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Abstract—Network-centric multitarget tracking under com-
munication constraints is considered, where dimension-reduced
track estimates are exchanged. Previous work on target tracking
in this subfield has focused on fusion aspects only and derived
optimal ways of reducing dimensionality based on fusion perfor-
mance. In this work we propose a novel problem formalization
where estimates are reduced based on association performance.
The problem is analyzed theoretically and problem properties are
derived. The theoretical analysis leads to an optimization strategy
that can be used to partly preserve association quality when
reducing the dimensionality of communicated estimates. The ap-
plicability of the suggested optimization strategy is demonstrated
numerically in a multitarget scenario.

Index Terms—Network-centric estimation, target track-
ing, track-to-track association, communication constraints,
dimension-reduced estimates.

I. INTRODUCTION

The multitarget tracking (MTT, [1]) problem is a well-
studied topic. Two popular classical MTT methods are the
global nearest neighbor (GNN) tracker and the multiple hy-
pothesis tracker [2, 3]. In the last few decades different MTT
methods based on random finite sets have emerged that provide
a solid mathematical framework for the multitarget Bayesian
filter, see, e.g., [4, 5]. A key feature of all of these MTT
algorithms is how they deal with the association problem
where measurements are assigned to existing tracks. Asso-
ciation problems also arise in network-centric MTT where
multiple agents estimate a common set of targets and the
communicated tracks must be associated with local tracks.
This is a track-to-track association problem. In addition, the
communication channel is a limited resource and in certain
situations the exchanged data must be reduced [6, 7], which
in general have a negative impact on the association quality.

A network-centric MTT scenario with dimension-reduced
estimates is illustrated in Fig. 1a. The problem of fusing
dimension-reduced measurements and estimates have been
studied before: In [8–10] it is done in centralized and dis-
tributed configurations, and in [11–13] it is done for decen-
tralized sensor networks. However, all of these papers assume
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(b) Schematics of the considered multitarget tracking problem.

Fig. 1. A multiagent multitarget tracking scenario where agent 2 trans-
mits dimension-reduced estimates to agent 1. The colored numerated
circles in (a) represent agents. The black symbols represent targets
and the corresponding colored symbols and ellipses are estimates.
Before fusing received dimension-reduced estimates, agent 1 must
associate these estimates with its local estimates. The scope of this
paper is highlighted by the red dashed box in (b).

that the association process, see Fig. 1b, can be neglected
or is trivially solved such that the dimension-reduction can
be optimized for fusion performance only. The corresponding
association problem—where the dimension-reduction takes
data association into account—remains untreated.

In this paper we deal with the association problem in
network-centric MTT with dimension-reduced estimates. The
main goal is to find a way to compute the dimension-reduction
such that satisfactory association performance is obtained. This
problem is formalized and the relationship to fusion optimal
dimension-reduction is discussed. As a result of a problem
analysis an optimization strategy is suggested for computing
dimension-reductions that yield good association performance.
The contributions are listed below.
• We propose a novel formalization of the association

problem in network-centric MTT with dimension-reduced
estimates. This problem formulation essentially involves a
GNN tracker and computation of the dimension-reduction
such that satisfactory association quality is obtained.



• The proposed problem is analyzed theoretically and prob-
lem properties are derived.

• Based on the problem analysis we suggest an optimiza-
tion algorithm for the dimension-reduction computation.

II. NETWORK-CENTRIC TARGET TRACKING USING
DIMENSION-REDUCED ESTIMATES

In this section we introduce the studied multiagent MTT
problem. The outlined estimation model forms the basis for
fusion related operations and is mainly related to previous
work. The provided association model is fundamental for the
contributions of this paper. We give a motivating example to
illustrate why association properties should be taken into ac-
count when reducing dimensionality. The considered problem
is formalized at the end.

A. Preliminaries

Let Rn and Rm×n denote the set of all real-valued n-
dimensional vectors and the set of all real-valued m × n
matrices, respectively. Let Sn+ and Sn++ denote the set of all
symmetric positive semidefinite n× n matrices and the set of
all symmetric positive definite n× n matrices, respectively.

