Chouse = 24.5 · 106 J/◦C.

State-space MPC model

From the RC-model in Figure 3.11 a state-space model with one state, indoor
temperature (Tin), is derived. Tin is measured. The controlled input signal is the
heating power (Q̇H ) and one measured disturbance, outside temperature (Tout),
is affecting the house. The model is described by the differential equation

Ṫin =
1

ChouseRhouse
(Tout − Tin) +

1
Chouse

Q̇H (3.8)

which is rewritten on state-space form
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ẋ =Ax + Bu + Ew

y =Cx + Du

where

x = Tin, u = Q̇H , w = Tout

A = − 1
ChouseRhouse

, B =
1

Chouse
, E =

1
ChouseRhouse

C = 1, D = 0

Discretized model

The internal model used in the controller is discretized in time steps equal to the
sample time of the controller, Ts. The discretization is done in MATLAB using
the zero-order hold (ZOH) method. The resulting discretized model is written
on the form in Equation (2.11) where

Ad = 0.9954, Bd = 2.4433 · 10−5, Ed = 0.00461

Cd = 1, Dd = 0

Controller layout

The controller uses a sample time of 10 minutes. This sample time was chosen for
a few different reasons. For one, 10 minutes is a reasonable operational cycle time
for the compressor. NIBE prefers to run the compressor for at least 5 minutes
when it is turned on, and let it stay turned off for 5 minutes when it is turned off.
In general it is advantageous to run the compressor for fewer but longer periods
since it is worn every time it is started up. Thus, having fewer start ups per day
will prolong its lifespan. The response of a step input to the house model has a
time constant of about 130 000 seconds which is about 217 sample times. For
this reason, the sample time could be longer but is kept to 10 minutes due to
the mentioned reasons. Apart from the current state, the controller also takes
weather forecasts, and spot prices as inputs, see Equation (3.9). In this thesis
spot prices are assumed to be available at 12:00 immediately as the bidding on
the day-ahead market Elspot has ended, this is possible because of the use of
historic data, since they are not released at exactly the same time every day. With
this assumption, spot prices are available between 12 and 36 hours in advance
and depending on the time of day, the prediction horizon will change (see Figure
3.12). The spot price, provided in SEK/MWh, is converted to SEK/J as it is to
be multiplied with the time step duration (in seconds) and the control signal
which is in watts (J/s). Thus it is preferable to use SI-units to the furthest extent
possible.
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Figure 3.12: At 12:00 CET each day the next days hourly spot prices collected
creating a horizon of 12-36 hours ahead with known prices.

Weather forecasts are always available further in advance than spot prices,
and thus it is the spot price horizon that limits the controller horizon. Due to
this, the controller must be able to handle a dynamically shifting horizon. With
spot prices available from 12:00 CET, the maximum control horizon will be used
at 12:00 CET, which will be N = 216 (36 hours · 6 samples/hour = 216 samples).
The control horizon will then decrease by one at each time step, until it reaches
N = 73 at 11:50 CET the next day (12 hours · 6 samples/hour + 1 sample =
73 samples).

Soft constraint

In order to limit the indoor temperature from deviating too much from the ref-
erence temperature without increasing the cost/comfort-weight (α), a soft con-
straint on the difference between indoor- and reference indoor temperature is
implemented. The comfort range is chosen to be ±2◦C. A constraint containing
the slack variable ϵ is used such that if the temperature deviates less than or
equal to 2◦C it does not add to the objective function as ϵ is equal to zero. As
the temperature deviates more than 2◦C, ϵ will be non-zero which introduces an
increase of the objective value. ϵ is multiplied by a penalty factor Rϵ to scale
the resulting penalty to have a large effect. Rϵ is chosen to be 105. The penalty
of deviating more than 2◦C is designed to be linear meaning that each degree
outside of the comfort range of 2◦C adds an equal amount to the total objective
value. The penalty for deviating is chosen large enough in this context such that



30 3 Modeling and Control

breaking the soft constraint will never be worth it in practical use, i.e., for reason-
able electricity cost and weather conditions. Using a soft constraint instead of a
hard constraint will however make sure that the problem is solvable even if the
temperature for some reason has fallen under or risen above the desired levels.
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Figure 3.13: Illustration of the objective function penalty for deviating from
the comfort temperature range.

