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Abstract

SAAB has developed an autonomous underwater vehicle that can mimic a con-
ventional submarine for military fleets to exercise anti-submarine warfare. The
AUV actively emits amplified versions of received sonar pulses to create the il-
lusion of being a larger object. To prevent acoustic feedback, the AUV must
distinguish between the sound to be actively responded to and its emitted signal.
This master thesis has examined techniques aimed at preventing the AUV from
responding to previously emitted signals to avoid acoustical feedback, without
relying on prior knowledge of either the received signal or the signal emitted by
the AUV. The two primary types of algorithms explored for this problem include
blind source separation and adaptive filtering.

The adaptive filters based on Leaky Least Mean Square and Kalman have shown
promising results in attenuating the active response from the received signal. The
adaptive filters utilize the fact that a certain hydrophone primarily receives the
active response. This hydrophone serves as an estimate of the active response
since the signal it captures is considered unknown and is to be removed.

The techniques based on blind source separation have utilized the recordings
of three hydrophones placed at various locations of the AUV to separate and es-
timate the received signal from the one emitted by the AUV. The results have
demonstrated that neither of the reviewed methods is suitable for implementa-
tion on the AUV. The hydrophones are situated at a considerable distance from
each other, resulting in distinct time delays between the reception of the two sig-
nals. This is usually referred to as a convolutive mixture. This is commonly
solved using the frequency domain to transform the convolutive mixture to an
instantaneous mixture. However, the fact that the signals share the same fre-
quency spectrum and are adjacent in time has proven highly challenging.

Keywords: acoustical feedback, adaptive filter, least leaky mean square, Kalman,
blind source separation, independent component analysis, complex independent
component analysis, degenerative unmixing estimation technique, convolutive
mixture.
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Notation

Notations

Notations Meaning

E Expected Value
H Hermitian Transpose
T Transpose

Abbreviations

Abbreviations Meaning

AUV Autonomous Underwater Vehicle
BSS Blind Source Separation

CICA Complex Independent Component Analysis
DCA Dependent Component Analysis
FOI Totalförsvarets forskningsinstitut / Swedish Defence

Research Agency
ICA Independent Component Analysis

HLMS Hybrid Least Mean Square
LLMS Leaky Least Mean Square
LMS Least Mean Square
PA Pulse Active - Active Response of the AUV

PCA Principal Component Analysis
PE Pulse Emitted - Pulse emitted by searching boat

RMSE Root Mean Square Error
STFT Short Time Fourier Transform
SNR Signal to Noise Ratio
SVD Singular Value Decomposition
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1
Introduction

1.1 Background

Military fleets around the world exercise anti-submarine warfare. SAAB has de-
veloped an AUV which can mimic a larger conventional military submarine. The
reason for using the AUV instead of a more conventional military submarine is
the reduced cost of performing these exercises.

A common approach to detect submerged objects is to use active sonar. Simpli-
fied, this is done by emitting sound pulses from a beacon that will reflect when
hitting surrounding objects, thus; creating an echo that can be observed with a
hydrophone. When measuring the time delay and strength of the emitted pulses
and the received echo, one can determine information such as the distance and
size of surrounding objects [20].

The AUV mimics the response of a larger submarine by measuring the strength
of the sound received by an emitted sonar. Then, the AUV enhances the strength
of the natural echo reflected by its frame to appear as a larger object. A simplified
illustration of this can be seen in figure 1.1a.

1.2 Problem Formulation

The hydrophones of the AUV will receive a wide range of sounds from various
sources. The two most important ones are the active sonar pulse from the search-
ing boat and the active response emitted by the AUV itself, illustrated in figure
1.1b. This will result in a mixture of two highly similar signals containing an
almost identical frequency spectrum, slightly separated in time, with varying
amplitude. However, we lack access to the characteristics of the active response

3



4 1 Introduction

(a) Illustration of the AUV mimicking
a conventional submarine by emitting
active responses to received sonar.

(b) Illustration of the AUV mimicking
a conventional submarine by emitting
active responses to received sonar,
while registering its own emitted sig-
nal.

Figure 1.1: Illustration of the AUV responding to a nearby ship’s sonar.

and consider it as an unknown parameter. This is because the delay between re-
ceiving a pulse and providing an active response needs to be minimized. This
delay would increase if the active response were treated as a known parameter.
Our objective is to isolate the signal to which a response is intended from the
active response without prior knowledge.

If the AUV were to disregard the phenomenon of self-registration of its own emit-
ted pulse, acoustical feedback would occur. The responses emitted by the AUV
would not solely be based on the pulse received from the ship but would also
incorporate earlier emitted pulses, resulting in meaningless noise.

The AUV is equipped with three hydrophones. Earlier work at SAAB for dealing
with the problem explained above has concentrated solely on utilizing one of
these hydrophones. This is because one of the hydrophones is positioned at the
rear, exposed to a lower degree of ambient noise, primarily focusing on recording
sonar pulses. The remaining two hydrophones are primarily used for navigation.
However, this master’s thesis has focused on utilizing all three hydrophones to
mitigate acoustical feedback for the AUV ; see figure 2.2 for the layout of the
AUV.
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1.3 Examined Methods

This master’s thesis focuses on two primary approaches to address the issue of
acoustical feedback: signal separation and adaptive filtering.

1.3.1 Signal Separation

Due to the absence of prior knowledge about the signals, a technique referred
to as blind source separation - BSS has been investigated. These methods are
primarily used to separate speech from one another, usually referred to as the
Cocktail party problem. This concept involves extracting individual voices from
one or multiple recordings in environments where multiple individuals speak,
and noise is present. The idea is to utilize the three hydrophones of the AUV to
separate the two mixed signals with BSS.

Several methods within the field of BSS have been evaluated; however, the results
have not demonstrated satisfactory performance.

1.3.2 Adaptive Filtering

Considering that the active response is unknown, one approach to estimate the
active response is to use the side hydrophones at the AUV. The side hydrophones
are positioned close to the AUV’s own emitter; thus, the active response is signifi-
cantly more prominent for these recordings. Subsequently, this data can serve as
a source for generating an estimation of the active response, which can be subse-
quently filtered out in the rear hydrophone.

The results have shown promising outcomes and have been applied to both sim-
ulated and real-world data.

1.4 Research Questions

In order to address the problem outlined in section 1.2 and derive essential con-
clusions from the methods discussed in section 1.3, the following research ques-
tions are presented:

• RQ1 - Can blind source separation effectively separate the active response
while preserving the receiving signal, and what types of constraints may
arise during the separation process?

• RQ2 - To what extent is it feasible to implement the reviewed blind source
separation in the AUV for generating active responses?

• RQ3 - Can adaptive filtering effectively attenuate the active response while
preserving the receiving signal? Additionally, what constraints and chal-
lenges may arise?
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• RQ4 - To what extent is it feasible to implement the reviewed adaptive
filters in the AUV for generating active responses?

• RQ5 - What areas of interest could be investigated for future work and
why?



2
Background of the AUV

This chapter outlines the signals’ background and essential properties regarding
the AUV.

2.1 Layout of the AUV

Figure 2.1 depicts the AUV seen from above with the three available hydrophones
colored in red. Two are placed on the sides of the AUV , one pointing to starboard
and the other to port, referred to as the side hydrophones. The third hydrophone
is dragged 75 meters behind, called the rear hydrophone.

Figure 2.1: The AUV depicted from above with its three hydrophones.

2.2 Mixture of Signals Received by the AUV

Figure 2.2 depicts the AUV positioned in the water with a nearby ship. Notewor-
thy, no signals are emitted.

7



8 2 Background of the AUV

Description

- Hydrophones
- Sonar

AUV

Figure 2.2: AUV and ship with no signals.

Figure 2.3 then illustrates when the ship is emitting sonar pulses to detect the
AUV , note no reflections such as the ones depicted in figure 4.1 are present. The
pulses PE1 to PE5 are chronologically emitted by the ship’s sonar. Due to the
travel time for sound, the emitted pulses will be received at different instances
for the three hydrophones. This is portrayed in figure 2.3, as PE1 is received at
the side hydrophone at the same time as PE2 is received at the rear.

Description

- Hydrophones
- Sonar

Emitted sonar
pulses

PE_2 PE_3 PE_4 PE_5

PE    - Emitted pulse

AUV

PE_1

Figure 2.3: AUV and ship with the signal PE.

Figure 2.4 depicts when the AUV is actively responding to the received signals
from the ship. There are two key characteristics portrayed in this figure.

Firstly, the rear hydrophone is considered the primary hydrophone due to its
significantly lower noise level compared to the side hydrophones. If the active
response PA is based purely on what is received at the rear hydrophone, acousti-
cal feedback will occur. The main task of this master’s thesis is to make the AUV
actively reply to PE while not responding to PA.
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Secondly, the sonar pulses, PA and PE will be registered at different time in-
stances by the three hydrophones of the AUV . This is portrayed in figure 2.4 as
in this example, P A2 and P E5 are registered at the rear hydrophone at the same
time as P A3 and P E4 are at the side.

Description
- Hydrophones

- Sonar

Emitted pulses
by boat

PE_4 PE_5 PE_6 PE_7 PE_8

PE    - Emitted pulseAUV

PA_3

PA_2

PA_1

PA   -  Active
response puls

Emitted pulses
by AUV

Figure 2.4: AUV and ship with the signals PE and PA.

2.3 Notable characteristics of the AUV

Following list displays some notable characteristics of the AUV :

- The hydrophones at the sides of the AUV are currently used predominately
for navigation and are exposed to increased noise compared to the one at
the rear.

- A 13 ms delay occurs between receiving a signal at the rear hydrophone and
providing an active response.

- The rear hydrophone is positioned 75 meters behind the AUV creating a
time delay for signals received by the rear and the hydrophones at the sides.
This constitutes a maximum delay of approximately 0.05 seconds; see sec-
tion 3.5 for further equations.
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Method

3.1 Limitations

The limitations of this master thesis are presented in the list below. A few require-
ments for a desirable solution, such as that PA and PE are considered unknown,
may act as limitations and are presented in section 3.2.

- Only one boat emitting sonar pulses P E.

- Sonar pulses limited to a maximum frequency of 20KHz for simulation.

- Sufficient depth resulting in negligible reflections.

- Sufficient signal amplitude to distinguish it from noise.

3.2 Requirements

A delay of 13ms for a signal registered at the rear hydrophone to be actively
responded to occurs with the current setup; see section 2.3. This delay is pre-
dominantly due to hardware limitations such as buffer sizes and available com-
puting power. A desirable algorithm for our problem, see section 1.2, should not
increase this existing delay. To achieve this, a proposed algorithm must be com-
putationally efficient and cautious of not using data that will saturate the buffers.