Targets and estimates are distinguished by subscript (i), e.g.,
the state of the ith target is x(i) ∈ Rn. We use boldface to
express random variables and normal face for a realization
of the random variable, e.g., y is a realization of y. The
expectation operator is denoted by E(·). A random variable
y is said to be Gaussian distributed with mean µ = E(y) and
covariance matrix Σ = E(y − µ)(y − µ)T if y ∼ N (µ,Σ).

B. Estimation Model

We consider two agents. Let

y1(i) = x(i) + v1(i), v1(i) ∼ N (0, R1(i)), (1a)
y2(i) = x(i) + v2(i), v2(i) ∼ N (0, R2(i)), (1b)

be the local estimates of x(i) in agent 1 and agent 2, respec-
tively. For instance, y1(i) is the state estimate and R1(i) the
corresponding covariance of the ith target in agent 1. All cross-
covariances R12(i) = E(v1(i)v

T
2(i)) are assumed to be zero1.

A dimension-reduced estimate is given by

yΨ(i) = Ψ(i)y2(i), RΨ(i) = Ψ(i)R2(i)Ψ
T
(i), (2)

where Ψ(i) ∈ Rm×n with m < n and rank(Ψ(i)) = m.
The sets of local estimates of agent 1 and agent 2 are

Y1 =
{

(y1(1), R1(1)), . . . , (y1(N), R1(N))
}
, (3a)

Y2 =
{

(y2(1), R2(1)), . . . , (y2(N), R2(N))
}
. (3b)

Agent 1 and agent 2 track exactly the same targets and hence
have the same number of tracks. Moreover, it is assumed
that the elements of Y1 and Y2 are labeled according to
x(1), . . . , x(N), e.g., (y1(i), R1(i)) and (y2(i), R2(i)) are esti-
mates of the same target x(i). This might sound a bit coun-
terintuitive but the assumption is not a restriction since here

1In network-centric MTT estimates are typically correlated to some degree.
Here it is assumed that estimates have been decorrelated before they are
communicated, for instance by using the techniques in [13, 14].

Algorithm 1. Fusion Optimal Ψ(i)

Input: R1(i), R2(i) ∈ Sn++ and m
1: Let Q(i) = R2

1(i) and S(ii) = R1(i) +R2(i).
2: Compute λ1 ≤ · · · ≤ λn and z1, . . . , zn as the solution to

Q(i)z = λS(ii)z,

3: Compute V =
[
v1 . . . vm

]
, where vTavb = δab, such that

zn, . . . , zn−m+1 span the same subspace as the columns of V .
4: Compute V TR2V = UΣUT and let Ψ(i) = UTV T.

Output: Ψ(i)

the actual correct association result is assumed to be known,
as described later, and the task is to compute Ψ(1), . . . ,Ψ(N).
We also define

YΨ =
{

(yΨ(1), RΨ(1)), . . . , (yΨ(N), RΨ(N))
}
. (4)

Since R12(i) = 0, (y1(i), R1(i)) and (yΨ(i), RΨ(i)) are mean
square error (MSE) optimally fused according to [11]

x̂(i) = P(i)

(
R−1

1(i)y1(i) + ΨT
(i)R

−1
Ψ(i)yΨ(i)

)
, (5a)

P(i) =
(
R−1

1(i) + ΨT
(i)R

−1
Ψ(i)Ψ(i)

)−1

. (5b)

This fusion rule is denoted Kalman fuser (KF). For KF, a
fusion optimal2 Ψ(i) is computed using Algorithm 1 [11].

C. Association Model

The association problem is formulated as a linear assign-
ment problem [15]. In case of full estimates, the assignment
matrix is

Afull =

d
2
(11) . . . d2

(1N)

...
. . .

...
d2

(N1) . . . d2
(NN)

 , (6)

where d2
(ij) is a Mahalanobis distance (MD) given by

d2
(ij) = ȳT(ij)S

−1
(ij)ȳ(ij), (7a)

ȳ(ij) = y1(i) − y2(j), (7b)
S(ij) = R1(i) +R2(j), (7c)

since E(v1(i)v
T
2(j)) = 0. Similarly, the dimension-reduced

assignment matrix Ared is defined as

Ared =

 r
2
(11) . . . r2

(1N)

...
. . .

