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Distributed Point-Mass Filter with Reduced Data Transfer Using
Copula Theory

Jakub Matoušek, Jindřich Dunı́k and Robin Forsling

Abstract— This paper deals with distributed Bayesian state
estimation of generally nonlinear stochastic dynamic systems. In
particular, distributed point-mass filter algorithm is developed.
It is comprised of a basic part that is accurate but data
intense and optional step employing advanced copula theory.
The optional step significantly reduces data transfer for the
price of a small accuracy decrease. In the end, the developed
algorithm is numerically compared to the usually employed
distributed extended Kalman filter.

Keywords: Distributed estimation, point-mass filter,
covariance intersection, data reduction.

I. INTRODUCTION

Distributed estimation of a dynamic state in a linear
Gaussian setting is a well-studied topic. Common applica-
tions include target tracking where track estimates are fused
into an improved estimate. In many cases, the Gaussian
assumption does not hold and arbitrary probability density
functions (PDFs) need to be accounted for. In such problems
Bayesian recursion relations (BRRs, [1]) is an important
methodology for filtering the dynamic state. BRRs can be
realized using the point-mass filter (PMF)1, see, e.g., [2]–
[5]. An issue with implementing the BRRs scheme for
distributed state estimation is the large amount of data that
require to be transfered. This is particularly true in case
of the PMF. For practical reasons it is therefore vital to
investigate how to reduce data transfer for such distributed
PMF. Another complicating factor in distributed estimation
is cross-correlation between estimates, which is unknown in
many cases [6].

Consider two Gaussian distributed estimates p1(x) =
N (x̂1,P1) and p2(x) = N (x̂2,P2), where N (x̂,P) is a
Gaussian distribution with mean x̂, and covariance P. The
P1 and P2 resp. their σ-ellipses are depicted in Fig. 1(a)
for 2D case. To fuse these estimates exactly, the cross-
correlations need to be known. If unknown, then covariance
intersection (CI, [7]) is a popular linear fusion method. In
CI the covariance matrix of the fused estimate is computed
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1Sometimes called histogram, or grid based filter.

P1

P1

p1 p2

Pf ,ω = 0.5 pf ,ω = 0.25

pf ,ω = 0.5

pf ,ω = 0.75

(a) (b)

Fig. 1. Distributed estimate fusion. In (a) two Gaussian estimates
are fused using CI despite cross-correlations being unknown. CI
cannot be used in (b) where two non-Gaussian PDFs are fused.

as Pf =
󰀓
ωP−1

1 + (1− ω)P−1
2

󰀔−1

, where ω ∈ [0, 1]. One
such Pf is plotted in Fig. 1(a).

For non-Gaussian PDFs, the original version of the CI is
not applicable. A one-dimensional example of this case is
illustrated in Fig. 1(b), where two PDFs p1(x) and p2(x)
are to be fused. To handle unknown conditional probabil-
ities between p1(x) and p2(x), one possibility is to use a
generalization of the CI where the fused PDF is given by
pf (x) ∝ p1(x)

ω · p2(x)1−w with ω ∈ [0, 1] [8]. Several
pf corresponding to different values of ω are illustrated
in Fig. 1(b). As representation of a general PDF requires
many parameters, which is certainly true for the PDFs in
the form of the point-mass density (PMD) used by the PMF,
distributed fusion of general PDFs requires some kind of data
transfer reduction technique. This problem has earlier been
studied in the linear Gaussian case [9], [10]. However, in the
general fusion context this problem remains untreated.

In this paper a distributed PMF is proposed. Data transfer
reduction is enabled based on copula theory with a marginal
degradation of the performance [11]. The usability of the
proposed method is illustrated using simulations.

