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Abstract

As human settlement expands into the natural habitats of wild animals, the con-
flict between humans and wildlife increases. The human-elephant conflict is one
that causes a tremendous amount of damage, often to poor villages close to the sa-
vannah. In this master’s thesis, a system is developed, that is intended to detect,
localise and track elephants from seismic vibrations generated from footsteps.
The system consists of multiple devices, with three geophones, and a micropro-
cessor each. To detect the footsteps, two different methods are evaluated. One
that analyses features consistion of the normalised standard deviation, frequency
peak, spectral centroid and low compared to high frequency content of a signal.
These features of the signal are then compared to those of an elephant footstep.
The other one compares the frequency content of the seismic wave from a footstep
to an computed average of known elephant footsteps. The signal feature method
performed the best with an accuracy of 89 %, and detecting 54 % of the footsteps.
The detected footstep is sent to a backend where further calculations are done.
With one device, estimations of the direction of arrival (DOA) angle can be made.
This is done using a delay and sum algorithm. By using a Kalman filter on the
DOA estimates, the bearing to the elephant can be tracked over time. From the
detected elephant footsteps it has been shown that it is possible to estimate the
direction of an elephant with quite high performance and by applying a Kalman
filter to track the elephant, it has been shown that the filter gives better and more
reasonable estimates. With two devices, a location can be estimated with triangu-
lation and also an elephant’s position can be tracked. With triangulation, where
the easting position estimated to some extent, but the northing position did not
give good results. By using these localisations estimates in a Kalman filter the ele-
phant could be tracked in most of the cases with high enough performance and
especially when there weren’t too many high northing estimates. By using sep-
arate DOA estimations in an extended Kalman filter the easting position could
be tracked fairly well, while the northing updates had some strange behaviours,
most probably because of implementation error.

iii





Acknowledgments

First and foremost, we are extremely grateful to our supervisor Gustav Zetterqvist,
for all his support, and for answering all our questions regarding sensor fusion,
signal processing and much more. This thesis would not have been possible with-
out Fredrik Gustafsson, our examiner. Thank you for the opportunity to do this
project, and all the adventures that has come with it. A special thanks to Carlos
Vidal for all the help regarding our hardware questions, especially regarding the
LILYGO. We are also grateful for the help that we got with server implementation
from Martin Stenmarck from HiQ, as well as from Adam Gardell and William
Hepp, which also did their master’s thesis in collaboration with project Ngulia.
Many thanks to the staff at Kolmården Wildlife Park, for letting us do tests there,
and being helpful overall. A special thanks to Tonsak, Bua and Saonoi for being
great test subjects. Thanks should also go out to Donald Bunge, Country Manager
for Smart Savannahs for coming with great insight and new ideas for our thesis.
We’d like to acknowledge the Department of Biology at the University of Nairobi
for having us over and for the interesting discussions about our detectors. Lastly
we would like to thank our friend Fred at Kenya Wildlife Service for helping us
dig down our geophones and cables at Ngulia.

Linköping, June 2023
Daniel Goderik and Albin Westlund

v





Contents

Notation xi

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Research questions . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Delimitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.5 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.6 Report overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Theory 5
2.1 Seismic Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Wave propagation speed . . . . . . . . . . . . . . . . . . . . 5
2.2 Elephant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 Elephant’s lifestyle . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.2 Elephant footsteps . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Footstep detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 System overview 9
3.1 Microcontroller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 Analog-to-Digital Converter . . . . . . . . . . . . . . . . . . . . . . 10
3.3 Geophones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.4 Energy consumption . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.5 Backend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4 Elephant Footstep Detection 15
4.1 Footstep extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.1.1 Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.1.2 Event detection . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.2 Signal features method . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2.1 Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2.2 Normalisation . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2.3 Signal features . . . . . . . . . . . . . . . . . . . . . . . . . . 18

vii



viii Contents

4.3 Average footstep method . . . . . . . . . . . . . . . . . . . . . . . . 19
4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.4.1 Animal footstep analysis . . . . . . . . . . . . . . . . . . . . 20
4.4.2 Choosing detection parameters . . . . . . . . . . . . . . . . 24
4.4.3 Detection performance . . . . . . . . . . . . . . . . . . . . . 26

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.5.1 Signal Feature Method . . . . . . . . . . . . . . . . . . . . . 30
4.5.2 Average footstep method . . . . . . . . . . . . . . . . . . . . 30
4.5.3 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5 Direction of Arrival and Localisation 33
5.1 Signal model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.2 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.3 Wave propagation speed . . . . . . . . . . . . . . . . . . . . . . . . 34
5.4 Geometric delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.5 DOA resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.5.1 Upsampling . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.5.2 DOA resolution error . . . . . . . . . . . . . . . . . . . . . . 36

5.6 Delay and sum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.7 Confidence interval . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.8 Triangulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.8.1 Boundaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.8.2 Reasonable measurements . . . . . . . . . . . . . . . . . . . 42

5.9 Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.9.1 Wave propagation speed . . . . . . . . . . . . . . . . . . . . 43
5.9.2 Upsampling . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.9.3 Variance estimation . . . . . . . . . . . . . . . . . . . . . . . 44
5.9.4 DOA variance threshold . . . . . . . . . . . . . . . . . . . . 46
5.9.5 DOA measurements . . . . . . . . . . . . . . . . . . . . . . . 47
5.9.6 Triangulation . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.10 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.10.1 DOA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.10.2 Triangulation . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6 Tracking 55
6.1 Kalman filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.1.1 Kalman filter . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.1.2 EKF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.1.3 Model and measurement noise . . . . . . . . . . . . . . . . 57
6.1.4 Motion model . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.2 Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.2.1 DOA tracking . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.2.2 Position tracking . . . . . . . . . . . . . . . . . . . . . . . . 58
6.2.3 Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.2.4 Gating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.3 Multi target tracking . . . . . . . . . . . . . . . . . . . . . . . . . . 60



Contents ix

6.3.1 Track logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.3.2 Association . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.4 Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
6.4.1 DOA tracking . . . . . . . . . . . . . . . . . . . . . . . . . . 62
6.4.2 Position tracking . . . . . . . . . . . . . . . . . . . . . . . . 65

6.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.5.1 DOA tracking . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.5.2 Position tracking . . . . . . . . . . . . . . . . . . . . . . . . 73

7 Conclusion 75
7.1 Further work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Bibliography 77





Notation

Notations

Notation Meaning

φ Direction to source relative reference point
yi[k] Measured signal of geophone i at time k
s[k] Seismic signature of an elephant footstep at time k
δ Time for footstep
τi Total delay for a footstep at geophone i
ω Angular velocity of source relative to reference point

Di(φ) Geometric delay to reference point from geophone i
x̂ Triangulation estimate of the source position
pm Position of receiver m
µ Mean value of a signal
σ The standard deviation of a signal

F[n] The amplitude of an FFT in bin n
f [n] The frequency in bin n
fs Sampling frequency
C Spectral centroid

ri,ref The distance a wave travels between geophone i and
the reference point from direction φ.

c Wave propagation speed
d The length of each side in the equilateral triangle
r Detection range

xi



xii Notation

Abbreviations

Abbreviation Meaning

adc Analog-to-Digital converter
lte Long Term Evolution
GPS Global Positioning System
UDP User Datagram Protocol
MTU Maximum Transition Unit
PGA Programmable Gain Amplifier
UX User experience
GUI Graphical User Interface
DOA Direction of Arrival
NLS Non-Linear Least Squares
UTM Universal Transverse Mercator (coordinates)
FFT Fast Fourier Transform
SIM Subscriber Identity Module
KF Kalman Filter

EKF Extended Kalman Filter
CP Constant Position
CV Constant Velocity



1
Introduction

This master thesis is part of Project Ngulia. A collaborative project started in
2014, with multiple master’s thesis projects, PhD students and other actors, that
work together to develop technology that will ultimately help park rangers in
Kenya preserve the wildlife on the savannah. This chapter incudes background
and a formulation of the problem, as well as research question, delimitations, and
a list of contributions.

1.1 Background

In many parts of the world, the human-wildlife conflict poses a great problem
for both humans and wildlife. As human settlement expands, it expands into the
natural habitats of wild animals. This causes the human-wildlife conflict to grow
more and more abundant. In particular, elephants have been shown to cause
more damage to humans than any other herbivore species [7]. Elephants can
cause a tremendous amount of damage to villages struck with poverty by dam-
aging infrastructure, and by consuming farmers crops, or even kill people. This
inevitably causes irritation from humans towards the elephants and often leads
to killing of the elephants, in lack of better methods. This is one of the biggest
issues in elephant conservation today [25].

Traditional methods for deterring elephants, like electric fences, have been shown
to be expensive to build, have big upkeep costs and, in general, being fairly un-
reliable [23]. There is a need for a modern, inexpensive and reliable method of
keeping track of elephants near human habitats to mitigate the human-elephant
conflict.

All animals make a different seismic impact when taking a step. Knowing this,
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2 1 Introduction

it would be possible to differentiate an elephant’s footstep to other animals. By
measuring seismic signals from the ground with geophones, an elephant footstep
can be detected from distances where park rangers will be able to deal with the
elephants before they reach the villages [29]. In this thesis, devices consisting of
three geophones each will be constructed. The geophones measure seismic sig-
nals from the ground to detect, localise and track elephants.

The work in this thesis is based on the previous master’s thesis by Philip Sjövik
and Erik Wahledow [24]. In that thesis, a device with three geophones was built,
capable of detecting elephant footsteps and calculating the direction of the ele-
phant using a direction of arrival (DOA) algorithm. That thesis showed a promis-
ing result, and with further development, it could be quite useful in the human-
elephant conflict.

1.2 Goal

The goal of this master’s thesis is to build a system which detects, localises and
tracks elephants from as far away as possible. The system should only indicate
a detection if there is an elephant, and in no other cases. This will be achieved
by measuring seismic signals from the ground. The system should be energy effi-
cient, cheap and robust since the goal is to build a system that can be reproducible
and located in distant lands.

1.3 Research questions

The report aims to answer the following research questions:

1. How well can an elephant footstep be differentiated from other animals?

2. How well can the direction of a target be estimated and tracked using a
geophone array?

3. How well can an elephant be localised and tracked using two geophone
arrays?

1.4 Delimitations

In this master’s thesis, the developed tracking algorithm will be able to differenti-
ate separate elephants, given that they are far enough away from each other. The
method will however not be able to differentiate separate individuals in a tightly
packed herd. This will be interpreted as a single individual in the tracking. There
are also some hardware delimitations, one being the amount of data.
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Another delimitation is power consumption. The system will be powered by solar
panels and batteries, and should therefore strive for a minimal power consump-
tion.

A majority of the data collected is from Kolmården Wildlife Park. At Kolmården,
there are only Asian elephants, which is not the intended species for the final
product. There are other limitations in the availability of animals at Kolmården,
and many of the interesting animals of the Kenyan savannah are not available.
Although some data was collected in Kenya, the majority had to be collected at
Kolmården.