...
r2
(N1) . . . r2

(NN)

 , (8)

where r2
(ij) is an MD given by

r2
(ij) = (Ψ(j)y1(i) − yΨ(j))

T
(

Ψ(j)R1(i)Ψ
T
(j) +RΨ(j)

)−1

× (Ψ(j)y1(i) − yΨ(j))

= ȳT(ij)Ψ
T
(j)

(
Ψ(j)S(ij)Ψ

T
(j)

)−1

Ψ(j)ȳ(ij). (9)

2Fusion optimal in the sense that this Ψ(i) yields the smallest MSE when
fusing (y1(i), R1(i)) and (yΨ(i), RΨ(i)).
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(b) Fusion and association loss functions w.r.t. α.

Fig. 2. Motivating example. Two agents estimate two targets. By construction Ψ(1) = Ψ(2) = Ψ, where Ψ(α) =
[
cosα sinα

]
and

α ∈ [0◦, 180◦]. The dashed lines in (a) represent projections of the state estimates along Ψ(0◦) and Ψ(90◦). The effect of Ψ on the fusion
and association performance is evaluated by varying α. The fusion loss function is tr(P(i)) and the association loss function is tr(ΠAred),
with J0 and Je defined as the losses corresponding to correct and incorrect assignment, respectively. The fusion optimal Ψ is given by
α? = 90◦. At α?, Ψy1(1) = Ψy2(2) and Ψy1(2) = Ψ2(1) which implies Je = 0 < J0.

Agent 1 receives estimates from agent 2 and solves the asso-
ciation problem using the following optimization formulation.
Let PN be the set of all N ×N permutation matrices, i.e.,

PN =
{

Π ∈ RN×N
∣∣ [Π]ij ∈ {0, 1},ΠΠT = I

}
. (10)

A permutation matrix Π ∈ PN assigns exactly one estimate
in Y1 to each of the estimates in YΨ. The optimal Π for a
certain assignment matrix A is computed using [15]

minimize
Π

tr(ΠA)

subject to Π ∈ PN .
(11)

In this formulation correct assignment is given by Π0 = I .

Remark 1. Let Z = [zij ], where zij ∈ {0, 1}. The problem in
(11) is a matrix version of

minimize
Z

zij [A]ij

subject to
∑
i

zij = 1, ∀i,∑
j

zij = 1, ∀j.

This formulation is more common in the MTT literature [16].
However, here we use (11).

D. Motivating Example

We will now illustrate how the choice of Ψ(i) affects the
association performance. Consider the scenario in Fig. 2a,
where N = 2, n = 2 and m = 1. Each agent has a local
estimate of each of the two targets as defined in Fig. 2a, where
R1(1) = R1(2) and R2(1) = R2(2). Assume

Ψ(1) = Ψ(2) = Ψ =
[
cosα sinα

]
,

where α is an angle. Based on this parametrization it is
possible to define Ared as a function of α. Let

J0 = tr(ΠAred)|Π=Π0
= r2

(11) + r2
(22),

Je = tr(ΠAred)|
Π=[ 0 1

1 0 ] = r2
(12) + r2

(21),

be the cost corresponding to correct and incorrect assignment,
respectively. By construction J0, Je and tr(P(1)) = tr(P(2))
are functions of α.

The fusion and association performance with respect to
(w.r.t.) α is evaluated by computing J0, Je and tr(P(i)) for
each α ∈ [0◦, 180◦]. The results are shown in Fig. 2b. The
fusion optimal Ψ corresponds to α? = 90◦. However, this Ψ
lies in the interval where J0 > Je which would imply incorrect
assignment. To have correct assignment in the dimension-
reduced case while maintaining good fusion performance the
selected Ψ should be such that it minimizes tr(P(i)) subject
to J0 < Je.