II. SYSTEM DESCRIPTION, STATE ESTIMATION

Following the discrete-time state-space model of a nonlin-
ear stochastic dynamic system with additive noises

xk+1 = fk(xk,uk) +wk, (1a)
zk = hk(xk) + vk, (1b)



is considered, where the vectors xk ∈ Rnx , uk ∈ Rnu , and
zk ∈ Rnz represent the unknown state of the system and the
known input and measurement at time instant k, respectively.
The state and measurement functions fk : Rnx×nu → Rnx

and hk : Rnx → Rnz are supposed to be known vector
transformations. Particular realizations of the state and mea-
surement noises wk and vk are unknown, but their PDFs,
i.e., the state noise PDF p(wk) and the measurement noise
PDF p(vk), are supposed to be known and independent of
the known initial state PDF p(x0).

A. Bayesian State Estimation and Recursive Relations

The goal of the state estimation in the Bayesian framework
is to find the filtering PDF of the state xk conditioned on all
measurements zk = [z0, z1, . . . , zk] up to the time instant k,
i.e., the conditional PDF p(xk|zk), ∀k, is sought.

The general solution to the state estimation is given by the
BRRs for the conditional PDFs2 computation [12]

p(xk|zk) =
p(xk|zk−1)p(zk|xk)

p(zk|zk−1)
, (2)

p(xk|zk−1) =

󰁝
p(xk|xk−1)p(xk−1|zk−1)dxk−1, (3)

where p(xk|zk−1) is the one-step predictive PDF computed
by the Chapman-Kolmogorov equation (3) and p(xk|zk)
is the filtering PDF computed by the Bayes’ rule (2).
The PDFs p(xk|xk−1) and p(zk|xk) are the state transi-
tion PDF obtained from (1a) and the measurement PDF
obtained from (1b), respectively. The PDF p(zk|zk−1) =󰁕
p(xk|zk−1)p(zk|xk) dxk is the one-step predictive PDF

of the measurement. The estimate of the state is given by
the filtering and the predictive PDFs. The recursion (2), (3)
starts from p(x0|z−1) = p(x0).

Note that the fusion of the estimates can be carried out for
arbitrary estimates (predictive, filtering, or initial estimates),
therefore the conditioning and time step indices are, for the
sake of clarity, omitted in the chapters dealing with fusion.
In these chapters, bottom indices are used to index the fused
estimates.

III. INFORMATION FUSION

Fusion is a subclass of estimation where the problem
is to merge estimates from different sources [13]. Hence,
estimation methods apply directly to the fusion problem.
In distributed fusion or estimation, it is important to prop-
erly handle typically unknown cross-correlations between
estimates. A common approach is then to use conservative
estimation methods, which guarantee that the uncertainty
associated with the computed fused estimate is not underesti-
mated. In this section, two conservative linear fusion methods

2Considering the model (1a), (1b), the BRRs (2), (3) should be condi-
tioned also on available sequence of the input uk, ∀k. However, for the
sake of notational simplicity, the input signal is assumed to be implicitly
part of the condition and it is not explicitly stated, i.e., p(xk+1|xk) =
p(xk+1|xk;uk), p(xk|zk) = p(xk|zk;uk−1), and p(xk+1|zk) =
p(xk+1|zk;uk).

are reviewed first and then the problem of fusing PDFs is
discussed.

A. Moment-Based Fusion

Linear fusion methods are often implemented with an
(extended) Kalman filter (EKF) for measurement filtering,
where the estimate is in the form of the first two conditional
moments only, i.e., in the form of the mean and covariance
matrix. This is practical as the standard computationally
efficient moment-based fusion algorithms cannot take advan-
tage of the knowledge of the whole conditional PDF. In the
literature, a wide range of fusion methods can be found.
Among them, the conservative linear fusion methods have
attracted significant attention.