The requirement of using a computationally efficient algorithm imposes limita-
tions on the selection of algorithms to be investigated; this is further evaluated in
section 3.4. However, the limitation of buffer size imposes more arduous restric-
tions, with the most crucial of PA not considered known.

11
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3.2.1 PA Considered Unknown

With the current delay of 13ms, several buffers of the AUV are working at full ca-
pacity. By accessing the active response PA, the existing buffers will be exhausted,
and the delay of 13ms is deemed to be prolonged, yielding an unsatisfactory so-
lution. Therefore, PA will be considered an unknown variable.

3.2.2 PE Considered Unknown

The emitted signal PE could be anticipated either to be a known signal. However,
a system for dealing with fully known signals PE is already implemented in the
AUV . Due to the reasons listed below, this system is not always in use:

- The complex process to incorporate the signals in advance within the AUV .

- For an actual exercise with the AUV , the characteristics such as frequency
of PE may change during the exercise depending on the operator.

- The signal PE may be confidential.

Therefore, PE will be considered unknown.

In the simulation environment, see section 3.5, PE will always have the character-
istics of being a Chirp signal; hence, this known characteristic could be utilized.
However, the results would be somewhat irrelevant because a method assuming
these characteristics would be difficult to develop beyond the constructed simu-
lation.

3.3 Examined Methods

The main focus of this master’s thesis revolves around two essential methods:
Blind Source Separation - BSS and Adaptive Filters, as discussed in Section 1.3.
The sections below motivate why these were chosen.

3.3.1 Motivation of Blind Source Separation

Earlier research conducted at Totalförsvarets forskningsinstitut - FOI [1] used
ICA, a common BSS method, for self-noise suppression applied to underwater
acoustics. Their report focused on estimating a specific noise by separating it
from other known signals. Notably, this master’s thesis diverges by focusing on
separating two highly similar signals. Meanwhile, similarities remain, such as
estimating an unwanted signal by separation and several hydrophones recording
the signals underwater. Therefore, BSS was chosen as one area to be focused on.
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3.3.2 Motivation of Adaptive Filtering

A common approach when reducing the presence of noise or an unwanted signal
is to construct an adaptive filter [11]. The same report as in section 3.3.1 by FOI
[1] examined the use of adaptive filters to reduce the influence of a specific noise.
Their report estimated AR parameters to model the unwanted noise. The idea of
using adaptive filters will be the second main area to be focused on to reduce the
acoustical feedback of PA.

3.4 Evaluation

This section outlines the evaluation methods employed in this study. To assess
the simulated data, we will utilize the Root Mean Square Error - RMSE in con-
junction with power spectra and spectrograms. However, when evaluating real
data, we encounter a challenge—the absence of ground truth. Consequently, the
RMSE cannot be used to assess real data results. Instead, more emphasis has
been placed on the spectrograms.

3.4.1 Fundamental Requirement with RMSE

For the simulation, a fundamental approach for assessing the usefulness of an es-
timation of PE or PA involves comparing the obtained results with the signal re-
ceived by the hydrophones. Due to the layout of the AUV the received signals for
the side hydrophones will have the characteristics of P A ≫ P E and for the rear
P A ≪ P E. An essential requirement for separated signals is that they should
resemble better to ground truth than what the recording of the hydrophones
does. Namely, the separated component depicting PA needs to resemble more to
ground truth of PA than what the recording of the side hydrophones does. The
same applies for PE, but then to the rear hydrophone. The phenomenon of PA
being more prominent at the side hydrophones and that PE is more prominent
in the rear can be seen in the simulated data in figure 3.2 further below. The Root
Mean Square Error - RMSE determines how much the two datasets resemble. The
RMSE is calculated as,

RMSE =
√
E{(x̂ − x)2} [12]. (3.1)

3.4.2 Computational Demand

Due to the requirements in section 3.2, a proposed algorithm has to be some-
what computationally efficient. This is a pretty vague requirement with no set
limits. However, a chosen algorithm must be capable of online use at the AUV
without introducing any significant delays in emitting an active response. All
algorithms investigated follow this requirement; more computationally demand-
ing algorithms have already been disregarded.
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3.4.3 Evaluation - Blind Source Separation - BSS

There are several ways to evaluate the quality BSS . Two common parameters for
evaluation are Distortion D and Separation S, described below.

The distortion D of the jth separated output can be calculated as,

Dj = 10 log10

E{(x(j,sj ) − αjyj )2}
E{(x(j,sj ))

2}

 {unit: dB} . (3.2)

with,

αj =
E{x2

(j,sj )
}

E{y2
j }

.

yj corresponds to the jth source and x(j,sj ) denoted the recorded signals. The
quality of a separation S can be calculated as,

Sj = 10 log10

 E{(y(j,sj ))
2}

E{(
∑

i,j y(j,sj ))
2}

 {unit: dB} , (3.3)

with y(j,sj ) as the jth output of the mixing when only the source si is active. Sev-
eral factors can be used for evaluation, such as how the SNR and the number of
sources affect the result [19]. However, due to the unsatisfying results in section
5.1, it has shown sufficient to compare the separated signals’ frequency spectrum
and appearance to ground truth. This is done predominantly with RMSE.

3.4.4 Evaluation - Adaptive Filtering

For simulation, RMSE is also used to evaluate the filtered signals to ground truth.
Compared to BSS, spectrograms of the unfiltered and filtered signals are ana-
lyzed. In the time domain, the mixture of PE and PA poses a challenge in accu-
rately distinguishing between the two signals. However, the used signals have
the characteristics of being a Chirp, and the frequencies of PE and PA will not
overlap at the same time. A spectrogram with sufficient accuracy will then be
able to separate PE and PA from one another. The comparison of spectrograms
between the unfiltered and filtered signals provides a basis for analyzing the ex-
tent to which PE has been preserved and PA has been eliminated. The method
of using a spectrogram can be used for both simulated and real data. Then a
performance comparison between simulated and actual data can be made.
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3.5 Simulation

A successful solution will either be able to separate PA and PE from one another
or attenuate PA from the data received by the rear hydrophone. A simulation
environment was created to determine if the methods in section 4.2 and 4.3 were
successful. There are several advantages of using a simulation environment prior
to using actual data. Such as access to ground truth, the possibility to turn off
time delay due to propagation, and the ability to adjust the noise level.

Figure 3.1 shows a block diagram of the simulation setup. All elements inside
the blocks are explained in section 3.5.1 - 3.5.7. Simplified, the simulation envi-
ronment is constructed such as the signal PE is emitted by a fictitious boat at a
specific location. Then propagation time, absorption-, spreading- and diffraction
loss are calculated concerning the three hydrophones of the AUV. The active re-
sponse PA is then generated by the signal PE received at the rear hydrophone.
Meanwhile, propagation time, absorption, spreading- and diffraction loss are cal-
culated from the emitter of PA to the three hydrophones. Noise is also added to
all receiving hydrophones.

Hydrophone
Port

Hydrophone
Rear

Hydrophone
Starboard

Generation of
Active response

PA

From boat to 
Hydrophone Port

- Absorption loss
- Spreading loss
- Diffraction loss

- Propagation time

From boat to 
Hydrophone Rear

- Absorption loss
- Spreading loss

- Propagation time

Active response PA

- Amplification
- Hardware delay

- Noise Hydrophone rear

From PA emitter to 
Hydrophone Port

- Absorption loss
- Spreading loss

- Propagation time

From PA emitter to 
Hydrophone Rear

- Absorption loss
- Spreading loss

- Propagation time

From PA emitter to 
Hydrophone Starboard

- Absorption loss
- Spreading loss

- Propagation time

From boat to 
Hydrophone Starboard

- Absorption loss
- Spreading loss
- Diffraction loss

- Propagation time

Received signal 
Hydrophone Rear

Received signal 
Hydrophone Port

Received signal 
Hydrophone Starboard

Emitted signal PE
from boat

Noise
Hydrophone

Rear

Noise
Hydrophone

Port

Noise
Hydrophone
Starboard

Figure 3.1: Block diagram of the simulation.
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3.5.1 Emitted Signal PE

The emitted signal PE will be a pulse modulated Chirp signal. A cosinus and a
rectangular function can express the equation of this signal as,

u(t) = A cos(2πt(f0 + φt)) · rect
(
t − nT
Tp

)
. (3.4)

A is the amplitude of the signal, f0 is the starting frequency in Hz with φ as the
Chirp rate, n is the pulse number, T is the pulse repetition interval with Tp as its
duration [17].

3.5.2 Absorption Loss

Francois and Garrison suggest the following formula for calculating α as the total
absorption in seawater:

α =
A1P1f1f

2

f 2
1 + f 2

+
A2P2f2f

2

f 2
2 + f 2

+ A3P3f
2

{
unit:

dB
km

}
. (3.5)

Equation (3.5) is based on the notation proposed by Fisher and Simmons [7]. The
first two terms describe the chemical relaxation process of boric acid and magne-
sium sulfate, with the final term defining the absorption from pure water. P1−3
are the pressure dependencies, A1−3 are experimentally given constant, f1−2 are
the relaxation dependencies and f is the frequency of the sound wave [8, 9].

Ainslie and McColm suggest a simplified version of equation (3.5) for the follow-
ing oceanographic conditions:

−6 < T < 35 ◦C (S = 35 ppt, pH = 8, z = 0)

7.7 < pH < 8.3 (T = 10 ◦C, S = 35 ppt, z = 0)

5 < S < 50 ppt (T = 10 ◦C, pH = 8, z = 0)

0 < z < 7km (T = 10 ◦C, S = 35 ppt, pH = 8) .

With ppt referring to part per trillion. Due to the limitations of this master thesis,
see section 3.1, and the properties of the general water environment in the Baltic
Sea, the above conditions are assumed to be fulfilled [15]. Then equation (3.5) is
transformed to,

α =
A1f1f

2

f 2
1 + f 2

+
A2f2f

2

f 2
2 + f 2

+ A3f
2

{
unit:

dB
km

}
, (3.6)

with the parameters:

f1 = 0.78
( S

35

)1/2
e( T

26 ) {unit: kHz}, (3.7)
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f2 = 42e( T
17 ) {unit: kHz}, (3.8)

A1 = 0.106e( pH−0.8
0.56 )

{
unit:

dB
km · kHz

}
, (3.9)

A2 = 0.52
(
1 +

T
43

) ( S
35

)
e( −z6 )

{
unit:

dB
km · kHz

}
, (3.10)

A3 = 0.00049f 2e( −T27 + Z
17 )

{
unit:

dB

km · kHz2

}
, (3.11)

and f as the frequency of the sound wave [2].

3.5.3 Spreading Loss

Sound waves propagating in water will suffer a spreading loss related to the
distance traveled. The loss is simplified to either be Cylindrical Spreading or
Spherical Spreading depending on the situation. Sound waves in water can be
assumed to be spherical until the wave reaches either the seafloor or surface; then,
it can be approximated to be cylindrical [20]. This is how the spreading loss is
constructed for this simulation.