E. Problem Formalization
Assume the targets x(1), . . . , x(N) are well separated such

that solving the assignment problem in (11) with A = Afull
yields Π0. Moreover, assume that agent 2 has no knowl-
edge about Y1. The problem is, at agent 2, to compute
Ψ(1), . . . ,Ψ(N) ∈ R1×n such that when agent 1 solves (11)
with A = Ared the solution Π is as close as possible to Π0.
In other words, since it in general is not possible to obtain
correct association in the dimension-reduced case, we want to
compute Ψ(1), . . . ,Ψ(N) in such a way that the association
is not degraded too much. The focus is on the case m = 1.
However, some of the results are given for arbitrary m ≥ 1.
Remark 2. The considered problem is not the common as-
sociation problem of network-centric MTT where received
tracks are associated with local tracks and correct assignment
Π0 is unknown. Here, the correct assignment is known by
construction and hence, for the presentation, we have the
freedom of defining Afull and Ared such that Π0 = I .



III. PROBLEM ANALYSIS

In this section we examine properties of the considered
association problem. Sufficient conditions for correct assign-
ment are given. An example is used to show that the problem
is further complicated by inherent randomness. Statistical
properties of the problem are derived at the end to be used
in the subsequent section.

A. A Sufficient Condition for Correct Assignment

Consider now an oracle’s perspective. The example of
Sec. II-D illustrate an important property of the problem. That
is, for Ψ(j) 6= 0 and ȳ(ij) 6= 0

Ψ(j) ⊥ ȳT(ij) ⇐⇒ Ψ(j)ȳ(ij) = 0,

where ȳ(ij) = y1(i) − y2(j). From this it can be inferred that
for the association we want

Ψ(j)ȳ(jj) = 0 ∧ i 6= j =⇒ Ψ(j)ȳ(ij) 6= 0, (12)

where ∧ is logical and, since in this case r2
(jj) = 0 and r2

(ij) >
0 if i 6= j. A sufficient condition for correct assignment is
hence that (12) holds for all j as this would imply tr(Ared) =
0. However, by assumption agent 2 has no knowledge about Y1

and hence without further knowledge agent 2 cannot compute
Ψ(j) such that (12) is satisfied.

B. Problem Properties

In the example of the previous section the fusion optimal
Ψ gave incorrect association. Luckily, it is not generally the
case that the fusion optimal Ψ yields incorrect assignments.
Unfortunately, it is impossible to say something general about
tradeoffs between fusion and association performance. The
main reasons for this are described below.

Consider ΨT
(j) ∈ Rn, and let Q(j) = R2

1(j) ∈ Sn++ and
S(jj) = R1(j) + R2(j) ∈ Sn++. In the fusion case the optimal
Ψ(j) solves [11]

maximize
‖Ψ(j)‖=1

Ψ(j)Q(j)Ψ
T
(j)

Ψ(j)S(jj)Ψ
T
(j)

. (13)

Hence the fusion optimal Ψ(j) for a certain target x(j) can be
solved isolated from the other targets. This is not true in the
association problem where optimal Ψ(j) for a certain target
x(j) depends on all estimates in both Y1 and Y2 through Ared.

A slightly less restrictive sufficient condition for correct
assignment, cf. (12), is that for each j

r2
(jj) < r2

(ij), ∀i 6= j. (14)

If this condition holds nearest neighbor [16] association yields
the same results as GNN association. The condition in (14) can
also be expressed as [11]

Ψ(j)ȳ(jj)ȳ
T
(jj)Ψ

T
(j)

Ψ(j)S(jj)Ψ
T
(j)

<
Ψ(j)ȳ(ij)ȳ

T
(ij)Ψ

T
(j)

Ψ(j)S(ij)Ψ
T
(j)

, ∀i 6= j, (15)

Ψ

realization 1

Ψ

realization 2

Fig. 3. Two noise realizations of the same scenario. The target states
and the covariances R1(1) = R1(2) and R2(1) = R2(2) are the same
in both realizations. What differs are the state estimates y1(1), y2(1),
y1(2) and y2(2). In realization 1 correct assignment is obtained while
in realization 2 incorrect assignment is obtained.

where each fraction is structurally similar to the fraction in
(13). However, a complication compared to the fusion case is
that r2

(ij) is a realization of a random variable

r2
(ij) = ȳT(ij)Ψ

T
(j)

(
Ψ(j)S(ij)Ψ

T
(j)

