
Linköpings universitetSE–581 83 Linköping+46 13 28 10 00 , www.liu.se

Linköping University | Department of Electrical Engineering
Master’s thesis, 30 ECTS | Master of Science Thesis in Media Technology

2023 | LIU-ISY/LITH-EX-A--2023/LiTH-ISY-EX–23/5599–SE--SE

Edge Machine Learning forWildlife Conservation
– A part of the Ngulia Project
Maskininlärning i Noden för Bevarandet av Djurlivet på Savan-
nen

Richard Gotthard
Marcus Broström

Supervisor : Magnus MalmströmExaminer : Fredrik Gustafsson

http://www.liu.se

Upphovsrätt

Detta dokument hålls tillgängligt på Internet - eller dess framtida ersättare - under 25 år från publicer-ingsdatum under förutsättning att inga extraordinära omständigheter uppstår.Tillgång till dokumentet innebär tillstånd för var och en att läsa, ladda ner, skriva ut enstaka ko-pior för enskilt bruk och att använda det oförändrat för ickekommersiell forskning och för undervis-ning. Överföring av upphovsrätten vid en senare tidpunkt kan inte upphäva detta tillstånd. All annananvändning av dokumentet kräver upphovsmannens medgivande. För att garantera äktheten, säker-heten och tillgängligheten finns lösningar av teknisk och administrativ art.Upphovsmannens ideella rätt innefattar rätt att bli nämnd som upphovsman i den omfattning somgod sed kräver vid användning av dokumentet på ovan beskrivna sätt samt skydd mot att dokumentetändras eller presenteras i sådan form eller i sådant sammanhang som är kränkande för upphovsman-nens litterära eller konstnärliga anseende eller egenart.För ytterligare information om Linköping University Electronic Press se förlagets hemsida
http://www.ep.liu.se/.

Copyright

The publishers will keep this document online on the Internet - or its possible replacement - for aperiod of 25 years starting from the date of publication barring exceptional circumstances.The online availability of the document implies permanent permission for anyone to read, to down-load, or to print out single copies for his/hers own use and to use it unchanged for non-commercialresearch and educational purpose. Subsequent transfers of copyright cannot revoke this permission.All other uses of the document are conditional upon the consent of the copyright owner. The publisherhas taken technical and administrative measures to assure authenticity, security and accessibility.According to intellectual property law the author has the right to bementionedwhen his/her workis accessed as described above and to be protected against infringement.For additional information about the Linköping University Electronic Press and its proceduresfor publication and for assurance of document integrity, please refer to its www home page:
http://www.ep.liu.se/.

©Richard GotthardMarcus Broström

http://www.ep.liu.se/
http://www.ep.liu.se/

Abstract

The prominence of Edge Machine Learning is increasing swiftly as the performance of micro-
controllers continues to improve. By deploying object detection and classification models on
edge devices with camera sensors, it becomes possible to locate and identify objects in their
vicinity. This technology finds valuable applications in wildlife conservation, particularly in
camera traps used in African sanctuaries, and specifically in the Ngulia sanctuary, to moni-
tor endangered species and provide early warnings for potential intruders. When an animal
crosses the path of a an edge device equipped with a camera sensor, an image is captured,
and the animal’s presence and identity are subsequently determined.

The performance of three distinct object detection models: SSD MobileNetV2, FOMO Mo-
bileNetV2, and YOLOv5 is evaluated. Furthermore, the compatibility of these models with
three different microcontrollers ESP32 TimerCam from M5Stack, Sony Spresence, and LILYGO
T-Camera S3 ESP32-S is explored.

The deployment of Over-The-Air updates to edge devices stationed in remote areas is
presented. It illustrates how an edge device, initially deployed with a model, can collect field
data and be iteratively updated using an active learning pipeline. This project evaluates the
performance of three different microcontrollers in conjunction with their respective camera
sensors.

A contribution of this work is a successful field deployment of a LILYGO T-Camera S3
ESP32-S running the FOMO MobileNetV2 model. The data captured by this setup fuels an
active learning pipeline that can be iteratively retrain the FOMO MobileNetV2 model and
update the LILYGO T-Camera S3 ESP32-S with new firmware through Over-The-Air updates.

iii

Acknowledgements

We would like thank all involved in project Ngulia for making this thesis possible. Thanks to
our Examiner Fredrik Gustafsson and supervisor Magnus Malmström at Linköping Univer-
sity. Your guidance have been vital for the thesis success. We would like to thank Sara Olsson
and Louis Moreau at Edge Impulse for their assistance with integration and providing us
with the Enterprise platform. Their expertise and collaboration greatly facilitated the devel-
opment and implementation of our project. Thanks to Carlos Vidal for helping us with the
hardware implementation and the system architecture. Your technical support were crucial in
overcoming challenges and ensuring the successful implementation of our system. Thanks to
Kolmården for providing us with a testing area. Thanks to the students and teachers of Uni-
versity in Nairobi for taking part in the discussions and questions about our work. Thanks to
Kenya Wildlife Service and the rangers of Ngulia Rhino Sanctuary for their invaluable coop-
eration and assistance in deploying our system. Their commitment to wildlife conservation
and their support in providing access to the sanctuary for our research were essential to the
success of our project.

Norrköping, June 2023
Richard Gotthard & Marcus Broström

iv

Contents

Abstract iii

Contents v

1 Introduction 3
1.1 Background . 3
1.2 Aim . 4
1.3 Research questions . 4
1.4 Limitations . 4

2 Related Work 5
2.1 The Modern Camera Trap . 5
2.2 Advancements in Camera Trap Technology . 6
2.3 Previous Work at LiU . 7

3 Hardware 9
3.1 Internet of Things . 9
3.2 MCUs for Camera Traps . 10
3.3 Hardware Evaluation . 13
3.4 Outcome of MCU Evaluation . 15

4 Software 18
4.1 Machine Learning . 18
4.2 Convolutional Neural Networks . 18
4.3 Object Detection . 19
4.4 Active Learning . 23
4.5 Model Training . 24

5 Implementation 25
5.1 System Overview . 25
5.2 Training Pipeline . 26
5.3 Network Integration . 27
5.4 Active Learning Pipeline . 29
5.5 Implementation on Edge Devices . 31

6 Results 36
6.1 Model Performance . 36
6.2 Active Learning Pipeline Performance . 40

7 Discussion 43
7.1 MCU Evaluation . 43
7.2 Model Performance . 44
7.3 Deployment . 46

v

7.4 Edge Impulse Studio . 46
7.5 The Work in a Wider Context . 46

8 Conclusion 47
8.1 Research Questions . 47
8.2 Future Work . 48

A Product Page 51

Bibliography 52

vi

Nomenclature

AmazonEC2 Amazon Elastic Compute Cloud

API Application Programming Interface

AWS Amazon Web Services

BGS Background Subtraction

CNN Convolutional Neural Networks

FOMO Faster Objects, More Objects

FTP File Transfer Protocol

HDR High Dynamic Range

I2C Inter-Integrated Circuit

ID Identity Document

IoT Internet of Things

IR Infra Red

LTE Long Term Evolution

MB Megabyte

MCU Microcontroller Unit

ML Machine Learning

MP Megapixel

OTA Over The Air

PSRAM Pseudostatic Random Access Memory

ReLU Rectified Linear Unit

RESTAPI Representational State Transfer Application Programming Interface

RT ´ SBS ´ v2 Real-Time Semantic Background Subtraction v2

S3 Simple Storage Service

SDK Software Development Kit

SOM Self-Organizing Maps

SRAM Static Random Access Memory

1

CONTENTS

SSD Single Shot MultiBox Detector

tinyML Tiny Machine Learning

UI User Interface

YOLOv5 You Only Look Once version 5

2

1 Introduction

Several species in Africa are today hunted to the brink of extinction. To prevent this wildlife
sanctuaries are built with patrolling rangers. But the sanctuaries are often very large and the
animals can be dangerous for the rangers. This makes patrolling not efficient to keep track of
the animals living in the sanctuary. To detect animals without patrolling, camera traps can be
used. A camera trap is triggered by a change in its vicinity like movement. To create smart
camera traps Edge Machine Learning (Edge ML) can be used. Using this technology, smart
devices can run real-time human and animal detection algorithms to find interesting objects
and classify them in case of danger. This can alert the rangers working in the area of the
observation [1].

1.1 Background

Ngulia is a nature sanctuary in Tsavo West National Park in Kenya. In Ngulia rangers mon-
itor and protect the 130 black rhinoceros living in the area seen in Fig. 1.1. To help the
rangers with the preservation of the rhinoceros, a cooperation between Kenya Wildlife Ser-
vice, Linköpings universitet and Kolmården zoo, a project called Project Ngulia was started.
The aim of the project is to use modern technology to monitor the rhinoceros and alert if
poachers are observed in the sanctuary. Today camera traps exist in Ngulia that trigger on
motion. Only using motion detection has its consequences, animals move all the time on the
Savannah and it produces unnecessary images that are not of interest. A solution to this could
be an Edge ML device that runs an object detection algorithm that only triggers on animals
and humans.

Project Ngulia is a project where students of Linköping University have been working on
solutions like these for several years (2020, 2021 and 2022). For the next iteration, the aim
is to introduce new technology within the node with the help of using Edge Impulse and
deploying new firmware remotely.

3

1.2. Aim

Figure 1.1: Ngulia Rhino Sanctuary in Tsavo West, Kenya, home to 130 black rhinoceros.
Accessed from [2].

1.2 Aim

The primary goal of this project is to assess the feasibility and efficiency of employing Edge
Machine Learning for real-time detection tasks, retraining the model with an active learning
pipeline and deploying new firmware Over The Air (OTA) . The project will also evaluate the
Edge Impulse supported models MobileNetV2 SSD (Single Shot MultiBox Detector) , Mo-
bileNetV2 FOMO (Faster Objects, More Objects) and YOLOv5 (You Only Look Once version
5) . There will also be an in-depth analysis of the key factors to consider when selecting an
appropriate microcontroller, as well as an examination of the specific software capabilities
inherent to each option.

1.3 Research questions

1. How do SSD MobileNetV2, FOMO MobileNetV2, and YOLOv5 compare in terms of
performance and accuracy for detecting animals at a waterhole, and what are the po-
tential edge devices capable of executing these models?

2. What factors should be considered when selecting an edge device for object detection
purposes?

3. How can an active learning pipeline be designed that enables iterative updates to a
model operating in a remote location?

1.4 Limitations

The object detection and classification will be limited to running edge impulse default mod-
els SSD, FOMO and the objection detection model from the previous year’s work using
Self-Organizing Maps object (SOM) detection and CenterNet as a classification model [3].
Limitations to running the model on an edge-device could be processing-power, energy-
consumption as well as memory-management. These limitations will be discussed further-
more in this thesis.

When the system first has been configured, the data and testing of the product will first
be simulated using Kolmården Zoo as a starting point. In regard to the Ngulia reservation in
Tsavo, Kenya, the climate will differ. This gives challenges in regard to temperature, humidity
as well as overall weather. Beside climate, the data samples taken in Kolmården Zoo can
differ greatly, as the animals and background might not look the same.

4

2 Related Work

2.1 The Modern Camera Trap

The field of camera traps has witnessed significant advancements over the past few decades,
revolutionizing wildlife research and ecosystem monitoring. Initially introduced in the 1990s
as a research-tool, earlier camera traps were primarily used for wildlife photography and had
limited capabilities. These bulky devices relied on mechanical triggering systems and could
only capture a few dozen images [4].