In a basic set-up, the goal of the moment-based fusion
is to linearly fuse two stochastic variables (estimates) x1

and x2, which are related to the same (unknown) quantity
and where each variable is described by the known mean
and covariance matrix, i.e., x̂1 = E(x1), P1 = cov(x1),
x̂2 = E(x2) and P2 = cov(x2). Let x̂f and Pf be the
computed mean and covariance of the fused quantity xf .
The linear fusion constraint means that

xf = K

󰀕
x1

x2

󰀖
, (4)

where K is a fusion gain matrix. The fused estimate is said
to be conservative if

Pf ≽ cov
󰀃
xf − x̂f

󰀄
, (5)

where A ≽ B means A−B is positive semi-definite [7].
Below two important special cases of a conservative linear

unbiased estimator (CLUE, [14]) are provided.
1) Covariance Intersection (CI, [7]): The CI conserva-

tively merges estimates under completely unknown cross-
correlations. The formulas are given by

x̂f = Pf

󰀓
wP−1

1 x̂1 + (1− w)P−1
2 x̂2

󰀔
, (6)

Pf =
󰀓
wP−1

1 + (1− w)P−1
2

󰀔−1

, (7)

where w ∈ [0, 1] is derived by minimizing a loss function of
Pf . The CI is an optimal CLUE given that two estimates are
fused and that the cross-correlations are completely unknown
[15]. The CI framework can also be extended to a fusion of
Gaussian mixtures used in the Gaussian sum filter [16].

2) Largest Ellipsoid (LE, [17]): The CI computes con-
servative estimates for all possible cross-correlations given
that x̂1 and x̂2 are conservative. This also means that in
many cases the CI is overly conservative, i.e., the computed
covariance Pf is needlessly large. The LE method is a less
conservative alternative to the CI3. It is not conservative with
respect to completely unknown cross-correlations [20]. How-
ever, under restrictive assumptions on the cross-correlations,

3The LE method has also been called ellipsoidal intersection [18], or safe
fusion [19].



the LE is an optimal CLUE and therefore it becomes an
important alternative to the CI when the CI provides too
conservative results [14]. The LE method is summarized in
Algorithm 1.

Algorithm 1: Largest Ellipsoid Method
1) Factorize P1 = U1D1U

T
1 and let T1 = D

− 1
2

1 UT
1 .

Factorize T1P2T
T
1 = U2D2U

T
2 and let T2 = UT

2 .
2) Transform using T = T2T1 according to

ẑ1 = Tx̂1, D1 = TP1T
T = I,

ẑ2 = Tx̂2, D2 = TP2T
T.

3) For each i = 1, . . . , n of ẑ and diagonal D compute

󰀃
[ẑ]i, [D]ii

󰀄
=

󰀫󰀃
[ẑ1]i, 1

󰀄
, if 1 ≤ [D2]ii,󰀃

[ẑ2]i, [D2]ii
󰀄
, if 1 > [D2]ii.

4) Fused estimate is given by x̂ = T−1ẑ and P =
T−1DT−T

B. Probability Density Based Fusion

There is a considerable number of approaches that can be
taken to fuse PDFs, the topic has been extensively studied by
researchers last few decades. A very comprehensive survey
considering the fusion of PDFs can be found in [21], where
three main approaches have been identified

1) Axiomatic approach: The fusion rule is defined indi-
rectly by a set of properties (axioms) that it is required
to satisfy. In this paper, log-linear pooling is employed
as it is computationally efficient and has the strongest
link to the CI algorithm.

2) Optimization approach: The fusion rule is a result of
optimization. This fusion approach is extremely com-
putationally expensive, and therefore not considered in
this paper.

3) Supra-Bayesian approach: This fusion center is consid-
ered a Bayesian observer that interprets the particular
(nodes) PDFs as random observations. This approach
requires some knowledge about the dependence of the
fused PDFs, which is not available in the scenario
considered in this paper.

IV. MOTIVATION AND GOALS

The common methods for distributed and decentralized
estimation (without fusion center), based on the local (or
Gaussian) filters such as the EKF are moment-based. It
means, these fusion methods cannot exploit the whole in-
formation encoded in the conditional PDF. Therefore, when
the conditional PDFs estimated by the full-blown (or global)
filters, such as the PMF of the particle filter, are available for
the fusion, it might be highly beneficial to use PDF fusion
methods instead. The global estimation methods are designed
to deal with significant non-linearity/non-Gaussianity of the
system.