1.5 Contributions

As previously stated, this thesis expands on a previous thesis. However, there
are many differences and contributions from this thesis. One in that the detec-
tion algorithm has completely changed. It has also been tested for false alarms
from different animals to a higher extent than last year. The DOA calculations
have been changed slightly as well, and tracking of the angles has been added,
including multiple target tracking. Localisation is a completely new addition to
the thesis as well. It uses multiple devices to triangulate the targets, which has
not been done before.

1.6 Report overview

In this section, an overview of the entire report and its chapters are presented.
Chapter 2 brings up some background theory to lay a foundation for the rest of
the report, as well as discussing some previous related work. In Chapter 3, the
system used for data collection and processing is described. Later in Chapter 4,
Chapter 5, and Chapter 6, method, result and a discussion is included for the
detection, DOA and tracking respectively. Chapter 7 concludes the report, sum-
marising the key points of this thesis and answering the research questions, as
well as discusses future work.





2
Theory

This chapter aims to lay a theoretical background, for better understanding of the
contents of the report. The chapter includes theory about seismic waves, elephant
behaviour and characteristics, as well as some previous work regarding footstep
detection.

2.1 Seismic Waves

There are different kinds of seismic waves that can propagate from a source. The
two main types of waves are body waves, and surface waves. Body waves, often
divided into P-waves and S-waves, are able to propagate deep into the earth,
whereas surface waves can not penetrate the ground very deeply. For this project,
surface waves are the most relevant, and are the ones that can be detected by the
geophones [17].

Based on previous research, elephant footsteps usually mostly consist of Rayleigh
waves [18]. These waves rarely exceed 200 Hz, and therefore a sampling fre-
quency of at least 400 Hz should be used when measuring elephant footsteps to
avoid aliasing [9].

2.1.1 Wave propagation speed

The wave propagation speed varies to some extent, depending on the ground. For
loose clay or sand, the speed is usually about 80-220 m/s [4]. This will have to be
calculated for different locations, as it will be necessary for the DOA estimates.

5



6 2 Theory

2.2 Elephant

The elephant is the main focus of this report, and therefore it is important to
know some background information about the animal. Both the footsteps of the
elephant, and its lifestyle will be investigated.

2.2.1 Elephant’s lifestyle

An Elephant’s life is full of eating and drinking due to its enormous size. An
African elephant is typically between 3–5 meters long and weighs around 2500-
7000 kg [6]. An elephant spends approximately 18 hours per day eating. During
a day, an elephant eats approximately 150 kg of food and drinks a large amount
of water. This means that an elephant can hike up to 30 miles a day to get enough
food. When elephants find food do they often stay at the same spot for hours and
when they get hungry again they are going to start searching for more food [10].

Elephants also live in herds, which can be between 8–100 individuals. The herd
is led by a matriarch, which is the eldest female, because of her experience and
knowledge through life. The herd will follow the matriarch in the search of water,
food, safe spaces and protection [1].

Elephants do not sleep much and usually only sleep two hours per day if they
are in the wild. When an elephant is sleeping, another elephant is often awake to
protect and keep the sleeping elephant safe. A reason for the fact that elephants
sleep so little is that they eat very much and doesn’t have time for sleeping too
long, and also their digestion is not as effective when they are sleeping [2].

During data collection at Kolmården, relevant observations have been made about
elephants habits. These elephants are enclosed and have been trained and can not
be directly compared to wild elephants on the savannah. Although, when the ele-
phants were released outside, the first instinct of the elephant was to look for
food. Secondly, the elephants liked to explore the environment and when they
found something interesting they stay still on the spot. For the data collection,
this meant that the elephant typically would move for less than a minute, and
then stand still for a longer period of time.

All these facts and observations affect the system in different ways and will be
discussed further in the design of the methods used.

2.2.2 Elephant footsteps

Previous studies have been done on the characteristics of elephant footsteps and
elephant footstep detection. This project is based on the work of [24]. From their
measurements, an elephant footstep was shown to have most of the frequency
content between 10-20 Hz. In [29], a method for detecting elephant footsteps, by
analysing the signal’s frequency properties. In their data collection, the elephant



2.3 Footstep detection 7

footsteps had a peak at around 25 Hz, with most of the signal energy under 40
Hz. This will have to be investigated for the detection algorithm.

2.3 Footstep detection

Footstep detection using geophones is nothing new, and has been done many
times before. However, it has mostly been done to detect human footstep for
intruder detection and for military purposes. In [3], an algorithm that detects
human footsteps is developed. Their method uses kurtosis to detect footsteps,
and cadence, that is the time between footsteps, to determine if it is a human. In
[21], kurtosis is also used for footstep detection, and this seems to be a popular
approach, although this can not differentiate between different animals. To be
able to differentiate between different animals, one would need to look at signal
properties. This is done in [20], where many different features are utilised, in-
cluding standard deviation, entropy, peak values, partial signal before and after
the maximum peak, spectrum centroid, locations and amplitudes of peaks and
power spectrum density.





3
System overview

To be able to perform triangulation, multiple geophone arrays are needed. Each
geophone array consists of different hardware components which collect, convert
and send data in a suitable format to the backend. This section describes each
hardware component and their function. Figure 3.1 gives an overview of the en-
tire system and its subsystems. Figure 3.2 shows a picture of the actual hardware
used.

Figure 3.1: An overview of the system and its subsystems. This can be scaled
up with more LILYGOs.

9



10 3 System overview

Figure 3.2: A picture of the hardware developed in this thesis. 1) indicates
the three geophones. 2) is the box that contains the microprocessor, ADC,
battery, GNSS antenna and LTE antenna. 3) is the solar panel.

3.1 Microcontroller

The microcontroller used is a LILYGO® TTGO T-SIM7000G ESP32 board. It is
based on a ESP32 with an added T-SIM7000G module. The microcontroller is
used to run the detection software and send data to the backend. The board fea-
tures LTE for wireless communication, which allows for transition of geophone
data to the backend, but can also use Wi-Fi to transfer the data. It also allows
charging from solar panels and comes with a GPS antenna for localisation [28].

3.2 Analog-to-Digital Converter

The system uses the analog-to-digital converter ADS1256. It is a low noise ADC
with 24-bit resolution. It also has a programmable gain amplifier (PGA) that can
be programmed with a gain from 1 to 64 if needed [26]. The 24-bit resolution
will hopefully allow for better data than if the 12-bit resolution ADCs, built in
the ESP32, were to be used [8]. In this project, the PGA was set to 32. Figure 3.3
shows the connection between the ADC and the microcontroller.
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Figure 3.3: The circuit that connects the microcontroller and the ADC.

The ADC controls the sampling frequency. It is set to 2000 samples per second
over three channels, which should result in approximately 667 on each channel.
However, in reality, other processes are run that reduce the sample rate. There-
fore, the set sample rate of 2000 samples per second results in a sample rate of
about 474 samples per second. This is enough for the intended purpose.

3.3 Geophones

The geophone converts ground movement to voltage. The geophone used in this
project is of the model SM-24 Geophone element [22]. For every geophone array,
there is a need for three geophones to triangulate a target.
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Figure 3.4: A sketch of the circuit between the ADC and the geophones.

Between the geophone and the ADC is a termination circuit, displayed in Fig-
ure 3.4. The 1 kΩ parallel resistor connected in between the geophone pins is
used for calibration of the geophone according to the data sheet [22]. The two
1 kΩ resistors, connected in series to the ADC, are there to protect the ADC
from current spikes, that could break the converter. When a vibration from the
ground reaches the geophone, it is translated into a current. This current then
travels through the termination circuit, and then through coaxial cables to the
ADC.

3.4 Energy consumption

The system will be run on solar power. It is therefore essential to keep the power
consumption to a minimum. The most power consuming component of the hard-
ware is the LILYGO. While working under normal conditions, it draws about
200 mA [28].

The ADS1256 also has a power consumption, but much smaller. During normal
settings it draws less than 10 mA [26], but if PGA is used, this could be increased
with a couple of mA, but not enough to make a noticeable difference. The to-
tal draw current that can be expected from the whole system should be around
200 mA. With a supply voltage of 3.7 V, this would need a 0.74 W output from
a solar panel to keep the system running during the day. However, a powerbank
is needed to keep it alive at night and additional power is needed to charge this.
The solar panels used have a maximum output of 6 W. The devices are equipped
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with a battery pack with nominal capacity of about 6.7 Ah or 24.6 Wh.

3.5 Backend

When a detection is made by the microcontroller, the segment containing the
footstep is sent to a server. From here, calculations can be made for the DOA and
localisation of the elephants, as well as tracking. In the future, the data calculated
in the backend can be sent to the park rangers, to aid them in their conservation
work.





4
Elephant Footstep Detection

The footstep of an elephant has unique characteristics. This can be used to dif-
ferentiate elephant footsteps from other animals, and detect the elephants. This
chapter describes the methodology for two different detection algorithms, one
based on unique signal features that the elephant footstep has, and one that com-
pares the signal to an average elephant footstep in the frequency domain. Both
methods are evaluated and compared.

4.1 Footstep extraction

Both methods need extracted segments of data, containing potential elephant
footsteps. It is important that the segments are of appropriate size and to save
processor power, it is advantageous that the calculations are not performed on
noise, only on potential footsteps.

4.1.1 Segmentation

An elephant footstep has shown to be around 100-250 ms [19]. If a whole footstep
is to be recorded, it is important that the used segments are around this length.
For the real time application, a segment, or window, of at about 270 ms is used.
This window corresponds to 128 samples. When a new measurement is acquired,
it replaces the oldest measurement in the window buffer. This gives a sliding
window of 128 samples for the real time application. If a step has been detected,
the system will wait until the buffer does not have any old sample left from the
last detection before testing the next segment. This is done to prevent having
data from an old step and causing detection of the same step twice. Detecting the
same step multiple times can cause worse quality data segments to be sent to the
direction of arrival estimates.

15



16 4 Elephant Footstep Detection

4.1.2 Event detection

To determine if a segment includes an elephant footstep, the algorithm first de-
tects if there is an event. This could be any type of signal that is not ambient
noise. This is done by calculating the kurtosis of the segment according to Equa-
tion (4.1)

kurtosis =

∑N
k=1(y[k]−µ)4

N−1(∑N
k=1(y[k]−µ)2

N−1

)2 (4.1)

Where N is the number of samples in the window, y[k] is the amplitude of sam-
ple k, and µ is the mean calculated in Equation (4.2) [14].

µ =
∑N

k=1 y[k]
N

(4.2)

The kurtosis is a comparison of the distribution of the signal, compared to a Gaus-
sian distribution with the same standard deviation. This means that if a signal
differs from Gaussian noise, it will have a steeper peak around the mean than the
noise. Therefore, kurtosis is a good measurement to differentiate an event from
ambient noise. Gaussian noise usually has a kurtosis of around 3.

Two thresholds are used for the extraction of events, one higher, and one lower.
If the higher threshold is met, the segment is chosen to begin 28 samples before
the low threshold was first met. In Figure 4.1 the event detection is illustrated.
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Figure 4.1: Event detection illustrated on a seismic wave of an elephant foot-
step. The left and rightmost lines are the bounds of the segment. The second
line to the left is the low kurtosis threshold, and third to the left is the high
threshold.