Control problem

The mathematical description of the control problem is

min
u

N−1∑
j=0

α|yk+j |k − r | + αϵRϵ + (1 − α)ceTsuk+j |k

s.t. uk+j |k ∈ {0, [700, 3500]} ∀j = 0, ..., N − 1

|yk+j |k − r | − ϵ ≤ 2 ∀j = 0, ..., N − 1

yk+j |k = Cxk+j |k ∀j = 0, ..., N − 1

xk+j+1|k = Adxk+j |k + Bdf (uk+j |k) + Edwk+j |k ∀j = 0, ..., N − 1

(3.9)
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where

r ∈ R [◦C] : reference indoor temperature

u ∈ R [W ] : input power

w [◦C] : outside temperature forecast

ce [SEK/J] : electricity cost

Ts [s] : sampling time

0 < α ≤ 1 : cost/comfort-weight

0 ≤ ϵ : soft constraint slack variable

Implementation in YALMIP

In the implementation, the objective function in Equation (3.9) is rescaled

N−1∑
j=0

|yk+j |k − r | + ϵRϵ +
1 − α
α

ceTsuk+j |k =
N−1∑
j=0

|yk+j |k − r | + ϵRϵ + βuk+j |k (3.10)

where

β =
1 − α
α

ceTs (3.11)

β is evaluated before calling the optimizer. This is done to reduce the amount
of parameters in the model, which will lead to better optimization performance.
While the objective functions are not equal, they are equivalent with respect to
their optimal parameters, as Equation (3.9) has been divided by α which is a
positive constant during each run.

In the YALMIP implementation, the controller is parameterized in the model
states (x), reference (r), input (u), disturbances (w), and β. The initial state, ref-
erence, disturbances, and β are constrained when the optimizer is called, while
each state starting from the second is constrained so that it satisfies the dynamic
equation. An optimizer object is defined for each possible control horizon. This
means that a total of 144 optimizer objects are defined (individual horizons =
maximum horizon - minimum horizon + 1 = 216 − 73 + 1 = 144). At each call,
the optimizer object which corresponds to the current horizon is called.

The problem is nonlinear due to the nonlinear COP function, and since u is
a semi-continuous variable. This means that the optimization problem cannot
be solved by common LP solvers. It can however be solved with a Mixed Integer
Linear Programming (MILP) solver. A MILP solver supports the integer program-
ming introduced by the constraints on u, and does also support the use of the
piecewise affine COP function. Gurobi is used in this thesis. For performance
reasons, an optimal solution is deemed to be found when the gap between the
current best solution and the lower bound goes below 10−3. Therefore the solu-
tions will not be optimal, but this simplification is necessary to make in order for
the problem to be solvable in a reasonable time.
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3.6 Weather Prediction

Once every hour, SMHI releases a weather forecast for the next 10 days. These
forecasts were sampled between 2023-01-25 and 2023-02-16. For the first 44 -
48 hours of a forecast there are values for each hour, meaning that there exist
forecasts for every hour of the 36 hour horizon dictated by the spot price. Values
for temperature are taken directly from the forecast and used in the simulation.
As no value for radiation is given in the forecast, a model was created which re-
turns radiation as a function of known parameters. Cloudiness and sunshine is
included in SMHI-supplied forecasts and was used when modelling solar radia-
tion. The correlation to observed solar radiation values turned out too weak to
be used. Solar radiation was thus not used in the weather forecast. For details on
the model, see Appendix B.

3.6.1 Temperature Forecast Quality

The quality of the forecasts is analysed by comparing the predicted temperatures
with observations. Hourly forecasts in the period 24 January 2023 23:00 CET to
13 February 2023 23:00 CET are analysed. For each forecast, the first 48 hours are
evaluated against the corresponding observations. This means that the period for
which forecasts are compared with measured values is 25 January 00:00 CET to
15 February 23:00 CET. For each forecast horizon, the average deviation from the
observed temperature is calculated. Figure 3.14a shows the mean error for each
specific horizon as well as the interval for one standard deviation. Figure 3.14b
shows the standard deviation from the observed value for each specific horizon.

As expected, the standard deviation is the smallest for the shortest forecast
horizon and increases for longer horizons. For this data, the deviation increases
until around a 10 hour horizon, after which it stays around the same until 30
hours. After around 35 hours, the standard deviation starts to rise rapidly. It
should be noted that the horizon used in the controller will be at most 36 hours.
Therefore, the standard deviation is at most around 1.85◦C in this implementa-
tion.

Missing weather forecasts

Some forecasts are missing due to errors during sampling. Figure 3.15 shows the
amount of missing forecasts per day (a day without missing forecasts should have
24 forecasts, one for each hour). Evidently, the amount of missing forecasts is very
high during the end of the period. To solve this problem, previous forecasts are
used when data is lacking for a specific hour. The previous forecast is shifted one
hour in time to act as a replacement.
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Figure 3.14: Mean forecast error per horizon and the standard deviation
from observed values.

Using old forecasts may decrease accuracy. To evaluate the quality of each
forecast, the mean standard deviation from observed temperatures for all hori-
zons is evaluated for each forecast. The standard deviation from observed tem-
perature is shown in Figure 3.16. It is clear that the deviation is higher during
the end of the period (around February 9 to 14) when there are more missing
forecasts.
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Figure 3.15: Amount of missing forecasts per day.
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4
Benchmarking and Results

The controllers are evaluated using three different cases where each case con-
tains weather and spot price data for one week. The three weeks are simulated
separately using the controllers to control the indoor temperature. MATLAB and
Simulink are used to implement the models and run the simulations with ac-
quired weather and spot price data. The simulations are benchmarked using two
measurements, electricity cost and degree minutes. The results come in the form
of data extracted from the simulations in Simulink. Regarded as performance is
what corresponds to the overall aim of minimizing electricity cost while main-
taining comfort (degree minutes). The data presented would be of direct interest
for a user. The second part of the results is the control of the heat pump in the
form of control signal distribution which shows how the heat pump is operated
during the three periods.