The distributed version of the particle filter (dPF) has
been researched and it is usually based on the Gaussian or
Gaussian mixture approximation to the likelihood function.
Then, the parameters of the Gaussian functions are sent
between nodes. Therefore, either likelihood close to Gaussian
is expected, or an algorithm has to be run to approximate
the likelihood by a mixture [22], [23]. Alternatively, the
dPF using adaptive encoding [24] can be employed, where
several Lloyd-Max quantizers are trained, which makes the
algorithm feasible only for lower dimensions. The distributed
PMF has been presented, to the authors’ knowledge, only in
[25], where the same method of approximating the likelihood
with a Gaussian mixture was employed, as in the dPF. This
approach is, therefore, computationally prohibitive as well.

In the next section, we propose and discuss the concept
of the distributed PMF (dPMF), which sends the estimated
conditional PDFs between nodes, with the newly developed
transfer reduction step based on the copula theory.

V. DISTRIBUTED POINT-MASS FILTER

First a few preliminaries are presented that are crucial for
understanding the proposed dPMF algorithm. Then the dPMF
algorithm is described.

A. Point-Mass Density and Point-Mass Filter Outline

The PMF is based on an approximation of a conditional
PDF p(xk|zm), where m = k for the filtering PDF and
m = k − 1 for the predictive PDF, by a piece-wise constant
point-mass density p̂(xk|zm; ξk) defined at the set of the
discrete grid points ξk = {ξ(i)k }Ni=1, ξ

(i)
k ∈ Rnx , as follows

p̂(xk|zm; ξk) ≜
N󰁛

i=1

Pk|m(ξ
(i)
k )S{xk; ξ

(i)
k ,∆k}, (8)

with
• Pk|m(ξ

(i)
k ) = ckP̃k|m(ξ

(i)
k ), where P̃k|m(ξ

(i)
k ) =

p(ξ
(i)
k |zm) is the value of the conditional PDF

p(xk|zm) evaluated at the i-th grid point ξ
(i)
k , ck =

δk
󰁓N

i=1 P̃k|m(ξ
(i)
k ) is a normalisation constant, and δk is

the volume of the i-th point neighbourhood defined below,
• ∆k = [∆k(1),∆k(2), . . . ,∆k(nx)]

T defines a (hyper-)
rectangular neighbourhood of a grid point ξ(i)k , where the
PDF p(xk|zm) is assumed to be constant and has value
Pk|m(ξ

(i)
k ), and

• S{xk; ξ
(i)
k ,∆k} is the selection function defined as

S{xk; ξ
(i)
k ,∆k}=

󰀫
1, if |xk(j)−ξ

(i)
k (j)|≤ ∆k(j)

2 ,

0, otherwise.
(9)

so that
󰁕
S{xk; ξ

(i)
k ,∆k}dxk =

󰁔nx

i=1 ∆k(i) = δk.
The notation x(j) means the j-th element of the vector
x. Illustration of point-mass PDF approximation (8) with
omitted time indices is shown in Fig. 2. The point-mass
density (8) can, thus, be interpreted as a sum of weighted
uniform distributions [26].
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Fig. 2. Point-mass density approximation

The moments, e.g., the mean x̂k|m = E[xk|zm] and
covariance matrix Pk|m = cov[xk|zm], of the conditional
PMD, are not required for the run of the PMF. However, the
moments can be readily computed when required [27].

Approximation of the conditional PDF by the PMD at the
grid points enables a numerical solution for the BRRs, which
leads to the algorithm of the PMF. The PMF, thus, calculates
the values of the conditional densities at (discrete) grid points
ξ.

Although the PMD is the key enabler for the BRRs
solution, it has a significant drawback w.r.t. distributed esti-
mation relying on the density transfer between nodes. The
description of the PMD is data intensive. For example, to
describe and transfer the PMD with Npa points per axis
over nx-dimensional state space, Nnx

pa weights Pk|k has to
be sent between nodes together with the information about
the position of the grid and location of the points. The
complexity of the grid description depends among others
on the grid shape (circular/rectangular) and point placement
strategy (equidistant/irregular).