4.2 Signal features method

The signal features method uses unique characteristics of the elephant footstep
to make a detection algorithm. First it does some processing of the signal, and
then it compares the signal to an elephant footstep, with regard to standard de-
viation, frequency peak, spectral centroid and frequency distribution. Figure 4.2
gives an overview of the different parts of the signal features detection algorithm.
Although hard to quantify, the reasoning behind the feature order has been cho-
sen so that the feature that discards the most false detections is calculated first.
This is done to avoid doing unnecessary calculations.

4.2.1 Filtering

An elephant’s footstep has a frequency range that rarely exceeds 30 Hz [19]. To
isolate the interesting part of the signal, and reduce the influence of noise when
analysing the characteristics of the signal, a filter is needed. A band-pass Butter-
worth filter, with cutoff frequencies 4 and 45 Hz, and order 6 is used. The reason
for a band-pass filter, rather than a low-pass filter, is because low frequency noise
was apparent during testing. The 4 Hz cut-off frequency reduces this noise.

4.2.2 Normalisation

Before extracting characteristics of the signal, the signal is normalised. This is
done in regard to the power of the segment. This means that the total power of
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Figure 4.2: A schematic overview of the different stages of the signal feature
detection algorithm.

the segment will equal to one after the normalisation. This will help mitigate the
effects of the potential distance differences of different signals.

4.2.3 Signal features

To determine if an event is an elephant, different features are analysed and com-
pared to those of an elephant. This section describes these signal features. For a
detection to occur on a device, the criteria for the signal features must be met on
all three geophones. A signal must pass all the feature tests to be classified as a
footstep. The choice of parameters will be presented in Section 4.4.

Standard deviation

The first feature that is analysed is the standard deviation of the normalised sig-
nal, in the time domain. This is done in Equation (4.3).

σ2 =
1
N

N∑
k=1

(y[k] − µ)2 (4.3)

The standard deviation will differ between different signals in the time domain,
and can be used to differentiate between different signals. If the standard devi-
ation is between a low and a high threshold, it passes the test, otherwise it is
discarded.

Frequency peak

The next characteristic of the signal that will be used is its major frequency peak.
To get the frequency content, a fast Fourier transform (FFT) is performed on the
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signal. Next, the frequency with the highest magnitude is calculated. If the main
frequency peak is in between two threshold values, it passes the test, otherwise it
is discarded.

Spectral centroid

The spectral centroid uses the same FFT as for the frequency peak, and is used
to determine what frequency the spectrum of the signal is centred around. It is
a weighted mean of the frequency content of the signal. The calculation of the
centroid is done using

C =
∑N

2 +1
n=1 f [n]|F[n]|∑N

2 +1
n=1 |F[n]|

where C is the centroid, N is the number of samples, F[n] is the amplitude corre-
sponding to bin n and f [n] = nfs

N is the frequency corresponding to bin n [16]. If
the centroid is within chosen thresholds, it passes the test.

Frequency distribution

Lastly, the energy of the high frequencies is compared to the low frequency en-
ergy. This is done by filtering out the high frequencies using a 6th order But-
terworth high-pass filter, with cut off-frequency 55 Hz. The energy of the low
frequencies extracted from the filtered segment, described in Section 4.2.1, is di-
vided by the energy of the high frequencies to get a ratio. If the ratio is above
a certain threshold, the test is passed. This ratio can not be too low, since high
frequency noise could make the detection algorithm fail. However, footsteps gen-
erally have much more energy than noise, so this should not cause a problem.
Looking at the ratio between low and high frequencies is useful for two main rea-
sons. Firstly, it filters out many animals, other than elephants, quite efficiently.
Secondly, if an elephant is detected, but the segmentation is poor and the seg-
ment mostly includes ambient noise and a small part of the elephant footstep,
the segment will generally have higher energy at higher frequencies than usual.
These segments are not good for the direction estimation later on, so discarding
them early on is a good thing.

4.3 Average footstep method

Another method for detection and characterisation, is to compare the signal to
an average footstep. The interesting frequencies of the average footstep is below
45 Hz. In many datasets, a disturbance at 50 Hz was also present, therefore the
average footstep is of band-pass filtered footsteps. They are filtered using a 4th
order Butterworth filter with cut-off frequencies 4 Hz and 45 Hz. The signal
is then normalised in regard to power. The average frequency content is then
calculated by taking the average amplitude value of every frequency bin of the
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FFT, over many known elephant footsteps. This yields an average normalised
filtered footstep. A signal is then compared to the average signal by calculating
the error of every frequency bin. If a frequency bin error is too large, the signal
is discarded. If all errors are within a chosen threshold from the mean, the signal
is determined as an elephant. The test has to pass on all three geophones to be
deemed an elephant.

4.4 Results

In this section, the detection algorithm is evaluated. First, different animal foot-
steps are analysed to calculate parameters for the two algorithms. Secondly, the
performance of the results of the algorithms’ performances are presented.

4.4.1 Animal footstep analysis

Measurements of animal footsteps were done, both at Kolmården Wildlife Park
and in Kenya. The footsteps were counted from video footage of the animals.
Below, data from both locations is presented.

Kolmården Wildlife Park

The data collected is from animals at Kolmården Wildlife Park. The park has
three Asian elephants (Elephas Maximus), one male and two females. For compar-
ison, data was also collected from a rhino, kulans and Asian camels.

(a) FFT of ten elephant footsteps,
using a Hamming window.

(b) FFT of the noise at Kolmår-
den.

Figure 4.3a shows the FFTs of ten elephant footsteps, from a male elephant. One
can see a great concentration of the frequency content between 5-30 Hz. Fig-
ure 4.3b shows the ambient noise at Kolmården, and a peak at 14 Hz and one at
50 Hz can be seen at fairly low amplitudes.
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(c) FFT of 10 human footsteps,
with a Hamming window.

(d) FFT of 10 rhinoceros foot-
steps, with a Hamming window.

(e) FFT of 10 kulan footsteps,
with a Hamming window.

(f) FFT of 10 camel footsteps,
with a Hamming window.

Figure 4.3: FFT from 10 human, rhinoceros, kulan and camel footsteps.

Figure 4.3 shows the frequency content of other animals, as well as humans. In
Figure 4.3c, one can see that humans, being the most similar to the elephant foot-
steps, has a majority of its frequency content in the 5-40 Hz range. The rhinoceros
steps in Figure 4.3d have a wider distribution, with the energy being between 5-
100 Hz. Both kulans and camels have the majority of their energy over 100 Hz.
Figure 4.4 shows a closer comparison between the different animal footsteps. In
it, the same ten footsteps, of each animal have been used to create an average
footstep.
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Figure 4.4: An FFT comparison between elephants, humans, rhinos, kulans
and camels. The solid lines represent a mean value of ten footsteps from the
animal. The striped lines indicate one standard deviation from the mean.

Kenya

The datasets presented below are collected from two different locations in Tsavo
West. One is waterhole four at Ngulia Rhino Sanctuary, and one at a waterhole
outside Kilaguni Serena Lodge.
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(a) FFT of 10 african elephant
footsteps, with a Hamming win-
dow, recorded at waterhole four
in Ngulia.

(b) FFT of 10 human foot-
steps, with a Hamming window,
recorded at waterhole four in
Ngulia.

(c) FFT of 10 water buffalo foot-
steps, with a Hamming window,
recorded at a waterhole outside
Kilaguni Serena Lodge.

(d) FFT of a segment of 128 sam-
ples containing ambient noise,
recorded at a waterhole outside
Kilaguni Serena Lodge.

Figure 4.5: FFT from 10 elephant, human and water buffalo footsteps, as
well as a segment of ambient noise.

Figure 4.5a shows that the African Elephant has a majority of its frequency con-
tent below 30 Hz. The human footsteps in Figure 4.5b has slightly higher fre-
quencies, with a majority being between 10 - 70 Hz. The water buffalo steps in
Figure 4.5c have three distinct peaks at approximately 50, 100 and 150 Hz. Some
ambient noise was also noted in this dataset collected at Kilaguni, presented in
Figure 4.5d. No ambient noise was noted at the waterhole in Ngulia. In Fig-
ure 4.6, averages of the footsteps in Figure 4.5 have been made, and compared in
the same graph.
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Figure 4.6: An FFT comparison between elephants, humans, and water buf-
faloes. The solid lines represent a mean value of ten footsteps from the ani-
mal. The striped lines indicate one standard deviation from the mean.

For comparison purposes later on, some statistics for the signal features on the
10 elephant footsteps in Figure 4.5a were calculated and are presented Table 4.1.

Table 4.1: Signal feature values, extracted from 10 elephant footsteps col-
lected at Kilaguni.

Feature Mean σ

Frequency peak (Hz) 12.9 3.14
Centroid (Hz) 18.3 3.53

Standard Deviation 0.08812 9.3e-04

4.4.2 Choosing detection parameters

Because there was an abundance of data from Kolmården Wildlife Park, com-
pared to the amount of data from Kenya, the detection algorithm is designed to
detect the elephants at Kolmården. The signal feature parameters as well as the
average footstep are calculated on 109 footsteps, collected from a single male
elephant.

Signal Feature Method

The resulting signal features, as described in Section 4.2.3 are presented in Ta-
ble 4.2.
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Table 4.2: Signal feature values, extracted from 109 elephant footsteps.

Feature Mean σ

Frequency peak (Hz) 13.2 3.72
Centroid (Hz) 19.1 3.62

Standard Deviation 0.08821 6.5e-04

With the metrics from Table 4.2, thresholds can be set. Three different sets of
thresholds are evaluated. The thresholds have been chosen as multiples of the
standard deviation, of each respective feature, above and below the mean of the
parameters. The resulting thresholds are presented in Table 4.3.

Table 4.3: Detection thresholds for signal features, with different range from
the mean.

1 standard deviation
Feature Low threshold High threshold

Frequency peak (Hz) 9.48 16.92
Centroid (Hz) 15.48 22.72

Standard Deviation 0.08756 0.08886

1.5 standard deviation
Feature Low threshold High threshold

Frequency peak (Hz) 7.62 18.78
Centroid (Hz) 13.67 24.53

Standard Deviation 0.087235 0.089185

2 standard deviations
Feature Low threshold High threshold

Frequency peak (Hz) 5.76 20.64
Centroid (Hz) 11.86 26.34

Standard Deviation 0.08756 0.08691

The 109 footsteps had a mean kurtosis of 5.6 with a standard deviation of 0.57.
Based on this, the high kurtosis threshold was set to 4.3 and the low to 3.5.
The high threshold is more than two standard deviations from the mean, which
should let through most of the footsteps and at least 97.5% of them. The lower
threshold is chosen arbitrarily to a slightly lower threshold than the high thresh-
old. The mean ratio between low and high frequencies was 603.1 with a standard
deviation of 478.9. This test is a final test for filtering out bad segments and any
high frequency animals that somehow slipped through the other tests. A thresh-
old for the ratio is set to 15 at all times. This is low enough to let through good
elephant step segments, while discarding animals with high frequency steps. It
is also high enough to not be massively effected by high frequency noise.
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Figure 4.7: The average FFT of 109 elephant footsteps. The blue line rep-
resents the mean value of each frequency, and the red striped line is one
standard deviation of the mean.