Cylindrical Spreading

Intensity loss I for cylindrical spreading is determined by the radius r as,

I = I0

( r0

r

) {
unit:

W
m2

}
. (3.12)

r0 is the reference radius with I0 as its acoustical source level [26]. Then the
spreading loss SL is calculated as:

SL = −10 log10

(
I
I0

)
= −10 log10

( r0

r

)
{unit: dB} [20]. (3.13)

Spherical Spreading

Intensity loss I for spherical spreading is determined by the radius r as,

I = I0

(
r2
0

r2

) {
unit:

W
m2

}
. (3.14)

r0 is the reference radius with I0 as its acoustical source level [26]. Then the
spreading loss SL is calculated by:

SL = −10 log10

(
I
I0

)
= −10 log10

(
r2
0

r2

)
= −20 log10

( r0

r

)
{unit: dB} [20]. (3.15)
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3.5.4 Propagation time

The speed of sound in water is rather complex to determine. Factors like fre-
quency, salinity, depth, temperature, and so forth contribute in various ways.
However, an exact speed of sound is not necessary for this simulation. There-
fore, the speed of sound was set to 1500 meters per second as a rough estimation
[20]. This yields a propagation time T depending on distance M in meters as,

T =
M

1500
{unit: s} . (3.16)

3.5.5 Diffraction Loss

The reception of PE by the starboard and port hydrophones depends on the di-
rection from which the signal is transmitted. If PE is sent from a ship facing
the starboard side of the AUV, the port hydrophone will register a lower ampli-
tude due to diffraction loss as port is shadowed. More advanced approaches to
managing creeping waves have been examined in [27]. Due to their complexity,
a simplified method has been developed based on SAAB’s experiences. Consid-
ering the unit circle from the perspective of a side hydrophone, where 0 degrees
is to the right of it, the signal decreases linearly from two dB to five dB between
180 - 270 degrees, and vice versa from 270 to 360 degrees, see figure 2.1.

3.5.6 Amplification & Hardware delay

PE with noise received by the rear hydrophone is amplified by 10 dB and then
emitted as PA on top of the AUV. Due to the existing hardware delay of the AUV,
PA will be emitted 13 ms seconds after PE was registered by the rear hydrophone.

3.5.7 Noise

The recordings are subject to normally distributed noise. The side hydrophones
are exposed to higher noise levels than the rear hydrophones, as they are more
susceptible to noise interference. Furthermore, the active response PA will also
include noise when emitted.

3.5.8 Signals Generated by the Simulation

Figure 3.2 depicts the signals received by the three hydrophones in the simula-
tion environment. The pulse marked with a 1 at the rear hydrophone is emitted
by the fictitious ship called PE. Pulse 2 represents the active response signal PA,
and box 3 indicates the moments when PE and PA overlap. For port, 4 highlights
PE, 5 shows the presence of PA, and 6 represents the instances where PE and PA
mix. The same applies to the starboard side.

Due to propagation time, the reception of PE occurs later at the port and star-
board hydrophones compared to the rear. Notably, the amplitude of PE and PA
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exhibits a reversed pattern for the port and starboard sides compared to the rear.
This reversal is attributed to the closer positioning of the PA emitter to the port
and starboard sides.
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Figure 3.2: Received signals by hydrophones in the simulation.

3.6 Acoustic Measurement Data

The methods that exhibited the most promising results were subsequently eval-
uated based on real-world data. In this data, PE and PA are present, and the
recording of all three hydrophones is available. The sampling rate used is 204800
Hz. However, all limitations in section 3.1 can not be guaranteed. For instance,
reflections shown in figure 4.1 and 4.2 will exist due to the fundamental proper-
ties of sound in water.

Figure 3.3 illustrates an actual recording obtained by the AUV, featuring the si-
multaneous presence of both PE and PA. Boxes 1 and 3 highlight the active re-
sponse PA, as shown in the figure, where the signal exhibits regular repetition
across all three hydrophones. Boxes 2 and 4 highlights the received signal PE,
which also exhibits repetitive patterns but with different intervals compared to
PA. The objective is to eliminate or, at the very least, reduce the presence of PA
while preserving the PE signal.

Noteworthy, PA for this measured data is not an active response to PE. Instead,
PA is a pulse emitted by the AUV detached from what is received. In this mea-
surement, PA and PE represent two distinct types of signals.
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Figure 3.3: Real data recorded by the hydrophones of the AUV



4
Theory

4.1 General

This section describes the phenomenon of reflections of sound in water and de-
fines Cross-Correlation, which is used for almost all algorithms. Reflections
have not been implemented in the simulation environment; nonetheless, this phe-
nomenon is of great importance for the acoustic measurement data and will be
discussed in chapter 6.

4.1.1 Reflections of Sound Waves Underwater

How sound waves, i.e., sonar, propagate and behave in water depends on several
factors. Sound waves are not only reflected by objects but also by seafloor and sea
surface, depicted in figure 4.1.

Figure 4.1: Reflection of a sound source beneath the sea surface. Used
with permission, © Discovery of Sound in the Sea (dosits.org), University
of Rhode Island. 2020 [25].

21
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Figure 4.2: Reflection of a sound source beneath the sea surface with tem-
perature differences. Used with permission, © Discovery of Sound in the Sea
(dosits.org), University of Rhode Island. 2020 [25].

Sound waves also reflect at parts of the ocean with different temperatures; hence,
the most common example is during the summer when the sun has heated the
top layer of the water. Then a reflection occurs further down where the shift of
temperature occurs; this is portrayed in figure 4.2. The sound speed also depends
on temperature, which is depicted to the right in figure 4.2 [20].

4.1.2 Cross-Correlation

Cross-Correlation is a commonly used technique for measuring the level of corre-
lation between two series. With two series x(i) and y(i) where i = 0,1,2...N-1, the
degree of correlation Rxy(d) at delay d is calculated as,

Rxy(d) =
∑

i((x(i) − E{x}) ∗ (y(i − d) − E{y}))√∑
i(x(i) − E{x})2

√∑
i(y(i − d) − E{y})2

[18]. (4.1)

4.2 Blind Source Separation - BSS

Blind Source Separation is a big group of various algorithms to separate a mixture
of multiple components into single ones blindly. The most common problem,
referred to as the Cocktail party problem, is separating individual speeches in
a noisy environment with several people speaking simultaneously. Instead of
separating speech mixtures, the theory below will be focused on how to separate
PA from PE received by the hydrophones of the AUV.

4.2.1 Overview

The general linear model of a BSS problem in the time-domain can be described
as,

X(t) = AS(t) + N. (4.2)
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Were, X denotes a vector of measured signals, A is an unknown mixing matrix, S
is a vector of the unknown source signals and N is noise. Then the procedure is
to estimate a demixing matrix by the measured signals, yielding an estimation of
the source signals Ŝ [21].

4.2.2 Pre-Processing

Principle Component Analysis - PCA

PCA can be used as a dimension reduction with less redundancy if the given
dataset is a multivariate measurement of high dimension. This can be used as a
prepossessing step before, for instance, an ICA [4].

The dataset is structured in a way that organizes each measurement as a row in
Xi,j . Here, i represents the number of individual measurements, while j denotes
the number of samples for each measurement. The first thing is to calculate the
row-wise mean as,

x̄j =
1
n

n∑
i=1

Xi,j .

Then a mean matrix is calculated as,

X̄ =


1
...
1

 x̄j .
The covariance matrix C is next calculated with mean-subtracted B as,

B = X − X̄,

C =
1

n − 1
BT B. (4.3)

The first principal component is then given by u1 as,

u1 = arg max
∥u1∥=1

uT
1 BT Bu1 . (4.4)

Noticeably, if a PCA is performed on complex-valued data, then the hermitian
transpose has to be used for equation (4.3) and (4.4) [4].

Whitening

An important pre-processing step before doing, for instance, an ICA is to whiten
the data. A zero-mean vector z = (z, ..., zn)T is described as white when the co-
variance of z is the unit matrix.
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For a vector x with n elements that is to be whitened, the linear transformation V
is calculated so z is its white transformation, shown here,

z = Vx. (4.5)

Firstly, the covariance C of x is calculated as done in equation (4.3) and denoted
below as Cx. Then let E be the matrix whose columns are the unit-norm eigenvec-
tors of Cx. While D is the diagonal matrix of the eigenvalues of Cx. The whitening
transform is then given by,

V = D
−1
2 ET . (4.6)

Further reading is refereed to [13].

4.2.3 Independent Component Analysis - Maximization of
nongaussianity - ICA

Description

ICA is a method to discover independent components of a mixture. This is done
by transforming the observed features into a new feature space, such that each
new feature space is statistically independent. While the original feature space
has as much as possible in common with the new [13].

There are several versions and techniques for estimating independent compo-
nents of a mixture displayed in equation (4.2). The one described here is based
on the Maximization of Nongaussianity using Negentropy [13].

Preprocess

Before the fixed-point algorithm is performed, the data has to be whitened; see
section 4.2.2 [13]. Depending on the quality of the data, PCA, see section 4.2.2,
may prove beneficial to the final result [4].

Fixed-point algorithm

W below is an estimation of A−1 in equation (4.2), which is used to retrieve the
estimated sources Ŝ. Initially, W is decided by a guess. The fixed-point algorithm
for separating independent sources by Maximization of Nongaussianity using Ne-
gentropy is,

W+ = E{xg(WT x)} − E{g ′(WT x)}W (4.7)

with a symmetric orthogonalization of W+ as,
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Wnew = (W+(W+)T )
−1
2 W+. (4.8)

g and g ′ are defined as:

g(y) = tanh(ay) ,

g ′(y) = a(1 − tanh2(ay)) .

x is the pre-processed data, where 1 ≤ a ≤ 2 as a suitable constant proposed
by Aapo. W in equation (4.7) is the estimated demixing matrix, initially chosen
randomly. W is then updated with equation (4.7) to W+. Next, the symmetric
orthogonalization of W+ is calculated with equation (4.8) yielding Wnew [13]. De-
pending on the chosen convergence criterion β in equation (4.10), Wnew is either
determined to be the final demixing matrix, or W is set to Wnew in equation (4.7)
and the fixed-point algorithm is repeated [13]. If the convergence criterion is
fulfilled, Wnew is used as an estimation of A−1 in equation (4.2) to retrieve the
estimated sources Ŝ.

As the algorithm progresses, the estimated demixing matrix will converge as fol-
lows as it improves,

1
N

N∑
i=1

Q(i)→ 1 ,

with Q(i) defined as,
Q(i) = |WT

new · W| . (4.9)

N is the number of components searched and i is the row of the matrix. A thresh-
old β is then chosen to determine when the algorithm has finished. The threshold
is commonly constructed with equation (4.9) as,

β >
1
N

N∑
i=1

(Q(i) − 1). (4.10)

The smaller value decided for β yields a more accurate solution; however, further
calculations are required [13].

