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Consensus in concatenated opinion dynamics with stubborn agents
Lingfei Wang, Carmela Bernardo, Yiguang Hong, Francesco Vasca, Guodong Shi, and Claudio Altafini

Abstract—This paper investigates a two-time-scale opinion
dynamics model, named the concatenated Friedkin-Johnsen (FJ)
model, which describes the evolution of the opinions of a group
of agents over a sequence of discussion events. The topology of
the underlying graph changes with the event, in the sense that
the agents can participate or less to an event, and the agents are
stubborn, with stubbornness that can vary from one event to the
other. Concatenation refers to the fact that the final opinions of
an event become initial conditions of the next event. We show
that a concatenated FJ model can be represented as a time-
varying product of stochastic transition matrices having a special
form. Conditions are investigated under which a concatenated FJ
model can achieve consensus in spite of the stubbornness. Four
different sufficient conditions are obtained, mainly based on the
special topological structure of our stochastic matrices.

I. INTRODUCTION

The Friedkin-Johnsen (FJ) model is a well-studied model for
multi-agent opinion dynamics, which generalizes a DeGroot
(or consensus) model in the sense that it represents the
stubbornness of the agents as extra terms in the dynamics, de-
pending on the initial states of the agents [9], [8]. When these
terms are added as convex combinations with the DeGroot
model, they lead to asymptotic opinions which are closer to
each other than the initial opinions, yet they are not identical,
meaning that consensus is no longer achieved.

Recently, different variants of the DeGroot and FJ models
have been used to describe opinion dynamics over sequences
of discussion events [11], [12], [29], [20], [21]. These models
adopt two time scales — one to represent the opinion updates
within a discussion event, the other, more coarse-grained, to
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describe the sequence of events. In most of this literature, the
issues up for discussion are disjoint, and the aim of the model
is to capture how the relative importance of the agents, the so-
called self-appraisal, varies over the sequence of discussions
[11], [29], [20].

In [21], the authors take a different approach: they concate-
nate the events being discussed by letting the final state of
one discussion be the initial state of the next one, and use
the FJ model for every single discussion. The authors show
that this form of concatenation can lead to consensus, in spite
of each step being characterized by persistent disagreement.
The main motivation behind this model, hereafter referred to
as concatenated FJ model, is that if the issues discussed in
the sequence are strongly related, then the opinions formed
(or decision taken) at one step should be used as starting
point of the discussion at the next step. [21] gives also a
possible sociological interpretation of the concatenated model
in terms of path dependence theory [6]. A more down-to-earth
interpretation of the concatenated FJ model is that a really
complex decision cannot be settled in a single meeting by the
participating actors, but needs to be broken down into many
intermediate negotiation steps. These discussions are typically
concatenated, in the sense that the opinions/decisions at the
end of a discussion become initial conditions on the next
meeting.

The main contribution of this paper is to generalize the
concatenated FJ model to graphs having a dynamic topology,
in which the set of agents participating to a discussion event
can change at every event, and so does the subset of stubborn
agents. For the concatenated FJ model, each discussion step
is represented in the coarse-grained time scale as a stochastic
transition matrix, obtained as asymptotic solution of the fast-
scale FJ model for that discussion. When the interaction graph
of the FJ problem changes with the discussion event, so does
the structure of the stochastic matrix representing this event.
Concatenation in the coarse-grained time scale becomes then
a product of different stochastic matrices, i.e., the problem
reduces to a time-varying product of stochastic matrices for
which we must show consensus, i.e., we must find conditions
that guarantee convergence to a rank-1 matrix.

Even though time-varying consensus problems have been
studied extensively (see Section III-C for a literature survey),
none of the existing criteria applies directly to our problem
because of the special structure of our stochastic matrices.
Nevertheless, it is intuitively clear that the concatenated FJ
model should typically converge. In fact, a FJ model is char-
acterized by convergence to a point in the convex hull of the
initial conditions. When multiple FJ models are concatenated
as we do here, the convex hull will intuitively shrink, hence
achieving consensus as an asymptotic result is not surprising.
On the other hand it is easy to construct examples of con-



2

catenated FJ model for which this convergence result does not
hold. Understanding under what conditions a consensus can
be achieved for our class of time-varying stochastic matrices
is the problem we deal with in this paper.

The main technical contribution of the paper is to propose
four sufficient conditions for consensus, tailored to the special
structure of our concatenated FJ models. The first relies
on developing a notion of “recurrent reachability”, i.e., of
existence of a spanning tree (or, equivalently, of a positive
column) in a product of our structured stochastic matrices,
product that repeats itself an infinite number of times. The
second sufficient condition is instead valid when there is a
fixed hierarchy of stubbornness among the agents throughout
all events, and leads to a propagation of opinions from the most
stubborn agent to the least stubborn one. The third sufficient
condition relies on the existence of an overlap between the
set of participating agents for an event and that of stubborn
agents on the next event. Such overlap guarantees a seamless
propagation of opinions through the concatenation which
eventually leads to consensus. The fourth condition formalizes
and expands on this idea of opinion propagation. We introduce
a concept of information flow graph which can capture all
possible patterns of propagation of opinions, hence leading
to sufficient conditions which are as independent as possible
from the choice of the specific sequence of discussion events
(and hence of order in the transition matrices). As byproducts
of the analysis, we also obtain results on the possibility (and
impossibility) of our transition matrices to form “consensus
sets”, i.e., sets of stochastic matrices that lead to consensus
regardless of the order [4]. Finally, it is worth mentioning that
most of the conditions mentioned above are of topological
nature, and are valid regardless of the numerical entries we
choose for the interaction graphs and for the stubbornness
coefficients.

The paper is organized as follows: Section II contains some
preliminary concepts on the standard (discrete-time) FJ model;
Section III introduces the concatenated FJ model and the prob-
lem of interest in this paper; Section IV investigates consensus
conditions for a specific sequence of transition matrices, while
Section V provides some sequence-independent conditions;
finally, Section VI gives some examples. All frequently used
symbols are listed in Appendix A, while Appendices B-G
contain the proofs of the various results.

A preliminary version of this paper was presented at
CDC’21 [25]. This conference paper only deals with the
material in Section IV, with all the proofs omitted. All results
of Section V are presented here for the first time.

II. PRELIMINARIES

All vectors are real column vectors and denoted by bold
lowercase letters x,y, . . . The i-th entry of a vector x is
denoted [x]i or, if no confusion arises, xi. The symbol diag(x)
represents a square matrix with diagonal entries equal to the
entries of x and all other entries equal to 0. Matrices are
denoted by upper case letters such as A,B, . . . , of entries
Aij or [A]ij . The symbol {A(s)} represents the matrix set
generated by a sequence of matrices parametrized by the non-
negative integer s = 1, 2, . . . , while {(s,A(s))} is used when

we want to emphasize the order in a given sequence. Let {s`}
indicates a sequence of integers parametrized by ` = 1, 2, . . . .
The identity matrix is denoted In, with dimension sometimes
omitted, depending on the context. The n-order vector, matrix
and tensor with all entries being 0 or 1 are all denoted 0 or 1.
If C ⊂ {1, . . . , n} is a set of indices of an n×n matrix A, then
A|C denotes the submatrix of A with row and column indexes
in C. |C| indicates the cardinality of C, while the spectral radius
of A is denoted ρ(A). Let co(·) be the operator of convex hull.

A. Basic notions from graph theory

Given V = {1, . . . , n}, consider a network with nodes
(agents) indexed in V . The network is represented by a directed
graph G = (V, E), where E is a set of ordered pairs of nodes
and (i, j) ∈ E represents a link from node i to node j.
A (directed) path is a concatenation of directed links of E ,
and its length is the number of links. A directed cycle is a
directed path with the same begin and end node. G is said
to be aperiodic if there is no integer k > 1 that divides the
length of all cycles. We say that node i is connected to node
j if there is a directed path from i to j.

Given a directed graph G, a node is called root node if it
is connected to all other nodes and has no incoming edges. G
is strongly connected if any two nodes are connected to each
other; quasi-strongly connected if it has at least one directed
spanning tree [15], i.e., a graph with one root node from which
any other node is reachable via only one path.

Given V , denote M as a subset of V and U as a subset of
M. Let m = |M| and u = |U| be the respective cardinalities,
u ≤ m ≤ n. Let π : V → V be a permutation, with entries
conventionally ordered in the following manner:

π : {1, . . . , n} 7→ {π(1), . . . , π(n)},

where {π(1), . . . , π(u)} = U , {π(u+1), . . . , π(m)} =M\U ,
and {π(m+1), . . . , π(n)} = V \M. Let Π be the correspond-
ing permutation matrix.

A matrix is called (row) stochastic if it is nonnegative and
its rows sum to 1. Given a stochastic matrix W = [W ]ij ∈
Rm×m, its digraph is denoted GW = (M, EM), where M
and EM are the sets of nodes and edges respectively, with
|M| = m and (i, j) ∈ EM if and only if [W ]ji > 0.