Average Footstep

The average elephant footstep was calculated as described in Section 4.3, using
the same 109 footsteps as the previous method. The resulting average footstep is
presented in Figure 4.7.
Three different threshold values are evaluated, that are two, three and four stan-
dard deviations above and below the mean value.

4.4.3 Detection performance

To evaluate the performance of the detection algorithm, video footage was used
to count visible footfalls. The performance is only tested on the elephants at
Kolmården, and not Kenya. This is because the only elephant data from Kenya
already passed through a lighter version of the signal features method on the
hardware. Therefore, assessing the performance of the detection algorithms on
this data would not be an accurate representation of the actual performance. The
performance is assessed in regard to

• True Positives (TP) - Detection when an elephant footstep has occurred.

• True Negatives (TN) - No detection when something other than an elephant
footstep has occurred. No detection on noise is not considered a True Nega-
tive.

• False Positives (FP) - Detection when no elephant footstep has occurred.

• False Negatives (FN) - No detection when an elephant footstep has occurred.
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The models will be evaluated by accuracy, calculated in Equation (4.4). The ac-
curacy will give a metric for how many of the classifications made are true. It
ranges from 0 to 1 where 1 is the highest accuracy. Recall will also be used, and
is calculated with Equation (4.5). This tells how many of the elephant detections
gets detected. It ranges from 0 to 1 where 1 is means that all steps are detected.
Precision will also be used and is calculated in Equation (4.6). This metric indi-
cates how many of all the detections made are true positives. It also ranges from
0 to 1 where 1 means that all detections are elephants, and 0 is that all detections
are other animals. The last metric that will be used is F1 score, and is calculated
in Equation (4.7). This is a harmonic mean of the recall and precision of a model.
This will give a good overview of the performance of the algorithm. It ranges
from 0 to 1 where a high number is good [15].

Accuracy =
TP + TN

TP + TN + FP + FN
(4.4)

Recall =
TP

TP + FN
(4.5)

P recision =
TP

TP + FP
(4.6)

F1 = 2
Recall ∗ P recision
Recall + P recision

(4.7)

The models are evaluated on datasets different from the ones that contain the
training data. The elephant validation data is taken from a single male elephant,
walking about 5-35 meters away. This data was recorded last year by other stu-
dents. During the data collection for the rhinos, one of the geophones was down,
hence the detection criteria are only applied to the two working channels. The
footsteps were counted from video footage, to make the amount of missed detec-
tions evident. All models have been validated on the same datasets correspond-
ing to each animal. Each animal validation is done in one or more datasets where
the geophones have recorded continuous seismic data, containing 57 footsteps
of each respective animal, except for the Kulan. Only 49 Kulan footsteps were
recorded.
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Signal feature method

Table 4.4: Detection results from different animal footsteps.

1 standard deviation
Animal TP TN FP FN

Elephant 17 0 0 40
Human 0 57 0 0
Rhino 0 57 0 0
Camel 0 57 0 0
Kulan 0 49 0 0
Total 17 220 0 40

1.5 standard deviation
Animal TP TN FP FN

Elephant 31 0 1 26
Human 0 57 0 0
Rhino 0 54 3 0
Camel 0 57 0 0
Kulan 0 49 0 0
Total 31 217 4 26

2 standard deviations
Animal TP TN FP FN

Elephant 35 0 1 22
Human 0 54 3 0
Rhino 0 53 4 0
Camel 0 57 0 0
Kulan 0 49 0 0
Total 35 213 8 22

Table 4.4 shows the detection results of different animals footsteps. Noteworthy
is that the false positive from the elephant data is from in between footsteps.
That is, it is from the rumbles of an already detected footstep, resulting in the
algorithm detecting the same footstep twice. The accuracy, recall, precision and
F1 score of the models are presented in Table 4.5.

Table 4.5: Detection results from different animal footsteps.

Standard deviation Accuracy Recall Precision F1 score

1 0.86 0.30 1 0.46
1.5 0.89 0.54 0.89 0.67
2 0.89 0.61 0.81 0.7
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Average footstep method

Table 4.6: Detection results from different animal footsteps, for the average
footstep method.

2 standard deviation
Animal TP TN FP FN

Elephant 20 0 1 37
Human 0 57 0 0
Rhino 0 57 0 0
Camel 0 57 0 0
Kulan 0 49 0 0
Total 20 220 1 37

3 standard deviation
Animal TP TN FP FN

Elephant 34 0 1 21
Human 0 49 8 0
Rhino 0 55 2 0
Camel 0 57 0 0
Kulan 0 49 0 0
Total 34 210 11 21

4 standard deviations
Animal TP TN FP FN

Elephant 40 0 3 17
Human 0 40 17 0
Rhino 0 51 8 0
Camel 0 51 12 0
Kulan 0 48 8 0
Total 40 190 48 17

Table 4.6 shows the detection results for the average footstep method. Notewor-
thy is that the false positives from the elephant data is from in between footsteps.
That is, it is from the rumbles of an already detected footstep, resulting in the
algorithm detecting the same footstep twice. The rhino, camel and kulan tests
all had detections from ambient noise in with 4 standard deviations as thresh-
old. The accuracy, recall, precision and F1 score of the models are presented in
Table 4.7.

Table 4.7: Detection results from different animal footsteps.

Standard deviations Accuracy Recall Precision F1 score

2 0.86 0.37 0.95 0.53
3 0.88 0.60 0.75 0.67
4 0.78 0.70 0.45 0.55
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4.5 Discussion

In this section, the results of the two developed detection algorithms are dis-
cussed.

4.5.1 Signal Feature Method

The signal feature method worked quite well. Some animals are easier to differ-
entiate than others. One could come to this conclusion by analysing Figure 4.4
and Figure 4.6. In Figure 4.4, the camel and kulan FFTs have frequencies that are
a lot higher, compared to the other three animals. This is directly translated into
the results of Table 4.4, where no kulan nor camel footsteps have been detected
for any of the thresholds. An unexpected result is that more rhino footsteps were
detected than human footsteps. By looking at Table 4.4, one could make the as-
sumption that that would not be the case. One explanation for this could be the
fact that one of the geophones was down during these measurements. This means
that only two geophones have to detect an elephant instead of three, making false
positives more likely.

Just by looking at Table 4.5, one could conclude that the algorithm works best
with the thresholds at two standard deviations. It has the highest accuracy, recall
and F1 score. However, one could argue that for the elephant detector, it is im-
portant to have good precision. If the detectors are deployed in the field, sending
information to park rangers, frequent false alarms from human footsteps could
mean the rangers stop listening to it, rendering the device useless. Therefore,
having two standard deviations as thresholds is too high for the intended pur-
pose. The same could be said about having 1.5 standard deviations as thresholds.
It also had some false alarms from rhino footsteps. However, knowing that the
rhino tests only were done with two out of three geophones makes these false pos-
itives less significant. The rarity of rhinos in the wild also makes it very unlikely
to detect one, and if one is detected, this information would also be of importance
to the park rangers. Therefore, 1.5 standard deviations seem to be a good trade-
off between recall and precision, giving it a good F1 score, as well as having high
accuracy.

Although there is not an abundance of data, by comparing Table 4.1 and Table 4.2,
one could draw the conclusion that the detection algorithm would work well for
African elephants as well. The metrics are very similar, with the most deviating
one being the normalised standard deviation. It is however difficult to come to a
certain conclusion about this, since the amount of data is quite lacking.

4.5.2 Average footstep method

The average footstep detection algorithm had some drastic changes when chang-
ing the threshold. Three standard deviations as thresholds gave the best F1 score.
It did however detect 14 % of the human footsteps. This is reasonable when
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comparing to figure Figure 4.4, since human and elephant footsteps are the most
similar, and three standard deviations is a quite large threshold. Since the device
should prioritise maximising precision, especially when it comes to human foot-
steps, as the devices’ intended locations are close to human settlements, having
two standard deviations as thresholds would be the most fitting for the elephant
detections.

This detection method could be further improved with more training data. 109
elephant footsteps in not sufficient for making an accurate model of an average
elephant footstep. The results do however show promise, and the method could
be more viable with more data.

4.5.3 Comparison

The two methods show quite different results, but in general the signal feature
method show better accuracy and precision. In Figure 4.8, one can see that the
average footstep method tends to have a higher recall, but at the cost of precision.
The most appropriate thresholds for the two algorithms, for the intended pur-
pose, were 1.5 standard deviations for the signal feature method and 2 standard
deviations for the average footstep. The signal feature method outperforms the
average footstep method in all categories, except for when it comes to precision.
However, as discussed in Section 4.5.1, the false positives in that data might not
be as significant as it looks. Therefore, the signal feature method is the best choice
for the hardware implementation of the detection algorithm. It is quite possible
that the average footstep method would be a more feasible option, if more data
was available.

(a) TP, TN, FP and FN compari-
son between the two methods.

(b) Accuracy, recall, precision
and F1 score comparison be-
tween the two methods.

Figure 4.8: Two different comparisons between the two models.





5
Direction of Arrival and Localisation

This section aims to explain how the DOA estimates are calculated, as well as how
multiple geophone arrays can be used to calculate the location of an elephant.

5.1 Signal model

The signal model that is used, is the measured signal yi[k] for geophone i, which
consists of some ambient noise ei[k] after being filtered in a 2nd order Butter-
worth high-pass filter, with cutoff frequency of 4 Hz and the seismic signature of
an elephant’s footstep s[k]. The signal model is based on segmentwise data which
begin when an elephant footstep is detected and is approximately 270 ms long.

yi[k] = s[k − τi] + ei[k]

τi = δ − Di(φ)

φ is the DOA angle, δ is the time for the footstep when it reaches a reference point,
Di(φ) is the geometric delay for the seismic signature relative to a reference point,
and τi is the total delay of the footstep for geophone i.

5.2 Experimental setup

In all experimental setups, the geophones are placed in an equilateral triangle,
where each side is d = 4 m, see Figure 5.1.

33
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Figure 5.1: The geophone array illustrated.

5.3 Wave propagation speed

By detecting a step which is aligned with a geophone pair, the wave propaga-
tion speed can be calculated by finding the delay between the geophones. The
wave propagation speed becomes, c = d

τi,j
, where τi,j is the delay between two

geophones which are aligned with the seismic source.

5.4 Geometric delay

A reference point is chosen to be in the middle of the array, at the same distance
from each geophone. By using trigonometry, the distance to the reference point
can be calculated.

d
2 cos(30◦)

=
d
√

3

When an elephant is detected, a DOA estimation is performed by looking at the
geometric delay from each geophone to the reference point. In Figure 5.2 a detec-
tion from direction φ is illustrated.
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Figure 5.2: The Figure illustrates the distance (ri,ref ) a wave travels between
a geophone and the reference point from direction φ.