4.2.4 Complex Independent Component Analysis - CICA

Description

Simplified, the data is transformed with a Short-time Fourier transform, STFT
with a complex-valued ICA applied to each frequency bin. Fundamentally, the
goal and procedure are similar to the ICA in section 4.2.3.

A convolutive mixture (a mixture containing time delays) is considered instanta-
neous (no time delays present) in the frequency domain. This is because convolu-
tion in time becomes multiplication in frequency [5, 22].
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Frequency Domain

An STFT is applied at the measured signals X in equation (4.2) as,

X̂(ω, ts) =
∑
t

e−iωtX(t)w(t − ts). (4.11)

The frequency ω and ts as the window position are defined as:

ω = 0,
1
N

2π,
2
N

2π, . . . ,
N − 1
N

2π,

ts = 0, ∆T , 2∆T , . . . ,

where N is the number of points in the Fourier transform, w is the chosen window
function, and ∆T is the shifting time for the window. Equation (4.11) applied at
(4.2), without noise N, yields,

X̂(ω, ts) = Â(ω)Ŝ(ω, ts). (4.12)

Equation (4.12) illustrates how the measured signals are related to the sourced
signals in the time-frequency domain [16]. Noteworthy, Â(ω) is still a stationary
mixing matrix, but regarding frequency [16, 29].

Preprocess of data

First of all, the data given by X̂(ω, ts) has to be whitened described in section
4.2.2 [13]. Depending on the data, a PCA may prove beneficial, see section 4.2.2
[4].

Fixed-point algorithm

W below is an estimation Â(ω)−1 in equation (4.12), which is used to retrieve
the estimated sources Ŝ(ω, ts). The complex-valued fixed-point algorithm for
separating independent sources is defined as,

W+ = E{x(WHx)g(|WHx|2)} − E{g(|WHx|2) + |WHx|2g
′
(|WHx|2)}W, (4.13)

with a symmetric orthogonalization of W+ as,

Wnew = W+((W+)HW+)
−1
2 . (4.14)

g and g ′ are defined as:

g(y) =
1

a + y
,
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g ′(y) = − 1
(a + y)2 .

x is the pre-processed data, a is a constant which Aapo proposes to be ≈ 0.1 and,
H is the hermitian transpose. W in equation (4.13) is the estimated demixing
matrix, initially chosen randomly. W is then updated with equation (4.13) to W+.
Next, the symmetric orthogonalization of W+ is calculated with equation (4.14)
yielding Wnew [3, 14]. Depending on the chosen convergence criterion β, Wnew is
either determined to be the final demixing matrix, or W is set to Wnew in equation
(4.13) and the fixed-point algorithm is repeated. β is used and determined in the
same way as for the noncomplex ICA ; however, due to the complex numbers, the
hermitian transpose is used [13]. When the criterion is fulfilled, Wnew is used as
an estimation of Â(ω)−1 in equation (4.12) to retrieve Ŝ(ω, ts).

4.2.5 Degenerative Unmixing Estimation Technique - DUET

Description

The DUET method creates STFT of two data sets. Then a ratio between these two
is calculated to estimate the Relative delay and Relative attenuation; see sections
below for definition. This ratio is presented in a histogram, with each source
hopefully displaying its peak. Then the goal is to determine the time-frequency
masks that separate each source from the data. This is done by determining the
closets distance for each time-frequency point to the location of the peaks for the
Relative delay and Relative attenuation [22].

Algorithm

Two sources depicted as in equation (4.2), without noise, with an STFT applied
as in equation (4.11) can be portrayed as,

[
x̂1(τ, ω)
x̂2(τ, ω)

]
=

[
1 . . . 1

a1e−iωδ1 . . . aN e−iωδN

] 
ŝ1(τ, ω)

...
ŝN (τ, ω)

 . (4.15)

With a as the relative attenuation factor between the two sources and δ as the
corresponding delay [34]. For signals exhibiting W-disjoint orthogonality, where
only one source is active for every (τ, ω), then equation (4.15) with j as the index
of the active source at (τ, ω) can be described as,[

x̂1(τ, ω)
x̂2(τ, ω)

]
=

[
1

aje
−iωδj

]
ŝj (τ, ω) ∀(τ, ω) ∈ Ωj , (4.16)

Ωj := {(τ, ω) : ŝj (τ, ω) , 0}. (4.17)



28 4 Theory

For simplicity when creating the histogram, the relative attenuation aj is trans-
formed to the symmetric attenuation, αj as,

αj := aj −
1
aj
.

The local symmetric attenuation and the delay can then be estimated as [29],

α̃(τ, ω) :=
∣∣∣∣∣ x̂2(τ, ω)
x̂1(τ, ω)

∣∣∣∣∣ − ∣∣∣∣∣ x̂1(τ, ω)
x̂2(τ, ω)

∣∣∣∣∣ , (4.18)

δ̃(τ, ω) := − 1
ω
∠
x̂2(τ, ω)
x̂1(τ, ω)

[29]. (4.19)

Motivated by [29], the MLE gives the estimation as below, see [29, 34] for further
reading,

α̃j =

!
(τ,ω)ϵΩj

|x̂1(τ, ω)x̂2(τ, ω)|pωqα̃(τ, ω)dτdω!
(τ,ω)ϵΩj

|x̂1(τ, ω)x̂2(τ, ω)|pωqdτdω
(4.20)

δ̃j =

!
(τ,ω)ϵΩj

|x̂1(τ, ω)x̂2(τ, ω)|pωq δ̃(τ, ω)dτdω!
(τ,ω)ϵΩj

|x̂1(τ, ω)x̂2(τ, ω)|pωqdτdω
. (4.21)

With p and q as scalars chosen by the user. For further explanation on how these
are chosen see [29]. A histogram H is then constructed as,

H(α, τ) =
"

(τ,Ω)∈I(α,δ)

|x̂1(τ, ω)x̂2(τ, ω)|pωqdτdω (4.22)

I(α, δ) := {(τ, ω) : |α̂(τ, ω) − α| < ∆α , |δ̂(ω, τ) − δ| < ∆δ . (4.23)

The histogram peak centers are then desirably positioned at α̃j , δ̃j . These time-
frequency peaks of the histogram are then assigned with,

J(τ, ω) := arg min
k

|ãke−iδ̃kω x̂1(τ, ω) − x̂2(τ, ω)|2

1 + ã2
k

. (4.24)

The symmetric attenuation is then transformed back to attenuation via,

ãj =
α̃j +

√
α̃2
j + 4

2
. (4.25)
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Latly, the mixing parameter estimate M̃ are used to estimate the searched compo-
nents ˜̂sj as,

M̃j (τ, ω) :=

 1 J(τ, ω) = j
0 otherwise (4.26)

˜̂sj (τ, ω) = M̃j (τ, ω)
x̂1(τ, ω) + ãje

−δ̃jω x̂2(τ, ω)

1 + ã2
j

[29, 34]. (4.27)

Noteworthy, this solution does not calculate a demixing matrix A−1 as the BSS
problem described in equation (4.2). Instead, the sources are estimated by masks
and given by equation (4.27).

4.2.6 Additional Employed Methods

During the research and evaluation of BSS methods, the Least Dependent Com-
ponent Analysis Based on Mutual Information [31] and the AMUSE [32] algo-
rithms were implemented. Neither of the results for these methods will be pre-
sented because of the inferior results. The reasons for these unsatisfactory results
are the same as for ICA ; see the discussion in section 6.1.1.

4.2.7 Important Aspects

Signal Properties

BSS is to a large extent focused on the separation of a mixture of speech [21].
Vital properties of speech are:

- Each speech signal typically has a unique temporal structure over short
time frames.

- Speech signals are quasi-stationary for small time durations (≈ 10 ms), but
non-stationary over longer periods.

- Speech typically has a fundamental frequency between 85 to 255 Hz. [22]

Independence - ICA

ICA algorithms are usually restrained by three requirements, these are:

- A maximum of one source is Gaussian distributed. An ICA algorithm can-
not separate several Gaussian distributed components.

- The sources are independent of one another, not only uncorrelated.

- The matrix A in equation (4.2) is full-rank [13].

There are methods referred to as Dependent Component Analysis - DCA as a
workaround dealing with dependent components [28]. Section 6.1.1 discusses
why these are not further evaluated.
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4.3 Adaptive Filtering

PA and PE are considered unknown, making it difficult to determine what to be
adaptively filtered out. The idea is that the hydrophones at the sides of the AUV,
positioned close to the emitter of PA, will predominately receive the signal PA.
Compared to the rear hydrophone positioned further away from the PA emitter.
Then this data can be used to determine what to be filtered out in the rear hy-
drophone.

The investigated adaptive filters will model PA as linear regression. The linear
regression is defined by,

y(t) = ϕT (t)θ(t) + e(t). (4.28)

ϕ is the regression vector containing the sampled audio from one of the side hy-
drophones. Due to the layout of the AUV, see section 2.1, this data is assumed to
have the characteristics of PA≫PE. θ is the parameter vector, e is noise and y is
the sampled signal of PA in the rear hydrophone.

θ̂ are then estimated by the adaptive filters described in the following sections.
Figure 4.3 portrays the setup with an adaptive filter with the hydrophones of the
AUV. ŷ is then presumed to be somewhat similar to PA, yielding an estimation
denoted ˆP E.

XAdaptive filter

Hydrophone
Side

+

-

Hydrophone
Rear

Figure 4.3: Block diagram of an adaptive filter estimation of θ̂

However, due to the layout of the AUV, see section 2.1, the hydrophones will
capture signals with varying time delays. This has been accounted for by using
Cross-Correlation, see section 4.1.2, yielding a system diagram with the estima-
tion t̂ in figure 4.4, with d denoting the delay.
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X
Adaptive Filter

Hydrophone
Side

+
-

Hydrophone
Rear

Cross-
Correlation

Figure 4.4: Block diagram of an adaptive filter estimation of θ̂ and t̂

4.3.1 Leaky Least Mean Square - LLMS

Least mean Square - LMS, filters are a class of gradient descent algorithms of
adaptive filters that estimates a transfer function. Simplified, an LMS algorithm
minimizes the expected value of the squared prediction error. A regular LMS
algorithm estimating the parameter θ̂ in equation (4.28) can be depicted as,

θ̂ = θ̂(t − 1) + µϕ(t)(x(t) − ϕT (t)θ̂(t − 1)) . (4.29)

With µ as step-size, ϕ as the noise source, x as the signal source [11, 33].