However, the integration of digital cameras with infrared technology in the 2000s marked
a significant milestone for camera traps. This advancement enabled the devices to trigger
on movement and detect heat-movement, making them indispensable tools for researchers
and conservationists [5]. Modern camera traps now employ passive infrared sensors to de-
tect moving objects with varying temperatures compared to the background as seen in Fig.
2.1. The detection zone of camera traps can vary depending on factors such as camera type,
environment, and target species. The choice between a white flash or infrared flash is crucial,
as it determines how animals are distinguished based on the amount of light present.

5

2.2. Advancements in Camera Trap Technology

Figure 2.1: How modern camera traps work, adapted from [4]. Camera traps utilize a de-
tection zone defined by radius (r) and angle (θ) (A). They monitor temperature to detect
warm-blooded animals (B) and are motion-triggered (C). An infrared flash may be used in
low-light conditions, resulting in black-and-white images. Animals must be moving within
the detection zone (D) to trigger the camera.

2.2 Advancements in Camera Trap Technology

While camera traps have proved invaluable in wildlife research, their usage initially faced
several challenges. A publication from Cambridge University [6] highlighted four major bar-
riers associated with camera trap data collection and analysis:

• Slow data processing: Processing large volumes of images from camera trap surveys
used to take weeks or even months, resulting in delays in data analysis.

• Limited data sharing: Due to data storage constraints, most camera trap users relied on
removable or built-in hard drives, hindering data sharing among researchers.

• Difficult data analysis: Analyzing camera trap data posed challenges in extracting
meaningful information, such as population trends and behavioral patterns.

• Inadequate hardware design: Many existing camera trap models were not originally
designed for scientific research and conservation efforts, lacking sensors for light, tem-
perature, GPS, and network connectivity.

In recent years, Edge Machine Learning (ML) technology has been tested to enable real-
time image classification, eliminating the need for manual data processing and accelerating
the data pipeline. This advancement allows for the automatic identification and classification
of animals in camera trap images, providing valuable insights into population dynamics and
behavior. Additionally, combining cloud storage solutions with Edge ML techniques allows
for efficient data sharing by selectively uploading useful images, overcoming the limitations
of traditional storage methods [7]. The integration of machine learning algorithms for ob-
ject detection within camera traps has also revolutionized data analysis. Previously, manual
classification of images was a labor-intensive process, creating bottlenecks in extracting valu-
able information. By automating the image classification process, researchers can filter out
irrelevant data and focus solely on the desired insights. When incorporated with Internet
of Things (IoT) connectivity, the capabilities of camera trap systems can be expanded and
scaled even further. By leveraging these new technologies, it enables seamless integration
with other monitoring devices and data analysis platforms, allowing real-time analysis of

6

2.3. Previous Work at LiU

captured images, and enhancing the efficiency and effectiveness of wildlife monitoring ef-
forts using camera trap systems.

2.3 Previous Work at LiU

Camera Trap technology for the Ngulia Sanctuary have been developed as master thesis
project since 2020 at Linköping University.

2.3.1 2020 Tydén and Olsson

The first group to work with camera trap technology were Amanda Tydén and Sara Ols-
son [8]. They evaluated the performance of the object detection models SSD inceptionv2 SSD
MobileNet SSD MobileNet quantized and SSDlite MobileNet on edge devices. They con-
cluded that SSD MobileNet V2 was the best performer and used smartphones and Raspberry
PI as edge devices.

2.3.2 2021 Forslund and Arnesson

Forslund and Arnesson tested object detection and classification on camera traps both on the
edge device and in the cloud [9]. They also switched from a smartphone/raspberry pi to run-
ning the ESP32 based M5Stack Timer Camera. Forslund and Arnesson found that running
the model on the edge device yielded poor results, leading them to choose the cloud-based
solution. This was because of the models being too large or too poor to be running on the
Timer Cam. The results of their testing can be seen in Table 2.1 and 2.2. Forslund and Arnes-
son also recommended that improving the dataset by adding more images from the relevant
environment and iteratively training the model using this augmented dataset could be an
effective solution to address poorly performing models.

Table 2.1: Classification metrics for high-end models on video sequence.

Model Accuracy Precision Recall

SSD ResNet-50 0.910 1.000 0.822
Faster R-CNN ResNet-50 0.986 1.000 0.964
Faster R-CNN Inception 0.973 1.000 0.970

Table 2.2: Classification metrics for low-end models on video sequence.

Model Accuracy Precision Recall

Faster R-CNN ResNet-50 0.986 1.000 0.964
Faster R-CNN Inception 0.973 1.000 0.970
MobileNetV1-0_25 0.353 1.000 0.274
MobileNetV2-0_35 0.430 1.000 0.360

2.3.3 2022 Olsson and Linder

Olsson and Linder improved the solution from Forslund and Arnesson and were the first
group to deploy edge devices in the Ngulia sanctuary [3]. The edge devices could detect
movement and classify the images in the cloud. They also mentioned the problem with in-
sufficient amount of images and poor camera quality on the m5 Stack Timer Cameras. The
edge devices power themselves with solar panels and go to "sleep" when the power is run-
ning low, the edge device in its housing powered by solar panels can be seen in Figure 2.2

7

2.3. Previous Work at LiU

Figure 2.2: An example of a mounted edge device in its housing with solar panel from Olsson
and Linders report [3]

8

3 Hardware

3.1 Internet of Things

The Internet of Things (IoT) is a transformative technology paradigm that enables objects or
devices to connect and communicate with each other through the internet. In the context
of camera traps, IoT opens up new possibilities for remote monitoring, image transmission,
and data conversion. IoT devices are equipped with sensors, and connectivity capabilities
that allow them to collect data, interact with the environment, and transmit information over
the internet [10]. By leveraging IoT, camera traps can be transformed into intelligent and
connected systems. They can seamlessly integrate with other devices and digital platforms,
enabling real-time access to data and control from remote locations. This connectivity fa-
cilitates efficient data transmission and analysis, empowering researchers to make informed
decisions and take timely actions based on the captured media [11].

In the subsequent section, we will explore the specific aspects of IoT connectivity in cam-
era traps, highlighting how microcontrollers play a crucial role in enabling remote access,
data transmission, and analysis which in turn can enable an active learning pipeline for a
system like camera traps.

3.1.1 Microcontroller Unit

Microcontroller units (MCUs) are widely used in the digital world and can be described as a
“computers on a chip” These versatile components incorporate processors, memory, clocks,
and the ability to integrate additional attachments like sensors. Evaluating different MCUs
allows camera trap developers to select the most appropriate hardware platform based on
factors like processing power, connectivity options, power efficiency, and ease of integration
into the camera trap system [12].

3.1.2 IoT Connectivity in Camera Traps

IoT connectivity plays a crucial role in the operation of modern camera traps, enabling remote
access, seamless data transmission, and analysis. Camera traps utilize MCUs that leverage
various wireless communication protocols, including Wi-Fi, Bluetooth, and cellular networks
such as 4G, to establish connectivity with the internet. The choice of connectivity technology

9

3.2. MCUs for Camera Traps

depends on factors such as the environment and the specific requirements of the camera trap
deployment. While Wi-Fi is commonly used for data communication in IoT devices, 4G cel-
lular networks provide an alternative option but often requires cellular masts are operating
at a reasonable distance from the target. Establishing reliable and robust data connectiv-
ity is essential for optimizing the performance of camera traps across diverse environmental
conditions. By leveraging IoT connectivity, researchers are empowered to remotely moni-
tor and control camera traps, retrieve captured images, and make real-time adjustments to
settings and take suitable actions. This connectivity enables efficient data transmission, facil-
itating timely analysis and informed decision-making in wildlife research and conservation
efforts [4]. An example of a IoT-network which utilizes cellular connectivity is displayed in
3.1.

Figure 3.1: An example of how a IoT connectivity network operate. Camera Traps can be set
up in different locations and communicate with each other or other networks through cellular
connectivity. Image is accessed from [4].

3.1.3 Tiny Machine Learning in Camera Traps

Tiny machine learning (tinyML) is a rapidly growing field that involves implementing ma-
chine learning algorithms, like object detection and classification, specifically for MCUs [13].
It focuses on achieving high computational efficiency while operating with extremely low
power consumption. tinyML enables camera traps to perform advanced on-device analysis
and decision-making from the data it captures, even within compact and low-power hard-
ware configurations. This advancement allows camera traps to efficiently operate as complete
and fully functional computers .

3.2 MCUs for Camera Traps

To enable the functionality and connectivity used in camera traps and to evaluate the most fit-
ting system for an active-learning pipeline, the selection and evaluation of MCUs play a cru-
cial role. During the project, three different MCUs were tested: the ESP32 M5Stack Timercam
in Fig. 3.2, the Sony Spresense in Fig. 3.3 and the LILYGO T-Camera S3 ESP32-S3 ESP32-Cam
in Fig. 3.4. To make an informed decision on the most appropriate MCUs, various factors in-
cluding hardware specifications, processing capabilities, compatibility with the algorithms,
and connectivity options were considered. The selected MCU would ultimately determine
the efficiency and performance of the active-learning pipeline of the camera traps.

10

3.2. MCUs for Camera Traps

3.2.1 ESP32 M5Stack Timercam

The ESP32 M5Stack Timercam, seen in Fig. 3.2, is a flexible MCU with Wi-Fi and Bluetooth
connectivity developed by M5Stack [14]. It features an attached OV3660 3 Megapixel (MP)
camera and has sufficient memory and processing power to run the machinelearning algo-
rithms. It features 4 Megabytes (MB) flash memory and 8 MB of Pseudostatic Random Access
Memory (PSRAM) .

Figure 3.2: ESP32 TimerCam from M5Stack with the dimensions 68.6 mm x 24 mm

Table 3.1: ESP32 M5Stack TimerCam Camera Specifications

Microcontroller ESP32 (dual-core)
Camera OV3660 (3MP)
PSRAM 8MB
Storage 4 MB
Display Not built-in (can be connected externally)
Connectivity Wi-Fi, Bluetooth
Additional features Built-in timer, battery connector

3.2.2 Sony Spresence Camera

The Sony Spresense, seen in Fig. 3.3,is a microcontroller board that features together with
extensions, hi-res audio, camera input and internal GPS developed by Sony [15]. It can be
extended with an Long Term Evolution (LTE) board for 4G cellular network connectivity and
an High Dynamic Range (HDR) camera board specialized for outdoor lighting. It features 8
MB flash memory and 1.5 MB of Static Random Access Memory (SRAM) .

11

3.2. MCUs for Camera Traps

Figure 3.3: Sony Spresence with Camera and attached LTE board with the dimensions 68.6
mm x 53.3 mm

Table 3.2: Sony Spresense Microcontroller and Camera Specifications

Microcontroller Sony CXD5602 (Arm Cortex-M4F)
Camera Sony IMX219 (8.08MP)
Memory (SRAM) 1.5MB
Storage (flash) 8MB
Display Not built-in (can be connected exter-

nally)
Connectivity Extension connector, Cellular SIM-

card extension
Additional features Built-in sensors (accelerometer, gyro,

temperature, etc.)

3.2.3 LILYGO T-Camera S3 ESP32-S3 ESP32-Cam

The LILYGO T-Camera S3 ESP32-S3 ESP32-Cam, seen in Fig. 3.4, is a development board
that integrates an ESP32-S3 module and a 2MP OV2640 camera developed by Lilygo [16]. It
features 16 MB flash memory, 8 MB of PSRAM memory and includes a PIR sensor for object
detection.