4.1 Analysed Cases

The cases which are analysed are limited in time to the sampled weather forecast
data. This period does however provide a range of different operating condi-
tions which was analysed. During the period, the spot price varied between 0.02
SEK/kWh and 2.44 SEK/kWh, see Figure 4.1.

The cases which are possible to analyse are limited to the conditions during
the recorded period. Therefore, the studied cases do not necessarily cover all
interesting conditions. However, the period contains varying conditions which
are typical during the winter season in southern Scandinavia. As this is the season
with the lowest temperature, the heating demand is the highest and thus the
potential savings are also the highest.
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Figure 4.1: Outside temperature in Norrköping and spot price during the
whole period when forecasts were sampled. There is a negative correlation
of -0.48 between outside temperature and spot price.

4.1.1 Period 1: 7 Days with Highly Varying Spot Prices

The first period mostly includes outside temperatures of around 0 to 6 ◦C and
around 1.5 days with temperatures below 0 ◦C. The temperature and spot price
are inversely correlated (the correlation coefficient is -0.55), see Figure 4.2. This
is the biggest inverse correlation of the analysed periods.

4.1.2 Period 2: 7 Days with High Spot Prices and Cold Weather

During most of period 2 the outside temperature was below 0 ◦C. The spot price
is very cyclic with high prices during the day and lower during the nights (with
clear peaks during morning and afternoon for all days). The correlation coeffi-
cient between temperature and spot price is -0.18, see Figure 4.3.

4.1.3 Period 3: 7 Days with Low Spot Prices, Warm Weather and
High Prediction Errors

Period 3 shows significant differences during the period for both temperature
and spot price. The correlation between temperature and spot price is -0.14, see
Figure 4.4. Note that this period has significantly larger errors in its forecasts
compared with period 1 and 2, see Figure 3.16. This provides an opportunity to
study the effects of prediction errors.
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Figure 4.2: Outside temperature in Norrköping and electricity spot price
during period 1.
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Figure 4.3: Outside temperature in Norrköping and electricity spot price
during period 2.
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Figure 4.4: Outside temperature in Norrköping and electricity spot price
during period 3.

4.2 Benchmarking

The developed MPC controller, referred to as the standard MPC Controller, is
compared with four other controllers. Three of those are variations of the stan-
dard MPC controller, while the fourth is the heat curve controller.

• Constant COP MPC controller. If COP is a constant value, the entire sys-
tem is a Linear Time Invariant (LTI) system. This leads to a simpler opti-
mization problem which is significantly faster to solve. It is therefore inter-
esting to study whether it is possible to use a constant COP in the controller
model while using the more realistic, varying COP in the simulated heat
pump model.

• Perfect predictionMPC controller. This controller is equal to the standard
MPC controller in all aspects except that it is fed with predictions which
are made from observation data, meaning that the predictions will always
be exactly correct. This controller is used for the purpose of evaluating the
effects of prediction errors on controller performance.

• OracleMPC controller. This controller is an MPC controller which uses the
second order model from Section 3.3 as dynamic model in the controller
with perfect predictions for all disturbances, including radiation. C is in
this case [1, 0] The controller thus has a perfect understanding of the how
the system will behave during the horizon. Comparing the performance of
this controller to the perfect prediction MPC gives a measurement of how
the model errors affect performance.
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• Heat curve controller. This is the standard heat curve controller described
in Section 3.5.1. It is used as a baseline to compare the performance of the
MPC controller.

The controllers are evaluated in electricity cost and comfort. The cost evalu-
ation is fairly simple and intuitive. In simulation, the current spot price is mul-
tiplied with the current input power and integrated over time, giving the total
electricity cost during one simulated period. The cost is then compared between
the controllers. The comfort evaluation is somewhat less intuitive. The method
used here is called degree minutes [22], which is a way of measuring deviation
from reference temperature. 1 degree minute corresponds to a deviation from
the reference temperature of 1 degree for 1 minute. Mathematically, degree min-
utes can be defined

degree minutes =

t1∫
t0

|Tin(t) − r(t)|dt

where t is measured in minutes. It should be noted that this is the same way of
quantifying comfort as is done in the objective function. Never deviating from
the reference temperature will result in 0 degree minutes and staying on the com-
fort range boundary (±2◦C) for a whole period of 7 days results in 20160 degree
minutes.

The MPC controllers are evaluated for different values of α and the heat curve
controller is evaluated for its calibrated setting.