B. Copulas

The theory of copulas has been developed for correlation
modeling in cases when the marginal distributions of a vector
random variable are known [28], [29]. It enables the nx-
dimensional PDF to be split into nx marginals and one
copula describing the correlation between them. Therefore,
a (conditional) PDF p(x) can be split as follows

p(x) = c

nx󰁜

i=1

p(xi), (10)

where p(xi) is the i-th marginal, and c is the appropriate
nx dimensional copula. Among all the proposed copulas,
the Gaussian copula is particularly suitable in filter design
[11]. Besides the Gaussian copula, other copulas from the
Archimedean family, such as the Clayton, Frank, Gumbel,
and Product copula, can be used as well, which might require
even fewer memory requirements but at the cost of necessity
to specify a set of user-defined parameters.

The Gaussian copula is defined as

c =
1󰁳
|C|

exp

󰀕
−1

2
yT (C−1 − Inx)y

󰀖
, (11)

where C is the correlation matrix

C =
󰀃
diag(P)

󰀄− 1
2 P

󰀃
diag(P)

󰀄− 1
2 , (12)

diag(P) is the diagonal matrix determined by the diagonal
of a covariance matrix P, |C| denotes the determinant of
C, Inx

is an identity matrix of the indicated dimensions.
Moreover

y =

󰀵

󰀹󰀹󰀷

Φ−1
󰀃
Φ1(x(1))

󰀄

...
Φ−1

󰀃
Φnx(x(nx))

󰀄

󰀶

󰀺󰀺󰀸 ∈ Rnx , (13)

Φi(xk+1(i))) stands for the cumulative distribution func-
tion (CDF) of the Gaussian PDF with the mean
x̂k+1|k(i) and the variance Pk+1|k(i, i), i.e., of the PDF
N{xk+1(i); x̂k+1|k(i),Pk+1|k(i, i)}, Φ−1(·) denotes the in-
verse CDF of the standard Gaussian PDF, and the nota-
tion Pk+1|k(i, i) means i-th diagonal element of the ma-
trix Pk+1|k. Detailed relations on the PMD split into the
marginals and Gaussian copula can be found in [11].

C. Entropy

In the information theory, the entropy describes the aver-
age level of information that PDF bears [30]. The entropy is,
thus, particularly suitable for the determination of the weights
of the PMDs to be fused. The entropy is calculated from the
arbitrary PMD’s weights as follows

S = −
N󰁛

i=1

P (ξ(i))ln(P (ξ(i))). (14)

The larger the entropy is, the lower amount of information
the PMD contains. Thus, the weights for fusion are inversely
proportional to the entropy of the given PMD.

D. Distributed PMF Algorithm

The proposed PMF-based efficient distributed fusion al-
gorithm is, for the sake of explanation simplicity, introduced
and illustrated for a fusion of two densities. The generaliza-
tion for the fusion of multiple estimates is straightforward.

Suppose two (conditional) PMDs to be fused, namely
p̂1(x; ξ1) with weights P1(ξ1), and p̂2(x; ξ2) with weights
P2(ξ2). The subscript denotes the index of the PMD to be
fused.

The fusion algorithm utilizes a so-called common grid. It
is a rectangular grid that is supposed to cover the important
part of the fused PMD and on which both received, i.e., local,
PMDs are interpolated. There is a number of ways this grid
can be set up:

1) Calculate the first two moments of the fused estimate
using the CI or LE algorithms. Construct the common



grid around the fused mean with the size given by the
fused variance.

2) Circumscribe all points ξ1 and ξ2 of local PMDs, for
which the PMD weight is greater than a threshold, by
a rectangular grid.

In both cases, local estimators can be designed so that local
grids have their boundaries aligned with the state-space axis,
their grid steps ∆k are the same in each time step k, and
they are shifted against each other by only integer multiples
of ∆k. Then, the grid points ξ1, and ξ2 will overlap exactly.
Therefore no interpolation will be necessary, which will
result in a lower computational complexity.