B. The Friedkin-Johnsen model

The Friedkin-Johnsen (FJ) model is a DeGroot-like model
for opinion dynamics in which some agents behave stubbornly,
in the sense that they defend their positions while discussing
with the other agents [9]. If m agents participate to a discus-
sion, the FJ model has the following structure:

y(t+ 1) = (I −Θ)Wy(t) + Θy(0), t ∈ N (1)

where y is the m-dimensional opinion vector (one variable for
each agent), W is a row-stochastic matrix, and Θ = diag(θ),
θ = [θ1 . . . θm], with θi ∈ [0, 1], is a diagonal matrix of
parameters representing the stubbornness of the m agents.
Stubbornness here means attachment of an agent to its own
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opinion, represented by the initial condition y(0) at the begin-
ning of the discussion. The agents can be classified according
to the value of θi in the following categories:
• totally stubborn agent: θi = 1 (this category is never used

in the paper, see Assumption 2 below);
• (partially) stubborn agent: θi ∈ (0, 1) (hereafter referred

to simply as “stubborn”);
• non-stubborn agent: θi = 0 (hereafter referred to as

“silent”).
Following [2], the implicit idea behind the term “silent” is
that agents that participate in a discussion without speaking
are unable to influence the other participants, which is a proxy
for lack of stubbornness, while instead agents that express a
point of view (i.e., that speak) are showing signs of stubborn
behavior.

The following is basically Theorem 21 of [15] (without the
term W 22).

Lemma 1 Assume θi ∈ [0, 1) for all i = 1, . . . ,m, and θi > 0
for at least one i. If GW is strongly connected, then
(a) (I −Θ)W is Schur stable, i.e., ρ((I −Θ)W ) < 1,
(b) the matrix V = (I − (I −Θ)W )−1Θ is stochastic,
(c) y(∞) = limt→+∞ y(t) = V y(0),
(d) [y(∞)]i ∈ co([y(0)]1, . . . , [y(0)]m) for any i =

1, . . . ,m.

Note that since Θ is a diagonal matrix, y(∞) is not
influenced by the initial opinions of the agents who are silent.
According to Lemma 3 in [21], V has a special structure as
follows.

Lemma 2 Suppose that all the conditions of Lemma 1 are
satisfied. If only the first u < m agents are stubborn (i.e.,
θi > 0 for i = 1, . . . , u, and θi = 0 for i = u + 1, . . . ,m),
then V =

[
R 0

]
, where R is an m × u matrix of all

positive entries.

III. PROBLEM FORMULATION

In this section, we introduce the concatenated FJ model, and
formulate the main problem investigated in the paper.

A. Opinion formation for concatenated FJ models

Consider a sequence of FJ models, indexed by s ∈ N.
Following [11], we model this as an opinion vector depending
on both the event s and the time-step t, y(s, t), and a dynamics
having two time scales, i.e., we think of s as the clock of
a sequence of opinion forming problems, in each of which
t runs from 0 to ∞. For each event s = 1, 2, . . . , a FJ
model is built, but, unlike e.g. [11], [21], [20], we allow
the composition of the group of agents involved in the FJ
model, as well as the stubborn agents, to change at every
event. For the s-th event, let M(s) ⊆ V be the participating
agents, U(s) ⊆M(s) the subset of stubborn participants, and
M(s) \ U(s) the subset of silent (i.e., non-stubborn) partici-
pants, of cardinality m(s), u(s), and m(s)−u(s) respectively.
Consequently, also the m(s)×m(s) parameter matrices used

in (1) become event-dependent: W (s) and Θ(s) = diag(θ(s)),
with θ(s) = [θ1(s), . . . , θm(s)]> such that

θ(s) :

{
θi(s) ∈ (0, 1) if i ∈ U(s)

θi(s) = 0 if i ∈M(s) \ U(s).
(2)

Similar to [21], our FJ model is concatenated, i.e., the initial
condition at issue s corresponds to the asymptotic value at
issue s − 1. Denote x(s) the opinion vector of the entire
set of n agents at the end of the s-th event. Assume that
only participating agents modify their opinion at the end of
a discussion. This means that if an agent i participates in the
s-th event, then its opinion xi is updated; if instead the agent i
is absent, then its opinion is left unchanged and the preexisting
value is reported:

xi(s) =

{
yi(s,∞) if i ∈M(s)

xi(s− 1) if i ∈ V \M(s).

where yi(s,∞) = limt→∞ yi(s, t) is computed according to
the FJ model (1), with yi(s, 0) = xi(s − 1). A sketch of the

Fig. 1. Sketch of the concatenated FJ model: red nodes represent stubborn
participants (their darkness encodes different stubbornness levels), green nodes
represent participants that are not stubborn (i.e., silent), yellow nodes represent
absent agents at each event.

concatenated FJ model is shown in Fig. 1.
Throughout this paper, we only deal with the case that

θi(s) ∈ [0, 1) for all i ∈ M(s) and s ≥ 1 (as formally
stated in Assumption 2 below), which implies that we never
deal with the case of totally stubborn agents. Moreover, the
following assumption is made:

Assumption 1 For all s ≥ 1, the digraph of W (s) is strongly
connected.

Using a permutation matrix Π(s) to reorder the indices of
the agents, the opinion evolution for the s-th discussion can
be rewritten as

x(s) = P (s)x(s− 1), (3)

where, by Lemmas 1 and 2,

P (s) = Π(s)>
[
R(s) 0 0
0 0 In−m(s)

]
Π(s), (4)

with

Π(s)|>M(s)

[
R(s) 0

]
Π(s)|M(s) =

(Im(s) − (Im(s) −Θ(s))W (s))−1Θ(s).
(5)
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In the composite matrix on the right hand side of (4), the
first m(s) agents are participants, and the first u(s) agents are
stubborn. The n−m(s) lower block corresponds to the absent
agents. By Lemma 2, R(s) is a m(s)× u(s) full matrix, i.e.,
all its entries are positive. Also, P (s) is a stochastic matrix
by construction.

The concatenation of s discussions becomes, therefore, a
left product of stochastic matrices:

x(s) = P (1 : s)x(0) = P (s) . . . P (2)P (1)x(0) (6)

with each P (s) having the structure (4)-(5). A tacit assumption
behind our concatenated FJ model (as well as all two-time-
scale models [11], [12], [29], [20], [21]) is that the discussion
at event s reaches steady state before the event s+1 starts. This
is not unreasonable, given the exponential rate of convergence
of an FJ model.

B. Problem of interest

Definition 1 We say that the concatenated FJ system (3)
achieves consensus if for all x(0) ∈ Rn, lims→∞ x(s) = c1
for some c ∈ R which depends on x(0).

The problem investigated in this paper is the following.

Problem 1 Consider the concatenated FJ system (3) where
each P (s) has the structure given in (4)-(5). Find conditions
on the sequence of {M(s)}, {U(s)}, {W (s)} and {Θ(s)}
such that (3) converges to consensus.

Problem 1 can be rephrased as finding sequences
{(s, P (s))} such that the associated product P (1 : s) con-
verges to a rank-1 matrix as s goes to infinity.

C. Consensus on time-varying systems: literature review

The convergence problem for “inhomogeneous” products
of stochastic matrices has been investigated since the Sixties
[26]. Many alternative characterizations exist, and have been
used also to study time-varying consensus problems [26], [3],
[1], [5], [13], [4], [27], [17], [16]. For instance, for a given
sequence of stochastic matrices, a commonly used sufficient
condition valid for matrices that have positive diagonal (and
hence are aperiodic) is the so-called uniformly jointly con-
nected condition [13], [3], which says that the union of the
graphs associated to the stochastic matrices over any interval
with some fixed length is strongly connected and that the
nonzero entries of each stochastic matrix are bounded away
from zero. Other classes of sufficient conditions in the same
category include the repeatedly jointly rooted condition of [5],
[18], the sequentially weakly connected condition of [1], and
the cut-balance property [10], [24], [28], [19]. Our matrix
products P (1 : s) are however more difficult to analyze than
those normally considered in these papers, as our {P (s)} have
structure which is constrained by the underlying FJ problem
(i.e., by (4)-(5)). For instance, our matrices in general do not
have a fully nonzero diagonal (see (4)), rendering many of
these conditions impossible to use.

Another family of characterizations used in the literature
relies instead on the notion of “consensus set” [4] (or quasidef-
inite set [14]), i.e., a set of stochastic matrices that leads to a
rank-1 matrix for any arbitrary product of infinite length. As
our matrices have diagonal blocks equal to the identity (see
(4)), the infinite powers of our stochastic matrices generally
do not converge to a rank-1 matrix, meaning that they cannot
belong to a consensus set. Consequently, also other charac-
terizations such as scrambling matrices [17], or Sarymsakov
matrices [16], [27], cannot be used in our context.