4.3 Performance

For all periods, degree minutes and total electricity cost is presented in tables for
all controllers. Indoor temperature is plotted against spot price for the standard
MPC using α = 0.010 in this chapter. For plots of the performance of all con-
trollers, refer to Appendix A. The values for α during simulations were chosen
to be α1 = 0.005, α2 = 0.010, and α3 = 0.015. For the standard MPC, α4 = 1
was also included. The MPC controller uses a time step of 10 minutes giving a
10 minute linear indoor temperature behaviour. The heat curve controller was
simulated using the controller developed in Section 3.5.1. All simulations were
conducted using a constant reference temperature (r) of 21◦C.

4.3.1 Period 1

Period 1 ranges from Jan 25 to Feb 1 of the year 2023. Indoor temperature and
spot price during the period is shown in Figure 4.5 where α = 0.010. Accumu-
lated degree minutes and total electricity cost for different values on α for all
controllers are shown in Table 4.1.
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Standard MPC controller: indoor temperature and spot price

Figure 4.5: Simulation during period 1 from Jan 25 to Feb 1. Standard MPC
controlled indoor temperature with α = 0.010 on the left axis and spot price
on the right axis.

Table 4.1: Comfort and electricity cost results from simulations of period 1,
Jan 25 to Feb 1.

Controller α Degree minutes [◦C min] Cost [SEK]
Standard MPC 0.005 8761 61.41

—"— 0.010 5624 62.94
—"— 0.015 3482 65.94
—"— 1 443 91.04

Constant COP MPC 0.005 9295 70.79
—"— 0.010 6960 74.37
—"— 0.015 4995 77.09

Perfect prediction MPC 0.005 8707 61.11
—"— 0.010 5517 63.30
—"— 0.015 3436 66.27

Oracle controller 0.005 7719 60.63
—"— 0.010 3806 64.64
—"— 0.015 2694 66.28

Heat curve controller N/A 8018 77.73

4.3.2 Period 2

Period 2 ranges from Feb 1 to Feb 8 of the year 2023. Indoor temperature and
spot price during the period is shown in Figure 4.6 where α = 0.010. Accumu-
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lated degree minutes and total electricity cost for different values on α for all
controllers are shown in Table 4.2.
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Standard MPC controller: indoor temperature and spot price

Figure 4.6: Simulation during period 2 from Feb 1 to Feb 8. Standard MPC
controlled indoor temperature with α = 0.010 on the left axis and spot price
on the right axis.

Table 4.2: Comfort and electricity cost results from simulations of period 2,
Feb 1 to Feb 8.

Controller α Degree minutes [◦C min] Cost [SEK]
Standard MPC 0.005 11911 143.16

—"— 0.010 9403 144.62
—"— 0.015 6455 148.17
—"— 1 287 179.55

Constant COP MPC 0.005 13144 162.56
—"— 0.010 10593 169.52
—"— 0.015 8992 173.84

Perfect prediction MPC 0.005 11741 143.90
—"— 0.010 8659 145.45
—"— 0.015 6553 148.17

Oracle controller 0.005 12131 141.22
—"— 0.010 8814 143.86
—"— 0.015 4717 149.83

Heat curve controller N/A 4106 167.34
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4.3.3 Period 3

Period 3 ranges from Feb 8 to Feb 15 of the year 2023. Indoor temperature and
spot price during the period is shown in Figure 4.7 where α = 0.010. Accumu-
lated degree minutes and total electricity cost for different values on α for all
controllers are shown in Table 4.3.
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Standard MPC controller: indoor temperature and spot price

Figure 4.7: Simulation during period 3 from Feb 8 to Feb 17. Standard MPC
controlled indoor temperature with α = 0.010 on the left axis and spot price
on the right axis.
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Table 4.3: Comfort and electricity cost results from simulations of period 3,
Feb 8 to Feb 15.

Controller α Degree minutes [◦C min] Cost [SEK]
Standard MPC 0.005 9471 42.98

—"— 0.010 5844 45.55
—"— 0.015 5069 46.19
—"— 1 401 68.60

Constant COP MPC 0.005 10213 51.35
—"— 0.010 6874 54.25
—"— 0.015 5247 55.35

Perfect prediction MPC 0.005 9538 43.15
—"— 0.010 5958 45.33
—"— 0.015 5035 46.31

Oracle controller 0.005 6857 43.48
—"— 0.010 4580 45.73
—"— 0.015 3394 47.71

Heat curve controller N/A 12552 65.86

4.4 Control Signal Characteristics

Each time step the MPC generates a control signal u which is constrained as
u ∈ {0, [700, 3500]}. See Appendix A.13 for an example of how the input signal
changes during one period.

For every controller, the operating time distribution is shown. Operating time
refers to the time when u , 0. Control signal is presented for simulations done
with the standard MPC for the three periods, see Figures 4.8, 4.9, and 4.10.
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Standard MPC control signal distribution period 1
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Figure 4.8: Distribution of the control signal during period 1 for the Stan-
dard MPC with α = 0.010. The heat pump was operating (u ∈ [700, 3500])
for 76.6% of the total period and turned off (u = 0) for 23.4%.