12

3.3. Hardware Evaluation

Figure 3.4: LILYGO T-Camera S3 ESP32-S3 ESP32-Cam with the dimensions 69.0 mm x 28.0
mm

Table 3.3: LILYGO T-Camera S3 ESP32-S3 ESP32-Cam Specifications

Microcontroller ESP32-S3
Camera OV2640 (2MP) or OV5640 (5MP)
PSRAM 8 MB
Storage 16 MB
Display OLED 128x64
Connectivity Wi-Fi, Bluetooth
Additional features Programmable buttons, PIR-sensor, microphone, I2C interface, battery connector

3.2.4 LILYGO T-SIM7000G ESP32

When exmaning the LILYGO T-Camera, it was shown that a similar MCU, the LiLyGo T-
SIMCAM ESP32-S can be combined with a LILYGO T-SIM7000G module to be able to use LTE
(4G), GPRS and GPS [17] developed by Lilygo [16]. This makes it possible to stay connected
to our servers when there is no access to the 4G network. This device wasn’t examined further
due to logistic errors.

3.3 Hardware Evaluation

The evaluation of the MCUs hardware considered storage and working memory capacity,
which directly impacted data processing and storage efficiency. Connectivity, compatibility
and cameras for the different devices will be evaluated as well.

3.3.1 Storage Capacity

The M5Stack Timercam provided 4MB of working flash memory, the Sony Spresence Camera
offered 8MB, and the LILYGO T-Camera excelled with 16MB. This memory primarily served

13

3.3. Hardware Evaluation

as storage for the devices, enabling effective data storage and task execution. Three sepa-
rate storage areas of flash memory were employed to ensure optimal usage alongside OTA
functionality.

3.3.2 Working Memory (RAM) Usage

The M5Stack Timercam and LILYGO T-Camera utilized 8MB of PSRAM for their working
memory requirements. In contrast, the Sony Spresence Camera employed 1.5MB of SRAM
solely during device initialization. PSRAM is a dynamic RAM that emulates the behavior
of static RAM using refresh cycles, while SRAM is a static RAM that retains data as long
as power is supplied. PSRAM generally consumes less power compared to SRAM, which
requires continuous power to retain data. Consideration of storage and working memory ca-
pacity was vital to ensure the efficient execution of algorithms and tasks in the active-learning
pipeline.

3.3.3 Compatibility

Ensuring compatibility among the components within the project was essential for establish-
ing a reliable and cohesive system. The evaluation focused on the integration of the devices
and the ease of connectivity. The ESP32 M5Stack Timercam and ESP32-S3 T-Camera demon-
strated excellent compatibility, relying on a constant 5V voltage supply and offering I2C com-
patibility. This simplified the connectivity process and ensured seamless integration into the
system. However, the Sony Spresence Camera presented challenges in terms of compatibil-
ity. It required separate input connectors, adding complexity to the connectivity setup. The
limited Sony Spresence library and lack of easily accessible online documentation further
complicated the integration process, requiring alternative methods for seamless integration
within the project. The evaluation of compatibility highlighted the varying degrees of ease
and simplicity when connecting the devices to form a cohesive system.

3.3.4 Connectivity

Seamless connectivity among the devices was crucial for efficient data comparison and pro-
cessing within the system. The evaluation focused on the connectivity capabilities of the
M5Stack Timercam, LILYGO T-Camera, and Sony Spresence Camera. Both the M5Stack
Timercam and LILYGO T-Camera exhibited similar Wi-Fi and Bluetooth connectivity fea-
tures, leveraging components from the ESP-IDF library. This facilitated reliable data ex-
change within the system. The Sony Spresence Camera followed a different approach, re-
lying on USB connectivity and other extension options for data transmission. Due to time
constraints and project priorities, exploring the specific solution for information transmission
with the Sony Spresence Camera was not pursued further. The evaluation of connectivity
highlighted the variations in connectivity options among the devices. While the M5Stack
Timercam and LILYGO T-Camera seamlessly integrated Wi-Fi functionality, the Sony Spres-
ence Camera required alternative methods for data transmission. The selection of devices for
the active-learning pipeline considered their connectivity capabilities to ensure smooth and
reliable data exchange within the system. Overall, the evaluation of MCUs hardware, com-
patibility, and connectivity helped determine the devices’ capabilities and suitability for the
active-learning pipeline.

3.3.5 Camera

The evaluation of camera capabilities played a crucial role in determining the devices’ suit-
ability for the active-learning pipeline. The cameras integrated into the MCUs provided the
means to capture images and process them for further analysis and application. The Sony
Spresence MCU board is equipped with the Sony IMX219 camera, boasting a resolution of

14

3.4. Outcome of MCU Evaluation

8.08 megapixels. This camera excels in high-quality image capture and is particularly useful
in outdoor lighting conditions. Its ability to deliver clear and detailed images makes it a valu-
able component for various applications. The M5Stack Timercam features the OV3660 cam-
era, providing a resolution of 3 megapixels. Although slightly lower than the Sony IMX219,
this camera still delivers good image quality and captures clear visuals. It supports mul-
tiple image output formats, including RAW, RGB, and YCbCr compression. The LILYGO
T-Camera comes with either the OV2640 or the OV5640 camera, depending on the model.
The OV2640 offers a resolution of 2 megapixels, while the OV5640 boasts a higher resolu-
tion of 5 megapixels. Both cameras offer decent image quality and are suitable for capturing
visuals in different environments. Integrating these cameras with their respective MCUs em-
powers the devices to capture images efficiently and process them for subsequent analysis
and application in the active-learning pipeline.

3.4 Outcome of MCU Evaluation

Based on the evaluation of MCUs in section MCUs for Camera Traps, the LILYGO T-Camera
S3 in Fig. 3.4, powered by the ESP32-S3 MCU, was selected as the most suitable device for
the active-learning pipeline and fitted microcontroller for the IoT system. Its storage capacity,
compatibility with the ESP-IDF library, availability of Wi-Fi and Bluetooth connectivity, and
additional features made it well-suited for the project’s requirements. The ESP32-Timercam,
although performing similarly to the LILYGO T-Camera, was excluded due to its limitations
in flash memory capacity. While the Sony Spresense Camera showcased advanced hardware
capabilities, the lack of accessible documentation and time constraints prevented its thorough
evaluation and integration within the project. The MCU together with the rest of system inte-
grated can be seen in Fig. 3.5. The MCU integrated with the full system in Ngulia sanctuary
besides a waterhole with WIFI coverage can be seen in Fig. 3.6. The area was chosen as many
rhinoceros came there to drink their water and for monitoring reasons.

15

3.4. Outcome of MCU Evaluation

Figure 3.5: Camera setup using LILYGO T-Camera equipped with a OV3660 lens, energy
converter as well as equipped Hunter solar panels

16

3.4. Outcome of MCU Evaluation

Figure 3.6: Camera setup in the Ngulia sanctuary with the full system integrated

17

4 Software

The section will cover different machine learning techniques for object detection and classifi-
cations, in particular, it will cover the software tool edge impulse and how it can be used in
an active learning implementation.

4.1 Machine Learning

Machine Learning (ML) is a way for turning raw data into useful information. Depending
on the given problem and available data, ML can be distinguished into three different types,
which are supervised learning, unsupervised learning, and reinforcement learning [18]. This
thesis will focus on object detection, which is a form of supervised learning. Object detection
and classification uses supervised learning to output results by learning patterns or rules
from data in a process which is called training. For training, a training dataset is produced
which is fed to a special kind of algorithm and returns a set of rules. This process creates a
model for which predictions can be made up for similar types of data. Ultimately by learning
from previous computations and regularities from massive databases it can produce reliable
and repeatable decisions which is important for object classification. [18].

4.1.1 Deep Learning & Neural Networks

Deep learning algorithms are a type of artificial neural network that is capable of learning
complex relationships between data. Unlike traditional machine learning algorithms, which
rely on hand-crafted features and explicit rules, neural networks with the use of deep learning
can automatically learn these relationships from data. This makes them particularly well-
suited for applications like this project where the relationships between data from images are
complex and hard to define or object detection where multiple objects can be detected at the
same time but only few are of importance [19].

4.2 Convolutional Neural Networks

Convolutional neural networks (CNN) , is a technique for classifying data using a neural net-
work that is designed to operate on data with a grid-like structure. This makes it a great asset
to process and operate on images [20]. Convolution is used in CNN to extract features from

18

4.3. Object Detection

raw images. The idea is to use multiple filters that perform convolutional operations on small
regions of the images. By using filters of different size and shapes, the result in feature maps
that highlight different features of the data are extracted. CNNs are typically composed of
multiple layers of interconnected nodes, with each layer performing a specific transformation
on the input data. The first layer in a CNN typically performs a convolution operation, where
the input data is convoluted with a set of filters to extract features from the data. These fea-
tures are then passed through a series of additional layers, which can include pooling layers,
fully connected layers, and non-linear activation functions, to ultimately produce a classifi-
cation output. The output is typically a probability distribution over the possible classes that
the input data of images could belong to. As for our case, that could be animals, humans or
other important obstacles [21].

4.2.1 MobileNetV2

MobileNetV2 is a lightweight convolution neural network model designed for mobile and
embedded devices by Google [22]. It uses a streamlined architecture with depth-wise sep-
arable convolutions to reduce the parameters and computational power. The first layer in
this architecture, known as the depth-wise convolution, applies a single convolution filter to
each input channel. This reduces the number of parameters and computations required, as
compared to a standard convolution, which applies a filter to all channels simultaneously.
The point-wise convolution, also known as a bottleneck layer, serves the purpose of reducing
the dimensionality and flow of the network. The expansion layer and depth-wise convolu-
tion layer utilize a combination of batch normalization and the Rectified Linear Unit (ReLU)
activation function to improve the performance of the network.

4.3 Object Detection

Object detection is a task within computer vision, that involves detecting instances of objects
of a certain class (certain animals, humans or objects in an image). The main approach to sep-
arate these classes from each other is often by use of deep learning [23]. Object detection used
through deep learning is mainly through extraction features, which are extracted through a
CNN and processed through multiple layers to identify and extract relevant features such as
edges, textures and patterns. This involves several key steps, including input handling, fea-
ture extraction, feature fusion, and final predictions. These steps correspond to different parts
of the architecture, commonly known as input, backbone, neck and head, see Fig. 4.1. There
are two types of flows in these detectors: one-stage and two-stage. One-stage detectors per-
form object detection in a single step. Given an input image, these models directly predict the
bounding box or centroid and their corresponding class without any intermediate steps. This
type of model is often faster than two-stage and make it suitable for real-time objection tasks.
The two-stage detectors run twice, in the first stage it generate proposal regions where there
might be an object, in the second stage they classify these regions and refine their bounding
box coordinates [24].

In this section common approaches for object detection will be covered. First two-stage
Region-based CNNs (R-CNNs) [25]. Then discussing one-stage models that are particularly
relevant to this thesis including, SSD MobileNetV2, YOLOv5 [26] and FOMO MobileNetV2.
These one-stage models are all supported by Edge Impulse Studio for edge devices.

19

4.3. Object Detection

Figure 4.1: Object detector accessed from [24]

• Input:

– The input to the object detection system is an image or a video frame.

– The image is typically represented as a grid of pixels with three color channels
(RGB).

• Backbone:

– The backbone network processes the input image and extracts high-level features.

– It typically consists of multiple convolutional layers to capture hierarchical repre-
sentations.

– Popular backbone architectures include: CSPDarknet53, ResNet, and MobileNet.