By knowing the speed of the wave, c, and knowing the distance to the reference
point, the geometric delay between the reference point and each geophone can be
calculated.

D1(φ) =
r1,ref

c
· fs = −

d · cos(φ − π
6 )

√
3 · c

· fs

D2(φ) =
r2,ref

c
· fs =

d · cos(φ + π
6 )

√
3 · c

· fs

D3(φ) =
r3,ref

c
· fs =

d · cos(π2 − φ)
√

3 · c
· fs

where fs is the sampling frequency.

5.5 DOA resolution

The DOA resolution depends on multiple factors. With no modification of the
signal, the DOA resolution is quite low, and the solution can be within a great
span of angles.

5.5.1 Upsampling

If the signal is upsampled, the maximum delay will increase and thereby also
the delay will have a smaller set of possible angles as solutions. The signal is
upsampled using cubic splining. Cubic spline is a good method in our case since
our signals are seismic waves which oscillate. It is then easy for a cubic spline to
match a spline on the oscillations since it is a piecewise cubic polynomial which
is twice continuously differentiable [5].
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5.5.2 DOA resolution error

The tested angles, φ, in the search of finding the DOA, consists of angels from
-180◦ to 179◦ with a step of one degree between each element. If a signal is
upsampled and has unique solutions for all angles, there is still a risk that the
solution differs with a maximum of 0.5◦ from the real solution. If a detection is
made from a distance of 100 m from a sensor station, this gives a total error range
of 2 · 100 · tan(0.5) ≈ 1.75 m which is very low when tracking elephants since the
length of an elephant is typically up to 5 meters.

5.6 Delay and sum

To estimate the direction of the elephant footstep, delay-and sum is used [27].
The signal model is used to estimate the DOA using Non-Linear Least Squares
(NLS).

V (φ) =
∑
i,j,i,j

∑
k∈W

(yi[k − Di(φ)] − yj [k − Dj (φ)])2

φ̂ = arg min
φ

V (φ)

Where W denotes a sliding time window which consists of a segment of an ele-
phant footstep.

5.7 Confidence interval

The confidence interval will be estimated by looking at the minimum in the cost
function. By trying to fit a second order polynomial curve, the variance can be
calculated.

V (φ) ≈ a + bφ + cφ2

The fitting is done on a grid within 20 degrees from the estimated DOA φ̂. Once
the polynomial is estimated, the variance can be calculated.

ˆ̂φ = − b
2c

V ( ˆ̂φ) = a − b2

4c

V̄ ( ˆ̂φ) = 1 − b2

4ca

Var( ˆ̂φ) =
a − b2

4c
Nc

Where ˆ̂φ is the new DOA estimate and N is the number of samples in the signal
[13].
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5.8 Triangulation

Figure 5.3: Illustration of the triangulation of an elephant’s location, with
DOA angles and their confidence intervals.

Figure 5.3 illustrates the basic principle of the location estimate. With the direc-
tion estimates for multiple devices, a NLS estimate of an elephant’s location is
formulated as

x̂ = arg min
x

M∑
m=1

(φm − arctan 2(xy − pm,y , xx − pm,x))2 (5.1)

where m denotes a specific device, xy and xx denotes the location of the elephant
in the northern axis respective eastern axis, while pm,y and pm,x denotes device
m location in the northern axis respective eastern axis and M is the number of
devices that have calculated a DOA of the elephant. With Equation (5.1), a gradi-
ent search is used to find the estimate of x̂ [12]. The positions of the devices are
known by GNSS coordinates converted to Universal Transverse Mercator (UTM).

Additionally, only measurement which is 0.5 seconds away from each other will
be used since the sensor stations will be maximum 50 m away from each other
and one step should maximumly arrive to another 50

c = 50
160 = 0.3125 < 0.5s later.

5.8.1 Boundaries

By using boundaries in the optimisation, the solution will be calculated quicker
and be more accurate. The solution can be predicted between some coordinates
by looking at the DOA for each device and the device position. Below are the
logic for the minimal and maximal possible solutions on the northern-axis, listed
with a given detection range r.
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• If the most northern device gets a DOA estimate from west or east, see Fig-
ure 5.4a, then there will be only one possible solution on the northern-axis
which is the northing position of this device. The same applies for the most
southern device, illustrated in Figure 5.4b.

• If the most northern device gets a DOA estimate in a northern direction,
see Figure 5.4c and Figure 5.4d, the minimum possible solution on the
northern-axis is the northing position of this device and the maximum so-
lution on the northern-axis is min(p1,y + r · sin(φ1), p2,y + r · sin(φ2)), where
p1 is the most northern device and p2 is the most southern device.

• If the most southern device gets a DOA estimate in a southern direction, see
Figure 5.4e and Figure 5.4f, the maximum possible solution on the northern-
axis is the northing position of this device and the minimum solution on the
northern-axis is max(p1,y +r · sin(φ1), p2,y +r · sin(φ2)), where p1 is the most
southern device and p2 is the most northern device.

• If none of the above cases happens, then should the most southern device
have a DOA estimate from a northern direction and the most northern de-
vice should have DOA estimate in a southern direction, see Figure 5.4g.
The maximum possible solution on the northern-axis is the northing posi-
tion of the most northern device and the minimum possible solution on the
northern-axis is the northing position of the most southern device.
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 5.4: Visualisation of possible northing positions given DOA esti-
mates.

Similar logic applies to the boundaries on the eastern-axis which are listed below.

• If the most eastern device gets a DOA estimate from north or south, see
Figure 5.5a, then there will be only one possible solution on the eastern-
axis which is the easting position of this device.
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• If the most western device gets a DOA estimate from north or south, see
Figure 5.5b, then there will be only one possible solution on the easting-
axis which is the easting position of this device.

• If the most eastern device gets a DOA estimate in an eastern direction, see
Figure 5.5c and Figure 5.5d, then the minimum possible solution on the
eastern-axis is the easting position of this device and the maximum solution
on the eastern-axis is min(p1,x + r · cos(φ1), p2,x + r · cos(φ2)), where p1 is the
most western device and p2 is the most eastern device.

• If the most western device gets a DOA estimate in a western direction, see
Figure 5.5e and Figure 5.5f, then the maximum possible solution on the
eastern-axis is the easting position of this device and the minimum solution
on the eastern-axis is max(p1,x+r · cos(φ1), p2,x+r · cos(φ2)), where p1 is the
most western device and p2 is the most eastern device.

• If none of the above cases happens then should the most eastern device
have a DOA estimate from a western direction and the most western device
should have DOA estimate in an eastern direction, see Figure 5.5g,. The
maximum possible solution on the eastern-axis is the easting position of
the most eastern device and the minimum possible solution on the eastern-
axis is the east position of the most southern device.
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 5.5: Visualisation of possible easting positions given DOA estimates.

There are also cases when there is no intersection inside the boundaries. This
will happen when a pair of measurements have an intersection but not inside
the shared detection range of the devices. This means that measurements comes
from different sources and will get a solution where no object exists. By using
boundaries, the given solution will get a high cost and can be easily filtered out.
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5.8.2 Reasonable measurements

There will be cases where the algorithm tries to find an intersection between two
measurements, but in reality there is no intersection. This will lead to a solution
with high cost and long computational time. To save time and avoid trying to
find a solution in these cases, one can predict if there should be a solution to the
optimisation problem before optimising. If one of the listed cases below occur,
no triangulation will be performed.

• If the most southern device gets a DOA estimate in a southern direction and
the most northern device doesn’t, no solution will be found.

• If the most northern device gets a DOA estimate in a northern direction and
the most southern device doesn’t, no solution will be found.

• If the most eastern device gets a DOA estimate in an eastern direction and
the most western device doesn’t, no solution will be found.

• If the most western device gets a DOA estimate in a western direction and
the most eastern device doesn’t, no solution will be found.

• If the two devices have the same northing positions, has DOA estimates
from in either a southern or northern direction and the most western device
has a greater absolute value of DOA than the other device, see Figure 5.6,
no solution will be found.

• If the two devices have the same northing positions and one gets DOA es-
timates in a southern direction and the other doesn’t, no solution will be
found.

Figure 5.6: Illustration of when no intersection happens for two aligned de-
vices in the eastern direction.

5.9 Result

In this section, results regarding the methods for DOA and triangulation are pre-
sented. The DOA estimates are validated using a 360insta ONE x2 camera. This
camera is able to record video in 360 degrees. The camera is then placed in the
middle of a geophone array. Three metal poles are hammered in the ground to
visualise the geophone locations. These also act as reference angles in the video
footage. The footage is projected using a equirectangular projection, to keep the
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angles from the video true to the real angles. A grid can then be applied to the
video to aid the validation of the angles.

5.9.1 Wave propagation speed

After collecting data on elephants in Kolmården, data was also collected for calcu-
lating the wave propagation speed. The wave propagation speed was calculated
by 10 different measurements. The mean value for wave propagation speed be-
came 161.7 m/s with a standard deviation of 12.3 m/s. In Figure 5.7 a histogram
shows how the measurements are distributed.

Figure 5.7: A histogram for collected wave propagation speed measurements
with a normal distribution fit.

Most of the measurements are distributed around the mean value, while one out-
lier of 188 m/s brings up the standard deviation drastically. Similar results of the
wave propagation speed have been seen for measurements in other locations in
Sweden, as Vallamassivet.

5.9.2 Upsampling

After testing out different sampling frequencies with cubic splining for the sig-
nals, upsampling the original 474 Hz signal to 4000 Hz has been shown to give
a result where each angle between -180 to 179 degrees with a step of 1, give a
unique solution to the DOA cost function, see Figure 5.8. That is, no two angels
share the same solution.
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Figure 5.8: Comparison of the cost functions for the original signal and a
splined signal.

5.9.3 Variance estimation

In Figure 5.9, 4 different DOA cost functions are shown for 4 different detections.
The cost functions are chosen to present the variety of how the DOA cost func-
tions can look. All 4 cost functions does have a global minimum but of different
qualities and the DOA estimate φ̂ can be told to be in an interval of 2 standard de-

viation away from the ˆ̂φ with a probability of 95 %. The least squares (LS) second
order polynomial fit does also seem to fit all cost functions with the chosen grid
for respective cost function and the calculated variance seems reasonable when
looking at how fast the cost changes near the global minimum.
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(a) (b)

(c) (d)

Figure 5.9: 4 different DOA cost functions with matched LS second order
polynomial fitted curves

In Figure 5.10 is the distribution for the difference between the DOA measure-

ment φ̂ from delay and sum and the DOA estimates ˆ̂φ from the variance estima-
tion shown. Both estimates are quite close to each other overall and 90 % of the
DOA measurements has a maximum difference of 2.6° from the new estimation
where the variance is estimated. Since the difference between the two DOA mea-
surements is quite low, the DOA estimate from delay and sum is approximated

to have the same measurement variance as ˆ̂φ.
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Figure 5.10: Cumulative distribution function of the distance between the

DOA measurements from delay and sum and the DOA estimates ˆ̂φ from the
variance estimation.