)−1

Ψ(j)ȳ(ij),

where ȳ(ij) = y1(i)−y2(j). Hence, assuming that agent 2 has
access to R1(i) and a good estimate of x(i), the fusion optimal
Ψ(i) could be computed while it would still be difficult to
predict r2

(ij) due to randomness. Fig. 3 shows two possible
realizations of each of the random variables

y1(1) = x(1) + v1(1), y2(1) = x(1) + v2(1),

y1(2) = x(2) + v1(2), y2(2) = x(2) + v2(2),

where v1(1),v1(2) ∼ N (0, R1) and v2(1),v2(2) ∼ N (0, R2).
Since the covariances are the same in each case and since by
assumption R1(1) = R1(2) = R1 and R2(1) = R2(2) = R2 we
have that fusion optimal Ψ(j) satisfy Ψ(1) = Ψ(2) = Ψ in both
cases. Computing Ared(Ψ) in realization 1 and realization 2
yields

A1 =

[
0.05 1.01
0.31 0.05

]
, A2 =

[
0.11 0.01
0.01 0.11

]
,

respectively. In realization 1 we will hence have correct
assignment Π0 while in realization 2 the incorrect combination
is chosen. The example illustrates that, due to the inherent
randomness, it is in general impossible to decide if a fusion
optimal Ψ(j) will imply correct or incorrect assignment with-
out knowing the actual realization.

C. Statistical Properties

Assume m ≥ 1. By construction

Ψ(j)ȳ(ij) ∼ N
(

Ψ(j)x̄(ij),Ψ(j)S(ij)Ψ
T
(j)

)
,

where x̄(ij) = x(i) − x(j). Hence [17]

r2
(ij) ∼

{
χ2
m, if i = j,

χ2
m,ν , if i 6= j,

(16)

where χ2
m is the central chi-squared distribution with m

degrees of freedom, and χ2
m,ν is the noncentral chi-squared



distribution, where ν is the noncentrality parameter. The
expectation value is

E
(
r2

(ij)

)
= m+ ν(ij), (17)

where ν(ij) = x̄T(ij)Ψ
T
(j)

(
Ψ(j)S(ij)Ψ

T
(j)

)−1

Ψ(j)x̄(ij) is the
noncentrality parameter. The variance is given by [17]

var
(
r2

(ij)

)
= 2m+ 4ν(ij). (18)

One conclusion is that as ν(ij) increases the relative effect
of randomness decreases since E(r2

(ij)) scales as ν(ij) while√
var(r2

(ij)) only scales as √ν(ij). This result is important and
is used in the solution proposed in the next section.

IV. PRESERVING CORRECT ASSIGNMENT WITH
DIMENSION-REDUCED ESTIMATES

In this section a method for preserving high association
quality is suggested. Based on the analysis of Sec. III, an
optimization formulation is provided for computation of Ψ(j).
This leads to the proposed descent based optimization strategy,
where a key ingredient and contribution is an adaptive step
size. At the end we provide a numerical example and some
comments about the optimization strategy.

A. Approximated Assignment Matrix

The proposed solution is based on the analysis of the
previous section. In particular, we estimate r2

(ij) using E(r2
(ij))

in (17). To compute r2
(ij) agent 2 must have access to both

(y1(i), R1(i)) and (y2(j), R2(j)), but (y1(i), R1(i)) is unknown
to agent 2. An approximation to (y1(i), R1(i)) which is already
locally available is (y2(i), R2(i)). Let

r̂2
(ij) = ŷT(ij)Ψ

T
(j)

(
Ψ(j)Ŝ(ij)Ψ

T
(j)

)−1

Ψ(j)ŷ(ij), (19)

where ŷ(ij) = y2(i) − y2(j) and Ŝ(ij) = R2(i) + R2(j) such
that ŷ(ij) ∼ N (x̄(ij), Ŝ(ij)). This is consistent with r2

(ij) in
the sense that

E
(
r̂2

(ij)

)
=

{
m, if i = j,

m+ x̄T(ij)Ψ
T
(j)

(
Ψ(j)Ŝ(ij)Ψ

T
(j)

)−1

Ψ(j)x̄(ij), if i 6= j.

which is identical to (17) except that S(ij) is replaced by Ŝ(ij).
We then define the approximated assignment matrix as

Âred =

 r̂
2
(11) . . . r̂2

(1N)

...
. . .