• Neck:

– Is commonly used in newer architecture. It fuses or combines the features ex-
tracted by the backbone.

• Heads:

– Predicts the bounding box and class. Uses a dense predictor for one-stage and
sparse predictor for two-stage models.

– Dense predictors: SSD, YOLO, FOMO

– Sparse predictors: R-CNN, Faster R-CNN

4.3.1 Region with CNN features

Region with CNN features (R-CNNs) mainly optimizes the classification and bounding box
tasks. The R-CNN model uses selective search to generate 2000 region proposals from an
input image. The region proposals are ranked based on relevance, and a warped region is
created for each proposal. The warped regions are then passed through a CNN to extract
features, which are used for classification through an additional service. The output of the
classification process provides an assumption of what each region corresponds to. The full
process can be seen here in Fig. 4.2. The process of finding all proposals is often considered
to be computationally heavy.

20

4.3. Object Detection

Figure 4.2: R-CNN feature extraction accessed from [27]

4.3.2 You Only Look Once version 5

The YOLO version 5 architecture is a state-of-the-art machine learning model for object detec-
tion that relies on a unique mechanism to accurately identify objects in images [28]. It’s worth
mentioning that YOLOv5 has a standard backbone in its algorithm that is used for this thesis,
hence any reference to YOLOv5 in this context inherently implies the usage of its complete
architecture. This architecture consists of three primary components:

• Backbone: This component is responsible for basic feature extraction. It employs an
enhanced version of CSP-Darknet53, which was also used in the previous YOLOv4
model.

• Neck: The neck connects the backbone and the heads, and it utilizes the Spatial Pyramid
Pooling Feature (SPPF) and an advanced CSP-PAN.

• Heads: This component is in charge of generating the final output, using the YOLOv3
head design.

The framework proposes an approach to object detection by utilizing the entire topmost
feature map to predict confidence scores and bounding boxes for multiple categories. The
input image is divided into an S x S grid, with each grid cell responsible for predicting the
object centered within it, as illustrated in Fig. 4.3. Each grid cell outputs N bounding boxes
and their corresponding confidence scores, which represent the likelihood of an object’s exis-
tence and the confidence in its prediction. Additionally, each grid cell predicts K conditional
class probabilities, regardless of the number of boxes, with only the contribution from the
grid cell containing an object being calculated. In the YOLO version 5 framework, the use of
the entire feature map for predictions allows for more accurate object detection, as it captures
spatial dependencies and context information. The multi-scale training and testing strategy
further enhance the framework’s performance, enabling it to handle objects of varying sizes
and improve detection across different scales. The YOLO v5 framework has demonstrated
state-of-the-art performance in terms of speed and accuracy, making it a popular choice for
real-time object detection applications.

21

4.3. Object Detection

Figure 4.3: YOLO feature extraction accessed from [27]

4.3.3 Single Shot MultiBox Detector

While the YOLO framework has some limitations, such as difficulty in detecting small ob-
jects in groups and limited generalization to objects with new or unusual aspect ratios and
configurations, there is another popular approach to object detection, known as Single Shot
MultiBox Detector (SSD). SSD focuses on detecting objects at multiple scales by using mul-
tiple feature maps of different resolutions to make predictions. This allows SSD to handle
objects of various sizes more effectively, and reduces the need for multiple downsampling
operations, which can lead to relatively coarse features as seen in YOLO. In addition, SSD
can handle object grouping and generalization to new or unusual aspect ratios and config-
urations more effectively, making it a strong alternative to YOLO. However, SSD may have
trade-offs in terms of speed and accuracy compared to YOLO, and the best approach for a
given task will depend on the specific requirements and constraints of the problem as dis-
cussed in [27].

SSD and YOLO perform object detection and classification in a single forward pass
through the network, making them faster but less accurate compared to R-CNNs.

4.3.4 Faster Objects, More Objects

Faster Objects, More Objects (FOMO) is an object detection method introduced by Edge Im-
pulse and is created to be used by very simple Edge Devices. Running requires <200K of
RAM which is 30x less than SSD. It uses Background Subtraction (BGS) techniques to dif-
ferentiate between background and foreground objects. The assumption is that foreground
objects move while background objects are stationary. While newer neural network meth-
ods provide more accurate results, they also require more computing power. The choice of
the BGS method depends on the available computing capabilities at the edge locations. This
makes it a great tool for edge devices according to [29].

FOMO does not create bounding boxes, it outputs centroids on the location of the object.
This will not determine the size of the object, only the position seen in Fig. 4.4b. FOMO
operates by partitioning an image into a grid where each cell is 8x8 pixels. Consequently,
for an image measuring 320x320 pixels, the image would be segmented into a 40x40 grid. A
classification algorithm is then applied to each cell within this grid [30] an example of this
can be seen in 4.4a.

22

4.4. Active Learning

(a) 96x96 image split into a 12x12 grid. (b) Coffee mug located using FOMO

4.4 Active Learning

Active learning is a technique used in machine learning when acquiring large amounts of
accurately labeled data is either difficult or time-consuming. To be able to still train a model
an active learning technique can be used. The process start with training of a model with a
small dataset. The model can then be used to collect new data and help select new records that
it suggest to be most promising. A domain expert can then label the suggested records and
the model can be retrained on a larger dataset. By iterating over an active learning algorithm,
a model can be deployed fast and then actively improved while in the field. The full active
learning system can be seen in Fig. 4.5.

Figure 4.5: Active learning process

4.4.1 Transfer Learning

Transfer of learning is a cognitive phenomenon that refers to the utilization of prior acquired
knowledge and skills in novel learning or problem-solving contexts [31]. This method is
adopted in deep learning. Here a model is trained with a large amount of data and tunes
the model’s weight and bias during training. This model can then be transferred pre-tuned
to be used for other data. It enables the model to require less data to be trained as it has

23

4.5. Model Training

already been pre-tuned. This approach is particularly useful in scenarios where the data sets
are limited or when the cost of training is long, for example a large dataset can take weeks to
train. [32]

4.5 Model Training

Three distinct models were trained. The models selected include MobileNetV2 SSD, which
had shown superior performance in previous work by Olsson and Tydén [8], YOLOv5, as
well as two variants of FOMO (Faster Objects, More Objects) MobileNetV2, with alpha 0.1
and 0.35 versions. The alpha parameter controls the width of the network, with smaller
alpha values resulting in narrower models. These were compared by F1 score, ram usage,
flash memory and latency.

4.5.1 F1 Score

The F1 score can be computed using precision and recall. They can be calculated using True
Positives, False positive, True Negatives and False Negatives.

Precision =
True Positives

True Positives + False Positives
(4.1)

Recall =
True Positives

True Positives + False Negatives
(4.2)

F1 Score = 2 ¨
Precision ˆ Recall
Precision + Recall

(4.3)

These formulas calculate the precision, recall, and F1 score, which are commonly used
metrics for evaluating the performance of classification models.

• Precision measures the model’s ability to correctly identify only relevant instances. In
other words, it quantifies the number of true positives out of the cases that the model
predicted to be positive (both true positives and false positives). A high precision indi-
cates a low false positive rate.

• Recall (also known as sensitivity or true positive rate) measures the model’s ability to
identify all relevant instances, meaning it quantifies the number of true positives out of
the actual positive cases (both true positives and false negatives). A high recall indicates
a low false negative rate.

• The F1 Score is the harmonic mean of precision and recall. It provides a single score
that balances both the concerns of precision and recall in one number. The harmonic
mean tends towards the smaller of the two elements. Therefore, the F1 score will be
small if either precision or recall is small. This makes it a more robust measure than
simply taking the average of precision and recall, especially in uneven class distribution
situations.

Each of these metrics provides a different perspective on the model’s performance. For
example, a model might have high precision but low recall, which means it doesn’t generate
many false positives but misses a significant number of positive instances. Conversely, a
model might have a high recall but low precision, meaning it identifies most of the positive
instances but also produces a large number of false positives.

The F1 score is especially useful when you want a balance between precision and recall
and there is an uneven class distribution.

24

5 Implementation

This section details the methodology and techniques used to develop and deploy a machine
learning model over the air, which enables an active learning pipeline. It covers creating an
active learning pipeline, optimizing for edge device deployment and deploying the model
over the air for remote updates and maintenance.

5.1 System Overview

The proposed system builds upon the existing Ngulia system, incorporating new features
and enhancements. The system’s backend is integrated with the Edge Impulse API, allowing
for the training of new models and using it as a C++ library. The backend runs a pipeline
to compile firmware with the new models, OTA and general camera functionality. The user
interface includes a dedicated tab for training new models and updating the edge device’s
running model. The edge device is upgraded with a LILYGO T-Camera from ESP32, enabling
it to run more advanced models and improve camera quality. The firmware for the edge
device can now be updated over the air, streamlining the updating process.

Fig. 5.1 illustrates the workflow of the full system. When an object detection event is
triggered, a picture is taken by the camera. These images are sent to an FTP address while
the metadata is handled by a server for annotation. The metadata is accessed from the server
to serve the park rangers with information. Annotated pictures are stored in a bucket for
researchers to access. Additionally, the system allows for the development and deployment
of new models to the camera for improved object detection capabilities.

25

5.2. Training Pipeline

DEPLOYMENT

[rhino, 80 %]

DEVELOPMENT

1.

2.
3.

4.

5.

Figure 5.1: Workflow of the full system. 1. Picture is taken by the camera when objectdetec-
tion is notified. 2. Images are sent to an FTP-adress together with the metadata handled by
a server, ready to be annotated. 3. The metadata and images is sent park rangers to serve as
information if detection is found. 4. Annotated pictures are sent to a bucket for researchers
to access. 5. New models can be developed and sent to the camera to use. Images used were
adapted from [33] and [34].

5.2 Training Pipeline

The process of building models was streamlined using Edge Impulse Studios, which offers
significant advantages and optimizations for generating embedded models. It was used
for labeling both training and testing datasets. The chosen models were SSD MobileNetV2,
FOMO MobileNetV2 and YOLOv5 [35], which all are available in Edge Impulse Studio. To
train models outside the studio, Edge Impulse API were used, enabling training of new mod-
els without the necessity of manual studio logins. This API-based approach enhances flexi-
bility and convenience throughout the training phase.

5.2.1 Data Collection

Images from previous work were used to train an initial model, and these models were then
improved with data from the Ngulia sanctuary. To collect annotated data, JPG and PNG
images with bounding boxes in JSON format were uploaded to an Amazon Web Services
(AWS) Simple Storage Service (S3) bucket [36]. The annotation tool used for the images can
be seen in Fig. 5.2. The bucket was then connected as a data source and linked to the Edge

26

5.3. Network Integration

Impulse’s Application Programming Interface (API) [35]. The data was divided into an 80/20
train/test split. The data was then cropped and resized to ensure all images were of equal
size and dimensions.

Figure 5.2: Edge Impulse annotation tool

5.2.2 ML - Design and Training

In this project, three different models were used: MobileNetV2 SSD, FOMO MobileNetV2 0.1
and YOLOv5. The SSD is around 3.7MB in size and supports an RGB input at 320x320px.
The YOLO model is 1.8 MB in size and also supports an RGB input at 320x320px. The FOMO
MobileNetV2 is designed to be <100KB in size and support a grayscale input at any resolu-
tion. Both models were utilized in this project to assess their performance in object detection
tasks on edge devices, as well as to evaluate the corresponding flash memory requirements
for their execution. After the models were trained, they were validated to show a score of
how the models perform.