Standard MPC control signal distribution period 2
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Figure 4.9: Distribution of the control signal during period 2 for the Stan-
dard MPC with α = 0.010. The heat pump was operating (u ∈ [700, 3500])
for 90.5% of the total period and turned off (u = 0) for 9.5%.
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Standard MPC control signal distribution period 3
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Figure 4.10: Distribution of the control signal during period 3 for the Stan-
dard MPC with α = 0.010. The heat pump was operating (u ∈ [700, 3500])
for 72.5% of the total period and turned off (u = 0) for 27.5%.





5
Discussion and Conclusion

Multiple parts of the method and results gives reason for analysis. In this chap-
ter, the benchmarking method and results are discussed with focus on controller
comparison. System and model design regarding house and controllers includ-
ing some problems that arises when designing models are explained. The MPC
approach is considered for implementation in consumer products and some as-
pects of the feasibility of real-world implementation is discussed. A conclusion
is drawn with the problem formulation, method, and results as foundation. Also
some suggestions of future work is included.

5.1 Constant vs. Varying COP

In this thesis, using a constant COP was detrimental to controller performance.
In some cases it could save money compared to the heat curve controller, but
in the worst case (period 2, α = 0.015) it provided lower comfort at a higher
electricity cost when compared to the heat curve controller. It was always under-
performing significantly compared to the standard MPC. It is therefore necessary
to take the variations of COP into account when computing the cost which is very
reasonable. By the nature of the problem at hand, power consumption is desired
to be concentrated to the hours when the electricity is cheap. This will result in a
more uneven power consumption when compared to traditional control methods.
In other words, using a lot of energy at once or none at all is desired. On the other
hand, COP is highest for low power inputs and lowest for high power inputs (see
Figure 3.5). From a pure COP perspective, it would thus be most beneficial to
use a low but steady power consumption. Evidently, there is a conflict of interest
here which needs to be taken into account by the MPC. By taking both spot price
and efficiency (COP) into account, the input power trajectory which yields the
lowest total objective value can be calculated.

47
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5.2 Sensitivity to Forecast Errors

The effects of weather forecast errors can be evaluated by comparing the standard
MPC with the perfect prediction MPC. In this thesis, the effects are very small.
On average for all α, the standard controller had 69 degree minutes more com-
pared to the perfect prediction controller in period 1, 272 more in period 2, and
40 less in period 3. The controllers were very similar in electricity cost during
all three periods. On average for all α, the standard MPC was 0.13 SEK cheaper
during period 1, 0.54 SEK cheaper during period 2, and 0.02 SEK cheaper dur-
ing period 3. Interestingly, the standard MPC was therefore both cheaper and
provided better comfort during period 3, when the prediction errors were larger
(see Figure 3.16). Overall, the errors are negligible. This might be due to radi-
ation not being used in the MPC internal plant model. Variations in radiation
would then have a larger effect than the prediction errors. Using publicly avail-
able weather forecasts (in this case from SMHI) should therefore work well for
building climate control purposes.

5.3 Model Complexity

The oracle controller was used to evaluate whether the model simplifications
would significantly reduce controller performance. The oracle controller is com-
pared with the perfect prediction controller to remove the effects of prediction
errors. Figure 5.1 visualizes degree minutes for both controllers for each case
while Figure 5.2 visualizes electricity cost. In general, the oracle controller yields
better comfort for very similar electricity cost as the perfect prediction controller.
In fact, the electricity cost is often marginally higher for the oracle controller
while the degree minutes are mostly significantly lower. It could thus be argued
that the model simplifications primarily reduces comfort, while the differences
in electricity cost are too small to be noteworthy. This means that if a good radia-
tion model can be developed there is significant potential for improved comfort.
A radiation model was planned to be used in this thesis, but could not be imple-
mented in the end (see Appendix B).

Another consideration which should be taken into account before expanding
the plant model to two states is how the second state should be estimated. The
second state is the temperature in the middle of the walls, which may not be
reasonable to measure. In reality, this temperature will probably be different in
different places in the house. Probably, a better approach than measuring is to
use an observer. The observer can for example be implemented using a Kalman
filter [20] with the same two state model as is used in the controller.
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Figure 5.1: Deviation from reference temperature for the perfect prediction-
and oracle controller for all periods and values of α.
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Figure 5.2: Electricity cost for the perfect prediction- and oracle controller
for all periods and values of α.
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5.4 Forecasting Radiation

Models for estimating global radiation based on sunshine and cloudiness respec-
tively (as well as data for time of day and day of year) are presented in Appendix
B. For the case that data for sunshine can be accessed, a good model of radiation
is possible to make. The cloudiness model however is less robust and may some-
times over- or underestimate radiation significantly, especially during winter. As
heating is needed the most during winter, it was decided to not include the radia-
tion model in the prediction. It is however possible that the radiation model can
provide improved performance, although this will need to be weighed against
the increase in model complexity.