Due to the solution’s requirements, a fast convergence rate is important. There-
fore, its enhancement Leaky Least Mean Square - LLMS is further investigated
instead of a regular LMS. This is due to its faster convergence rate [10, 30]. The
estimation of θ̂ using LLMS is calculated as,

θ̂ = (1 − γ)θ̂(t − 1) + µϕ(t)(x(t) − ϕT (t)θ̂(t − 1)) . (4.30)

Where 0 < γ ≪ 1 is the leaky coefficient chosen by the user [6]. This coefficient
helps to regularize the solution towards zero [11]. The step-size parameter µ
determines the degree of responsiveness of the filtration process to new values,
with larger values leading to a more aggressive filtration approach [10].
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4.3.2 Kalman

Another class of adaptive filters is based on the Kalman theory. Compared to the
LMS filter, Kalman filters interpret the linear regression as a state space model.
For the linear regression seen in equation (4.28), θ̂ is estimated with,

θ̂ = θ̂(t − 1) + K(t)(x(t) − ϕT (t)θ̂(t − 1)), (4.31)

K(t) =
P (t − 1)ϕ(t)

R(t) + ϕT (t)P (t − 1)ϕ(t)
, (4.32)

P (t) = P (t − 1) −
P (t − 1)ϕ(t)ϕT (t)P (t − 1)
R(t) + ϕT (t)P (t − 1)ϕ(t)

+ Q(t). (4.33)

R(t) is the covariance of e(t) in equation (4.28). Q(t) is the covariance of w(t)
which is defined as,

θ(t + 1) = θ(t) + w(t). (4.34)

These two covariances are frequently unknown, and the user is often restrained
to guess [11, 23]. One interpretation of the parameter Q(t) pertains to its role
in determining the level of confidence attributed to the observations and subse-
quently influencing the aggressiveness of the filtration process [23].

4.3.3 Bayesian Information Criterion - BIC

The Bayesian Information Criterion - BIC estimates a suitable amount of param-
eters for θ̂. A candidate model Mk using BIC can be calculated as,

Mk = −2 ln L(θ̂k |x) + k ln(n), (4.35)

with L as the maximum likelihood of the parameter values θ̂ at order k given the
observed data x and n is the number of data points [24]. Further reading of BIC
is directed to [24].
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Results

This chapter will present the findings obtained from the methods investigated as
described in chapter 4. The chapter is structured into three parts, with the first
presenting the results of the BSS techniques and the second part portraying the
results of the adaptive filters applied to simulated data. Finally, the third part
presents the results of the adaptive filters applied to real-world data.

5.1 Blind Source Separation - BSS

To briefly summarize the results of ICA, the results did not prove themselves sat-
isfactory. For the simulated data depicted in figure 5.1, ICA in combination with
PCA and Cross-Correlation have not proven better than only using the recorded
signal by the hydrophones as described in section 5.1.2. Therefore, these meth-
ods will not be tested for real-world data due to unsatisfactory results.

When propagation time was disregarded in the simulation environment, the re-
sults for ICA improved drastically; see figure 5.4a. Hence, the time delays be-
tween signals have been concluded to be the reason for the above unsatisfying
results.

The method based on DUET was then investigated as a solution to the problems
given by time delays due to its ability to utilize time delay as a source of informa-
tion. However, the results were unsatisfactory; therefore, DUET was only applied
to simulated data.

The method based on CICA was developed as a potential solution to address
the challenges arising from time delays. This approach utilizes the frequency
domain to convert the convolutive mixture into an instantaneous one (a linear

33
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combination), as explained in Section 4.2.4. However, the obtained results were
inconclusive, and this method was solely applied to simulated data.

5.1.1 Simulated Data

Figure 5.1 depicts the signals received by the three hydrophones. This data will
be used for all BSS methods except when ICA was analyzed without time delays.
The pulse marked with a 1 at the rear hydrophone is emitted by the fictitious
ship called PE. Pulse 2 is the active response PA, and box 3 shows when PE and
PA mix. For port, 4 highlights PE, 5 shows PA and 6 when PE and PA mix, with
the same for starboard. Due to propagation time, PE is received later for port and
starboard than the rear. The amplitude of PE and PA are somewhat the opposite
of port and starboard compared to rear. This is because the emitter of PA is po-
sitioned closer to port and starboard. Figure 5.2 shows the ground truth of the
pulses PE and PA. The goal of the ICA algorithm is to separate PA and PE from
one another and resemble the two of them with ground truth as much as possible.
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Figure 5.1: Received signals by hydrophones. With time delay.

5.1.2 Evaluation

This section only repeats how the evaluation will be done for the BSS methods be-
low; this is further explained in section 3.4. Due to the layout of the AUV, the re-
ceived signals for the side hydrophones will have the characteristics of P A≫ P E
and for the rear P A≪ P E. An essential requirement for separated signals is that
they should resemble better to ground truth than what the recording of the hy-
drophones does. Namely, the separated component depicting PA needs to resem-
ble more to ground truth of PA than what the recording of the side hydrophones
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Figure 5.2: Ground Truth of PE and PA in figure 5.1. The two signals share
the same Power Spectrum when normalized.

does. The same applies for PE, but then to the rear hydrophone. This can be seen
in figure 5.1, as box 1 showing PE do have a significantly larger amplitude than
PA shown by box 2 for the rear hydrophone. The opposite can be observed for
the side hydrophones. As box 4 highlights PE, which is much lower in amplitude
than PA shown in box 5. To determine if a separation is better than using only
the recordings of the hydrophones, RMSE is used, and the results are outlined in
appendix A.

5.1.3 Independent Component Analysis - Maximization of
nongaussianity - ICA

This section covers the result given by ICA. ICA is first applied to the data in
figure 5.1 when time delays are present. Then to further distinguish the reason
for these results, ICA is applied to data without time delays seen in figure 5.4.

ICA applied to simulated data with time delays

Time delays due to propagation time between the hydrophones have proven more
challenging than anticipated; this is further reviewed in section 6.1.1. To over-
come this problem, Cross-Correlation was used to shift PE in phase between the
hydrophones. Then PCA was used to extract the correlation between the shifted
data yielding a new feature space presumed similar to when no time delays were
present. ICA was then performed yielding the components shown in figure 5.3.
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Figure 5.3: Resulting components and their power spectrum by the data in
figure 5.1 when Cross-correlation, PCA, and ICA are performed.

The resulting RMSE of the components shown in figure 5.3 are outlined in ta-
ble A.2. The goal is to archive a better RMSE than table A.1. However, neither
component in 5.3 showed a lower RMSE than what the recorded data by the rear
hydrophone did compared to ground truth in figure 5.2. Therefore, this method
can be disregarded because it is more advantageous to use the recording by the
rear hydrophone solely.

ICA applied to simulated data without time delays

When no propagation time is present, namely when there are no time delays be-
tween the received signals, the results improve drastically. A scenario like this
is not realistic; however, attempts were made to emulate it using Cross Correla-
tion; as seen in the preceding section, these attempts were unsuccessful. Figure
5.4a depicts the received signals with excessive noise when no time delays due
to propagation time are present. The noise is presumed to be somewhat exag-
gerated compared to what is to be expected in reality. Figure 5.4b depicts the
ground truth of these signals. The reason for PA consisting of noise is because
the response emitted from the AUV also consists of a response to noise.
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(a) Received signals by hy-
drophones. With excessive
noise but no time delay.
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(b) Ground truth of PE and
PA in figure 5.4a. PE and PA
share the same Power Spec-
trum when normalized.

Figure 5.4: Simulated signals without propagation time.
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Figure 5.5: Resulting components of PCA and ICA by the data in figure 5.4a.

The resulting components of the data shown in figure 5.4a are displayed in figure
5.5. The RMSE, listed in table A.2, shows a much better estimation of both PE



38 5 Results

and PA generated from the separation than solely using the recorded data by the
hydrophones. Thus, when no time delays are present, the separation is rather
successful, further discussed in section 6.1.1.

5.1.4 Degenerative Unmixing Estimation Technique - DUET

Compared to ICA in section 5.1.3, the DUET method does not calculate a demix-
ing matrix; instead, it separates components by using masks. The first step is to
create a histogram based on the components’ relative delay and attenuation. The
data displayed in figure 5.1 earlier is used to evaluate this method; however, due
to the structure of DUET, only the rear and starboard hydrophones are used; see
section 4.2.5 for the theory.

Figure 5.6a displays the histogram of the relative delay and attenuation con-
structed by the data mentioned above. When constructing a histogram like this,
the histogram peak centers are desirably positioned clearly, and optimally the
peaks are located at the searched sources, see equation (4.24). However, this is
not true for 5.6a. Then Cross-Correlation is used to get PE in phase between
the channels so the relative delay, see equation (4.21), of this source, is close to
zero. The data is also normalized to counter the influence of PA received with an
increased amplitude of 20dB. This results in the histogram in figure 5.6b.

(a) Histogram of the data received by the
hydrophones at the rear and starboard
shown in figure 5.1.

(b) Histogram of the Cross-Correlated
and normalized data received by the
hydrophones at the rear and starboard
shown in figure 5.1.

Figure 5.6: Histogram of the Relative delay and Symmetric attenuation.

The choosing of the peaks portraying the estimated sources ŝ in equation (4.24) is
a pretty arbitrary task. However, the three most apparent peaks are pointed out
in figure 5.6b. The peak furthest to the left will be referred to as component one,
the peak in the middle will be referred to as component two, and so forth from
left to right.
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Figure 5.7: Resulting components given by the chosen parameters shown in
figure 5.6.

The resulting components are displayed in figure 5.7. The components’ resulting
RMSE compared to ground truth is larger than ground truth compared to the
signals received by the hydrophones; see table A.3. Hence, the separation gives
inferior results estimating PE and PA compared to solely using the recorded sig-
nals.

5.1.5 Complex Independent Component Analysis - CICA

The Complex Independent Component Analysis CICA explained in section 4.2.4
will here be performed on the data shown in figure 5.1. The idea is to use an STFT
to overcome the problem of time delays. This is because a convolutive mixture
in the time domain transforms into an instantaneous in the frequency domain,
namely, a linear combination. Figure 5.8 displays the three components of an
CICA used with a complex-valued PCA.
Table A.4 shows the results of the RMSE of the components in figure 5.8 to
ground truth of PE and PA. Neither shows a better result than only using the
hydrophone recorded signals to estimate PE or PA. Thus, using solely the record-
ings of the hydrophones is more favorable than using the separated components
to estimate PE or PA.
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Figure 5.8: Resulting components using CICA and PCA with an STFT of the
data displayed in figure 5.1.

5.2 Adaptive Filtering - Simulation

As earlier described, the received data of the rear hydrophone is considered to
consist of P E ≫ P A, and for port and starboard, the opposite P E ≪ P A is to be
assumed. The idea of the adaptive filters is to use the side hydrophones as an
estimation of PA, which is to be attenuated in the rear hydrophone.

Due to the promising results, it is not necessary to analyze these methods with-
out the presence of time delays as done for BSS. Furthermore, the investigated
adaptive filters will be evaluated using real data in the following section.