5.3 Network Integration

The network integration component, which encompasses the web server, database, and asso-
ciated functionalities, builds upon the previous implementation by Olsson and Linders [3].
Several enhancements have been made, including the implementation of the Edge Impulse
API, the addition of a model training page, and the development of a backend pipeline for
firmware downloading and building.

5.3.1 Server Hosting

During the development of the system, the database, camera API, User Interface (UI) , and
backend were all hosted on an Amazon Elastic Compute Cloud (Amazon EC2) instance. EC2
is a web service that provides scalable computing capacity in the cloud.

5.3.2 Web Server

The web server use Node and the web application framework Express. The web server com-
municate with the UI through Express REpresentational State Transfer Application Program-
ming Interface (REST API) . By pressing “Train Model”, it starts the training pipeline through
edge impulse. “Build Model” builds the newest model locally and uploads the firmware to
the S3 bucket.

27

5.3. Network Integration

5.3.3 Developer Dashboard

The Developer Dashboard was updated based on the previous implementation by Linder
and Olsson [3]. The workflow proceeds as follows:

1. The user initiates the process by pressing the “Train New Model” button. This action
triggers the pipeline, enabling the user to validate the model in the Edge Impulse Stu-
dio.

2. If the user is satisfied with the results, they can press the “Build New Model” button.
This action instructs the system to train a new model, build its firmware incorporating
core edge device functionality, and subsequently upload it to the cloud storage.

3. Next, the user has the option to select a camera and designate a model along with its
version using the “Set Active Model” feature. The selected camera will then receive
updates via OTA.

4. In case the user wants to upload custom firmware, this can be achieved using the pro-
vided input field.

A sample view of the dashboard is depicted in Fig. 5.3.

Figure 5.3: Developer dashboard while training a new model

5.3.4 Database

The database has been extended to incorporate models and their respective versions. Fig.
5.4 presents the original model schema, while Fig. 5.5 showcases the modifications made
to accommodate edge models and versions. Notably, the inclusion of edge device image
processing eliminates the need for image processing within the database.

28

5.4. Active Learning Pipeline

image_processors

id

name

model

classes

id

name

model

models

id

name

cameras_to_process

id

camera

cameras

id

name

type

ftp

image_processor

Figure 5.4: Old model schema

edge_models

id

name

ep_id

edge_models_versions

id

name

edge_model_id

url

version

is_active

cameras

id

name

type

ftp

image_processor

model

Figure 5.5: Edge models and versions added to previous database schema

5.4 Active Learning Pipeline

To improve the model iteratively, an “Active Learning Pipeline” was implemented. The sys-
tem overview can be seen in Fig. 5.6. The pipeline utilizes an S3 bucket to store data con-
sisting of images and bounding boxes. The data is fetched by Edge Impulse, and a new
model is trained and validated. Once the model is ready, it is deployed as a C++ library, and

29

5.4. Active Learning Pipeline

a webhook is triggered to notify the backend. The backend then stores the new model in
the database and compiles a firmware that incorporates the new model, as well as essential
functionality for the edge device. While the camera is deployed, it captures images of inter-
est, which are used to collect data. This data can be annotated and stored in the S3 bucket,
facilitating training of the next version of the model.

Figure 5.6: Edge Impulse annotation tool

5.4.1 Deployment

When the models are built using the Edge Impulse API, they are converted into C++ libraries
compatible with most ESP32 devices, leveraging the ESP-IDF Software Development Kit

30

5.5. Implementation on Edge Devices

(SDK) provided by LILYGO T-Camera. However, deploying the firmware instantaneously
is not feasible due to the need to compile the model with other critical functionalities, includ-
ing OTA, battery management, and general camera functionality. To address this challenge, a
backend pipeline has been implemented to integrate the C++ model with these functionalities
and compile the firmware as a single unit, ensuring a seamless deployment process.

5.4.2 Backend Pipeline for Compiling C++ Firmware

To address the need for compiling the machine learning model together with other critical
functionalities such as OTA, battery management, and general camera functionality, a back-
end pipeline was developed. The pipeline includes a series of events that is run with one
button click in the UI. The pipeline works in the following way.

1. The pipeline starts with fetching new images and then proceeds to building the ma-
chine learning model in the Edge Impulse API. This function generates a job Identity
Document (ID) that tracks the progress of the build.

2. Once the job is complete the model is retrieved, unzipped and merged with the general
camera functionality.

3. The binary firmware is built using Docker, which runs the ESP-IDF framework for com-
piling the firmware.

4. The resulting firmware is stored in an S3 bucket, and a new version with a unique URL
to the firmware is added to the database.

5.5 Implementation on Edge Devices

The edge devices are equipped with a built-in camera sensor. The sensor captures infor-
mation that is processed within the device’s firmware and processes the images it captures
according to the internal clock of the device. The C++ library contains the necessary compo-
nents for object detection and classification from the image information taken by device and
how it behaves.

5.5.1 Classification on the Edge Device

During initialization, the camera captures an image in Joint Photographic Experts Group
(JPEG) format for display purposes. The image is then converted to RGB888 format, which
represents colors with 8 bits per channel, resulting in a total of 24 bits per pixel. This format
offers a wide range of colors and high color accuracy, ensuring a realistic representation of
the captured image. After converting to RGB888 format, the image is resized to 96x96 pixels.
This downsizing step serves two main purposes. Firstly, it reduces computational complexity
and memory requirements, making subsequent object detection and classification algorithms
more efficient. Secondly, the smaller image size facilitates easier processing and analysis of
the image’s features. When an interesting object is detected, the system employs algorithms
to identify its bounding boxes and assigns corresponding classification labels. These bound-
ing boxes and labels are then stored in an array, along with the image of the detected objects.
The metadata, including the bounding boxes, and labels, are then to servers for further anal-
ysis as a JavaScript Object Notation (JSON) file, images are sent to an File Transfer Protocol
(FTP) server for storage. An FTP server was managed as it could upload files seamlessly to be
used by other services. The operational flow of the device is illustrated in Fig. 5.7, showcas-
ing the pipeline and sequence of operations performed by the microcontroller. This includes
the steps of capturing the image, converting it to RGB888 format, resizing it to 96x96 pixels,
object detection, and metadata transmission.

31

5.5. Implementation on Edge Devices

z

Setup

Start Program

Initialize power chip:
turns on camera
 power channel.

Sets camera
configurations.

- PIXFORMAT, JPG
- Format:

1600x1200

Process

Updates Time

Captures Image

Capture Image

 Set local Time.
Setups FTP and

directory.

capture():
Loads Framebuffer, FB

classify():
Convert to RGB888, 3D

Resizes for class

raw_feature_get_data():
Gets data from features

run_classifier():
Saves result in
result_t result

EI_Objectdetection():
Checks how many

boundingboxes

Sends jpg to FTP

Sends list of
boundingboxes to

server

Has 10 minutes passed?

No bounding
boxes?

Sleepcontroller

Check_OTA():
Check Server for new

firmware updates

Reboots
with new firmware

Yes?

Sleeptimer()

No?

Every 10 minutes

Continue if time of day
is 5:00 < x < 19:00

Every 1 second

Figure 5.7: Flowchart of the MCU cycle

5.5.2 Update & Memory Management

To ensure iterative improvements to the model and efficient memory management, OTA-
functionality to the devices was managed. The embedded OTA functionality enabled devices
to save storage space for updates. Downloads were managed by the device, which listened
to an address containing a firmware binary file associated with a version number. In order to
achieve seamless connection and update management, the device’s storage was divided into
six partition tables or memory banks seen in Fig. 5.8.

32

5.5. Implementation on Edge Devices

bootloader

partiontables

nvs (24 kb)

ota_data (8 kb)

ota_0 (2 Mb)

 ota_1 (2 Mb)

factory (2 Mb)

nvs_ext (64 kb)

Figure 5.8: The partition-tables used for OTA initialization

However, for OTA purposes, only the storages named “factory” , “ota_0”, and “ota_1”
were utilized. The factory memory serves as the initial storage when the device is initial-
ized. Additionally, the “nvs”, “ota_data”, and “nvs_ext” partitions, though not utilized in
this project, were reserved for handling specific important information alongside the primary
OTA storages. During operation, the device compared its version number with the version
from the server address. If a version mismatch occurred, the binary file was downloaded and
stored in the designated “ota_0” storage area as seen in Fig. 5.9.

33

5.5. Implementation on Edge Devices

OTA_1 swaps factory storage
and applies new update

to microcontroller

Bootloader checks for new updates
in "interfacing" software

Sends update to OTA_0 storage

OTA_1: Overwrites OTA_1
if working, otherwise rollback

to factory.

OTA_0: Compiles new
version and checks for

errors

Figure 5.9: Flowchart of an OTA-update for the MCU

The device then executed the binary file and checked for code compilation errors. If the
binary file in “ota_0” failed to compile, the update was discarded, and the device continued
running the firmware from its “factory” partition storage. In the case of successful com-
pilation, the new firmware was transferred to the “ota_1” storage area. “ota_1” was then
swapped with the device’s initial “factory” storage, allowing the device reboot and continue
operate using the updated firmware. The binary file originally stored in the factory parti-
tion was preserved for troubleshooting purposes in the event of failed OTA updates. By
enabling OTA functionality, the device was able to iteratively introduce new models and
functionalities, progressively enhancing its operational capabilities. The system effectively
managed updates and memory allocation, ensuring the device remained up-to-date with the
latest firmware and maximizing its potential for improved performance.

5.5.3 Energy Performance & Power Management

The camera deployment achieved enhanced performance through the implementation of an
effective power management system, ensuring self-sufficiency and uninterrupted operation.
This system consisted of key components such as the Power Management Unit (PMU), power
converter, solar panel, and sleep mechanism. To ensure self-sufficiency, the camera required

34

5.5. Implementation on Edge Devices

effective power management. The camera’s power is regulated by the PMU, a dedicated chip
that enables the device to power the various sensors while maintaining a constant 5V input.
The input voltage is controlled by a power converter, ensuring compatibility with the device’s
operational requirements. When powered by 5V, the device can execute the code stored in its
factory storage or OTA (Over-the-Air) storages. The camera device’s power source is man-
aged through a solar panel, specifically a HUNTER trail solar panel equipped with an 8Ah
battery. The solar panel is capable of outputting 6V, 9V, or 12V and requires approximately
40 hours of sunlight to achieve a full charge according to Hunter Solar Panel+’s documenta-
tion [37]. Leveraging the internal clock of the device, the system employs a sleep mechanism
during periods of inactivity, such as nighttime. The system initiates sleep mode at 19:00 when
darkness sets in and can be configured to wake up at 05:00 during sunrise. During this sleep
period, the camera disconnects from its network and conserves battery power. Through effi-
cient power optimization, the MCU is able to enhance performance in various environmental
conditions, facilitating the successful execution of active-learning tasks. However, despite
successfully configuring the energy initialization, the absence of a gauge reader for the so-
lar panels posed challenges in monitoring battery life. This limitation made it difficult to
measure energy consumption accurately and required cutting during final initialization.

35

6 Results

The results of the work in this thesis are presented in the following chapter. It delves into the
creation and deployment of a scalable system in the Ngulia sanctuary. This system involves
the successful implementation of a LILYGO T-Camera device, capable of conducting object
detection and classification tasks, which can be updated remotely via Over-The-Air updates.
Moreover, it shows a establishment of an active learning pipeline. Which serves the purpose
to collect new data in the field and iterativelty retrain the model.