The full PMD fusion algorithm can fuse the whole PMDs,
at a price of considerable data transfer. All PMD weights
have to be transferred along with the information about
underlying grid points (based on the grid design). The data
transfer complexity is therefore O(Nnx

pa ), where Npa is a
number of the points per axis.

The data transfer efficient version of the fusion for PMDs
has to transfer only the nxNpa marginal weights, marginal
grid point values, and Npa copula parameters, therefore
the number of data transferred is significantly decreased.
The data transfer complexity is therefore O(Npa) only. The
PMD is sent from one node to another in a marginal form
alongside its copula parameters and assembled back to the
full PMD. Based on the performed simulations, the approxi-
mation of the PMD by the copula-based decomposition and
the subsequent fusion has negligible impact on the fused
estimate accuracy. For completeness, the proposed approach
for the distributed PMF is summarized in Algorithm 2. The
data exchange can be carried out in any part of the PMF
algorithm.

Algorithm 2: Distributed Point-Mass Filter Data Ex-
change
1) (Optional but recommended step) Each node splits the

PMD as in (10) into nx marginals and copula parameters
and sends them to the second node (or others). The second
node reconstructs the full (original) PMD approximation.

2) Both PMD’s weights are interpolated on a common grid
ξc.

3) Entropy S is calculated for both PMDs.
4) The fusion weights are set as w1 = 1

S1
and w2 = 1

S2

indirectly related to the entropy, and re-scaled so that w1+
w2 = 1.

5) The PMD weights are fused on the common grid

Pfused(ξ
(i)
c ) = P1(ξ

(i)
c )w1P2(ξ

(i)
c )w2 , ∀i. (15)

6) The fused PMD is normalized.

VI. NUMERICAL ILLUSTRATION

The performance of the proposed dPMF is numerically
illustrated and compared with the moment-based CI and
LE methods. Moreover, two implementations of the dPMF

are considered, namely dPMF with full PMD transfer (i.e.,
without copula-based PMD approximation) and dPMF with
reduced PMD transfer (i.e., with copula-based approxima-
tion). The former is further denoted as PMF Full, whereas
the latter is as PMF Cop.

For numerical evaluation we assume the state-space model
[13]

xk+1 = xk + uk +wk, (16)

zk =

󰀵

󰀷
󰁳
(xk(1)2 + xk(2)2)

arctan
󰀓

xk(2)
xk(1)

󰀔
󰀶

󰀸+ vk. (17)

The two-dimensional state vector xk consists of vehicle
horizontal position and the horizontal constant shift vector
uk = [−10,−10]T can be known from e.g., inertial naviga-
tion system or odometer. The measurement zk consist of the
range and angle from the radar to the vehicle. The noise vk

is described as

N{vk;

󰀗
0
0

󰀘 󰀗
20 10
10 20

󰀘
}, (18)

and the noise wk is a Gaussian mixture PDF with five
components

pw(x) =

5󰁛

g=1

αgN{x; x̂g,Pg}, (19)

where the particular weights, means, and covariance matrices
are given as follows
󰀵

󰀹󰀹󰀹󰀹󰀷

α1

α2

α3

α4

α5

󰀶

󰀺󰀺󰀺󰀺󰀸
=

󰀵

󰀹󰀹󰀹󰀹󰀷

0.0108
0.3280
0.2956
0.1556
0.2101

󰀶

󰀺󰀺󰀺󰀺󰀸
,

󰀵

󰀹󰀹󰀹󰀹󰀷

x̂1

x̂2

x̂3

x̂4

x̂5

󰀶

󰀺󰀺󰀺󰀺󰀸
=

󰀵

󰀹󰀹󰀹󰀹󰀷

0 0
−50 −0.02
50 0.02

−100 0.06
250 −0.1

󰀶

󰀺󰀺󰀺󰀺󰀸
, (20)

P1 = P2 = P3 = P4 = P5

󰀗
1500 0
0 0.001

󰀘
. (21)

The results are compared using three criteria:
• RMSE (root mean square error)

󰁹󰁸󰁸󰁷 1

M(K + 1)