All further mentions of DOA measurements are DOA estimates from delay
and sum with a measurement variance estimated by this section’s calculations.

5.9.4 DOA variance threshold

During a 15-minute-long recording, of an elephant walking, a total of 404 ele-
phant footsteps were detected from two devices. In Figure 5.11 the cumulative
probability for the variance is shown, noticeable are there no DOA measurements
with a variance under 0 which indicates all estimates are minimums. When ac-
cepting measurements with a variance under approximately 25, 91% of the mea-
surements will be accepted. The DOA variance threshold is chosen as 25 since
the measurements will have a quite low measurement variance for the tracking
filters and also to get rid of the measurements with unclear global minimums and
probably poor estimates.
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Figure 5.11: Cumulative distribution function of our DOA variances.

5.9.5 DOA measurements

In Figure 5.12 DOA measurements from a walking elephant at Kolmården can
be seen. The measurements are validated for all the elephant steps except the
steps between approximately 10 and 30 degrees where a bush stood, Also, which
was discussed in, Section 5.9.4 only measurements with a variance below 25 are
shown.

Figure 5.12: DOA measurements of a walking elephant at Kolmården.

5.9.6 Triangulation

From the same data collection as the DOA measurements were calculated on,
triangulation can also be done. These results are harder to validate since only one
camera was available and only one sensor station’s DOA measurements could be
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validated. Although from our observations the elephant moved back and forth in
the eastern direction and the elephants had almost a constant northing position
with a possible variation of 17.5 m, a minimum of 2.5 m and maximum of 20 m
and a minimum of -13 m and maximum of 30 m in easting position based on
satellite pictures, see Figure 5.13.

Figure 5.13: Visualisation of the experimental setup at Kolmården.

By these observations, an estimate of the elephant’s localisation is made by
assuming that the elephant has a constant position northing position which is
almost in the middle of the two parallel fences in the eastern direction. The
estimate for the northing position becomes, then, 2.5 + 9 = 11.5 m. By this
assumption and knowing the DOA, an estimate of the easting position can be
done. By comparing the northing position with the DOA estimates from the

video, a distance to the elephant can be calculated,
∣∣∣∣ xy
sin(φ)

∣∣∣∣. By knowing the
distance to the elephant and the DOA, the easting position can easily be calcu-

lated, xx(φ) =
∣∣∣∣ xy
sin(φ)

∣∣∣∣ · cos(φ). Important to remember is that the DOA mea-
surements are only validated down to 30 degrees, which was discussed in Sec-
tion 5.9.5 and therefore is the maximum easting position from the video estimates
xx(30) ≈ 19.9 m but in reality should there be easting estimates up to 30 m.

Discussed in Section 5.8, 0.5 s were distinguished as a good maximum time dif-
ference between two sensor stations measurements. For our data does this time
difference give very few localisation estimates though and therefore is a time dif-
ference of 2 s is used instead. Bigger time differences give more localisation es-
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timates, but important to keep in mind is that the risk of poor estimates may
increase since the risk of that the measurements comes from different footstep
increases.
In Figure 5.14 northing estimates can be seen for a time difference of 2 s. 49.3 %
of the estimates are inside the northing boundary. In Figure 5.15 the easting esti-
mates can be seen for a time difference of 2 s. 90.9 % of the estimates are inside
the easting boundary. 48.6 % of the estimates were inside both of the easting and
northing boundaries. 142 localisation estimates could be done while each sensor
station number of DOA measurements were 148 and 177, respectively.

Figure 5.14: Northing estimates of a walking elephant at Kolmården with a
maximum time difference of 2 seconds between the paired measurments.
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Figure 5.15: Easting estimates of a walking elephant at Kolmården with a
maximum time difference of 2 seconds between the paired measurements.

5.10 Discussion

In this section, the presented results about DOA and triangulation are discussed.

5.10.1 DOA

From the results in Figure 5.12, it can be said that the DOA measurements is
being pretty good estimated. The measurements are close to the validation, but
not exactly the same. The difference can come from many factors. One is that the
camera is not exactly centred, and thereby, the DOA estimates from the video will
not be 100 % correct. A second reason could be that the geophones are not placed
100 % as the experimental setup, and thereby the DOA measurements will not be
as expected. Another reason may be that the upsampling is not good enough and
the real solution can not be found because of that. Although the DOA estimates
from the upsampled versus the non upsampled detections are quite similar, see
Figure 5.16, and the upsampling shouldn’t give worse solutions at least which
can be seen in Figure 5.8.
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(a) DOA measurements for a splined signal with sampling frequency 4000 Hz.

(b) DOA measurements for the original signal with sampling frequency 474 Hz.

Figure 5.16

Another thing to discuss is the variance. All the presented measurements has
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a variance below 25 and thereby a standard deviation of 5. This means that all
measurements has a probability of 95 % to be within two standard deviations
from the real solution. By looking at the results again, this seems reasonable.
The measurements which are a bit off from the validation are often not much
more than 10 degrees away from these measurements. There are also measure-
ments which are far from the validation, but the number seems to be quite low.
These measurements will also be handled in the tracking and will be not be asso-
ciated with a track and thereby will be no problem since they are few and not so
frequent. Why these measurements exists can depend on various reasons. One
is that the detection algorithm doesn’t have to get perfect segment for DOA esti-
mation when detecting elephants, and thereby may the detection not always be
suitable for DOA estimation.

5.10.2 Triangulation

In Figure 5.14 and Figure 5.15 are DOA measurements with a maximum time
difference of 2 seconds triangulated.

By looking at the eastern estimates, one can see that the easting estimates are
quite close to the estimates from the video. Although the easting estimates could
only be estimated up to 19.9 m which was discussed in Section ??. In reality, the
elephant mostly walked up to 30 m and then turn back and walk in the opposite
direction. This can be seen in the measurements as well, where the estimates
from the video are constant but the measurements increases to 30 and then de-
creases to 19.9 m again.

The elephant movement in the northern axis is both harder to validate and es-
timate. Many of the estimates are outside the boundary of physical possible
northing position (outside fence) and most often too high. Also, the northing
position varies much faster and more often than the easting positions. Why this
happens is hard to say, one reason could be the uncertainty of the DOA mea-
surements. In Figure 5.17, an uncertainty is added to DOA measurements to
visualise how uncertainty in the DOA estimations affect uncertainty in the local-
isation. One can see that for Figure 5.17a and Figure 5.17b, where the target is
in front of the devices, the localisation uncertainty is greater in the northern-axis.
In Figure 5.17c, where the target is quite far out to the right, the uncertainty
starts getting greater in the eastern-axis. In the measurements from Kolmården,
the elephant mostly walked in front of the devices, and this effect could therefore
mean that errors in the DOA estimations affect the northing coordinate more than
easting.
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(a) (b)

(c)

Figure 5.17: Visualisation of how uncertainty affects easting and northing
for different angles.

One other reason could be poor pairing of DOA measurements. By pairing mea-
surements from different footsteps, the localisation will get poorly estimated. Al-
though it does seem like the northing position is extra sensitive to precise DOA
measurements compared to the easting position by the results to judge.
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Tracking

To keep track of an elephant, various types of Kalman filters can be used. With
a Kalman filter, the state can be updated even if there is no measurement, and
an elephant can then be tracked even if there are no measurements for a short
period of time. This is great for when an elephant is far away from the geophones,
and the filter can then predict the movement if the elephant would go out of
range. Since the system contains multiple geophone arrays, a Kalman filter can be
implemented for each array to update the DOA and an EKF can be implemented
to update the positions of the elephants.

6.1 Kalman filter

A Kalman filter does mainly two things. It takes in a measurement and updates
the state (measurement update) with respect to the measurement noise. It can
also predict the state with a motion model, which calculates the movement since
the last measurement (time update). For this, a motion model and measurement
model is needed to predict the movement and control the update.

6.1.1 Kalman filter

A Kalman filter is based on a linear state space model, where the general state
space models looks as follows.

xk+1 = Fkxk + Gv,kvk , Cov(vk) = Qk

yk = Hkxk + ek , Cov(ek) = Rk

Cov(x0) = P1|0
E(x0) = x̂1|0

55
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where xk is the state, yk is the measurement, ek is the measurement noise and vk
is the process noise. Fk is the state transition matrix, Hk is the observation matrix
and Gv,k is the process noise matrix. In the update there are some matrices that
occur multiple times and also says a lot about the measurement and the track.
The innovation

ϵk = yk − Hk x̂k|k−1

and the innovation covariance

Sk = HkPk|k−1H
T
k + Rk

and lastly the Kalman gain

Kk = Pk|k−1H
T
k (HkPk|k−1H

T
k + Rk)−1

are three of the more frequent terms in the updates. When there is a measure-
ment, a measurement update is performed as follows

x̂k|k = x̂k|k−1 + Kkϵk

Pk|k = pk|k−1 − KkSkK
T
k

and the time update for the KF is done as follows

x̂k+1|k = Fk x̂k|k + Gu,kuk

Pk+1|k = FkPk|kF
T
k + Gv,kQkG

T
v,k

[12].

6.1.2 EKF

An Extended Kalman Filter is used like a KF, but on a non-linear system. The
dynamics are linearised to get an estimate of the mean and covariance of the
state. An EKF is based on a nonlinear state space model as

xk+1 = f (xk , vk), Cov(vk) = Qk

yk = h(xk , uk , ek), Cov(ek) = Rk

Cov(x0) = P1|0
E(x0) = x̂1|0

where ek is the measurement noise and vk is the process noise. The state update is
performed as described in Section 6.1.4 for respective motion model. In the filter
there are some additional terms which has not been stated yet. The innovation
for an EKF is

ϵk = yk − h(x̂k|k−1, uk , 0)
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, the innovation covariance becomes

Sk = H(x̂k|k−1, uk)Pk|k−1(H(x̂k|k−1, uk))T + Rk

where H is the derivative of h, with respect to x. Lastly the Kalman gain becomes

Kk = Pk|k−1(H(x̂k|k−1, uk))T S−1
k

The measurement update becomes

x̂k|k = x̂k|k−1 + Kkϵk

Pk|k = Pk|k−1 − KkSkK
T
k

and the time update becomes

x̂k+1|k = f (x̂k|k , 0)

Pk+1|k = F(x̂k|k)Pk|kF
T
K + Gv,kQKG

T
v,k

where F is the derivative of f with regard to x. [12].

6.1.3 Model and measurement noise

The measurement noise variance can be estimated using the method from Sec-
tion 5.7. By changing the levels of the process noise, the Kalman filter can be
tuned to depend on the measurements or the motion model differently. The pro-
cess noise does also affect how fast the uncertainty increases for the track. While
the uncertainty grows, the probability of letting through new measurements also
grows and the risk of updating with false measurement to a track increases. This
is discussed more in Section 6.2.4.