D. Motivating applications

Think for example of a company trying to close a complex
deal for which unanimity (i.e., consensus) is sought among
the members of its board. It is plausible that the technical
details (economical, technological, logistic, etc.) are discussed
in separate meetings, and that the opinions expressed (or
decision taken) in those meetings progressively contribute to
forming the overall opinion of the members of the board. The
board members typically do not participate to all technical
meetings, but only to those in line with their expertise and,
when they participate, they may have different levels of
stubbornness according to their level of expertise/experience
on an issue. These features (concatenated discussions, varying
group composition, and varying stubbornness) are all captured
by our concatenated FJ model.

As a concrete example on real data, in a companion paper,
we explore how to use a concatenated FJ model to describe
the 10+ years of negotiations that led to the 2015 Paris agree-
ment on climate change, a multilateral international accord
unanimously approved by the participating countries [2].

E. Some preliminary results

It is not hard to see that there are special choices of
the transition matrices P (s) for which Problem 1 admits a
particularly simple solution. The following can in fact be
proved straightforwardly.

Proposition 1 If P (s1 : s2) is a rank-1 matrix for some
s1, s2 ≥ 1, then the system (3) achieves consensus for some
s ≤ s2, no matter what the other transition matrices are.

Recalling that P (s) and W (s), Θ(s) are related by (4)-(5),
Proposition 1 indicates that consensus can be achieved even
in finite time, in correspondence of special choices of W (s)
and Θ(s). However, in “real” social systems, there is no way
to verify the condition of Proposition 1, since the exact values
of W (s) and Θ(s) are normally not available (and cannot be
chosen at will). Therefore, conditions that are independent of
specific numerical values are of more importance. Throughout
this manuscript, we mainly focus on topological properties of
the sequences {M(s)}, {U(s)}. The only condition that we
need to impose on the numerical values of W (s) and Θ(s)
is the following non-vanishing coupling condition, which also
appeared in [3], [4], [13], [27].
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Assumption 2 There exists µ1 > 0 such that all positive
entries of W (s) and Θ(s) are lower bounded by µ1 for all
s ≥ 1. In addition, there exists 0 < µ2 < 1 such that all
entries of Θ(s) are upper bounded by 1− µ2.

Under Assumption 2 we can show that the positive entries of
each P (s) have a lower bound

ε = µ2µ
n−1
1 .

Lemma 3 Under Assumption 2, for any s ≥ 1, if [P (s)]ij > 0
for i, j ∈ V , it then holds [P (s)]ij ≥ ε.

The proof of Lemma 3 is given in Appendix B.
With Assumption 2 and Lemma 3 in place, most of the

conditions proposed in this paper do not depend on numerical
values of W (s),Θ(s), but only on topological properties of
the arrangements of M(s) and U(s), which can be captured
graphically by the notion of trellis graph (see Section IV-A). To
better present the idea, we denote P the set of all stochastic
matrices in the form of (4) with dimension n and with all
positive entries no less than ε. Each P ∈ P can also be
regarded as the transition matrix of some FJ model (1), with
the set of participants and stubborn agents denoted as MP

and UP respectively. Equivalence classes on P are defined as
follows.

Definition 2 (Equivalence) We say that two stochastic matri-
ces P,Q ∈ P are equivalent, denoted P ∼ Q, if MP =MQ

and UP = UQ. An equivalence class is a set of stochastic
matrices in which any two stochastic matrices are equivalent
to each other, and no stochastic matrix outside the set is
equivalent to elements within the set.

Note that the number of equivalence classes on P is finite,
while there are infinitely many different matrices in each class.
For each of the equivalence classes, we can pick a represen-
tative to be the matrix in the class whose positive entries on
each row are equal. Unless otherwise specified, we make the
convention that P with integer subscripts (i.e., P1, P2, . . . )
is used to denote these representatives. Here the choice of
the representatives is only to simplify the notation. All the
arguments still hold for any other choice of representatives,
since the only quantitative property of P (s) needed throughout
this paper is that its positive entries are lower bounded by ε,
and the exact values do not matter (Lemma 3). Furthermore,
given a subset P∗ ⊂ P , we use P̃∗ to denote its representative
set, defined as

P̃∗ = {Pk : ∃P ∈ P∗ s.t. Pk ∼ P}. (7)

By definition, P̃∗ is a finite set.
Consider a specific sequence of stochastic matrices gener-

ated by (3):

S = {(s, P (s)) : s.t. P (s) is the s-th transition
matrix of (3), s ≥ 1}.

The subset of P associated to the sequence S is denoted PS :

PS = {P (s) : s.t. (s, P (s)) ∈ S for some s ≥ 1}. (8)

and its representative set

P̃S = {P1, . . . , PK} (9)

for some K > 0. For Pk ∈ P̃S , let Mk, Uk be the corre-
sponding set of participants and stubborn agents, respectively.

IV. CONVERGENCE ANALYSIS FOR A SPECIFIC SEQUENCE

In this section, we consider a specific sequence S of
transition matrices generated by (3) and seek for conditions
which guarantee that the associated matrix product P (1 : s)
converges to a rank-1 matrix as s → ∞, i.e., the corre-
sponding concatenated FJ problem achieves consensus. For
this purpose, it is convenient to introduce a special graph,
called trellis graph, associated to our problem and use it to
formulate sufficient conditions for Problem 1. A series of
examples illustrating these sufficient conditions will be given
in Section VI.

A. Trellis graph representation

The product of stochastic matrices (6) can be effectively
represented as a trellis graph [23], i.e., an infinite directed
weighted graph, examples of which are shown in Figs. 2(d)-
(e) and 3(d)-(e). The nodes are labeled according to 2 indexes
(i, s), i = 1, . . . , n, and s = 0, 1, . . .: a vertical group of
nodes (indexed by i) represents the n agents at each event s,
while the edges between slice s − 1 and s correspond to the
nonzero entries of the corresponding stochastic matrix P (s),
i.e., (i, s− 1) ↪→ (j, s) if and only if [P (s)]ji > 0, where we
use “↪→” to represent a path from one node to another on the
trellis graph. The special patterns of the trellis graph in our
problem induced by the structure (4)-(5) are:
• With the exception of the first slice, all nodes must have

an incoming edge (P (s) has row sums equal to 1);
• If (i, s − 1) ↪→ (j, s), it also holds (i, s − 1) ↪→ (i, s)

(R(s) in (4) is full).
For each discussion, the possible behaviors of the agents are
captured in the trellis graph as follows:
• Stubborn: node with multiple outgoing edges (one edge

for each discussion participant, including self);
• Silent (i.e., participant but not stubborn): node without

outgoing edges;
• Absent: node with only a self edge.

Moving from left to right along the trellis graph, it is possible
to follow how the opinion of each agent propagates to the other
participants in the discussion, according to the rules described
above.

B. A first sufficient condition for convergence: recurrent
reachability

Denote with M(s1 : s2) the cumulative set of agents that
have participated to at least one discussion from event s1 to
s2: M(s1 : s2) =

⋃s2
s=s1
M(s). Obviously M(1 : s) is non-

decreasing w.r.t. s: M(1 : s) ⊆M(1 : `) for ` ≥ s.
A first obvious necessary condition for convergence of a

concatenated FJ system to a rank-1 matrix is that for certain
s, M(1 : s) = V .
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A stronger necessary condition is that the matrix product in
(6) has a positive column. On a trellis graph, having a positive
column can be cast as a reachability problem. Denote with
R(i, s1 : s2) the reachable set at slice s2 starting from node i
at slice s1, defined as the set of nodes for which there exists a
“trellis path” from i, i.e.,R(i, s1 : s2) = {j|(i, s1) ↪→ (j, s2)}.

Lemma 4 Consider the concatenated FJ system (3). The
following conditions hold.

1) R(i, s1 − 1 : s2) = V if and only if the i-th column of
P (s1 : s2) is positive;

2) A necessary condition for consensus is that ∃ i ∈ V ,
1 ≤ s1 ≤ s2 such that R(i, s1 − 1 : s2) = V .

The proof of Lemma 4 is given in Appendix C.
Existence of a positive column in P (s1 : s2) (i.e., reachabil-

ity) is however not enough to guarantee consensus in the chain
(6). A simple counterexample is given by prolonging the chain
P (s1 : s2) with infinitely many P (s) = I . One possible way
to obtain a sufficient condition for convergence to consensus
is to impose that the reachability property is “renewed” an
infinite number of times along the chain, which leads to the
following assumption.

Assumption 3 There exist two sequences {s`} with s` ∈ N
and {i`} with i` ∈ V , and an integer κ > 0 such that s0 = 0,
0 < s` − s`−1 ≤ κ and R(i`, s`−1 : s`) = V for all ` =
1, 2, . . ..

With the assumptions at hand and inspired by analogous
conditions in the literature (see e.g. Lemma 3.1 in [7]), we
have the following sufficient condition.