5.5 Overdimensioned Heating System

Identification of the COP model used in this thesis was done with a real world
operating heat pump. The data available was for a house that uses a ground
source heat pump with 18 kW capacity. There was not enough data in order to
use the same house for the house modeling and thus data from another house
had to be used. This led to an overdimensioned heat pump, i.e., higher power
output capacity than needed, with regards to the house. Using Equation (3.5) to
calculate the outside temperature necessary to run the heat pump on full capacity
gives −74.4◦C and 1.1◦C for the lowest capacity. A lower capacity heat pump
would cover the outside temperature span used in the analysed cases. An 8kW
heat pump would cover temperatures between −21.4◦C and 12.1◦C without the
need of the burst heating in the heat curve controller since it would never run on
its lowest capacity.

The fact that the heat pump is often running on low power means that COP
is most often very good. If a heating system of more suitable capacity was to be
used, the heat pump would have to run at a higher percentage of its maximum
power. The COP would then be somewhat lower.

5.6 Comfort vs. Cost

The trade off between comfort and cost is unavoidable when managing house
heating. In this thesis there are some values that can be tuned. Weight (α) and
comfort temperature range are two parameters that is reasonable for a consumer
to tune in order to meet the demands.

5.6.1 Weight

The weight (α) is a tuning parameter and could in real applications be chosen
by the consumer to have the MPC tuned to the users preference. Large α gives
priority to maintaining comfort while a small α results in a bigger priority on
saving money. It is possible to have α = 1, however with our implementation of
β (see Equation (3.11)), it is not possible to choose α = 0 to only focus on lowering
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electricity cost. In practice what α = 0 would mean for the user is the desire to
have the electricity cost as low as possible. Then, the heat pump could be turned
of completely. Since β is implemented for performance, it would be possible to
implement the objective function according to Equation (3.9) and use α = 0 but
then again, the MPC would always output u = 0 W as control signal.

5.6.2 Soft Constraint

When choosing the design of the soft constraint, the level of importance regard-
ing keeping within or close to the comfort range is up to the user. Some may
think it is not necessary to be within the comfort range at all cost. If the spot
price would increase drastically there would be an opportunity to either raise the
indoor temperature above the comfort range and/or let it sink below for some
time in order to save on electricity cost. A simple way to accomplish this would
be to expand the comfort range while still maintaining a large immediate penalty.
The way the slack variable ϵ is used together with Rϵ in the objective function in
Equation (3.9) could also be altered in different ways. Raising it to some power
other than 1 and tuning Rϵ would provide a way to enable small penalties for
indoor temperatures outside but close to the comfort range. As indoor tempera-
ture continues to deviate, the penalty rises exponentially. This could be tuned to
fit the users preferences and the way the penalty is used could be done in other
ways. However in this thesis, a linear penalty is used and the comfort range is set
to a feasible range to use as default in a consumer product.

5.7 Control Signal Characteristics

The heat pump will generally operate at the lowest operational setting (u = 700
W). This is reasonable as the COP is the highest at this power setting (see Figure
3.5). In case the objective value is lower for other power settings those will of
course be used. Here, the case α = 0.010 is used for exemplification. The second
most common power setting is u = 0 W, which was used between 9.5 % and 27.5
% of the time for the different periods (see Figures 4.8, 4.9, and 4.10).

It is important to note that this control signal characteristic is only optimal
with regards to the objective function used in this thesis. In reality, there are
more factors to be taken into account. For example, it is advantageous to reduce
the amounts of starts and stops to increase the life span of the compressor. Look-
ing at Figure 5.3, which displays u during the first day of period 2, it is evident
that the compressor is turned on and off repeatedly between 18:00 and 20:00.
It might be possible to keep it turned off or on for longer periods of time with-
out having a big effect on indoor temperature, which would likely be better for
longevity. The compressor might also be occupied with producing hot tap wa-
ter giving periods where the space heating input is forced to be 0. Expanding
the objective function by introducing penalties for each start and/or stop should
be simple since we are already using integer programming. It should however
be noted that this would increase the model complexity which would make the
optimization problem harder to solve.
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Figure 5.3: Control signal produced by the Standard MPC for day 1 of period
2.

5.8 Implementation Feasibility

This thesis has only analysed the theoretical possibility of using MPC for heat
pump control by simulating a system on a personal computer. Implementing the
controller on a real heat pump would result in more challenges of which some
are discussed in the following sections.

5.8.1 Heating System Model

Identifying a model of a heating system with a ground source heat pump is rela-
tively easy once enough data has been recorded. This identification might need
to be done for each specific system, as the power output at different flow tem-
peratures differs depending on the size of the system. In the future, it would be
interesting to investigate if standard heating system models can be designed for
different combinations of heat pump models and size of the radiator system. This
would be easier to implement commercially, as no identification of each customer
heating system needs to be performed.