...
r̂2
(N1) . . . r̂2

(NN)

 . (20)

B. Proposed Solution

Since we only have access to an approximation Âred of
Ared, Ψ(j) is computed based on the sufficient condition in
Sec. III, cf. (14). The condition is utilized because we want to
have some marginal when choosing Ψ(j), to avoid that r2

(ij)

is zero or very small if i 6= j. Moreover, if Ψ(j) satisfies this
sufficient condition there is no need to take into account the
other Ψ(i), i 6= j when computing Ψ(j)—correct assignment
is obtained regardlessly.

Consider now a certain j and Ψ(j). Let

fi(z) =
zTŶ(ij)z

zTŜ(ij)z
, Ŷ(ij) = ŷ(ij)ŷ

T
(ij), (21)

be defined for all i 6= j. To maximize fi(z) simultaneously
for all i is in general impossible since this is a multiobjective
optimization problem. However, we can consider a worst-case
approach and maximize the minimum fi(z). This implies a
maximin formulation where Ψ(j) is computed using

maximize
Ψ(j)

(
min
i6=j

fi(Ψ
T
(j))

)
. (22)

The problem in (22) is a nonconvex problem involving opti-
mization over a finite set of quadratic form ratios. The problem
is difficult to solve in general and therefore the following
optimization strategy is proposed.

C. Optimization Strategy

For each individual fi(z), the z that maximizes fi(z) is
known to be given by the eigenvector u that corresponds to
the maximum eigenvalue λ of [11]

Ŷ(ij)u = λŜ(ij)u. (23)

As Ŷ(ij) ∈ Sn+ and rank(Ŷ(ij)) = 1 this eigenvalue problem
has only one strictly positive eigenvalue λ for which the
corresponding eigenvector is denoted by ui. Since ui in
general differ for different i, it is not possible to maximize
all fi(z) simultaneously. However, for a certain z we know
the values of all fi(z) and hence are able to compute

i∗ = arg min
i 6=j

fi(z). (24)

To increase fi∗ it is suggested that

z ← z + αui∗ , (25)

where α resembles the step size to traverse along ui∗ . Using
a too large |α| there is a risk that fi for some other i 6= i∗

is severely decreased. Too small |α| means slow convergence.
From Proposition 3 we have that a first-order approximation
of fi evaluated at z in the direction of αui∗ is given by

fi(z + αui∗) ≈ fi(z) + 2α
uTi∗(Ŷ(ij) − fi(z)Ŝ(ij))z

zTŜ(ij)z
. (26)



We proceed by solving

fi(z) + 2α
uTi∗(Ŷ(ij) − fi(z)Ŝ(ij))z

zTŜ(ij)z

= fi∗(z) + 2α
uTi∗(Ŷi∗j − fi(z)Ŝi∗j)z

zTŜi∗jz
, (27)

for each i 6= j, i∗. This yields N − 2 solutions for α, where
some might be negative and other positive. Since the task is
to increase fi∗ while not decreasing the other fi too much, α
is chosen such that |α| is the smallest among all the ones that
satisfy

α
uTi∗(Ŷi∗j − fi(z)Ŝi∗j)z

zTŜi∗jz
> 0. (28)

This last condition is introduced to ensure that the correct sign
is chosen for α.

The operations in (24)–(28) are performed iteratively until
some termination criterion is met. The optimization algorithm
is summarized in Algorithm 2.

Proposition 3. Let u, z ∈ Rn, Y, S ∈ Rn×n and f(z) =
(zTY z)/(zTSz), where z 6= 0 and rank(S) = n. Then a first-
order approximation of f(z + αu), for any scalar α, is given
by

f(z + αu) ≈ f(z) + 2α
uT(Y − f(z)S)z

zTSz
.

Proof. From [18] we have

∂f(z)

∂z
= −2SzzTY z

(zTSz)2
+

2Y z

zTSz
= −2f(z)Sz

zTSz
+

2Y z

zTSz

= 2
(Y − f(z)S)

zTSz
z.