Theorem 1 Let Assumptions 1-3 hold. Then the concatenated
FJ system (3) achieves consensus as s goes to infinity.

The proof of Theorem 1 is given in Appendix C.
The key point of this theorem is that {P (s)} can be broken

down into the product matrices P (1 : s1), P (s1 + 1 : s2), . . .,
P (s`−1 +1 : s`), each of which is a stochastic matrix and has
at least one positive column with all entries bounded away
from 0. Such matrices are part of a consensus set [4], [27],
meaning that any infinite product converges to a rank-1 matrix
regardless of the order chosen. An analogous property does not
hold for the matrices P (s) themselves, meaning that the order
in which the P (s) appear in P (s`−1 + 1 : s`) is crucial for
convergence, as Examples 1 and 2 (in Section VI, where all
examples are gathered) show. This is a consequence of the fact
that the infinite power of each P (s) with the structure (4)-(5)
does not converge to a rank-1 matrix because of the diagonal
blocks equal to the identity.

Theorem 1 gives a sufficient but not necessary condition, as
shown in Example 3.

C. A second sufficient condition: fixed order of stubbornness

Consider a situation in which there is a fixed hierarchy
among the agents for all the discussions, e.g., a business unit or
a university department in which the members have different

levels of authority. In our model, this can be expressed as a
fixed “ordering” among the magnitudes of the stubbornness
coefficients, although each coefficient can vary over the se-
quence s, as follows.

Assumption 4 For all s ≥ 1 and i, j ∈M(s), θi(s) ≥ θj(s)
holds if i < j.

Assumption 4 gives a topological ordering property to the
trellis graph: for any two agents i < j, if (j, s− 1) ↪→ (i, s),
it must be θi(s) ≥ θj(s) > 0, which means that it must also
be (i, s − 1) ↪→ (j, s). Besides Assumption 4, the following
assumption is also needed.

Assumption 5 There exists an integer τ > 0 such that for
all s ≥ 1 and i, j ∈ V , {i, j} ⊂ M(s + z) holds for some
0 ≤ z ≤ τ − 1.

Assumption 5 means that any two agents must join the same
discussion at least once over any time interval of fixed length.

The following theorem provides another sufficient condition
for consensus.

Theorem 2 Let Assumptions 1, 2, 4 and 5 hold. Then the
concatenated FJ system (3) achieves consensus as s goes to
infinity.

The proof of Theorem 2 is given in Appendix C.
It follows from the proof that Assumptions 4 and 5 lead to

a special case of the recurrent reachability condition: when the
fixed order of stubbornness of Assumption 4 holds, the opinion
of the most stubborn agent will eventually propagate to all the
agents provided that any two agents meet in one discussion
on each time interval with bounded length (Assumption 5).
The ordered stubbornness coefficients in this case provide a
hierarchy that allows to reach consensus, regardless of the
topology of the graphs GW (s).

D. A third sufficient condition: linking consecutive discussions

The key feature of the concatenated FJ model is that
opinions must propagate from a discussion event to the next.
One way to guarantee this is to impose that there is an overlap
between the sets of participating agents at event s and at event
s+1. This is however not enough to guarantee convergence. In
fact, in our model silent agents are only passively participating
to a discussion and not actively influencing the other partic-
ipants, hence they play no role in the opinion propagation.
Propagation is guaranteed if there is a continuity between the
opinions that have been updated at issue s and those that will
be stubbornly supported at issue s+ 1. Formally, we can state
this as the following assumption.

Assumption 6 For all s ≥ 1, it holds M(s) ∩ U(s+ 1) 6= ∅.

Lemma 5 Let Assumptions 1 and 6 hold. Then the following
condition

R(i0, s− 1 : s′) =M(s : s′) (10)

holds for all s′ ≥ s ≥ 1 and i0 ∈ U(s).
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The proof of Lemma 5 is given in Appendix C.
Equation (10) implies that the reachable set of any initially

stubborn agent is non-decreasing: i0 ∈ U(s) for some s =⇒
R(i0, s − 1 : s′) ⊆ R(i0, s − 1 : s′′) ∀ s′′ ≥ s′ ≥ s. This is
not true when Assumption 6 is missing, see Example 2. With
Lemma 5, we have the following theorem.

Theorem 3 Let Assumptions 1, 2, 5 and 6 hold. Then the
concatenated FJ system (3) achieves consensus as s goes to
infinity.

The proof of Theorem 3 is given in Appendix C.
Intuitively, Theorem 3 requires “continuity of information

propagation” along any two consecutive issues. We will show
in Examples 1 and 2 that sequences taken from the same
P , and composed of the same P (s) but with different orders
can lead to different convergence properties. This fact will be
formalized and generalized (i.e., rendered less conservative) in
Section V.

Concerning the three sufficient conditions given so far, no-
tice that, with the exception of Assumption 2, the assumptions
used in Theorems 1 and 3 are purely topological, meaning
that they are valid for all numerical entries in the W (s) and
Θ(s) matrices (provided that these obey Assumption 2). Hence
Theorems 1 and 3 are valid for the equivalence class P̃ as long
as we pick elements satisfying Assumption 2. In Theorem 2,
instead, the amplitude of the θi(s) obviously matters because
of Assumption 4.

V. TOWARDS SEQUENCE-INDEPENDENT CONDITIONS:
PARTIAL RESULTS

So far, we have focused on convergence conditions valid for
a given sequence S, i.e., for a specific sequence of P (s) in P .
One can however ask if it is possible to obtain conditions that
are valid for any possible sequence of P (s) drawn from P , in
the same spirit as the already mentioned notion of “consensus
set” developed for the case of stochastic matrices without any
extra structure [4].

Definition 3 Consider a set of stochastic matrices P∗ ⊂ P .
The set P∗ is called a consensus set if any matrix product
Q(s) = P (s) . . . P (2)P (1) with each P (s) an arbitrary
matrix in P∗ converges to a rank-1 matrix as s grows to
infinity. Conversely, if no such Q(s) converges to a rank-1
matrix, P∗ is called a never-consensus set. In addition, P∗
is said undecidable if it is neither a consensus nor a never-
consensus set.

Owing to the special form (4), as soon as one transition
matrix in P∗ contains some absent agents, then the entire set
fails to be a consensus set, because there exists at least one
sequence (the trivial one, of all identical stochastic matrices)
for which convergence to a rank-1 matrix does not occur. This
is formulated in the following proposition.

Proposition 2 No set P∗ of stochastic matrices of the form
(4) and such that for some P ∈ P∗ it holds MP ( V can be
a consensus set.

The proof is in Appendix D. Generally, the structure (4)
implies that PS is undecidable, i.e., convergence to consensus
depends on the specific order chosen for the {P (s)} (see Ex-
amples 1 and 2). However, as will be shown in the following,
PS can be a never-consensus set or “close to a consensus set”
for some special cases.

In order to study the problem in this more general form,
we need to introduce tools that are unrelated to the specific
choice made in a sequence like S.

A. Information flow graph

According to the arguments of Section IV-D, the condition
M(s) ∩ U(s+ 1) 6= ∅ guarantees that the opinions at issue s
propagate to issue s + 1. Inspired by this, we can construct
a novel graph associated to the family PS , able to capture
in a systematic way all possible propagations of opinions,
regardless of the order in which the P (s) are chosen. We call
this the information flow graph associated to PS . In a more
general sense, we define it on the associated representative sets
of any P∗ ⊂ P .

Definition 4 (Information flow graph) The Information
Flow Graph (IFG) associated to P∗ ⊂ P is a graph such that
• each Pk of P̃∗ represents a node;
• for Pk1 , Pk2 ∈ P̃∗, the directed edge (Pk1 , Pk2) exists if

and only if Mk1 ∩ Uk2 6= ∅.

Consider the set PS . Denote the associated IFG as I =
(P̃S ,ES), with ES as the edge set. For convenience, given
a subgraph of I, denoted I1, we use subscript P̃I1 ,EI1 to
denote its node set and edge set respectively.

The IFG is a simplification of the trellis graph in the sense
that the time axis disappears, and the IFG edges represent two
transition matrices having M(s1) ∩ U(s2) 6= ∅, regardless of
their indices s1 and s2. These edges are in lump form, i.e.,
the nonzero edge weights are set equal to 1 regardless of the
cardinality of the set M(s1)∩ U(s2). See Figs. 2(f), 3(f) and
4(a) for examples of IFGs. According to the structure of the
transition matrices defined by (4), each node of an IFG has
a self-loop, although it is omitted in the figures mentioned
above.

From Definition 4, we have the following result.

Proposition 3 If there exists a subsequence of P (s) ∈ PS ,
s ∈ [s1, s2] and i ∈ V such that R(i, s1 − 1 : s2) = V ,
then the IFG I1 associated to PI1 = {P (s1), . . . , P (s2)} is
quasi-strongly connected and ∪Pk⊂P̃I1

Mk = V .