5.8.2 House Model

Modeling a house is complex. Making accurate white box models is hard and
these often deviate significantly from measured values [23]. Other methods are
often used instead such as RC modeling with parameter estimation. RC model-
ing of a house can be done with different levels of complexity. A first order and
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a second order system is used in this thesis. Parameter estimation requires data
from experiments for the house that is to be modeled in order to find the resis-
tance and capacitance values. This kind of data was not available for the same
house as the heat pump data was extracted from and hence external data had to
be used.

5.8.3 Computing Power

In practical implementations, the controller for a heat pump generally runs on
an embedded system with limited computing power. Running the controller de-
veloped in this thesis requires significant computing power, unlike standard heat
pump controllers which might only need to perform a few floating point opera-
tions. For this reason, an important aspect in a real-world implementation will
be to ensure satisfactory computing power. This ought to be possible for a few
reasons. Embedded systems get more and more powerful with technical devel-
opment, which speaks in favor of the future potential of high performance appli-
cations in embedded systems. The long sample time of the controller (10 min)
means that there is a relatively long allowed time for each computing cycle. The
nature of a heat pump means that it is not safety critical that the MPC always
works. In case of failure, it could revert to, for example, a classic heat curve con-
troller. This can be compared with, for example, steering a motor vehicle. A
controller made for this purpose might have a sample time in the magnitude of
milliseconds while the nature of its operation means that controller robustness is
critical for safety.

5.8.4 Spot Price Data

In this thesis only spot price was used as the electricity price. In a real-world
implementation, the specific values of the other components of the electricity
price (explained in Section 2.4) would be known. It should therefore be easy to
include those in the electricity price vector used during the optimization.

5.9 Conclusion

The problem formulation was

Can electricity cost for a heat pump be reduced while maintaining comfort
by utilizing optimal control strategies in combination with electricity price
data and weather prediction?

The result has shown that it is possible to reduce electricity cost by utilizing
MPC compared to the baseline controller. It did so by using spot price data
and weather forecasts for a dynamic horizon of 12 to 36 hours. The quality of
available weather forecasts are satisfactory for this purpose, although more accu-
rate radiation forecasts would make a more precise model possible, thus further
increasing the ability to maintain comfortable temperatures.
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This has however been possible by allowing a deviation from reference indoor
temperature. It has been assumed that the indoor temperature is comfortable if
the deviation is equal to or less than 2◦C. This is a subjective assessment and
some people might find a deviation of 2◦C uncomfortable. It is important to
note that it is necessary to utilize a mass as thermal inertia in order to move
power consumption in time. If the house itself is used as this thermal inertia, the
temperature within the house will vary.

It is important that COP is accurately modeled. Since COP decreases when
power input increases, accurate modeling of COP is essential to find the true
optimal input. Using a constant COP is not good enough for a ground source
heat pump as it does not capture this dynamic.

5.10 Future Work

In future studies there are several ways to continue on this thesis. One key aspect
of this thesis is to move electricity consumption through time by using thermal
inertia of buildings. Investigating how increasing the thermal inertia with, for
example, a water tank would affect the results with MPC is of interest.

Additionally the focus was on electricity cost and comfort, but there are pos-
sibilities to add other factors. Total power consumption could be a suitable focus,
for example when electricity availability is restricted on the grid or if you would
run of a battery in which case the optimization would not need to take electricity
cost into account.

Using the standard MPC controller in this thesis for implementation in a real
world operating heat pump will require more work in order to minimize the risk
of damaging the heat pump. It could be by implementing more rules and con-
straints in the controller or by adding fail safes in the heat pump. Adding com-
plexity to the MPC could result in long computational times and a standard heat
curve or a simple fallback method would be suitable. The way to do this needs
further studies.

With the perspective of a heat pump manufacturer of consumer products, the
tolerance of consumers regarding indoor temperature and specifically the trade-
off between cost and comfort should be studied in some way. This would benefit
the design of the weight α and the comfort range.
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Figure A.1: Standard MPC in period 1.
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Figure A.2: Constant COP MPC in period 1.
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Figure A.3: Perfect prediction MPC in period 1.
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Figure A.4: Oracle MPC in period 1.
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Figure A.5: Standard MPC in period 2.
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Figure A.6: Constant COP MPC in period 2.
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Figure A.7: Perfect prediction MPC in period 2.
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Figure A.8: Oracle MPC in period 2.
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Figure A.9: Standard MPC in period 3.
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Figure A.10: Constant COP MPC in period 3.
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Figure A.11: Perfect prediction MPC in period 3.
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Figure A.12: Oracle MPC in period 3.
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Figure A.13: Input power u for the standard MPC controller during period
1 with α = 0.010.