A first-order approximation of f(z + αu) is given by

f(z + αu) ≈ f(z) + αuT
∂f(z′)

∂z′

∣∣∣∣
z′=z

= f(z) + 2α
uT(Y − f(z)S)z

zTSz
.

D. Example

As an example of the proposed optimization strategy, con-
sider a scenario with N = 3 and n = 4. Assume j = 3. Since
N = 3 we consider two loss functions

f1(z) =
zTŶ(13)z

zTŜ(13)z
, f2(z) =

zTŶ(23)z

zTŜ(23)z
.

The multiobjective problem of maximizing f1 and f2 simul-
taneously is not solvable, hence we will use the maximin
approach and Algorithm 2. The original Algorithm 2 uses an
adaptive step size α ∈ [αmin, αmax]. We will compare this to
the same algorithm with: (i) a small fixed step size α = αmin,
and (ii) a large fixed step size α = αmax.

The optimization results for the three cases, which all use
the same initial vector z0, are shown in Fig. 4 for kmax = 25

Algorithm 2. Association Quality Based Ψ(j)

Input: Y2, j, αmin and αmax

1: For each i 6= j: Let Ŷ(ij) = ŷ(ij)ŷ
T
(ij), Ŝ(ij) = R2(i) + R2(j)

and fi(z) = (zTŶ(ij)z)/(z
TŜ(ij)z). Let ui be the eigenvector

corresponding to the maximum eigenvalue λi of Ŷ(ij)u =

λŜ(ij)u.
2: Let k = 0 and z0 ← z0/‖z0‖, where z0 =

∑N
i=1,i 6=j

1
λi
ui.

3: Let k ← k + 1. Compute

i∗ = arg min
i 6=j

fi(zk−1).

4: For each i 6= j: Define

f̂i(zk−1 + αui∗)

= fi(zk−1) + 2α
uTi∗(Ŷ(ij) − fi(zk−1)Ŝ(ij))zk−1

zTk−1Ŝ(ij)zk−1

.

5: For each i 6= j, i∗: Solve for α using f̂i = f̂i∗ . Store the
different α in a vector a.

6: If

α
uTi∗(Ŷi∗j − fi(zk−1)Ŝi∗j)zk−1

zTk−1Ŝi∗jzk−1

> 0,

then let αk be given by the minimum positive element of a.
Otherwise, let αk be given by the maximum negative element of
a. If |αk| < αmin, then let αk ← sign(αk)αmin. If |αk| > αmax,
then let αk ← sign(αk)αmax.

7: Let zk ← zk/‖zk‖, where zk = zk−1 + αkui∗ .
8: Terminate with Ψ(j) = zTk if a predefined stopping criterion is

met. Otherwise, go back to step 3.
Output: Ψ(j)

iterations. In Fig. 4a f1 is plotted against f2. The yellow dots
resemble f1 and f2 at randomly sampled z. Fig. 4b visualizes

fmin = min (f1, f2) ,

for each iteration k = 1, 2, . . . , kmax. In this case the adaptive
step size provides the best results. The small step size gives
slow convergence while the large step oscillates as it becomes
inaccurate due to the large step size. It cannot be concluded if
Algorithm 2 have reached a global maximum or a stationary
point.

E. Comments

In essence the proposed optimization strategy in Algo-
rithm 2 is an iterative descent based optimization method,
where the descent directions are chosen from a finite set of
predefined directions. In this interpretation step 4–6 corre-
spond to a backtracking line search where the step size α
is selected. Algorithm 2 takes αmin > 0 as an input to avoid
getting stuck at local minima, and αmax > αmin such that the
linear approximation given by (26) does not become too poor.
The stopping criterion used in this paper is k > kmax, i.e., the
algorithm terminates after kmax iterations.

It is possible to include more sophisticated optimization
techniques for better performance, but such techniques are
out of the scope in this paper. It should be emphasized that
there are no guarantees that Algorithm 2 converges to a global
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Fig. 4. Example of the proposed optimization strategy with N = 3
and n = 4. Algorithm 2 is compared to the same algorithm but
with fixed step size. The black circle marks the common initial
value z0. The squares mark the final point of each case. Yellow
dots resemble f1 and f2 evaluated at randomly generated z. A small
step size yields slow convergence. A large step size yields inaccurate
results but possibly a higher convergence rate. The adaptive step size
outperforms the other two.

maximum w.r.t. the problem in (22). In fact, simulations verify
that in general only local maxima are reached.