6.1 Model Performance

The models were trained on four classes that were common around the waterhole: zebra,
buffalo, rhinoceros, and elephant. The result for the different models can be seen below. The
training data consist of 573 and Testing 140 images. The distribution of animals in all the
images is presented in Table 6.1 and 6.2.

Animal Class Apperances
Buffalo 280

Elephant 922
Rhinoceros 547

Zebra 241
Total 1990

Table 6.1: Distribution of Training Data

Animal Class Apperances
Buffalo 104

Elephant 214
Rhinoceros 131

Zebra 56
Total 505

Table 6.2: Distribution of Testing Data

36

6.1. Model Performance

The results of MobileNetV2 SSD, FOMO MobileNetV2 0.1, and YOLOv5 with its standard
backbone, trained over 60 epochs with a 0.001 learning rate and Olsson & Linders “Real-Time
Semantic Background Subtraction v2” (RT-SBS-v2) that was trained on a similar dataset [3],
are presented in Tables 6.3 and 6.4.

Table 6.3: Classification metrics for ESP-EYE

Model Accuracy Precision Recall F1 Score

SSD MobileNetV2 0.317 0.652 0.696 0.673
YOLOv5 0.415 0.614 0.534 0.571
FOMO MobileNetV2 0.307 0.617 0.653 0.670
RT-SBS-v2 - 0.793 0.836 0.805

Note: RT-SBS-v2 model is trained on a dataset from Olsson & Linders’ report [3].

Table 6.4: Comparison of Resource Usage

Model Flash Usage Inferencing Time

SSD MobileNetV2 11.0 M 342,380 ms
YOLOv5 1.8 M 71 408 ms
FOMO MobileNetV2 0.06 M 10,892 ms

6.1.1 Evaluation of FOMO MobileNetV2 0.1 in Image Classification

The FOMO MobileNetV2 0.1 model was evaluated for image classification, with Fig. 6.2
illustrating a successful classification of elephants around a waterhole. Fig. 6.3 presents an
instance where the classification was not successful.

(a) Initial image of elephants (b) Successful classification of elephants

Figure 6.1: Comparison of object detection results for elephants using FOMO

37

6.1. Model Performance

Figure 6.2: Inital image of buffalos

Figure 6.3: Unsuccessful classification of buffalos

6.1.2 SSD MobileNetV2 Classification

The SSD MobileNetV2 model was evaluated for image classification, with Fig. 6.4 and 6.5
illustrating successful classifications. Fig. 6.6 presents an instance where the classification
was not successful.

Figure 6.4: Successful classification of two zebras

38

6.1. Model Performance

Figure 6.5: Successful classification of rhinoceros

Figure 6.6: Unsuccessful classification of elephants

6.1.3 YOLOv5 Classification

The YOLOv5 model was evaluated for image classification, with Fig. 6.7b and illustrating
a successful classification of elephants around a waterhole. Fig. 6.8b presents an instance
where the classification of buffalos was not successful.

(a) Initial image of elephants (b) Successful classification of elephants

Figure 6.7: Comparison of object detection results for elephants using YOLOv5

39

6.2. Active Learning Pipeline Performance

(a) Initial image of buffalos (b) Buffalos mistaken for elephants

Figure 6.8: Comparison of object detection results for buffalos using YOLOv5

6.2 Active Learning Pipeline Performance

The active learning pipeline demonstrated effective performance in training and deploying
object detection and classification models on the device. A crucial component of this pipeline
was the development of a C++ library that enabled the functionality of the models on the
device. The library served as a fundamental element in ensuring the proper functioning of
the object detection and classification capabilities. To facilitate seamless updates and im-
provements, a dashboard was also developed. This dashboard allowed for the upload and
transfer of binary files containing necessary code updates to the device using OTA function-
ality. Through this process, the device could receive and implement updates, ensuring that it
operated in accordance with the latest requirements and modifications. The pipeline demon-
strated successful functionality, enabling the device to download and integrate necessary up-
dates and changes when required while also monitoring what update and firmware ran on
each separate device. This capability ensured that the device remained up-to-date with the
latest model improvements and enhancements, ultimately contributing to the overall perfor-
mance of the pipeline. The diagram in Fig. 6.9 illustrates the performance evaluation of the
FOMO MobileNetV2 model, through the measurement of the F1 score. The model has been
trained consisting of 400, 500, 600, and 700 images respectively. Adhering to an 80/20 split
between training and testing data. All iterations are trained over 60 epochs and a learning
rate of 0.001.

40

6.2. Active Learning Pipeline Performance

300 400 500 600 700 800
0

0.2

0.4

0.6

0.8

1

Images

F1
Sc

or
e

Performance Evaluation of FOMO MobileNetV2 F1-Score

F1 Score

Figure 6.9: FOMO MobileNetV2 with 80/20 training/test split over 60 epochs and a learning
rate of 0.001

The plotted data represents the F1 scores achieved by the FOMO MobileNetV2 model at
different stages of training. The plot provides a visualization of the model’s capability to
learn and improve its performance with increasing number of images.

6.2.1 Camera Performance

The performance of the cameras played a critical role in the selection process for the active-
learning pipeline. After evaluating the capabilities of the cameras integrated into the MCUs,
it was determined that using the OV3660 lens for the LILYGO T-Camera S3 was the best
solution for our system. The OV3660 lens offered a resolution of 3 megapixels, which pro-
vided satisfactory image quality for the application. It captured clear visuals and allowed
for detailed analysis of the images. During the initial testing phase, the performance of the
OV2640 lens was evaluated. It produced good results and clear images for close-up pictures,
effectively detecting objects without issues. However, when the OV2640 lens was set up at a
distance, as shown in Figure 6.10a, it encountered certain issues. For distances of 20 meters
or more, the images became noisy and the object classification accuracy decreased. Conse-
quently, it was necessary to explore alternative lenses. Since the ESP32 M5Stack Timercam
OV3660 camera and LILYGO T-Camera S3 ESP32-S3 ESP32-Cam were easily compatible with
each other, the OV3660 lens was tested on the LILYGO T-Camera for evaluation. The use of
the OV3660 lens resulted in improved performance when capturing images from a distance.
Its 3 MP camera provided better resolution options, as demonstrated in Figure 6.10b. The
quality of the images taken at greater distances was significantly enhanced, contributing to
more accurate object classification. Therefore, the selection of the OV3660 lens was deemed
crucial for achieving both high image quality and reliable object classification, particularly
for distant objects.

41

6.2. Active Learning Pipeline Performance

(a) Picture taken with OV2640 with 300 × 400 reso-
lution.

(b) Picture taken with OV3660 with 1280 × 720 res-
olution

Figure 6.10: Comparison of camera resolution in images using OV2640 and OV3660

42

7 Discussion

This chapter contains discussion about the result and discusses possible improvements or
thoughts to take from the project.

7.1 MCU Evaluation

The evaluation of MCUs for the active learning pipeline revealed important considerations
regarding hardware, compatibility, and connectivity. In terms of hardware evaluation, the
ESP32-Timercam and LILYGO T-Camera offered similar performance in terms of working
memory (PSRAM) utilization. Both devices utilized 8 MB of PSRAM, which provided suffi-
cient memory capacity for executing the required tasks. However, the ESP32-Timercam had
a limitation in terms of flash memory, with only 4 MB available. This limitation proved to be
a significant drawback, as it could could not run SSD or YOLO, the ESP32-Timercam was ul-
timately discarded as a viable option for the project. On the other hand, the Sony Spressence
Camera showcased advanced hardware features, including a powerful Arm Cortex-M4F
MCU and a high-resolution camera. It offered additional features such as advanced image
processing as well as GPS and 4G compatability with LTE. However, the lack of specific in-
formation regarding RAM-memory and limitations in the available documentation presented
challenges in fully exploring the potential of the Sony Spressence Camera within the active-
learning pipeline.

The LILYGO T-Camera powered by the ESP32-S3 MCU, emerged as the most suitable de-
vice for the project. With its ample storage capacity of 16 MB, it provided sufficient space
for data storage and processing. Additionally, the availability of Wi-Fi and Bluetooth connec-
tivity ensured seamless integration into the system. The ESP-IDF library facilitated compat-
ibility and enabled OTA functionality, a crucial requirement for the active-learning pipeline.
These factors, combined with the device’s additional features such as extension headers, mi-
crophone, speaker, and I2C interface, made the LILYGO T-Camera S3 the preferred choice for
further development and implementation. Although the Sony Spressence Camera exhibited
promising hardware capabilities, the limitations in available documentation and time con-
straints prevented its comprehensive exploration and integration within the project. Given
more time, it could potentially have been a suitable candidate for the active learning pipeline.

43

7.2. Model Performance

7.1.1 Camera Sensor

While the OV3660 lens proved to be the optimal choice for our system, other camera options
were also considered during the evaluation process. The Sony IMX219 lens integrated into
the Sony Spresence Camera boasted a resolution of 8.08 megapixels, delivering high-quality
images suitable for a range of applications. The ESP32 M5Stack Timercam, with its OV2640
lens, offered a resolution of 2 megapixels, providing decent image quality for capturing visu-
als in closely located. Although these alternatives had their merits, the OV3660 lens emerged
as the best fit for our specific system requirements. Its combination of resolution, image
quality, and compatibility with the LILYGO T-Camera S3 MCU contributed to its selection.
Overall, the camera evaluation demonstrated the importance of considering various factors,
such as resolution, image quality, and compatibility when choosing the most suitable camera
for a given system. The selection of the OV3660 lens for the LILYGO T-Camera S3 allowed us
to achieve optimal performance and efficiently integrate it into our active-learning pipeline.
While knowing that LILYGO T-Camera S3 has support for OV5640 lenses which offers 5 MP
in image quality, it could result in even better precision for the models and images if utilized.

7.1.2 Connectivity Options

The integration of the system relied on WiFi connectivity; however, there were discussions
about exploring additional connectivity options such as cellular networks, specifically 4G.
Enabling cellular networks would offer the potential to expand the system’s reach and allow
for remote management. Unfortunately, due to various factors including time constraints,
logistical challenges, and limitations within the current active learning pipeline, the decision
was made to develop and test the system initially using the LILYGO T-Camera. The plan is
to later transition to the LILYGO T-SIM7000G ESP32, which supports cellular connectivity.

7.1.3 Additional Sensors

The performance and results of the system can be significantly improved by integrating addi-
tional sensors. One valuable sensor to consider is the Infrared (IR) Camera, which can capture
images or videos in low-light or nighttime conditions by detecting heat signatures. This tech-
nology allows for monitoring of nocturnal wildlife activity that might not be easily visible to
the human eye or traditional cameras. By optimizing the camera with a lens suitable for both
daytime and nighttime lighting conditions, it becomes capable of effectively capturing and
monitoring active animals. This optimization not only enhances the sensor’s performance
but also ensures the collection of high-quality data.

Traditionally, images captured with IR sensors are displayed in black and white. While
this data is intriguing, the limitations in model performance arise from the fact that these
images use the RGB channels, which restricts the full potential of examining them further.
Make use of a displayscreen on the device was also discussed as a possible improvement for
errorhandling and monitoring data, as the screen can monitor batterylife, model version on
the device etc when the device is deployed.

7.2 Model Performance

There are several factors affecting the performance of the models, these will be further dis-
cussed in this section.

7.2.1 Model Evaluation

It has been proved that using an active learning pipeline to increase the dataset is a good
method to improve a model. From the graph it can also be seen that the model start perform-

44

7.2. Model Performance

ing with a good score with a dataset consisting of atleast 600 images for 4 classes. From this
we can take that a good starting point is collecting atleast 150 images per class.