M󰁛

i=1

K󰁛

k=0

(x
[i]
k − x̂

[i]
k|k)

T (·), (22)

• ANEES4 (normalized estimation error squared)

1

M(K + 1)nx

M󰁛

i=1

K󰁛

k=0

(x
[i]
k − x̂

[i]
k|k)

T (P
[i]
k|k)

−1(·),

(23)

• Transfer is the number of transferred values between
nodes,

where M = 1000 is the number of Monte-Carlo simulations,
K = 20 is the number of time steps, (·) denotes the repetition

4Averaged over time



of the bracket with difference, x[i]
k is true state at time k at

i-the MC simulation, x[i]
k|k = E[xk|zk] its filtering estimate,

and (P
[i]
k|k)

−1 = (cov[xk|zk])−1 is the inversion of the
respective covariance matrix.

The ANESS should be around 1, if it is higher, the
estimation algorithm is said to be too optimistic, if it is lower,
the algorithm is consistent but too conservative. As the cross-
correlation between estimates is unknown in this case, the
ANEES should be ideally lower to account for that.

The results can be found in Table I. The number of
transferred values for KF’s comes from the covariance matrix
(3 values) and mean value (2 values). For PMF Full it is PDF
values (50 × 50 = 2500 values), corner point of the grid (2
values), and ∆ (2 values), as the grid is equidistantly spaced,
and the axes are aligned with the state space axes. For PMF
Cop the marginal PDF values (50 + 50 = 100 values), the
corner point (2 values), the ∆ (2 values), and the copula
correlation parameter (3 values).

The results indicate that the proposed copula-based dPMF
provides more accurate results than standard moment-based
fusors with a significant reduction of the data transfer com-
pared to the dPMF communicating the whole PMDs among
the nodes.

TABLE I
RESULTS

RMSE ANEES Transfer
EKF IC 15.813 0.5247 5
EKF LE 16.111 0.8396 5
PMF Full 14.462 0.48033 2504
PMF Cop 15.167 0.49259 107

VII. CONCLUDING REMARKS

This paper dealt with distributed nonlinear state estimation
by the point-mass filter. In particular, the distributed PMF
(dPMF) with a data transfer reduction step based on the cop-
ula theory was proposed. The developed dPMF reduces the
data transfer between the nodes (i.e., particular estimators)
from exponential to linear growth. The numerical illustration
confirmed that the copula-based efficient distributed point-
mass filter results in significantly reduced data transfer for
the price of a small accuracy decrease. In future research, the
stress will be laid on the automatic selection of the copula
type and its parameter determination, which further increase
the accuracy and reduce the computational complexity.
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[5] J. Matoušek, “Point-mass method in state estimation and navigation,”
Ph.D. dissertation, University of West Bohemia, Czech Republic,
10.13140/RG.2.2.30208.87044, 2020.

[6] S. J. Julier and J. K. Uhlmann, “General decentralized data fusion with
covariance intersection,” in Handbook of Multisensor Data Fusion:
Theory and Practice, M. Liggins, D. Hall, and J. Llinas, Eds. Boca
Raton, FL, USA: CRC Press, 2009, ch. 14.

[7] ——, “A non-divergent estimation algorithm in the presence of un-
known correlations,” in Proceedings of the 1997 American Cont. Conf.,
Albuquerque, NM, USA, Jun. 1997, pp. 2369–2373.

[8] M. B. Hurley, “An information theoretic justification for covariance
intersection and its generalization,” in Proceedings of the5th IEEE
Int. Conf. on Inf. Fusion, Annapolis, MD, USA, Jul. 2002.

[9] R. Forsling, Z. Sjanic, F. Gustafsson, and G. Hendeby, “Consistent dis-
tributed track fusion under communication constraints,” in Proceedings
of the 22nd IEEE Int. Conf. on Inf. Fusion, Ottawa, Canada, Jul. 2019.

[10] ——, “Optimal linear fusion of dimension-reduced estimates using
eigenvalue optimization,” in Proceedings of the 25th IEEE Int. Conf.
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