The proof of Proposition 3 is given in Appendix D.
The condition of Proposition 3 is sufficient but not neces-

sary, see e.g. Example 2 (in particular the sequence (16)).

B. A fourth sufficient condition: repeated Finite Information
Flow Walks with full coverage of agents

As argumented in the last sections, the order in which P (s)
appears in S is crucial for the system (3) to achieve consensus.
In particular, the sequences that are useful for convergence are
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those that follow the direction of the edges of the IFG I, as
can be deduced also by Examples 1 and 2 and by Theorem 3.
This is formalized in the following definition.

Definition 5 (Finite Information Flow Walk) A Finite In-
formation Flow Walk (FIFW) is a finite subsequence of S,
denoted W = {(s, P (s))|s1 ≤ s ≤ s2, s1 < s2}, such that for
all s ∈ [s1, s2 − 1], it holds M(s) ∩ U(s + 1) 6= ∅. The IFG
associated to W is the subgraph of I, denoted as IW , with

P̃IW ={Pk ∈ P̃S : ∃s ∈ [s1, s2] s.t. Pk ∼ P (s)},
EIW ={(Pk1 , Pk2) : ∃s ∈ [s1, s2 − 1] s.t.

Pk1 ∼ P (s), Pk2 ∼ P (s+ 1)}.

It is easy to see that any subsequence of a FIFW with length
no less than 2 is also a FIFW. A FIFW is a series of discussion
events along which “information flows”, i.e., opinions propa-
gate. In some cases, this allows to relax Assumption 6, as in
the following theorem.

Theorem 4 Let Assumptions 1 and 2 hold. The system (3)
reaches consensus if there exist infinitely many time intervals
[s1, s2], [s3, s4], . . . , [s2d−1, s2d], . . . with s1 < s2 < s3 <
· · · < s2d−1 < s2d < . . . , such that for each d ≥ 1, the
subsequence Wd = {(s, P (s))|s2d−1 ≤ s ≤ s2d} is a FIFW
and

∪Pk∈P̃IWd

Mk = V. (11)

The proof of Theorem 4 is given in Appendix E.
Theorem 4 implies that consensus is achieved if all agents

are covered repeatedly by the influence of some stubborn
agents along a FIFW. Note that there is no assumption made
on the length of each time interval, provided it is finite.

Theorem 4 can be easily applied to the case in which
P̃S only contains two elements, see Remark 1 and Example
1. Note that the condition given in Theorem 4 is sufficient
but not necessary. In fact, even if S does not include any
FIFW, consensus may still be reached, see Example 5. This
is because the information flow graph only encodes the re-
lation of “immediate” opinion propagation, i.e., opinions that
propagate from M(s) to U(s+ 1), but ignores the “delayed”
opinion propagations due to the absent agents, e.g., opinions
that propagate through M(s) → V\M(s + 1) → U(s + 2)
and so on.

Theorem 4 still depends on the sequence of P (s). It
can be considered a generalization of Theorem 3, as under
Assumption 6, each finite subsequence of S becomes a FIFW.
Similarly to Theorems 1 and 3, also Theorem 4 is a topolog-
ical condition on the sequence of transition matrices (under
Assumption 2).

C. A necessary condition: not being a never-consensus set

As argued above, a necessary and sufficient condition for
solving Problem 1 should involve extra information besides
the information flow graph and is out of our reach for now.

We now turn to find a necessary condition for Problem 1.
To this end, first note that if PS is a never-consensus set, the

system (3) can never achieve consensus. Never-consensus sets
can be characterized explicitly for our transition matrices.

Theorem 5 Let Assumptions 1 and 2 hold. A set P∗ ⊂ P
is a never-consensus set if and only if for any quasi-strongly
connected subgraph I1 of its IFG, it holds ∪Pk∈P̃I1

Mk 6= V .

Corollary 1 For the system (3) to achieve consensus, it must
hold that the associated IFG of PS includes a spanning tree
and ∪Pk∈P̃S

Mk = V .

The proof of Theorem 5 and Corollary 1 is given in
Appendix F.

The necessary condition given by Theorem 5 only depends
on the structure of the IFG. Compared to the necessary condi-
tions proposed in [22], [23], which are for matrix products in a
more general form but following a given order, the condition in
Theorem 5 is somehow easier to verify. Moreover, if P̃S only
contains two elements, a sufficient and necessary condition
can be obtained, as the following remark shows.

Remark 1 Let Assumptions 1 and 2 hold. Consider a PS such
that P̃S = {P1, P2} and assume that there exists an integer
sequence s1 < s2 < · · · < s2d−1 < s2d < . . . such that
P (s2d−1) = P1, P (s2d) = P2 for all d ∈ N+. Assume also

1) M1 ∪M2 = V ,
2) M1 ∩ U2 6= ∅ or M2 ∩ U1 6= ∅.

It is easy to see that the matrix product (P1)`P2 or (P2)`P1

corresponds to a FIFW satisfying (11) for any ` ∈ N+, and
that such FIFWs appear disjoint for infinite many times in S.
Therefore, the conditions in Theorem 4 are satisfied and the
system (3) achieves consensus. On the other hand, Conditions
1) and 2) are also necessary for the opinion consensus,
as implied by Theorem 5. Therefore, for this special case,
Condition 1) and 2) are sufficient and necessary conditions
for the system (3) to achieve consensus. �

D. A special case: tree structure of the IFG

By Corollary 1, the existence of a spanning tree of the IFG
is necessary for system (3) to achieve consensus. In fact, with
the tree structure on the IFG, consensus of the system (3) can
be easily achieved. We have the following result.

Theorem 6 Let Assumptions 1 and 2 hold. Suppose that the
IFG of PS is a tree and ∪Pk∈P̃S

Mk = V . If there exists an
integer sequence 1 = s0 < s1 < · · · < sd < . . . such that for
each Pk ∈ P̃S and d > 0, ∃ (s, P (s)) ∈ S s.t. P (s) ∼ Pk for
some s ∈ [sd−1, sd), then the system (3) achieves consensus.

The proof of Theorem 6 is given in Appendix G.
Intuitively, a tree structure is interesting in the sense that it

introduces a hierarchy in the discussions, with opinions that
flow from the root to the leaves i.e., nodes that are closer to the
root enjoy higher priority. This is the typical pattern one can
expect in the decision process of a company, in which the top
management holds meetings first, and “opinions” propagates
down the ladder, according to hierarchy.
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According to Theorem 6, if the IFG is a tree, any order
of the transition matrix sequence S will generate consensus
of (3), with the only requirement that each Pk ∈ P̃S appears
infinite many times in the matrix products. In this sense PS
is “close” to being a consensus set. What happens in practice
is that consensus in this concatenated FJ model is achieved to
the opinions of the roots, as expected.

VI. EXAMPLES

For ease of notation, in this section we use (1, . . . , n1|n1 +
1, . . . , n2|n2 + 1, . . . , n) to represent P (s) with M(s) =
{1, . . . , n2} and U(s) = {1, . . . , n1}. Commas used to sepa-
rate indexes are omitted when there is no ambiguity.

Example 1 An extremely simple example involves 3 agents
(one stubborn, one silent and one absent), which exchange
roles in 2 different rotation sequences

(1|2|3), (2|3|1), (3|1|2) (12)

and
(1|2|3), (3|1|2), (2|3|1). (13)

These sequences are then repeated infinitely many times. For
the first sequence the periodic product of matrices is Pc(1 :
3) = P3P2P1 with

P1 =

1 0 0
1 0 0
0 0 1

 , P2 =

1 0 0
0 1 0
0 1 0

 , P3 =

0 0 1
0 1 0
0 0 1


while for the second it is Po(1 : 3) = P2P3P1. The associated
trellis graphs and IFG are shown in Fig. 2(d)-(e) and (f),
respectively. The first sequence satisfies Theorem 1 (Pc(1 : 3)
is already a rank-1 matrix, see Fig. 2(b)), while the second
does not converge (Po(1 : 3) is not a rank-1 matrix, and neither
is P ko (1 : 3) for any k), meaning that Assumptions 3 and 6 are
never satisfied. Fig. 2(c) shows that indeed we have oscillations
in this last case. Notice that if instead we consider only P1

and P2, then the IFG graph is a tree, and any concatenation
of infinitely many products such as

. . . P2 . . . P2︸ ︷︷ ︸
s4 times

P1 . . . P1︸ ︷︷ ︸
s3 times

P2 . . . P2︸ ︷︷ ︸
s2 times

P1 . . . P1︸ ︷︷ ︸
s1 times

will converge to consensus according to Theorem 6. �

Example 2 Consider ` events involving 5 agents. In each
event, 3 agents participate (two are stubborn, and one silent)
and 2 agents are absent. Each event is identified by a per-
mutation of {1, 2, 3, 4, 5}. The graph at each k = 1, . . . , `
corresponds to a 3-node complete subgraph, as illustrated in
Fig. 3(a). The matrix Wk is a 3-dimensional full matrix, with
all entries being 1

3 . All stubborn agents have θi = 1
2 as their

stubbornness. Straightforward calculations lead to

P̄k = Πk


3/4 1/4 0
1/4 3/4 0
1/2 1/2 0

0

0 I

Πk, (14)

where Πk is a permutation matrix. From the P̄k, the represen-
tative matrices Pk can be computed (just replace the nonzero
entries on the upper left block with 1/2). An infinite product of
stochastic matrices is given by the sequence . . . P̄1P̄` . . . P̄1,
in which P̄1, . . . , P̄` periodically appear.