In this section, the evaluation measurements will not be repeated as in the case
of BSS. For a detailed explanation of the evaluation methods, see section 3.4.1 for
further clarification.

5.2.1 Simulated Data

Figure 5.9 displays the simulated data that will be used for the methods below.
The data is almost identical to the one for BSS shown in figure 5.1. However, the
position of the fictitious ship is not exactly the same, yielding a slight difference
when the pulses reach the hydrophones. Therefore, the RMSE values concerning
the ground truth cannot be directly compared to the adaptive filters with previ-
ous BSS methods.

In figure 5.9, the pulse marked with a 1 at the rear hydrophone is the pulse
emitted by the fictitious ship called PE. Pulse 2 is the active response PA, and
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box 3 shows when PE and PA mix. For port, 4 highlights PE and 5 PA, with
the same for starboard. Due to propagation time, PE is received later for port
and starboard than the rear. The amplitude of PE and PA are somewhat the
opposite of port and starboard compared to rear. This is because the emitter of
PA is positioned closer to port and starboard. The goal is to decrease as much
as possible of PA in the data received by the rear hydrophone; hence, the box
denoted 2.
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Figure 5.9: Received signals by hydrophones. With time delay.

5.2.2 Adaptive Filter based on Kalman

An adaptive filter based on the Kalman filter is used in this section. The theory
is explained in section 4.3 with a visual chart of the setup displayed in figure 4.4.
Figure 5.9 illustrates the data being investigated below.

0 5 10 15 20 25 30 35

Number of Components

0.0216

0.0218

0.022

0.0222

0.0224

0.0226

0.0228

B
IC

E
rr

or
Lo

ss

BIC

Figure 5.10: BIC curve of the adaptive Kalman filter for the data in 5.9
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Figure 5.10 displays the BIC curve for the Kalman filter with the data in figure
5.9. A slightly lower error score is shown at seven components. Therefore, seven
components are chosen for θ̂.

Figure 5.11 depicts the data registered by the rear hydrophone on the first row,
as shown in figure 5.9. The second row shows the Kalman-filtered signal. The
filtered signal is when the data received by the starboard is used as a noise gen-
erator of what is to be filtered out in the rear. The goal is the reduce PA, the box
named 2. Box 5 shows a significant decrease in amplitude, implying a reduced
presence of PA. PE seem to be preserved by looking at box 1 and 4. However, box
6, which contains a mixture of PA and PE, might be excessively damped when
comparing it to box 3 and 1.

The values of R(t) and Q(t), which the user chooses, can be considered to be a
ratio between each other; therefore, R(t) was selected to be one. At the same
time, Q(t) has been tried for several values. A higher value of the parameter
Q(t) leads to increased damping of the PA signal in box 5 while also causing a
more attenuated signal when PA and PE are mixed in container 6. Conversely,
lower values of Q(t) produce opposite outcomes, resulting in less damping. After
evaluating the results and considering the tradeoff, it has been determined that
the most favorable compromise is achieved with a Q(t) value of 0.01.
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Figure 5.11: The recorded data of the rear hydrophone in figure 5.9 and the
filtered signal with Kalman

Table A.6 shows the RMSE of the filtered signal in figure 5.11 to ground truth
while table A.5 shows the RMSE for received signal by the rear hydrophone com-
pared to ground truth. The filtered signal shows a lower RMSE than only using
the unfiltered version of the rear hydrophone, implying successful filtering has
occurred.
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(a) Spectrogram of received signal by
the rear hydrophone in figure 5.11.
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(b) Spectrogram of filtered signal in figure
5.11.

Figure 5.12: Spectrograms of the signals in figure 5.11.

Figure 5.12 displays the spectrogram of the signals in figure 5.11. 5.12a depicts
the data for the rear hydrophone with box 1 displaying PE and 2 showing PA.
Optimally the filtered signal should preserve 1 but attenuate 2. Figure 5.12b
displays the filtered signal with box 1 as PE and box 2 as the remaining PA. PE
has lost around three dB in the end where PE and PA has been mixed; however,
PA has decreased by 25 dB.

5.2.3 Adaptive Filtering based on Leaky Least Mean Square -
LLMS

The BIC curve shown in figure 5.10 for Kalman is almost identical to the one for
LLMS. Therefore, this graph is not presented, and the same number of parame-
ters in θ̂ are chosen, namely seven.

Figure 5.13 depicts the data registered by the rear hydrophone on the first row, as
shown in figure 5.9. The second row shows the LLMS filtered signal. The filtered
signal is when the data received by the starboard is used as a noise generator of
what is to be filtered out in the rear. The goal is the reduce PA, the box named 2.
Box 5 shows a significant decrease in the amplitude, implying a reduced presence
of PA. PE seem to be preserved by looking at box 1 and 4. However, compared to
the Kalman filtering in figure 5.11, the mixture of PE and PA is not as damped
by looking at box 6 compared to 3 and 1, which may be favorable.
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Figure 5.13: The recorded data of the rear hydrophone in figure 5.9 and the
filtered signal with LLMS.

The leaky parameter γ in equation (4.30) was examined and set to be 0.0001. A
higher value of γ yielded inferior results overall. Conversely, the step-size param-
eter µ proved to be more noteworthy. Increasing µ resulted in a more aggressive
filtration approach, while lower values had the opposite effect. Similar to Q(t) in
the Kalman filter, µ can be regarded as a parameter influencing the responsive-
ness of the filtration process to new values and determining its aggressiveness
[10]. However, a larger value of µ did not have any major impact on the energy
when PE and PA were mixed, as observed in box 6. Compared to Q(t), which
decreased the energy of the mixing to a larger extent when set to a high value.
The value of µ was set to 0.1.

Table A.7 shows the RMSE of the filtered signal in figure 5.13 to ground truth
while table A.5 shows the RMSE for received signal by the rear hydrophone com-
pared to ground truth. The filtered signal shows a lower RMSE than only using
the unfiltered version of the rear hydrophone, implying successful filtering has
occurred. Moreover, the RMSE is lower for the LLMS filtering than the earlier
Kalman.

Figure 5.14 displays the spectrogram of the two signals in figure 5.13. 5.14a
depicts the data for the rear hydrophone with box 1 displaying PE and 2 showing
PA. Optimally the filtered signal should preserve 1 but attenuate 2. Figure 5.14b
displays the filtered signal with box 1 as PE and box 2 as the remaining PA. PE
has lost around one dB in the end where PE and PA have been mixed; however,
PA has decreased by 35 dB. These numbers can be argued to be better than what
Kalman provided earlier.
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(a) Spectrogram of received signal by
the rear hydrophone in figure 5.13.
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(b) Spectrogram of filtered signal in figure
5.13.

Figure 5.14: Spectrograms of the signals in figure 5.13.

5.3 Adaptive Filtering - Acoustic Measurement Data

The adaptive filters applied to actual data have demonstrated favorable results,
shown in this section.

5.3.1 Real Data

Figure 5.15 depicts a real recording done by the AUV with both PE and PA
present. Box 1 and 3 highlight the active response PA, as seen in the figure,
the signal repeats at regular intervals for all three hydrophones. Box 2 and 4
highlight the received signal PE, which also repeats itself but not with the same
interval as for PA. The goal is to eliminate or at least reduce PA at the same time
as PE is preserved.
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Figure 5.15: Real data recorded by the hydrophones of the AUV
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Noteworthy, PA for this measured data is not an active response to PE. Instead,
PA is a pulse emitted by the AUV detached from what is received. In this mea-
surement, PA and PE represent two distinct types of signals. Meanwhile, PA is
still emitted by the AUV, and PE is received pulse from another sonar.

Figure 5.16 displays the spectrograms for starboard and rear hydrophones seen
in figure 5.15. The decision to use the starboard side for the adaptive filter was
based on the observation that the amplitude of the PA is slightly more signifi-
cant than the port side. However, since all signals have been normalized, port
side has yielded nearly indistinguishable outcomes. Figure 5.16a displays the
spectrogram for the rear hydrophone with the boxes marked 1 highlighting PE,
while 2 encircles PA. The same signals are identified consistently for starboard
in figure 5.16b. It can be seen that starboard hydrophone is subjected to higher
noise levels, both from the water at lower frequencies and periodically occurring
noise presumed to be of mechanical origin. Reflections of sound underwater can
explain the tail following all pulses; see figure 4.1 and 4.2.
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(a) Spectrogram of received signal by
the rear hydrophone in figure 5.15.
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(b) Spectrogram of received signal by the
starboard hydrophone in figure 5.15.

Figure 5.16: Spectrograms showing rear and starboard hydrophones in fig-
ure 5.15. Notable, PA is not an active response to PE.

5.3.2 Kalman

This section will cover the results of the adaptive Kalman filter described in sec-
tion 4.3 applied to the real-world data. The number of components for θ̂ is de-
cided to be 15. This is due to the low error score shown in figure 5.17. It is hard
to distinguish, but the error score is somewhat lower for 15 than 7.
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Figure 5.17: BIC curve of the adaptive Kalman filter for the data in figure
5.15

Figure 5.18 displays the data received by the rear hydrophone in figure 5.15 and
the final filtered version. Box 1 and 3 show PA, which we want to reduce as much
as possible. It can be observed that the filtered signal exhibits a decreased ampli-
tude of PA compared to the recording done by the rear hydrophone. Meanwhile,
boxes 2 and 4 highlight the preservation of PE, which is our desired outcome,
and this may indeed be the case.
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Figure 5.18: The recorded data of the rear hydrophone in figure 5.15 and the
filtered signal with Kalman

The spectrograms of the signals portrayed in figure 5.18 are displayed in figure
5.19. The boxes denoted 1 highlights PE while 2 shows PA. The power scale on
these spectrograms differs from previous ones because the frequencies require
higher energy levels to become visible. Figure 5.19a presents the spectrogram
of the signal received by the rear hydrophone, as depicted in figure 5.16a. Upon
comparison with figure 5.19b, illustrating the spectrogram of the filtered counter-
part, it appears as the energy of PA in box 2 has notably decreased. Additionally,
it seems that PE in box 1 has not changed significantly. Figure 5.20 presents a
magnified view of the two distinct signals depicted in figure 5.18, individually
examined in the two paragraphs below.
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(a) Spectrogram of received signal by
the rear hydrophone in figure 5.18.
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(b) Spectrogram of filtered signal in
figure 5.18.

Figure 5.19: Spectrograms of the signals in figure 5.18.