V. NUMERICAL EVALUATION

In this section we provide a numerical evaluation of Algo-
rithm 2. The association performance when computing Ψ(j)

using Algorithm 2 is compared to the case when Ψ(j) is
computed using Algorithm 1.

A. Simulation Specification

A target tracking scenario with N = 10 targets is assumed.
It is assumed that the dimensionality n = 6 which we
here interpret as a constant acceleration model in two spatial
dimensions [19]. For each target x(i) a pair of covariances
R1(i) and R2(i) are defined and are held fixed throughout the
simulations. A Monte Carlo (MC) approach is used, where in
each MC run the state estimates y1(i) and y2(i) are sampled
using R1(i) and R2(i), respectively, and the model in (1).
We also use a scaling factor c that scales the two spatial
uncertainty components. Hence, for larger c the association

R1(i)

R2(i)

Fig. 5. Numerical scenario. The targets are represented by black
dots. The ellipse around a target illustrates the uncertainty of the
corresponding estimate in the two spatial dimensions.

problem becomes more difficult to solve, and for smaller c
the association problem becomes easier to solve. The assumed
target tracking scenario is depicted in Fig. 5 with c = 1.

To evaluate association performance the incorrect assign-
ment rate qe is computed for a certain c as the mean over all
MC runs of the number of incorrect assignments divided by
N . We compute qe for the following cases:
• (Y1,Y2): The full estimate configuration where agent 1

receives receives Y2 from agent 2.
• (Y1,YΨ) + Ψ(j) using Alg. 1: A dimension-reduced

configuration where agent 1 receives YΨ from agent 2
and Ψ(j) is computed using Algorithm 1. In this case it
is assumed that agent 2 has access to Y1 such that fusion
optimal Ψ(j) can be computed.

• (Y1,YΨ) + Ψ(j) using Alg. 2: A dimension-reduced
configuration where agent 1 receives YΨ from agent 2
and Ψ(j) is computed using the proposed optimization
strategy of Algorithm 2.

The standard deviation of qe is also computed.
Remark 4. Since agent 1 needs Ψ(1), . . . ,Ψ(N) to be able to
fuse the estimates in YΨ with its local estimates, agent 2 must
also include Ψ(1), . . . ,Ψ(N) when transmitting YΨ. Function-
ality for encoding Ψ(j) is described in [12] with MATLAB®

code available at https://gitlab.com/robinforsling/dtt/.

B. Results
The results of the numerical evaluation are visualized in

Fig. 6, where qe is plotted against c. For each value of c, M =
1 000 MC runs are evaluated. The quantity qe is computed
in the same realizations of Y1 and Y2 for each of the cases
described previously. The shaded areas in the plot resemble
1-σ confidence intervals.

Perfect association is maintained in the full estimate case for
all values of c. The approach that utilizes Algorithm 2 clearly
outperforms the approach that computes Ψ(j) for optimal
fusion performance.

VI. CONCLUDING REMARKS

The association problem for multitarget tracking in a
dimension-reduced context has been proposed. In it, the track
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Fig. 6. Results of the numerical evaluation. The incorrect assignment
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estimates to be communicated from one agent are dimension-
reduced with respect to association quality in the agent
that receives the dimension-reduced estimates. The implied
problem was analyzed theoretically where it was illustrated
that the problem is versatile and complex, and where no
general solutions exists. An optimization strategy has been
suggested for computing dimension-reduced estimates while
preserving association performance. The optimization strategy
was demonstrated using a numerical evaluation in which
the suggested method outperformed a method that reduces
dimensionality based on optimal fusion performance.

Possible future extensions include a generalization of Algo-
rithm 2 for the m > 1 case, and a more general configuration
where agents have different sets of tracks. Another possibility
is to consider a setting where there is partly knowledge
available about the local estimates of the agent that receives
the dimension-reduced estimates. A joint problem formula-
tion which includes both fusion and association performance
simultaneously is also of interest.
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