If we choose the permutation matrices such that the node
orders are

(12|3|45), (34|5|12), (51|2|34), (23|4|51), (45|1|23), (15)

then, for any x(0) ∈ R5, the evolution of x(s) converges to
consensus, see Fig. 3(b). If, instead of (15), we choose the
reverse sequence

(12|3|45), (45|1|23), (23|4|51), (51|2|34), (34|5|12), (16)

then, for any x(0), the evolution of x(s) is periodic, instead
of converging to consensus, see Fig. 3(c). As expected, the
convergence results are identical if instead of the P̄k matrices
we use the representative Pk. The corresponding trellis graphs,
drawn in Fig. 3(d) and (e), show that the concatenation (16)
indeed corresponds to a periodic pattern (no line intersects the
highlighted boundary), while for (15) R(2, 0 : 5) = V . Notice
that in both cases the union of graphs ∪5

k=1GW (s+k) is fully
connected for all s, meaning that “uniform connecivity” of the
GW (s) is not a relevant property, unlike in ordinary consensus
problems. If we consider the set PS of the 5 P̄k matrices used
in (15) and (16), then the corresponding IFG graph is given
in Fig. 3(f). This graph is strongly connected, and supports
several FIFWs W such that ∪Pk∈P̃IW

Mk = V , and (15) is
one of them. It also supports sequences containing no FIFW,
such as (16). Hence, not all arbitrary sequences of P (s) taken
from PS are converging, i.e., PS is neither a consensus set
nor a never-consensus set, meaning that it is an undecidable
set. If we choose a slightly more complex interaction pattern,
like

(12|3|45), (45|1|23), (23|4|51), (51|3|24), (24|5|13),

(13|4|25), (25|1|34), (34|5|21), (12|4|53), (53|2|41),

(41|5|32), (32|1|54),

then it is easy to show that even when an assumption stronger
than Assumption 5 holds, i.e., any two nodes i, j ∈ V are
simultaneously stubborn in an event (i, j ∈ U(k) for s ≤ k <
s+ l with ` = 12 and s ≥ 1), the system still oscillates. �

The next example shows that the bounded time interval
conditions (i.e., Assumptions 3, 5) of Theorems 1 and 3 are
not necessary.

Example 3 Consider a group of n ≥ 3 individuals. Only two
situations are possible in each round of discussion (indexed
by s):

1) U(s) = M(s) = {1, . . . , n − 1}. The corresponding
submatrix is W (s) = 1

n−111
>, and θi = 1

2 for all
i = 1, . . . , n− 1. Accordingly, we have

P (s) =

(
1
2 (I + 1

n−111
>) 0

0 1

)
:= Q1;
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<latexit sha1_base64="qKw0oVhal2AD3q3LFg5cOnWRvQA=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqHgqePFY0X5AG8pmu2mXbjZhdyKU0J/gxYMiXv1F3vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDvz209cGxGrR5wk3I/oUIlQMIpWemj0vX654lbdOcgq8XJSgRyNfvmrN4hZGnGFTFJjup6boJ9RjYJJPi31UsMTysZ0yLuWKhpx42fzU6fkzCoDEsbalkIyV39PZDQyZhIFtjOiODLL3kz8z+umGF77mVBJilyxxaIwlQRjMvubDITmDOXEEsq0sLcSNqKaMrTplGwI3vLLq6R1UfUuq7X7WqV+k8dRhBM4hXPw4ArqcAcNaAKDITzDK7w50nlx3p2PRWvByWeO4Q+czx/PN415</latexit>

P1
<latexit sha1_base64="0CF7VGsCWARzX/dmXta+luEwSVs=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKUfFU8OKxoq2FNpTNdtIu3WzC7kYooT/BiwdFvPqLvPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewtr6xuVXcLu3s7u0flA+P2jpOFcMWi0WsOgHVKLjEluFGYCdRSKNA4GMwvpn5j0+oNI/lg5kk6Ed0KHnIGTVWum/2a/1yxa26c5BV4uWkAjma/fJXbxCzNEJpmKBadz03MX5GleFM4LTUSzUmlI3pELuWShqh9rP5qVNyZpUBCWNlSxoyV39PZDTSehIFtjOiZqSXvZn4n9dNTXjlZ1wmqUHJFovCVBATk9nfZMAVMiMmllCmuL2VsBFVlBmbTsmG4C2/vEratap3Ua3f1SuN6zyOIpzAKZyDB5fQgFtoQgsYDOEZXuHNEc6L8+58LFoLTj5zDH/gfP4A0LuNeg==</latexit>

P2
<latexit sha1_base64="LDccFWGD+8ebFn+FTkh+1+PZVCQ=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0qHgqePFY0X5AG8pmu2mXbjZhdyKU0J/gxYMiXv1F3vw3btsctPpg4PHeDDPzgkQKg6775RRWVtfWN4qbpa3tnd298v5By8SpZrzJYhnrTkANl0LxJgqUvJNoTqNA8nYwvpn57UeujYjVA04S7kd0qEQoGEUr3Tf65/1yxa26c5C/xMtJBXI0+uXP3iBmacQVMkmN6Xpugn5GNQom+bTUSw1PKBvTIe9aqmjEjZ/NT52SE6sMSBhrWwrJXP05kdHImEkU2M6I4sgsezPxP6+bYnjlZ0IlKXLFFovCVBKMyexvMhCaM5QTSyjTwt5K2IhqytCmU7IheMsv/yWts6p3Ua3d1Sr16zyOIhzBMZyCB5dQh1toQBMYDOEJXuDVkc6z8+a8L1oLTj5zCL/gfHwD0j+New==</latexit>
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Fig. 2. Example 1. (a): the 3 interaction graphs (red for stubborn agents, green for silent agents, yellow for absent agents); (b)-(c) simulations for the sequences
(12)-(13), respectively. (d)-(e): trellis graphs for the sequences (12)-(13), respectively; (f) IFG for the the sequences (12) and (13);
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2 absent 
agents

<latexit sha1_base64="3OG12pFL9EXpK83E+1AmHNH/BFE=">AAAB/XicbVDLSsNAFJ34rPUVHzs3g0VwVZKi6EYounFZwT6gCWUynbRDJ5MwcyPUEPwVNy4Ucet/uPNvnLZZaOuBC4dz7uXee4JEcA2O820tLa+srq2XNsqbW9s7u/befkvHqaKsSWMRq05ANBNcsiZwEKyTKEaiQLB2MLqZ+O0HpjSP5T2ME+ZHZCB5yCkBI/XsQw+GDEjPvfJCRWjm5lkt79kVp+pMgReJW5AKKtDo2V9eP6ZpxCRQQbTuuk4CfkYUcCpYXvZSzRJCR2TAuoZKEjHtZ9Prc3xilD4OY2VKAp6qvycyEmk9jgLTGREY6nlvIv7ndVMIL/2MyyQFJulsUZgKDDGeRIH7XDEKYmwIoYqbWzEdEpMCmMDKJgR3/uVF0qpV3fOqc3dWqV8XcZTQETpGp8hFF6iOblEDNRFFj+gZvaI368l6sd6tj1nrklXMHKA/sD5/AB3TlQE=</latexit>

✓1 =
1

2<latexit sha1_base64="euyxLfbUFqk2NB16NxPy72Y9d1U=">AAAB/XicbVDLSsNAFJ34rPUVHzs3g0VwVZKi6EYounFZwT6gCWUynbRDJ5MwcyPUEPwVNy4Ucet/uPNvnLZZaOuBC4dz7uXee4JEcA2O820tLa+srq2XNsqbW9s7u/befkvHqaKsSWMRq05ANBNcsiZwEKyTKEaiQLB2MLqZ+O0HpjSP5T2ME+ZHZCB5yCkBI/XsQw+GDEivduWFitDMzbNa3rMrTtWZAi8StyAVVKDRs7+8fkzTiEmggmjddZ0E/Iwo4FSwvOylmiWEjsiAdQ2VJGLaz6bX5/jEKH0cxsqUBDxVf09kJNJ6HAWmMyIw1PPeRPzP66YQXvoZl0kKTNLZojAVGGI8iQL3uWIUxNgQQhU3t2I6JCYFMIGVTQju/MuLpFWruudV5+6sUr8u4iihI3SMTpGLLlAd3aIGaiKKHtEzekVv1pP1Yr1bH7PWJauYOUB/YH3+AB9jlQI=</latexit>