Figure 5.20a depicts the spectrogram of a single PA pulse received at the rear, the
estimation of PA to be removed and the resultant filtered version. The energy of
the PA pulse has reduced by approximately 35 dB across all frequencies at the
onset of the signal. However, some residual energy persists toward the end of
the pulse. This phenomenon can potentially be attributed to reflections, as illus-
trated in figure 4.1, and will be further investigated in Section 6.2.2. In general,
there has been a significant dissipation in PA, which is a desirable behavior.
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(a) Spectrogram of an active response to
be filtered out. Box 2 in figure 5.19
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(b) Spectrogram of an received pulse not be
filtered out. Box 1 in figure 5.19

Figure 5.20: Spectrograms of the active response PA and received signal PE.

Meanwhile, PE is to be preserved as much as possible. Figure 5.20b depicts the
spectrogram of a single PE pulse received at the rear, along with the estimation
of PA to be eliminated and the resulting filtered version. The estimation of PA
does not exhibit any noticeable energy to be removed in the presence of PE. The
filtered version further supports this observation, as it retains the same energy
level of PE as the recorded signal from the rear hydrophone. Such behavior is
considered highly desirable.
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5.3.3 Leaky Least Mean Square - LLMS

This section will present the findings of the implemented adaptive LLMS filter,
as outlined in section 4.3 when applied to real-world data. The BIC graph for
the Kalman filter shown in figure 5.17 is almost identical to the one for LLMS ;
therefore, the number of components in θ̂ are also decided to be 15.

Figure 5.21 presents the obtained data from the rear hydrophone, as depicted
in Figure 5.15, along with the filtered version. Boxes 1 and 3 correspond to PA,
which we aim to minimize. It is shown that the filtered signal exhibits a reduced
amplitude of PA in comparison to the recorded signal obtained from the rear
hydrophone. However, maybe not as much as the Kalman filter succeeded. Boxes
2 and 4 highlight PE, which is intended to be preserved, which seems to be the
case.
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Figure 5.21: The recorded data of the rear hydrophone in figure 5.15 and the
filtered signal with LLMS
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(a) Spectrogram of received signal by
the rear hydrophone in figure 5.21.
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(b) Spectrogram of filtered signal in figure
5.21.

Figure 5.22: Spectrograms of the signals in figure 5.21.
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Figure 5.22 illustrates the spectrograms of the signals depicted in Figure 5.21.
Box 1 highlights PE, while box 2 shows PA. Moreover, figure 5.22a displays the
spectrogram of the signal received by the rear hydrophone, similar to figure 5.16a,
but with a different amplitude scale. Upon comparison with figure 5.22b, which
showcases the spectrogram of the filtered version, PA in box 2 appears to contain
less energy. While PE in box 1 looks preserved. These two signals are individu-
ally examined in the following two paragraphs.

Figure 5.23a illustrates the spectrogram of a single pulse of PA captured at the
rear. It also includes the estimated version of PA to be excluded and the resulting
filtered version. The beginning half of PA is reduced by around 30 dB across all
frequencies; however, the second part remains largely unaltered. One reason for
this can be due to reflections of sound underwater portrayed in 4.1; this is further
evaluated in section 6.2.2. Nonetheless, this can be seen as a poorer result than
the earlier Kalman-filtered signal.

Furthermore, PE is to be preserved. Figure 5.23b presents the spectrogram of
a single pulse of PE captured by the rear hydrophone, including the estimation
of PA to be eliminated and the resulting filtered version. The estimation of PA
does not display any energy to be removed where PE is present. The filtered
signal supports this observation, as the energy is sustained when compared to
the recorded signal by the rear hydrophone, which is a desirable behavior.
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(a) Spectrogram of an active response to
be filtered out.
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(b) Spectrogram of an received pulse not be
filtered out

Figure 5.23: Spectrograms of one active response PA and one received signal
PE.



6
Discussion

6.1 Blind Source Separation - BSS

This section will discuss the three reviewed blind source estimation techniques
for this master thesis.

6.1.1 Independent Component Analysis - Maximization of
nongaussianity - ICA

When no time delays are present, the ICA offers a pretty robust and accurate
estimation of PE and PA, see section 5.1.3. The mixing and demixing process can
be explained by,

X(t) = AS(t) + N. (6.1)

Were X denotes a vector of measured signals, A is an unknown mixing matrix, S
is a vector of the unknown source signals and N is noise. For a simplification of
the problem, equation (6.1) can be described without noise, as below,X1(t)

X2(t)
X3(t)

 =

a1,1 a1,2 a1,3
a2,1 a2,2 a2,3
a3,1 a3,2 a3,3

 ·

s1(t)
s2(t)
s3(t)

 . (6.2)

The regular ICA then gives an estimation of the sources by calculating the esti-
mation of â as, â1,1 â1,2 â1,3

â2,1 â2,2 â2,3
â3,1 â3,2 â3,3


−1

·

X1
X2
X3

 =

ŝ1(t)
ŝ2(t)
ŝ3(t)

 . (6.3)
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The above equation, when no time delays are present, is usually referred to as an
instantaneous mixture. However, when time delays are present, equation (6.2) is
transformed to, X1

X2
X3

 =

a1,1 a1,2 a1,3
0 0 0
0 0 0

 ·

s1(t − τ1)
s2(t − τ2)
s3(t − τ3)

 + ...

... +

 0 0 0
a2,1 a2,2 a2,3
0 0 0

 ·

s1(t − τ4)
s2(t − τ5)
s3(t − τ6)

 +

 0 0 0
0 0 0
a3,1 a3,2 a3,3

 ·

s1(t − τ7)
s2(t − τ8)
s3(t − τ9)

 . (6.4)

Were τ represents the time delays for when the channels receive the different
signals. Mixtures depending on τ are usually referred to as a convolutive mix-
ture. Equation (6.4) is a time-varying mixing matrix (convolutive) and can not
be rewritten as equation (6.2) (instantaneous). Trying to demix equation (6.4) as
done in (6.3) has proven itself treacherous. The results have been unusable when
time delays are present, even though the delay can be a maximum of 0.05 seconds.
This can be explained by the characteristics of Chirp signals compared to speech
for which ICA is commonly used. In section 4.2.7, three essential properties of
speech are outlined, these are:

- Each speech signal typically has a unique temporal structure over short
time frames.

- Speech signals are quasi-stationary for small time durations (≈ 10 ms), but
non-stationary over longer periods.

- Speech typically has a fundamental frequency between 85 to 255 Hz.

Neither of these characteristics can be applied for the used Chirp signal. Due to
their fundamental characteristics, the Chirp signals can not be considered quasi-
stationary for small time durations. The frequencies of the used Chirp signal
is much greater than anticipated for speech and do not have a unique temporal
structure over short time frames. This results in a mixture sensitive to time de-
lays.

One solution to the problem portrayed in equation (6.4) is to use Cross-Correlation
to make one source be in phase by all three hydrophones. Hence, creating an in-
stantaneous mixture of a convolutive one. The idea is to make equation (6.4)
more similar to (6.1) by using Cross-Correlation and PCA. The new feature space
given by PCA would then result in a mixture more or less as equation (6.1); evi-
dently, due to the results, this was not the case. This is because the convolutive
mixture has still not transformed into an instantaneous one, with the unsatisfy-
ing results reflecting this.

There are a couple of requirements when using an ICA, with the most critical
being: The sources are independent of one another, not only uncorrelated. One
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could argue that PE and PA do not fulfill this requirement because PA is based on
PE. Then other techniques, usually referred to as Dependent Components Analy-
sis - DCA could be used. However, this was disregarded early in the development
due to the positive results of ICA when no time delays were present. The good re-
sult showed that PA being based on PE did not impose a problem regarding this
restriction. Furthermore, when using the frequency domain, problems of PE and
PA containing the same frequency spectrum imposed issues, which are further
reviewed below.

6.1.2 Degenerative Unmixing Estimation Technique - DUET

The idea of using the DUET method was to utilize the information given by the
time delays because an essential part of this method is to construct a histogram
based on sources’ relative delay and attenuation. However, the results given by
this method were not deemed satisfactory.

DUET is intended for speech. One important characteristic of speech is that peo-
ple tend to speak with a slight variation of frequency between each other, or at
least people do not speak with an exactly overlapping frequency. In our case, PE
and PA consist of the exact same frequency. For several STFT windows, PE and
PA will appear as the same signal. One requirement that has to be fulfilled for
equation (4.16) to be true is that only one source can be active at every (τ, ω);
however, this will not be true due to the overlapping frequency. One may think
the STFT windows can be constructed to ensure this does not happen. This has
been tried, but due to the proximity of PE and PA, this problem has been deemed
impossible.

When researching this method, DUET has successfully separated mixtures of
speech, music, and such, as long as the sources are somewhat separated in ei-
ther frequency or enough in time. But, for a mixture of two identical sources
adjacent to one another, the separation deteriorates.

6.1.3 Complex Independent Component Analysis - CICA

There are two essential benefits of using the frequency domain when separating
sources. First, a convolutive mixture in the time domain (time delays) transforms
into an instantaneous one in the frequency domain (linear combination). The
second one is that echoes of sound waves are not seen as individual components;
instead, they only provide a contribution in amplitude for the main signal in the
frequency domain.

However, the results of the CICA, see section 5.1.5, are deemed inadequate. The
reason for this can be traced back to the two properties listed above. The problem
that the mixture is convolutive in the time domain is solved by using the CICA.
Meanwhile, a new complication arises; hence, when using CICA, echoes of the
signals are perceived as only a contribution in amplitude. PE and PA, we intend
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to separate exhibits essentially identical frequency spectra, thereby appearing as
indistinguishable signals in the frequency domain. PE and PA are closely situ-
ated in the time domain, so either one could potentially appear as an echo of the
other. As for DUET, one could argue that the size of the STFT windows could be
adjusted to solve this. However, this has been investigated, and PE and PA are
too adjacent to one another to get this to work properly. Therefore, CICA is not
considered a potential algorithm for the task investigated.

During the investigation of this method, it proved helpful in convolutive mix-
tures for speech and music.

6.2 Adaptive Filtering

The resulting estimation of PE given by the two adaptive filters proved superior
to only using the recorded signal by the rear hydrophone for the simulated data.
The filtered signal preserved the majority PE at the same time as PA was greatly
attenuated. Which was the intended behavior.

Due to the satisfying results for the simulated data, the adaptive filters were eval-
uated using real-world data. The result was still deemed advantageous. However,
some uncertainties arose due to a remaining portion of PA, further elaborated in
section 6.2.2. In general, the adaptive filters proved to be useful.

6.2.1 Simulation

Both filters yielded desirable results for the simulated data. For the selected pa-
rameters, the LLMS algorithm successfully attenuated PA to a similar extent as
the Kalman filter while simultaneously preserving a greater portion of PE, which
is considered to be a good result. For the simulated data, LLMS is to be consid-
ered somewhat more advantageous than Kalman.