6.1.4 Motion model

Motion models are used to predict the movement of a target. A constant position
(CP) motion model updates the target’s position as constant and if no measure-
ment is present the target will be still.

xk+1 = Fkxk + Gv,kvk
Fk = In

Gv,k = T In

A constant velocity (CV) motion model updates the target’s position with respect
to the estimated velocity, and keeps the velocity constant if no measurement is
present.

xk+1 = Fkxk + Gv,kvk

Fk =
(
In T In
0 In

)
Gv,k =

(
T 2In

2
T In

)
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where T is the time since the last measurement update and n represents the di-
mension of the state.

6.2 Tracking

This section describes the tracking methods used.

6.2.1 DOA tracking

For the DOA tracking, a traditional Kalman filter is implemented based on a

linear state space models with the state xk =
(
φk

)
for the CP model and xk =

(
φk
ωk

)
for the CV model. The measurement model becomes

yk = xk + ek

for the filter with the CP model and

yk =
(
1 0
0 0

)
xk + ek

for the filter with the CV model. The state x̂1|0 position is initialised with the first
measurement and the covariance P̂1|0 is initialised with an arbitrarily high value
since no information is available about the track.

6.2.2 Position tracking

Two different filters have been tested out while tracking the position, one based
on separate DOA measurements and one based on triangulated DOA measure-
ments.

Separate DOA measurements

This filter is based on separate DOA measurements and depending on from which
array the measurement comes from, the used array’s position will be the input
for the update. The measurement model is a bearing only problem and looks like
this,

yk = atan2(xk,y − pk,y , xk,x − pk,x) + ek (6.1)

where pk is the input and position of the array k. Since the measurement model
is nonlinear, an Extended Kalman Filter is used.

The state is xk =
(
xk,x
xk,y

)
and the filter uses a CP motion model. The state x̂1|0 is

initialised with measurements from two arrays, where the measurements are tri-
angulated together as in Section 5.8 to get an initial position. The covariance P1|0
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is initialised with a high value, since no information is available about the track.
Additionally, does the derivate of the measurement model need to be calculated

H(xk , uk) = h′x(xk , uk , ek) =
∂h(xk , uk , ek)

∂xk
=

1
(xk,y − py)2 + (xk,x − px)2

(
−(xk,y − py)
xk,x − px

)
x̂k

Triangulated DOA measurements

For the position tracking using triangulated DOA measurements, a traditional
Kalman filter is implemented based on a linear state space models with the state

xk =
(
xk,x
xk,y

)
, measurement model

yk =
(
1 0
0 1

)
xk + ek

and a CP motion model. The state x̂1|0 position is initialised with the first mea-
surement and the covariance P̂1|0 is initialised with an arbitrarily high value since
no information is available about the track.

6.2.3 Measurement

For both of the filters, the DOA is the measurement. The DOA is an angle and is
estimated within −180 ≤ φ < 180. In the DOA tracking filter, the filter may track
one object while the object’s DOA goes from 179 to -180. This would give the
filter a big innovation and the track would get very uncertain. To avoid that, the
measurement is instead recalculated so the distance between the measurement
and the filter’s estimated DOA is less than 180 degrees, since this is the biggest
possible distance between two angles. The recalculation is done by either adding
or subtracting a factor of 360 degrees until the distance is below 180 degrees. In
the position tracking filter, similar recalculations are also done for the innovation.

6.2.4 Gating

To keep a track relevant, a track should only be updated with new measurements
if the measurement is likely to belong to the track. By comparing the prediction
of a track with the new measurement and looking at the uncertainty of the track,
the measurement can be associated to the track with a given probability. This
method is called gating.

Elliptical gating

Elliptical gating compares the distance between the prediction of the target and
the new measurement and decide if the measurement belongs to the track or
not, given the innovation covariance of the track. By looking at the innovation
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covariance of the track, a probability of accepting the measurement through the
gate can be calculated. Since the innovation is

ϵt = yt − ŷt|t−1 ∼ N (0ny , St|t−1)

and a new term can be expressed as

||ϵ̃t ||22 = ϵT S−1
t|t−1ϵt

where

ϵ̃t ∼ N (0ny , Iny )

γ = ||ϵ̃t ||22 =
∑
i

ϵ̃2
i,k ∼ X (ny)

the probability of accepting the measurement through the gate can then be calcu-
lated as

PG = Pr (γ ≤ γG) =

γt∫
0

X (γ ; ny)dγ (6.2)

where γG is the gate threshold and tells how big the gate is

ϵTt S
−1
t ϵ < γG

[11].

Localisation gating

A positioning track should not be able to be updated by a measurement from
a sensor station which has a great distance between the sensor station and the
target’s estimated position. Therefore, are measurements from sensor stations
which are further than 1.5 · r m away from the estimated position rejected, where
r is the detection range. By giving a marginal of 1.5 times the detection range, a
measurement can still be associated with a track which is far away and a badly
estimated track can then be readjusted and corrected.

6.3 Multi target tracking

To be able to track multiple targets, there must be some logic deciding when to
start tracking a new target, and when to stop tracking a target. A track can either
be tentative, confirmed, or dead. A tentative track is a possible track but not de-
cided yet, a confirmed track is considered as a track and a dead track is a track no
longer present. A measurement can either initiate a new confirmed or tentative
track or update a confirmed or tentative track.
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6.3.1 Track logic

To decide when a track is confirmed or should be deleted, one must think about
how an elephant behaves. In Section 2.2.1 facts about elephant lifestyle, family
constellation and habits are listed. In the same section, observations on the ele-
phants from Kolmården are listed. As described in that section, elephants does
eat a lot. A day for an elephant is full of both finding and eating food. For the
tracking this means that when an elephant is moving it is likely on the hunt for
food and will take many steps on a row. A track should be confirmed when it
is likely to have more measurements and have had many measurements. From
our collected data, it can be seen that when an elephant moves, our system gives
at least 7 detections in a row each time the elephant move. To be able to gather
a decent amount of tracks and still being sure that an actual elephant is being
tracked, a still alive track is confirmed when it has got 7 measurements.

To keep the complexity of the tracking system down, the alive tracks should only
be alive when they get new measurements which are likely to belong to the track.
If tracks are not deleted, there is a risk that multiple tracks may share the same
information or that a measurement is associated with the wrong track. A track is
deleted when the track has not got a measurement in a long time. It is deleted
because the uncertainty of a track grows by time, and thereby a track is more
likely to accept measurements which does not belong to the track by time. From
observations of real elephants, we noted that when an elephant finds food, it
does not move much. So if a track does not get new measurements, either the
elephant have gone out of range from our sensors, or it is eating. In both of these
cases, the track should be kept alive until the uncertainty gets too big. For the
case when the elephant has stopped for eating, the track’s uncertainty will grow
and the probability of accepting a measurement which does not belong to this
elephant increases and therefore the track should be deleted. The same logic of
deleting track applies to when the elephant goes out of range. Although, these
tracks should be kept as long as possible to keep the interesting information from
these tracks. From our observations we have seen that when an elephant stops it
will either start moving in the nearest 15 seconds again or not move in minutes.
Therefore, a track is deleted if it has not got a new measurement after 15 seconds.

6.3.2 Association

To keep the complexity down of the tracking system, a maximum of one track
should be updated per measurement. If multiple track are updated with the
same measurement, the tracks will be cluttered together and converge into the
same track by time. Instead, if a measurement passes through multiple gates
from different tracks, there must be a decision to decide where the measurement
is most likely to belong to. Firstly, the complexity needs to be low, and therefore
the confirmed tracks are prioritised in the association step. If the measurement
does not belong to any confirmed track, the measurement can be used to update
a tentative track instead. To associate a measurement to one track, the global
nearest neighbour algorithm is used, which associates the measurement to the
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track with the closest prediction. If a measurement does not seem to belong to
any existing track, a new tentative track is initiated with the measurement [11].

6.4 Result

In this section, the two tracking systems for DOA and positioning will be evalu-
ated.

6.4.1 DOA tracking

The DOA tracking system was mainly tuned by two parameters, the model noise
and the gating threshold. In the data collection two sensor stations were used
but only one of them could be validated since only one 360 camera was avail-
able. The KF was mainly tuned to fit the DOA estimates from the video, but also
change in a reasonable speed and pattern. Also, as discussed in Section 5.9.4,
only measurements with a variance below 25 are used.

Single target

The following results are collected at Kolmården on one elephant. In the data
collection, the elephant walked back and forth in front of the sensor stations and
the changes in the DOA should almost be linear while the elephant is moving on
the same distance.
In Figure 6.1, Figure 6.2, Figure 6.3 and Figure 6.4 the KF estimates can be seen.
The KF estimates consists of both measurements and time updates. The KF esti-
mates consists of multiple tracks which starts and ends when the elephant moves
and stops for longer food breaks. There are also a few cases in the figures where
there occur parallel tracks under short periods, this occurs when two confirmed
tracks are alive at the same time. The gating threshold has been tested out with
different gating probabilities and in Table 6.2 each gating thresholds gating prob-
ability are shown.

Table 6.1: Gating thresholds and their gating probability.

Gating threshold Gating probability

2.70 90 %
1.64 80 %
1.07 70 %
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Figure 6.1: DOA tracking of elephant footsteps with a CP motion model and
gating threshold γG = 1.07.

Figure 6.2: DOA tracking of elephant footsteps with a CP motion model and
gating threshold γG = 1.64.
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Figure 6.3: DOA tracking of elephant footsteps with a CP motion model and
gating threshold γG = 2.70.

Figure 6.4: DOA tracking of elephant footsteps with a CV motion model

Multiple target

During the data collection at Kolmården, data was also collected for a smaller ele-
phant herd (3 elephants). For the tracking, the elephants could not be separated
as individual tracks, since they were very close to each other all the time. There-
fore, was another dataset collected at Vallamassivet where two humans walked at
the same time from different directions. This dataset is used to evaluate how the
DOA measurements are affected when multiple seismic waves interfere and to
investigate if the described tracking system in Section 6.3 can identify multiple
targets. In Figure 6.5 the results for this is shown with a KF with an CP motion
model with the gating threshold γG = 1.07 and model noise Q = 80 .
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Figure 6.5: DOA measurements for two walking humans.

6.4.2 Position tracking

Separate DOA measurements

In Figure 6.6 the created position tracks for separate DOA measurements are
shown with different design.
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(a) Northing estimates from a EKF
based on separate DOA measurements
with model noise of Q = 8 and gating
threshold γG = 0.708.

(b) Easting estimates from a EKF based
on separate DOA measurements with
model noise of Q = 8 and gating thresh-
old γG = 0.708.

(c) Northing estimates from a EKF
based on separate DOA measurements
with model noise of Q = 12 and gating
threshold γG = 0.708.

(d) Easting estimates from a EKF based
on separate DOA measurements with
model noise of Q = 12 and gating
threshold γG = 0.708.

Figure 6.6
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(e) Northing estimates from a EKF
based on separate DOA measurements
with model noise of Q = 16 and gating
threshold γG = 0.708.

(f) Easting estimates from a EKF based
on separate DOA measurements with
model noise of Q = 16 and gating
threshold γG = 0.708.