✓2 =
1

2

<latexit sha1_base64="ygCPlUzogk8K9hC9IPHvPlcI9ZU=">AAAB8XicbVDLSgNBEJyNrxhfUY9eBoPgKez6QC9C0IvHCOaByRJmJ73JkNnZZaZXCEv+wosHRbz6N978GyfJHjRa0FBUddPdFSRSGHTdL6ewtLyyulZcL21sbm3vlHf3miZONYcGj2Ws2wEzIIWCBgqU0E40sCiQ0ApGN1O/9QjaiFjd4zgBP2IDJULBGVrpoYtDQNY7vXJ75YpbdWegf4mXkwrJUe+VP7v9mKcRKOSSGdPx3AT9jGkUXMKk1E0NJIyP2AA6lioWgfGz2cUTemSVPg1jbUshnak/JzIWGTOOAtsZMRyaRW8q/ud1Ugwv/UyoJEVQfL4oTCXFmE7fp32hgaMcW8K4FvZWyodMM442pJINwVt8+S9pnlS986p7d1apXedxFMkBOSTHxCMXpEZuSZ00CCeKPJEX8uoY59l5c97nrQUnn9knv+B8fAPHL5BT</latexit>

✓3 = 0
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Fig. 3. Example 2. (a): interaction graph representing the (12|3|45) case. Red: stubborn agents; green non-stubborn agents; yellow: absent agents. (b):
simulation for the sequence (15). (c): simulation for the sequence (16). (d): trellis graph for the sequence (15). (e): trellis graph for the sequence (16). (f):
IFG graph associated to the P used in this plots.

2) U(s) =M(s) = {n − 1, n}. The corresponding subma-

trix is W (s) =

(
1
2

1
2

1
2

1
2

)
, and θi = 1

2 for i = n− 1, n.

Then

P (s) =

 I 0

0
3
4

1
4

1
4

3
4

 := Q2;

The choice between these two alternatives occurs according
to the following pattern

{1, . . . 1︸ ︷︷ ︸
τ1 times

, 2, 1, . . . 1︸ ︷︷ ︸
τ2 times

, 2 . . .}

where τi, i = 1, 2, . . . form a strictly increasing (and hence
diverging) sequence of integers. The corresponding product of
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matrices is

. . . Q2Q
τ2
1 Q2Q

τ1
1 = . . . Q2Q1, . . . Q1︸ ︷︷ ︸

τ2 times

Q2Q1, . . . Q1︸ ︷︷ ︸
τ1 times

(17)

Note that for the switching pattern (17), if R(i, k1 : k2) = V
for some k1 < k2 and some i ∈ V , there must be an s̄ such that
k1 < s̄ ≤ k2 and P (s̄) = Q2. Therefore, Assumption 3 is not
satisfied, since the length of the intervals grows unbounded.
On the other hand, letting a = 1

2τ
2τ−1
n−1 , we have

Q2Q
τ
1 =

 1
2τ I + a11> a1 0

3
4a1

> 3
4 ( 1

2τ + a) 1
4

1
4a1

> 1
4 ( 1

2τ + a) 3
4

.
As Q2Q

τ
1 has a positive column and all its entries are lower

bounded, the matrix product (17) converges to a rank-1 matrix
as τ approaches infinity, i.e., the system (3) reaches consensus.
�

The next is a simple example of the never-consensus set.

Example 4 Consider a group of 8 agents. Let PS =
{P1, . . . , P5} correspond to the following choices

(12||345678), (34|1|25678), (45|3|12678),

(67|2|13458), (78|6|12345).

The stubbornness of stubborn participants is fixed to be 0.5,
and Wk is a stochastic matrix with identical rows and columns
for k = 1, . . . , 5. The IFG associated to PS is shown in
Fig. 4(a). We see that no quasi-strongly subgraph I1 of
the IFG satifies ∪Pk∈P̃I1

Mk = V . By Theorem 5, PS is
a never-consensus set. We now let the initial opinions be
[0.125, 0.25, . . . , 1]. For each discussion s, the P (s) is chosen
randomly in PS with uniform distribution. This simulation is
run for 100 times. Let d(s) =

√∑8
i=1

∑8
j=1(xi(s)− xj(s))2

be a measure of disagreement among the agents. The plots of
d(s) for the 100 simulations are shown in Fig. 4(b). It can be
seen that no d(s) decreases to 0, as expected from Theorem 5.
�

The final example shows that the conditions in Theorem 4
are not necessary.

Example 5 Let the matrix set PS = {P1, . . . , P5} ⊂ R6×6

correspond to the following interactions

(12|6|345), (34|6|125), (15|6|234)

(23|6|145), (45|6|123).

Consider the matrix product . . . P1 P5 . . . P2 P1. It is easy to
check that there is no FIFW in the matrix sequence, i.e.,
the conditions in Theorem 4 are not satisfied. However, the
opinion propagation on the trellis graph of P5P4 . . . P1, from
agent 1 at layer 0, is written as (here we omit layer indexes)

{1} → {1, 2, 6} → {1, 2} → {1, 2, 5, 6}
→ {1, 2, 3, 5, 6} → {1, 2, 3, 4, 5, 6}.

Therefore, the column corresponding to agent 1 of P5P4 . . . P1

is positive, which means that the recursive matrix product
. . . P1P5 . . . P1 is well-defined and is a rank-1 matrix. �

(a)

(b)

Fig. 4. Example 4. (a): the IFG associated to the PS used in this example;
(b) simulation plots for the sequence.

VII. CONCLUSION

A time-varying, “open”, concatenated FJ model has several
analogies with a standard time-varying DeGroot model, but
has also some important differences. One of the differences is
that it naturally leads to stochastic matrices with some zero
diagonal elements, which excludes the possibility of using
most of the common criteria that have been developed in the
literature to deal with consensus in time-varying systems. An-
other is that it usually leads to convergence conditions which
depend on the specific order in which the stochastic matrices
are chosen, i.e., convergence depends on the “path” followed,
or, more precisely, on who participates to which discussion
event and with which role (stubborn or silent). It is shown in
this paper that these differences lead to sufficient conditions for
convergence that are novel from a technical point of view, and
general enough to be useful in practice. For instance they are
mostly of topological nature, i.e., independent of the specific
values of the parameters of the model. See the companion
paper [2] for one possible application to real data.

As already mentioned, a limitation of two-time scale-models
like the concatenated FJ model is that consecutive events
must be sufficiently “well-separated” to allow convergence to
steady state to occur and P (s) to be computed in closed form.
When such separation does not take place, then analytical
calculations become much more involved, and the problem
remains to be studied. A related open problem consists in
replacing the infinite sequence of discussion events with a
finite one (and asymptotic convergence to a rank-1 stochastic
matrix with finite convergence). As Example 1 shows, in
some situations this is possible, and should be investigated
in a systematic way. As a final open problem, it is worth
mentioning that while we have managed to formulate sufficient
conditions that are sequence-independent (Theorem 4), these
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are not necessary and can be relaxed further, as Example 5
shows.
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APPENDIX A
FREQUENTLY USED SYMBOLS

s discussion event clock
x(s) opinion vector at the end of the s-th event
M set of participants
U set of stubborn participants
R reachable set
P stochastic matrix with the form (4)
P the set of all possible P ’s
P̃∗ the representative set of P∗ ⊂ P
S infinite sequence of P (s) indexed by s
PS the set of all P (s) appearing in S
W finite subsequence of S
I information flow graph (IFG)

APPENDIX B
PROOF OF LEMMA 3

By Lemma 1, (I − Θ(s))W (s) is Schur stable, hence, for
it the Neumann series expansion

∞∑
`=0

((I −Θ(s))W (s))` = (I − (I −Θ(s))W (s))−1

is convergent. Since W (s) is strongly connected, every (i, j)
entry of (I−(I−Θ(s))W (s))−1 is positive and obtained as a
summation of nonnegative quantities each greater or equal to
[
∑`′

`=0((I − Θ(s))W (s))`]ij , where `′ is the minimal power
needed to reach node i from node j. Obviously, we have `′ ≤
n− 1. Therefore, from (4) and Assumption 2, we have

[P (s)]ij ≥ µ2µ
n−1
1 = ε

whenever [P (s)]ij > 0, for any i, j ∈ V and s ≥ 1. �

APPENDIX C
PROOFS FOR SECTION IV

Proof of Lemma 4.
1) By construction, the columns of P (s1 : s2) represent

all paths of length s2 − s1 + 1 between pairs of nodes.
Reachability from i on the trellis graph means that ∃ a
path of length s2 − s1 + 1 from i to all nodes.

2) Suppose that ∀ i ∈ V , s1, s2 ∈ N+,R(i, s1−1 : s2) 6= V .
In particular, ∀i ∈ V and ∀s ∈ N+, R(i, 0 : s) 6= V .
Therefore, from item 1) above, any finite product P (1 :
s) can not have a positive column. As a consequence,
P (1 : s) cannot converge to a rank-1 matrix as s grows
to infinity.