For the LLMS, the number of components in θ̂, the step-size µ and the leaky-
coefficient γ are chosen by the user. The results remain relatively stable when
altering the number of components for θ̂, as long as a reasonable quantity is se-
lected. However, the computational time increases significantly once the number
exceeds around 30. The selection of the leaky coefficient γ can be somewhat
treacherous, as choosing a value that is not sufficiently small can lead to a highly
distorted filtered version. Conversely, when γ is appropriately small, its impact
on the filtering outcome is somewhat minimal. Moreover, µ is of greater signifi-
cance when calibrating the filter. µ can be perceived as a parameter that controls
the degree of aggressiveness exhibited by the filtering process. For the presented
results, an increase in µ would lead to further attenuation of PA. However, this
would come at the expense of excessively reducing the mixture of PE and PA, re-
sulting in an undesirable reduction of PE. Furthermore, there exists a limitation
on the maximum value that can be chosen for µ, as selecting an excessively large
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value renders worthless results.

Regarding the adaptive filter based on Kalman, the parameters chosen by the
user is the number of components in θ̂ and the value of Q. The same concept as
for LLMS is true for Kalman regarding choosing the components for θ̂. Q can
be interpreted as a parameter determining the level of confidence attributed to
the observations and subsequently influencing the aggressiveness of the filtration
process, similar to µ for LLMS. The results for the Kalman filters differ from the
LLMS. The resulting filtration of the Kalman filter does attenuate the part when
PE and PA are mixed somewhat excessively. This can be solved by lowering
Q; however, at the cost of an increased presence of PA, which is undesirable.
There is a trade-off for the Kalman filtration of how valuable it is to attenuate PA
compared to the preservation of PE.

6.2.2 Acoustic Measurement Data

There is one major difference between the real data investigated compared to the
simulated one. For the real-world data, PA is not directly a response to PE. In-
stead, PA is only a pulse emitted by the AUV regardless of the received pulse PE.
This simplifies the process of attenuating PA while preserving PE. Furthermore,
the adaptive filter based on Kalman showed better results than what LLMS did,
which is the opposite of the simulation.

Due to the fact it is real-world data and ground truth is unknown, one important
phenomenon needs to be considered. Sound waves under water reflect at the sea
surface and seafloor, depicted in figure 4.1 and 4.2. These reflective waves dis-
sipate energy, but if they are combined with non-reflective waves emitted later,
they can amplify each other. In figure 5.22, the location exhibiting the highest
energy within the recorded signal is situated at the midpoint of the pulse, ap-
proximately at 2.05 seconds. This occurrence can be attributed to a combination
of reflective and non-reflective waves.

The adaptive filters use the side hydrophones as an estimation of PA to be attenu-
ated in the rear. This is because the received signals at the side hydrophones are
presumed to have the characteristics of P A≫ P E; however, this assumption will
not be valid for all reflective waves of PA. Therefore, achieving a filtered signal
without the presence of reflected sound waves is more arduous. This can explain
why the filtered signal given by the LLMS seems to contain the later part of the
PA pulse.

Meanwhile, the Kalman filtered signal appears to have attenuated the later part
of the PA pulse more than what the LLMS filtration succeeded with; hence, the
segment presumed to contain reflective and non-reflective sound waves. One pos-
sible explanation for this can be attributed to the parameter Q, which governs the
aggressiveness of the filtration process. In the case of real data, a relatively high
value is assigned to the parameter Q, thereby facilitating a more aggressive solu-
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tion that effectively filters out the presumed reflective waves. The µ parameter
of the LLMS acts similarly to Q, but when this number is increased further than
what has been done, the results become unrecognizable. The exact reason for
this is not fully comprehended, but selecting a larger value of µ than the used
one leads to deteriorated results.

For this real-world data, when PE and PA does not directly mix, due to the fact
that PA is unrelated to PE, an aggressive solution is more advantageous. Then, an
adaptive filter based on Kalman has shown more favorable due to the possibility
of easily increasing the parameter Q. Meanwhile, the results somewhat deterio-
rated when µ was increased for the LLMS to create further aggressive filtration.
If PA would instead be a response of PE as the simulated data, then a less ag-
gressive solution might not be as suitable due to the importance of preserving
PE. Resulting in the LLMS algorithm being more advantageous, as shown for the
simulated data.

However, it should be noted that the side hydrophones are subject to a significant
level of ambient noise, particularly at five kHz and below. While a high pass
filter can effectively address this issue for higher frequency signals, additional
considerations are necessary for signals of lower frequencies. The active response
must contain more energy than the ambient noise for the signals around that
frequency to be distinguishable. If the active response is at five kHz or below and
exhibits less energy than the ambient noise, the side hydrophones may not work
properly as a generator of what is to be filtered in the rear hydrophone.



7
Conclusion

This chapter presents the conclusions derived from the research questions inves-
tigated in this master’s thesis, based on the conducted work.

• RQ1 - Can blind source separation effectively separate the active response
while preserving the receiving signal, and what types of constraints may
arise during the separation process?

The revised Blind Source Separation techniques can not separate the active re-
sponse while preserving the receiving signal. This is due to the time delay be-
tween the two signals received by the three hydrophones. The only feasible ap-
proach, regarding the requirements of the AUV, is to address this issue using the
frequency domain; nevertheless, it leads to the signals being perceived as a single
entity due to their identical frequency spectra.

• RQ2 - To what extent is it feasible to implement the reviewed blind source
separation in the AUV for generating active responses?

Considering the unsatisfactory outcomes observed with the simulated data, it is
not feasible to implement either of these techniques in the AUV.

• RQ3 - Can adaptive filtering effectively attenuate the active response while
preserving the receiving signal? Additionally, what constraints and chal-
lenges may arise?

The two adaptive filters investigated can attenuate the active response while pre-
serving the receiving signal. The LLMS and Kalman filters exhibit individual
advantages and disadvantages regarding attenuation, preservation, and aggres-
siveness. However, neither filter demonstrates a clear superiority over the other.
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One significant constraint that requires consideration is that the active response
is assumed to be prominent at the side hydrophones. However, as pointed out in
the discussion, this assumption may not be the case if the active response consists
of low-frequency components and lacks a sufficient energy level.

• RQ4 - To what extent is it feasible to implement the reviewed adaptive
filters in the AUV for generating active responses?

Considering the promising results, they can be feasible to implement in the AUV.
However, the active response needs to be prominent enough at the side hydrophone
to give adequate results.

• RQ5 - What areas of interest could be investigated for future work and
why?

A reasonably accurate estimation of the active response is crucial for the suc-
cessful functioning of adaptive filters. One optimal solution would be to de-
sign the hardware within the AUV so that the emitted active response would
be considered known. Alternatively, enhancing the data obtained from the side
hydrophones could serve as a simpler approach to estimating the active response.
As the side hydrophones are positioned less than half a meter apart, resulting
in minimal time delays, employing Blind Source Separation in the time domain
with Cross-Correlation might be feasible for extracting the active response from
the side hydrophones. During early investigations of Blind Source Separation,
this was presumed to be the case; however, it has not been extensively researched.
This could be a potential solution to create an estimation of the active response
to be filtered out in the rear.

Currently, Cross-Correlation is utilized to determine the delay between the reg-
istration of the active response at the side hydrophones and the rear. However,
this delay will change when the AUV turns. Cross-Correlation could then be
used to estimate this delay continuously. Alternatively, a combination of Cross-
Correlation and a matching filter presents another viable solution to detect alter-
ations in the time delay promptly.

For the researched adaptive filter, µ in LLMS and Q for Kalman are predeter-
mined. An alternative approach worth exploring involves determining these pa-
rameters based on the received data to adjust the filtering aggressiveness accord-
ingly. Preliminary attempts were made during the early stages of investigating
adaptive filters; however, the results obtained were not satisfactory. Furthermore,
this could be further investigated to archive better filtration.
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A
Results for Root Mean Square Error

A.1 Blind Source Separation

A.1.1 RMSE of the signals received by the hydrophones

Table A.1: RMSE of the data received data by the hydrophones in figure 5.1
with ground truth shown in figure 5.2.

Signals {Time domain} {Linear} RMSE

Ground truth shown in figure 5.2 with the data received by
the hydrophones in figure 5.1

Ground truth of PE & Received signal Hydrophone Rear 0.131

Ground truth of PA & Received signal Hydrophone Starboard 0.116

Ground truth of PA & Received signal Hydrophone Port 0.081
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A.1.2 RMSE Independent Component Analysis

Table A.2: RMSE of the components given by ICA in section 5.1.3 with
ground truth.

Signals {Time domain} {Linear} RMSE

Ground truth shown in figure 5.2 with the components in figure 5.3:

Ground truth of PE & Component One 0.811

Ground truth of PE & Component Two 1.415

Ground truth of PE & Component Three 0.736

Ground truth of PA & Component One 1.419

Ground truth of PA & Component Two 0.014

Ground truth of PA & Component Three 1.417
Ground truth shown in figure 5.4b with the components in figure 5.5:

Ground truth of PE & Component Two 0.001

Ground truth of PA & Component One 0.002

A.1.3 RMSE Degenerative Unmixing Estimation Technique

Table A.3: RMSE of the components given by DUET in section 5.1.4 with
ground truth.

Signals {Time domain} {linear} RMSE

Ground truth shown in figure 5.2 with the components in figure 5.7:

Ground truth of PE & Component One 1.415

Ground truth of PE & Component Two 1.349

Ground truth of PE & Component Three 0.245

Ground truth of PA & Component One 0.516

Ground truth of PA & Component Two 1.405

Ground truth of PA & Component Three 1.419
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A.1.4 RMSE Complex Independent Component Analysis

Table A.4: RMSE of the components given by CICA in section 5.1.5 with
ground truth.

Signals {Time domain} {linear} RMSE

Ground truth shown in figure 5.2 with the components in figure 5.8:

Ground truth of PE & Component One 0.911

Ground truth of PE & Component Two 1.097

Ground truth of PE & Component Three 1.071

Ground truth of PA & Component One 1.340

Ground truth of PA & Component Two 1.302

Ground truth of PA & Component Three 1.111

A.2 Adaptive Filters

A.2.1 RMSE of the signals received by the hydrophones

Table A.5: RMSE of the data received data by the rear hydrophone in figure
5.9

Signals {Time domain} {Linear} RMSE

Ground truth and the data received by the rear hydrophone in 5.9:

Ground truth of PE & Hydrophone rear 0.093

A.2.2 RMSE Kalman

Table A.6: RMSE of the signals given by the Kalman filter in section 5.2.2
with ground truth.

Signals {Time domain} {Linear} RMSE

Ground truth with the filtered signal shown in figure 5.11:

Ground truth of PE & Filtered Signal 0.050
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A.2.3 RMSE Leaky Least Mean Square

Table A.7: RMSE of the signals given by the LLMS filter in section 5.2.3 with
ground truth.

Signals {Time domain} {Linear} RMSE

Ground truth with the filtered signal shown in figure 5.13:

Ground truth of PE & Filtered Signal 0.042
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