7.2.2 Image Quality and Its Limitations

The image quality poses a series of constraints on the models. A typical issue arises due to
the tendency of animals to move in groups, which complicates the model’s ability to accu-
rately identify each animal. For instance, Fig. 7.1 features approximately 30 buffaloes in a
single frame. Such scenarios contribute to the lower performance of the models in correctly
classifying the animals. These challenges are quite ubiquitous across all models, but they are
especially pronounced in the SSD model. The SSD model in Edge Impulse is structured with
an upper limit to run on cheaper MCUs, allowing it to detect a maximum of 10 objects. This
constraint is enforced to ensure the model’s compatibility with lower performance devices in
the Edge Impulse framework, thereby optimizing it for efficient running on such hardware.
Additionally, the quality of our equipment imposes further restrictions. Since FOMO were a
lightweight model performed good accuracy it could be a good choice for scalability to spend
less money on the processing power of the MCU and instead invest more in a better lens to
increase the image quality. There were also limited data of black rhinoceros in the Ngulia
reserve. A more comprehensive data set from the field would enhance the model’s ability to
accurately classify the animals. Furthermore, it would aid in training the model to learn and
recognize the specific environment of the reserve, as opposed to relying on data not directly
sourced from the reserve, such as historical data collected in earlier years.

Figure 7.1: Image showing 30 buffalos

7.2.3 Annotation Improvement

The annotation process becomes particularly challenging due to the high density of animals
congregating around the waterhole. The animals often cluster closely together, making it dif-
ficult to discern the individual count and accurately annotate them. This poses a significant
risk of mislabeling, which could lead the model to learn incorrect patterns and compromise
the overall classification quality. To counter this an active learning annotation tool could be
used. It can choose what images that should be annotated and skip the once that are too
complicated to differ. There could also be valid to use a classification that only classifies a

45

7.3. Deployment

couple of animals over a large threshold. In this approach, the model can focus on classifying
animals that are more distinctly separated, which enables it to make more confident predic-
tions. Given that the primary goal is to identify that an animal is present rather than precisely
classifying every animal in one image.

7.3 Deployment

The deployment worked well and it was possible to retrain and update the MCU with OTA.
But the firmware used needs to be choosen with caution. If the MCU successfully compile the
new firmware the old will be totally replaced. If the new firmware for some reason would not
have OTA implemented correctly the ability to update again would be lost. The ability to use
an efficient factory storage which can be rebooted to deemed to be crucial for the continuous
operation of the cameras or for failed OTA updates.

7.4 Edge Impulse Studio

The Edge Impulse Studio stands as an exceptional tool for swiftly training and deploying
new models for edge devices. However, the utilization of third-party software inevitably
introduces certain constraints. The models employed, while quick to train and implement,
are essentially prepackaged solutions. The sometimes limited validation data makes compre-
hensive model analysis challenging. To counter this issue, one approach could be leveraging
Edge Impulse’s “Expert Mode” which allows for the use of custom models. An effective
strategy would be to initially test models in a local environment to assess their suitability as a
starting point. Following this assessment, these models could then be deployed via the Edge
Impulse Studio to be incorporated into the active learning pipeline. Additionally, an imple-
mentation to ESP32-devices doesn’t exist today which means that custom solutions had to be
implemented to test the models. This a temporary error as ESP32 had changes to its library
regarding deep-learning libraries.

7.5 The Work in a Wider Context

The landscape of technology is rapidly evolving. As MCUs become cheaper and more pow-
erful, and as the domains of Artificial Intelligence (AI) and ML continue to expand, we are
presented with novel applications and challenges alike.

7.5.1 Camera Trap as Hunting Tool

While the advent of camera trapping comes with benefits to society, it has also opened up
new opportunities for misuse. It is important to remember that if the technology comes in the
hands of a poacher it can work as the perfect hunting tool. It is therefore essential to exercise
caution in how this technology is used and in how the information captured is disseminated.
It is our responsibility to ensure that no sensitive data about animal behavior or habitats are
inadvertently disclosed or made readily accessible to those who might misuse them.

7.5.2 Scalability and Adaptability

This project has been developed with a keen focus on scalability and adaptability. The design
and implementation strategies employed have allowed for the potential to train and deploy
the system across multiple nature reservations, regardless of geographical diversity or vary-
ing wildlife demographics. With the implemenation of OTA updates and an active learning
pipeline make it possible for a fast deployment with iterative updates data is collected in the
field.

46

8 Conclusion

The aim was to investigate what methods to implement an edge machine learning implemen-
tation that can be updated with OTA from an active learning pipeline. The aim was fulfilled
and a camera has been deployed in the field. The research questions are discussed below.

8.1 Research Questions

1. How do SSD MobileNetV2, FOMO MobileNetV2, and YOLOv5 compare in terms of
performance and accuracy for detecting animals at a waterhole, and what are the po-
tential edge devices capable of executing these models?

All models are quite affordable in terms of flash memory requirements, however, only
YOLOv5 and FOMO managed to operate on the selected device, LILYGO T-Camera
S3 ESP32-S3, due to its memory limitations. As demonstrated in Table 6.3, YOLOv5
surpasses SSD MobileNetv2 in performance for this specific use case, making it a good
choice for the chosen edge device. FOMO remains a valuable alternative if the edge
device faces additional performance constraints. It also serves as an appealing choice
when the end-user doesn’t place significance on the presence of a bounding box.

2. What factors should be considered when selecting an edge device for object detection
purposes?

Several factors need to be considered when selecting an edge device for object detec-
tion purposes. Connectivity, compatibility, and performance are key factors that play a
significant role in determining the suitability of an edge device for the task. The cho-
sen device should have appropriate connectivity options, such as WiFi or 4G, to ensure
seamless data transfer and real-time communication. Moreover, compatibility with nec-
essary software frameworks and pre-trained models is essential for streamlined devel-
opment and deployment. A well-equipped camera is crucial for obtaining high-quality
images, and the edge device should be capable of processing higher resolution images
for better object detection results. Additionally, factors such as processing power, mem-
ory, and storage should be considered to ensure that the device can handle the com-
plexity of the models, process data at a suitable speed, and store the necessary data for
processing. The limitations of network connection should also be taken into account
when selecting an edge device. Different devices have varying network capabilities,

47

8.2. Future Work

such as WiFi, 4G, or 5G. It is important to assess the network coverage and availability
in the deployment area to ensure that data and OTA updates are sent reliable.

Regarding the most significant factor limiting the performance of object detection and
classification on edge devices, camera quality stands out as a crucial element. Choos-
ing an edge device with a well-equipped camera that can capture high-resolution im-
ages leads to better object detection results. Additionally, processing power, particu-
larly RAM, plays a significant role in the device’s performance. Insufficient processing
power can limit the complexity and speed of object detection algorithms. For the de-
vices used for this project 8 MB PSRAM proved to be efficient but could always be
improved upon by saving necessary information that shouldn’t be processed in RAM-
storage in relevant storages or by utilizing increased processing power. Finally, cost-
effectiveness and scalability should be considered when selecting an edge device. The
device should strike a balance between performance and affordability, ensuring that
it meets the project’s budgetary constraints while delivering satisfactory results. More-
over, scalability options should be available to accommodate future needs and potential
expansion.

3. How can an active learning pipeline be designed that enables iterative updates to a
model operating in a remote location?

Designing an active learning pipeline demands some crucial functionalities. Firstly,
there must be a machine learning training platform capable of fetching annotated im-
ages along with their bounding boxes, and alerting the user regarding the latest training
validation. If the user desires to operate some fundamental functions, the trained model
has to be merged with the basic code. To automate this process, it’s necessary to con-
struct a firmware builder pipeline. This pipeline should fetch the most recent model,
merge it with the basic code, build the new firmware, and then upload it to a cloud stor-
age facility. For the purpose of updating an edge device in a remote location, an OTA
solution is required. When the edge device operates in the field, it must store images
and their corresponding bounding boxes on a server, enabling the annotation tool to
access them.

Lastly, the system needs an annotation tool that can transmit images with the corrected
bounding boxes, formatted in a way that is compatible with the model. When choosing
a model to be ran for an active learning pipeline it can be good to know that the FOMO
is outputing centroids which make it so the images are not pre-annoted when sent to
the annotation tool. This can be solved by the annotation tool running its own object
detection model.

8.2 Future Work

This thesis has provided valuable insights into the application of edge ML and its limitations.
While the system has demonstrated its effectiveness, there are several areas that can be im-
proved for future enhancements. Firstly, the user interface of the training dashboard requires
further development to enhance user-friendliness. Seamless integration with the Edge Im-
pulse API is essential to facilitate project transitions and model selection. Right now there
is a need to use the edge impulse studio to evaluate the model after training. The training
data used for classification is currently inadequate, lacking images of rhinoceros from the ac-
tual sanctuary. One potential solution is to deploy hunter cameras that capture images upon
detecting movement. These rhinoceros images can then be used to train a new model and
update it through the active learning pipeline.

To enhance the hardware integration in the Ngulia sanctuary, various cellular techniques,
including 4G and 5G, can be explored. Implementing these technologies would expand the

48

8.2. Future Work

system’s coverage, allowing for simultaneous monitoring of multiple waterholes and provid-
ing wider coverage of rhino locations. Furthermore, it would enhance security by mitigating
potential interference. Incorporating additional sensors, such as IR sensors for night vision,
would be highly beneficial to the project. These sensors would extend the active range of the
cameras, enabling better monitoring of rhinoceros activities during nighttime. As rhinoceros
are more active during this time and unusual activities may be harder for rangers to detect,
this improvement would significantly enhance both security and camera trap coverage. It is
important to consider capturing images in infrared (black and white) for model training pur-
poses. To support nighttime activity, implementing a system to monitor the battery gauge is
crucial. This system would measure and provide a better understanding of the energy con-
sumption by the camera units during the day. Additionally, it would explore possibilities for
optimizing the cameras’ operational status and ensure their effective usage. Another avenue
worth exploring is the integration of Espressif’s new ESP-DL, designed for object detection
and classification at the node level. Incorporating this technique as an option or in conjunc-
tion with models from Edge Impulse could further enhance the system’s performance and
capabilities. As Edge Impulse models examines data with RGB888-format and many cam-
eras output data in RGB565 format, utilizing RGB565 would be an interesting change for the
processing of the images as mentioned here [38]. By addressing these areas of improvement,
future research can advance the effectiveness and efficiency of the edge ML-based camera
trap system. The proposed enhancements aim to enhance user experience, expand train-
ing data, improve hardware integration, and leverage cutting-edge techniques to strengthen
wildlife monitoring and conservation efforts.

49

50

A Product Page

���������������
����������

������������������������������������
�
�������	�������������������������
�������������������������������

� ����
���	
�����������
� ���������
������������������������������� �
� �������������������
���������
� ����������
� ���������������� �

� ��������
������������������������������
��������
������������

� ���������������������
� ��������������
▪ ��������
����������������������
▪ ���������
��������������

Figure A.1: Specifications for the LILYGO ESP32-S3 Camera trap
51

Bibliography

[1] J. Bergenas, “Project Ngulia: A national security think tank’s unlikely journey,” Stimson
Center, Tech. Rep., 2017. [Online]. Available: http://www.jstor.org/stable/resrep10863

[2] TsavoTrust, “Ngulia rhino sanctuary – rhino viewing platform,” 2023,
[Accessed June 13, 2023]. [Online]. Available: https://tsavotrust.org/
ngulia-rhino-sanctuary-rhino-viewing-platform/

[3] J. Linder and O. Olsson, “A smart surveillance system using edge devices for wildlife
preservation in animal sanctuaries,” Master of Science Thesis, Linkoping University, De-
partment of Electrical Engineering, June 2022.