(g) Northing estimates from a EKF
based on separate DOA measurements
with model noise of Q = 20 and gating
threshold γG = 0.708.

(h) Easting estimates from a EKF based
on separate DOA measurements with
model noise of Q = 20 and gating
threshold γG = 0.708.

Figure 6.6: Localisation estimates of an elephant using an EKF based on
separate DOA measurements with a CP motion model.
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Triangulated DOA measurements

This filter used the triangulated DOA measurements from Section 5.9.6 as mea-
surements. The measurement noise was chosen as

R =
(
100 0

0 100

)
since the measurements from Section 5.9.6 had variance of 100 while in reality
they should have had a variance of maximum 25. The filter was then tuned to
adapt to changes in the measurements in a reasonable speed by changing the
model noise Q while applying gating as well. The gating threshold has been
tested out with different gating probabilities and in Table 6.2 each gating thresh-
olds gating probability are shown.

Table 6.2: Gating thresholds and their gating probability.

Gating threshold Gating probability

1.3467 49 %
1.3863 50 %
4.2405 88 %
4.4145 89 %
∞ 100 %

In Figure 6.7 and Figure 6.8 are some of tested filter in the tuning phase
shown. The measurements were divided into four parts, since there were parts
where the elephant didn’t move. In Figure 6.7 is the yellow line KF measurement
updates, the red dashed line are estimates from the video and the blue dots are
measurements. In Figure 6.8 is the yellow line KF measurement updates and the
green dots are the measurements.

Figure 6.7: Easting estimates from a Kalman filter based on triangulated
DOA measurements.
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Figure 6.8: Northing estimates from a Kalman filter based on triangulated
DOA measurements.

In Figure 6.9 and Figure 6.10 are the best designed filter results shown.

Figure 6.9: The best designed KF, based on triangulated DOA measure-
ments, easting estimates.
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Figure 6.10: The best designed KF, based on triangulated DOA measure-
ments, northing estimates.

In Figure 6.11 are the four created tracks shown for the best designed filter.
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(a) (b)

(c) (d)

Figure 6.11: Measurement updates from the best designed KF based on
triangulated DOA measurements.

6.5 Discussion

This section discusses the result of both the DOA tracking filter and the position
tracking.

6.5.1 DOA tracking

This section discusses the result of the DOA tracking filter.

Single target

In Figure 6.1, Figure 6.2 and Figure 6.3 the created tracks for the DOA track-
ing with a CP motion model are presented. From the figures it can be seen that
with higher model noise more measurements gets associated with the track as
expected and the same follows for higher gating threshold. But with too high
gating threshold and model noise, the risk of accepting false measurement in-
creases. In the presented tracks this is no major problem, all tracks seem to have
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updates which are near to the estimates from the video where the amount of out-
lier increases mainly by the gating threshold which can be seen for Q = 60 where
outliers are present first with a gating threshold of γG = 2.70, although all the
tracks with outliers have similar amount of outliers. With higher model noises
and low gating threshold, outliers will be present also, which can be seen in Fig-
ure 6.1. There are also some cases where multiple tracks are confirmed, alive and
identified as separate targets at the same time, as when Q = 60 and γG = 1.64
or when Q = 100 and γG = 1.07. For both of these cases, the gating threshold is
quite low and this means that a measurement has a smaller probability of being
accepted to these tracks. Thereby does the risk of multiple tracks increase when
tracks accept fewer measurements.
It may also seem like the filter is quite slow to adapt to changes in the measure-
ments, even when the model noise is high. Since the filter is based on a multi tar-
get tracking system there will be multiple existing tracks, while most of them are
going to be tentative and not visible in the results. Although do these tentative
tracks require computational resources as well, for example for time updating.
This means that there may be a smaller delay between when a detection occur
and when a measurement update happens, depending on the number of tracks.

In Figure 6.4 the created tracks for the DOA tracking with a CV motion model
are presented. The filter estimates the velocity quite poorly and when the tracks
get no measurements, the DOA is predicted most often with a high velocity and
the DOA predictions gets quickly bad for most of the filters and their tracks with
some exceptions as when Q1,1 = 60 and Q2,2 = 60 and when Q1,1 = 50 and
Q2,2 = 60 where the last track of the filters predicts the DOA to be almost con-
stant. One problem for the velocity estimation is that the filter needs to get at
least two measurement from the same direction to estimate the velocity close to
0 but most often did the elephant stop directly without a noticeable retardation.

To choose the best design for the filter, one must consider the pros and cons of
each design parameter. By having a low gating threshold, fewer measurements
will be associated with the track and the probability of associating false measure-
ments will decrease. Meanwhile, the gating threshold can not be too low to get
measurements in the first place. From the results, γG = 1.64 can be considered
as a good gating threshold, since the filters with model noise of Q = 100 and
Q = 200 performs similar to the filter with equal model noise but higher gating
threshold.

Bigger model noises will make the track uncertain quicker, and the risk of ac-
cepting false measurements will increase by that. Therefore, the model noise
should not be too big. By these arguments and the presented results, the best and
most suitable design parameter for tracking an elephant with CP motion model
is Q = 100 and γG = 1.64 in Figure 6.2. These parameters had a pretty big outlier
in the beginning, which is because a higher Q, which leads to the filter listening
more to the measurements. Other than this outlier, the tracking looks very good
and because of this it can still be regarded as a good choice of design parameters.
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Multiple target

In Figure 6.5, a KF with a CP motion model and model noise of Q = 80 and gating
threshold of γG = 1.07 is used. Many other designs of this filter have been tested,
and the presented filter gave the best result for this dataset, based on two walking
humans. Firstly, by comparing the DOA measurements with the estimates from
the validation, it is not super clear that there are measurements which belong
to either Albin or Daniel. The filter gives out two tracks, one track exist during
almost the whole dataset and is similar to Daniel’s path. The other track is much
shorter but is similar to Albins path. The result is not great, but one error could
be that the data was collected only using kurtosis detection and no other signal
features. This results in worse segments for the DOA estimates. Considering
this, one can still see that the created pattern can be associated with two walking
humans and even with quite good performance for Daniel. Another reason of the
poor DOA measurements could be the that the footsteps from Albin and Daniel
does interfere with each other and therefore, some of the DOA measurements
could be quite confusing for the algorithm. To be able to draw a conclusion,
longer datasets are needed and also data of separable elephant herds are needed
for maximising our system with both the designed detection algorithm, which
has shown to give good DOA measurements, and for the track logic which is
designed from detections and observations of elephants.

6.5.2 Position tracking

Separate DOA measurements

In Figure 6.6, the created position tracks using separate DOA measurements are
presented. The initial value of the tracks are good since, they are triangulated.
The update seems quite strange though. Both the updates in the easting and
northing positions behave in the similar patterns. Why the filter behave like
this could be because of poor design of the filter, implementation error or as
simple as the model does not suit the filter or vice versa. Another reason for
the poor updates can be that the track gets more measurement from one device,
resulting in that the track only being able to update the position accurately in one
direction, and poorly in the other. The EKF struggles with the northing position,
just as the localisation did. It is unclear if it could be for the same reasons or
not. The easting tracks, however, show some more promising results. All designs
somehow follow the easting position. In Figure 6.6f, there are quite a lot of tracks,
making Q = 16 a bad candidate. Figure 6.6b, Figure 6.6d and Figure 6.6h all have
a more reasonable amount of track, but Q = 8 is the only one of the three that
creates a track when the elephant walks back and forth a third time. Out of all
the filters, this one seams the most feasible.
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Triangulated DOA measurements

In Figure 6.11 are the best designed position tracks shown. The tracking in the
eastern axis shows promising results, and it is clear that the elephant walks back
and forth in the eastern axis. In Figure 6.11c and Figure 6.11d does the filter
give overall good localisation estimates, where even the northern position isn’t
too big with a few exceptions and the majority of the estimates are inside the
fence. The few outliers in the northing position are also in the beginning of the
track, see Figure 6.10, if the initial state covariance is decreased these outliers
may disappear. As the filter gets more measurements, the number of outliers
are drastically decreasing, this shows that the filter is good tuned for tracking
elephants. The filter seems to handle the discussed bias in the northern position
quite well in most of the cases, and if the northing position is better estimated,
this filter would a good option for tracking elephants.
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Conclusion

In this thesis, a system for detecting elephant footsteps have been developed. Soft-
ware has been written that can somewhat estimate and track the position of the
elephant when multiple devices are used. In the case of one device, the direction
of the elephant can be estimated and tracked.

Two elephant detection algorithms have been tested. In the end, the signal feature
method was the most appropriate for the device. It can detect elephant footsteps
with an accuracy of 89 % and detects 54 % of elephant footsteps. It is able to dif-
ferentiate elephants from other animals quite well, and has low false alarm rate.

An elephant’s direction relative to one geophone array can be estimated fairly
good. A big majority of the estimates are really close to the elephant and by ap-
plying a Kalman filter with a CP motion model an elephant can be tracked as an
individual with estimates which consist of almost no outliers. Results have also
shown that the filter for the elephant tracking can distinguish multiple humans
as separable targets to some extent.

The localisation worked quite well in the eastern direction, but did not manage
to give good results in the northern direction. This could be due to many differ-
ent sources of error. The tested EKF did not perform good enough to be used
for tracking of an elephant’s localisation with the current design and implemen-
tation. Like the localisation, it showed some promise in the easting tracking but
in the northing direction, it had some strange behaviour. This could be caused
by bad implementation, bad tuning or a bad choice of filter for the application.
The tested KF based on triangulated DOA measurements performed well and
could track the elephant in most of the cases with high enough performance and
especially when there weren’t too many high northing measurements.

75
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7.1 Further work

There are a lot of things that could be done in the future to improve upon this
work. One thing is to work on improving the detection algorithm further. One
could look at more signal features to improve accuracy, or turn to machine learn-
ing for detections. This would however need a lot of data, which isn’t available
right now. If machine learning is used, one could develop a sensor that does not
only detect elephants, but detects and classifies all kinds of animals. This would
make the device even more versatile.

Another subject that could be investigated in the future, is to count detected indi-
viduals in a herd. Counting animals is an important part of a park ranger’s work,
and if this could be automated, it would help them a lot. This could possibly
be done by a combination of methods, like the tracking with gating used in this
thesis, energy registered by the geophone, and by looking at gait and how many
footsteps that are registered each second.

The tracking of the elephant localisation from this report has been shown varying
results. For the implemented EKF, based on separate measurements, does this de-
pend on the filter updates mainly. To improve the tracking of the localisation, the
described filter could be either further developed or investigated.

The localisation estimates have also shown to have a bias in the northing position
and a bigger variance than expected. If the cause of this problem is solved, the
KF based on triangulated DOA measurements can be further developed and the
covariance from the localisation estimates could be used to model the measure-
ment noise in the filter, to improve the filter performance.

If the localisation is improved upon, the position of the elephant could be used
to make a model for how the energy of a footstep decreases with distance. With
this model, it would be possible to estimate the weight of an elephant when a
detection is made.
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