B
Radiation Model

As radiation is taken into account in the house model, it would be advantageous
to accurately predict future radiation. As radiation is not specified in SMHI’s fore-
casts, models for estimating radiation as a function of sunshine and cloudiness
are independently developed. However, the inverse correlation between cloudi-
ness (which is what is specified in SMHI’s forecasts) and sunshine (and thereby
radiation) is low. Therefore radiation forecasts are not taken into account in the
MPC. The results of the developed model are however still found interesting by
the authors and are therefore presented here.

B.1 Radiation as a Function of Sunshine

There are historical records for radiation and sunshine. This means that the cor-
relation between sunshine and radiation can be investigated. Global radiation is
recorded in the unit W/m2, while sunshine is recorded as seconds of sunshine per
hour, i.e. for every hour sunshine is specified as a value in the range of 0 to 3600.
The recorded values for sunshine are normalised by dividing the data by 3600,
thus for every hour sunshine is specified in a range from 0 to 1.

A hypothesis is made that radiation is mainly a function of sunshine, day of
the year, and time of the day. It is assumed that the relationship between radia-
tion and time of year and time of day is sinusoidal, due to the sinusoidal relation-
ship between these variables and the height of the sun above the horizon. Further,
it is assumed that the global radiation can never be negative, in accordance with
the recorded values. The model is presented in Equation (B.1). The parameters
c1 − c6 are estimated by solving the equation in a least squares sense with a set of
recorded data for radiation and sunshine.
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Ĝ = max
(
0, (S + c1)

(
c2 sin

(
(d + c3)

2π
365

)
sin

(
(t + c4)

2π
86400

)
+ c5 sin

(
(d + c3)

2π
365

)
+ c6 sin

(
(t + c4)

2π
86400

))) (B.1)

where

S [−] : sunshine ∈ [0, 1]

d [day] : day of year ∈ {1, 2, . . . , 365}
t [s] : time of day ∈ {0, 3600, 7200, . . . , 86400}

c1−6 [−] : Model parameters ∈ R

Estimation and validation

Data from 2020-01-01 to 2020-12-31 is used for estimation and data from 2021-
01-01 to 2021-12-31 is used for validation. The parameter estimation using the
least square method yields the values in Table B.1. Figure B.1 showcases a com-
parison between measured values and the model for the validation data. The
validation shows a mean average error (MAE) 15,7 and a root mean square error
(RMSE) 30,5.

Table B.1: Radiation as a function of sunshine, model parameters

Parameter Value
c1 0.4743
c2 29.0431
c3 -79.1320
c4 -19626.3586
c5 209.0901
c6 341.8058

B.2 Radiation as a Function of Cloudiness

Four measurements of cloudiness are specified in each forecast; mean values for
low, medium, and high level cloudiness as well as mean values for total cloud cov-
erage. Total cloud coverage is used here. Cloudiness is specified in each forecast
as an integer between 0 and 8, where 0 means that the sky is completely clear and
8 means that there is complete cloud coverage. Measured values of total cloud
coverage is specified in the range 0 % to 100 %. Sometimes if the cloud coverage
cannot be determined due to fog, precipitation or if the sight is reduced for other
reasons, the value is set at 113 %. As the global radiation is assumed to be very



B.2 Radiation as a Function of Cloudiness 73

low in these cases those recordings are left at 113 %. This data is normalised
between 0 and 1 (with a few values of 1.13) by division with 100.

A similar model as was defined in B.1 is defined again. The same hypothesis is
used, although it is assumed that cloudiness is inversely correlated with radiation.
The parameters c2, c6 and c8 are added as this yields a better fit when using the
least squares method.

Ĝ = max
(
0, (c1 − C)

(
c2 + c3 sin

(
(d + c4)

2π
365

)
sin

(
(t + c5)

2π
86400

)
+ c6 + c7 sin

(
(d + c4)

2π
365

)
+ c8 + c9 sin

(
(t + c5)

2π
86400

))) (B.2)

where

C [−] : cloudiness ∈ {[0, 1], 1.13}
d [day] : day of year ∈ {1, 2, . . . , 365}

t [s] : time of day ∈ {0, 3600, 7200, . . . , 86400}
c1−9 [−] : Model parameters ∈ R

Estimation and validation

Data from 2020-01-01 to 2020-12-31 is used for estimation and data from 2021-
01-01 to 2021-12-31 is used for validation. The parameter estimation using the
least square method yields the values in Table B.2. Figure B.2 showcases a com-
parison between measured values and the model for the validation data. The
validation shows a mean average error (MAE) 54.0 and a root mean square error
(RMSE) 112.2.

Table B.2: Radiation as a function of cloudiness, model parameters

Parameter Value
c1 1.8873
c2 -106.6655
c3 24.7081
c4 -77.6313
c5 -19414.6441
c6 -38948.4021
c7 168.9647
c8 39041.3479
c9 261.7216
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Figure B.1: Validation of Ĝ = f (S) model using data from the entire year of
2021.
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Figure B.2: Validation of Ĝ = f (C) model using data from the entire year of
2021.
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