[4] O. Wearn and P. Glover-Kapfer, “Camera-trapping for conservation: a guide to best-
practices from WWF,” WWF, Tech. Rep., October 2017.

[5] D. L. Diefenbach, Camera Traps in Animal Ecology: Methods and Analyses. Journal of
Wildlife Management, 2008, ch. A History of Camera Trapping.

[6] J. A. Ahumada, E. Fegraus, T. Birch, N. Flores, R. Kays, T. G. O’Brien, J. Palmer, S. Schut-
tler, J. Y. Zhao, W. Jetz, and et al., “Wildlife insights: A platform to maximize the poten-
tial of camera trap and other passive sensor wildlife data for the planet,” Environmental
Conservation, vol. 47, no. 1, 2020.

[7] M. Fennell, C. Beirne, and A. C. Burton, “Use of object detection in camera
trap image identification: Assessing a method to rapidly and accurately classify
human and animal detections for research and application in recreation ecology,”
Global Ecology and Conservation, vol. 35, p. e02104, 2022. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S2351989422001068

[8] A. Tyden and S. Olsson, “Edge machine learning for animal detection, classification,
and tracking,” Master of Science Thesis, Linkoping University, Department of Electrical
Engineering, June 2020.

[9] J. Forslund and P. Arnesson, “Edge machine learning for wildlife conservation: Detec-
tion of poachers using camera traps,” Master of Science Thesis, Linkoping University,
Department of Electrical Engineering, June 2021.

[10] R. Mouha, “Internet of things (iot),” Journal of Data Analysis and Information Processing,
vol. 09, pp. 77–101, 01 2021.

52

http://www.jstor.org/stable/resrep10863
https://tsavotrust.org/ngulia-rhino-sanctuary-rhino-viewing-platform/
https://tsavotrust.org/ngulia-rhino-sanctuary-rhino-viewing-platform/
https://www.sciencedirect.com/science/article/pii/S2351989422001068
https://www.sciencedirect.com/science/article/pii/S2351989422001068

Bibliography

[11] I. A. Zualkernan, S. Dhou, J. Judas, A. R. Sajun, B. R. Gomez, L. A. Hussain, and
D. Sakhnini, “Towards an iot-based deep learning architecture for camera trap image
classification,” in 2020 IEEE Global Conference on Artificial Intelligence and Internet of Things
(GCAIoT), 2020.

[12] J. H. Davies, MSP430 microcontroller basics. Oxford: Newnes, 2013.

[13] C. R. Banbury, V. J. Reddi, M. Lam, W. Fu, A. Fazel, J. Holleman, X. Huang, R. Hur-
tado, D. Kanter, A. Lokhmotov, D. Patterson, D. Pau, J. sun Seo, J. Sieracki, U. Thakker,
M. Verhelst, and P. Yadav, “Benchmarking TinyML systems: Challenges and direction,”
2021.

[14] M5Stack, “ESP32 M5Stack Timercam,” M5Stack Documentation, 2023, [Accessed on 10
June 2023]. [Online]. Available: https://docs.m5stack.com/en/unit/timercam

[15] Sony, “Sony Spresence,” Sony Developer World, 2023, [Accessed on 10 June 2023].
[Online]. Available: https://developer.sony.com/spresense/product-specifications#
secondary-menu-desktop

[16] LILYGO, “LILYGO T-CAMERA,” LILYGO Online Store, 2023. [Online]. Available:
https://www.lilygo.cc/products/t-camera-s3

[17] Jean-Luc Aufranc, “LilyGO T-SIMCam ESP32-S3-CAM Development Board with 4G
LTE,” CNX Software, September 2022. [Online]. Available: https://www.cnx-software.
com/2022/09/27/lilygo-t-simcam-esp32-s3-cam-development-board-4g-lte/

[18] M. Awad and R. Khanna, Efficient Learning Machines: Theories, Concepts, and Applications
for Engineers and System Designers, 1st ed. USA: Apress, 2015.

[19] C. Janiesch, P. Zschech, and K. Heinrich, “Machine learning and deep learning,”
Electron Markets, vol. 31, pp. 685–695, 2021. [Online]. Available: https://doi.org/10.
1007/s12525-021-00475-2

[20] N. Sharma, V. Jain, and A. Mishra, “An analysis of convolutional neural networks for
image classification,” Procedia Computer Science, vol. 132, pp. 377–384, 2018.

[21] J. Gu, Z. Wang, J. Kuen, L. Ma, A. Shahroudy, B. Shuai, T. Liu, X. Wang, L. Wang,
G. Wang, J. Cai, and T. Chen, “Recent advances in convolutional neural networks,” arXiv
preprint arXiv:1512.07108, 2015, https://arxiv.org/pdf/1511.08458.pdf.

[22] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “Mobilenetv2: Inverted
residuals and linear bottlenecks,” CVPR, 2018.

[23] Z. Diao and F. Sun, “Visual object tracking based on deep neural network,” Mathematical
Problems in Engineering, Jul 2022. [Online]. Available: https://doi.org/10.1155/2022/
2154463

[24] A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, “Yolov4: Optimal speed and accuracy of
object detection,” arXiv preprint arXiv:2004.10934, 2020.

[25] P. Bharati and A. Pramanik, “Deep learning techniques—r-cnn to mask r-cnn: A
survey,” in Advances in Intelligent Systems and Computing, vol. 999, August 2019. [Online].
Available: https://link.springer.com/chapter/10.1007/978-981-13-9042-5_56

[26] W. Fang, L. Wang, and P. Ren, “Tinier-yolo: A real-time object detection method for
constrained environments,” IEEE Access, vol. 8, pp. 1935–1944, 2020.

[27] Z.-Q. Zhao, P. Zheng, S.-t. Xu, and X. Wu, “Object detection with deep learning: A re-
view,” arXiv preprint arXiv:1807.05511, 2019.

53

https://docs.m5stack.com/en/unit/timercam
https://developer.sony.com/spresense/product-specifications#secondary-menu-desktop
https://developer.sony.com/spresense/product-specifications#secondary-menu-desktop
https://www.lilygo.cc/products/t-camera-s3
https://www.cnx-software.com/2022/09/27/lilygo-t-simcam-esp32-s3-cam-development-board-4g-lte/
https://www.cnx-software.com/2022/09/27/lilygo-t-simcam-esp32-s3-cam-development-board-4g-lte/
https://doi.org/10.1007/s12525-021-00475-2
https://doi.org/10.1007/s12525-021-00475-2
https://arxiv.org/pdf/1511.08458.pdf
https://doi.org/10.1155/2022/2154463
https://doi.org/10.1155/2022/2154463
https://link.springer.com/chapter/10.1007/978-981-13-9042-5_56

Bibliography

[28] Ultralytics, https://github.com/ultralytics/yolov5, 2020.

[29] D. Rivas, F. Guim, J. Polo, and D. Carrera, “An analysis of scale invariance in object
detection,” arXiv preprint arXiv:2111.15451, 2021.

[30] L. Moreau and M. Kelcey, “Announcing fomo (faster objects, more objects),” https://
www.edgeimpulse.com/blog/announcing-fomo-faster-objects-more-objects, 2022, ac-
cessed: 2023-05-30.

[31] G. Steiner, “Transfer of learning, cognitive psychology of,” International Encyclopedia of
the Social & Behavioral Sciences, 2001.

[32] S. T. Krishna and H. K. Kalluri, “Deep learning and transfer learning approaches for
image classification,” International Journal of Recent Technology and Engineering, vol. 7, no.
5S4, 2019.

[33] Freepik, “Freepik,” 2023, [Accessed June 6, 2023]. [Online]. Available: https:
//www.freepik.com/

[34] Pngegg, “Pngegg,” 2023, [Accessed June 6, 2023]. [Online]. Available: https:
//www.pngegg.com/

[35] S. Hymel, C. Banbury, D. Situnayake, A. Elium, C. Ward, M. Kelcey, M. Baaijens, M. Ma-
jchrzycki, J. Plunkett, D. Tischler, A. Grande, L. Moreau, D. Maslov, A. Beavis, J. Jong-
boom, and V. J. Reddi, “Edge impulse: An MLOps platform for tiny machine learning,”
arXiv preprint arXiv:2212.03332, 2023.

[36] P. Boisrond, “A position paper on amazon web services (aws) simple storage service (s3)
buckets,” 08 2021.

[37] Hunter, “Hunter Solar Panel+ Manual,” Hunter, June 2023.

[38] EdgeImpulse, “Example signal from rgb565 frame buffer,” https://github.com/
edgeimpulse/example-signal-from-rgb565-frame-buffer, 2023, [Accessed on 10 June
2023].

54

https://github.com/ultralytics/yolov5
https://www.edgeimpulse.com/blog/announcing-fomo-faster-objects-more-objects
https://www.edgeimpulse.com/blog/announcing-fomo-faster-objects-more-objects
https://www.freepik.com/
https://www.freepik.com/
https://www.pngegg.com/
https://www.pngegg.com/
https://github.com/edgeimpulse/example-signal-from-rgb565-frame-buffer
https://github.com/edgeimpulse/example-signal-from-rgb565-frame-buffer

	Abstract
	Contents
	Introduction
	Background
	Aim
	Research questions
	Limitations

	Related Work
	The Modern Camera Trap
	Advancements in Camera Trap Technology
	Previous Work at LiU
	2020 Tydén and Olsson
	2021 Forslund and Arnesson
	2022 Olsson and Linder

	Hardware
	Internet of Things
	Microcontroller Unit
	IoT Connectivity in Camera Traps
	Tiny Machine Learning in Camera Traps

	MCUs for Camera Traps
	ESP32 M5Stack Timercam
	Sony Spresence Camera
	LILYGO T-Camera S3 ESP32-S3 ESP32-Cam
	LILYGO T-SIM7000G ESP32

	Hardware Evaluation
	Storage Capacity
	Working Memory (RAM) Usage
	Compatibility
	Connectivity
	Camera

	Outcome of MCU Evaluation

	Software
	Machine Learning
	Deep Learning & Neural Networks

	Convolutional Neural Networks
	MobileNetV2

	Object Detection
	Region with CNN features
	You Only Look Once version 5
	Single Shot MultiBox Detector
	Faster Objects, More Objects

	Active Learning
	Transfer Learning

	Model Training
	F1 Score

	Implementation
	System Overview
	Training Pipeline
	Data Collection
	ML - Design and Training

	Network Integration
	Server Hosting
	Web Server
	Developer Dashboard
	Database

	Active Learning Pipeline
	Deployment
	Backend Pipeline for Compiling C++ Firmware

	Implementation on Edge Devices
	Classification on the Edge Device
	Update & Memory Management
	Energy Performance & Power Management

	Results
	Model Performance
	Evaluation of FOMO MobileNetV2 0.1 in Image Classification
	SSD MobileNetV2 Classification
	YOLOv5 Classification

	Active Learning Pipeline Performance
	Camera Performance

	Discussion
	MCU Evaluation
	Camera Sensor
	Connectivity Options
	Additional Sensors

	Model Performance
	Model Evaluation
	Image Quality and Its Limitations
	Annotation Improvement

	Deployment
	Edge Impulse Studio
	The Work in a Wider Context
	Camera Trap as Hunting Tool
	Scalability and Adaptability

	Conclusion
	Research Questions
	Future Work

	Product Page
	Bibliography