�
Proof of Theorem 1. Given s1 < s2 < . . . < s` . . ., denote
Q(1) = P (1 : s1), Q(2) = P (s1 + 1 : s2), . . . Q(`) =
P (s`−1 + 1 : s`), . . .. Note that Q(`) is stochastic for all

` ≥ 1. We see from (3) that the entries of x(s+1) are located
in the convex hull formed by the entries of x(s) for all s ≥ 1.
Therefore, we only need to prove that Q(`) . . . Q(2)Q(1)
converges to a rank-1 matrix as ` goes to infinity. From
Assumption 3 and Lemma 4, each Q(`) has one positive
column. Moreover, as s` − s`−1 ≤ κ, for any j ∈ V ,
Assumption 2 implies that along any one path of i` to j,
we always have [Q(`)]ji` ≥ εκ. It is a standard result that
a sequence of products of stochastic matrices, each with a
positive column, converges to a rank-1 matrix if the positive
entries of all the matrices can be lower bounded by a positive
number [27]. This completes the proof. �
Proof of Theorem 2. Without loss of generality, suppose
n ≥ 2. At first, we know that for any s2 ≥ s1 ≥ 1, [P (s1 :
s2)]ji > 0 if and only if (i, s1 − 1) ↪→ (j, s2). On the other
hand, by Assumption 4, for all s ≥ 1 and j ∈ V , there must
exist i ≤ j such that (i, s− 1) ↪→ (j, s) (this holds even when
θi(s) = 0 for all i ∈ V). Since P (s1 : s2) is a stochastic
matrix, each row contains at least one positive entry, and the
following property then holds for the trellis graph:

P1: Given s2 ≥ s1 ≥ 1, for any j ∈ V , there exists i ≤ j
such that (i, s1−1) ↪→ (j, s2). In particular, (1, s1−1) ↪→
(1, s2) for all s2 ≥ s1 ≥ 1;

We claim that for all j ∈ V and s ≥ 1, it holds (1, s− 1) ↪→
(j, s′) for all s′ ≥ s+ nτ . To prove the claim, we choose an
arbitrary s ≥ 1 first. It suffices to prove (1, s−1) ↪→ (j, s+nτ)
for all j ∈ V . By property P1, this holds for j = 1. Let
s1 = min{s′ > s|1, 2 ∈ M(s′)}. By Assumption 4, it
holds (1, s1 − 1) ↪→ (2, s1). We then have (1, s − 1) ↪→
(1, s1 − 1) ↪→ (2, s1). Again from P1, for all s′ > s1, we
have either (1, s1) ↪→ (2, s′) or (2, s1) ↪→ (2, s′). For both
cases, it holds (1, s− 1) ↪→ (2, s′). According to Assumption
5, s1 ≤ s+ τ < s+ nτ . Therefore, (1, s− 1) ↪→ (2, s+ nτ).
Let s2 = min{s′ > s1|1, 3 ∈ M(s′) or 2, 3 ∈ M(s′)}. By
Assumption 4, (1, s2− 1) ↪→ (3, s2) or (2, s2− 1) ↪→ (3, s2).
We then have (1, s) ↪→ (1, s2 − 1) ↪→ (3, s2) or (1, s) ↪→
(2, s2 − 1) ↪→ (3, s2). Following the preceding arguments,
it holds (1, s − 1) ↪→ (3, s′) for all s′ ≥ s2. Again from
Assumption 5, s2 ≤ s1 + τ < s + nτ . As a result, we have
(1, s − 1) ↪→ (3, s + nτ). The process can be iterated for
j = 4, . . . , n. Our claim is then proved.
According to the claim above, the first column of P (s +
nτ) . . . P (s+ 1)P (s) is positive for all s ≥ 1. As the positive
entries of all P (s) are lower bounded by a constant, the lower
boundedness holds also for all P (s + nτ) . . . P (s + 1)P (s),
which gives lims→∞ P (s) . . . P (2)P (1) = 1c> for some
c ∈ Rn. �
Proof of Lemma 5. Fix s. At first, for s′ = s, from (4),
(10) obviously holds. Suppose (10) holds for s′ = s1 ≥ s,
i.e., R(i0, s − 1 : s1) = M(s : s1). By Assumption 6, there
exists i ∈ M(s1) ∩ U(s1 + 1). For all j ∈ M(s1 + 1),
it holds (i0, s) ↪→ (i, s1) ↪→ (j, s1 + 1). For j ∈ R(i0, s :
s1)\M(s1 + 1), it holds (j, s1) ↪→ (j, s1 + 1), which yields
(i0, s) ↪→ (j, s1) ↪→ (j, s1 + 1). On the other hand, it is easy
to see that if j /∈ R(i0, s : s1)∪M(s1 +1), then j /∈ R(i0, s :
s1 +1). Therefore, R(i0, s : s1 +1) = R(i0, s : s1)∪M(s1 +
1) = M(s : s1 + 1), i.e., (10) holds for s′ = s1 + 1. By
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induction, (10) holds for all s′ ≥ s. �
Proof of Theorem 3. By Assumption 5,M(s : s+ τ −1) =
V . By Lemma 5, R(i0, s− 1 : s+ τ − 1) = V for all s ≥ 1,
which means that P (s : s+τ−1) has a positive column for all
s ≥ 1. Therefore, Assumption 3 is satisfied. The conclusion
then follows from Theorem 1. �

APPENDIX D
PROOF OF PROPOSITIONS 2 AND 3

Proof of Proposition 2.
If MP ( V for P ∈ P∗, then the sequence P (s) = P for

all s ≥ 1 is such that lims→∞Q(s) = lims→∞ P s 6= 1c for
any c ∈ Rn, i.e., Q(s) does not converge to a rank-1 matrix.
�

Before the proof of Proposition 3, we introduce a lemma.

Lemma 6 If I contains a quasi-strongly connected subgraph
I1 such that ∪Pk∈P̃I1

Mk = V , then I is quasi-strongly
connected.

Proof. Due to ∪Pk∈P̃I1
Mk = V , for any Pk ∈ P̃I , there

exists a Pk1 ∈ P̃I1 such that Mk1 ∩Mk 6= ∅, i.e., the edge
(Pk1 , Pk) exists on I. On the other hand, according to the
definition, there exists Pk0 ∈ P̃I1 such that for any P ∈ P̃I1 ,
there exists a path over I1 which links Pk0 to P . Especially,
there is a path linking Pk0 to Pk1 and then to Pk. By the
arbitrariness of Pk, I is quasi-strongly connected. �

We now give the proof of Proposition 3.
Proof of Proposition 3. Without loss of generality, assume
i ∈ U(s1). Given j 6= i, as R(i, s1 − 1 : s2) = V , there exists
a path along the trellis graph from the (s1− 1)-th layer to the
s2-th layer, such that

i = i0 ↪→ i1 · · · ↪→ i1 ↪→ i2 ↪→ · · · ↪→ i2

↪→ i3 ↪→ · · · ↪→ i`j−1 ↪→ i`j = j,

where iq−1 6= iq for all 2 ≤ q ≤ `j . The link iq−1 ↪→ iq occurs
only when iq−1 ∈ U(s), iq ∈ M(s) for some s1 ≤ s ≤ s2.
Let sqj be the time that iq−1 ↪→ iq appears in the path. Notice
that s1

j = s1. Then there exists a path along the IFG I1

P (s1
j )→ P (s2

j )→ · · · → P (s
`j
j ).

Here with a little abuse of notation, P (sqj) represents the Pk ∈
P̃I1 such that P (sqj) ∼ Pk. Consider the representative set
P̃2 = {P (sqj)|j 6= i, q ≤ `j}. By the arguments above, for
any P ∈ P̃2, there is a path on I2 from P (s1) to P , where
I2 is the corresponding IFG to P̃2. Therefore, I2 is quasi-
strongly connected. Furthermore, since j ∈ M(s

`j
j ) for all

j 6= i and i ∈ M(s1), it holds ∪Pk∈P̃2
Mk = V . Notice that

I2 is a subgraph of I1. Applying Lemma 6, the proof is then
completed. �

APPENDIX E
PROOF OF THEOREM 4

Before going to the proof of Theorem 4, we introduce a
lemma.

Lemma 7 Given a FIFW W = {(s, P (s))|1 ≤ s ≤ s′} on I,
let |P̃IW | = `. For the matrix product Q(s′) = P (1 : s′), it
holds

[Q(s′)]ji ≥ ε`, j ∈ ∪s
′

s=1M(s) (18)

for all i ∈ U(1).

Proof of Lemma 7. From the proof of Lemma 5, M(s) ∩
U(s + 1) 6= ∅ implies that, for any i ∈ U(s), the reachable
set R(i, s − 1 : s + 1) =M(s) ∪M(s + 1) along the trellis
graph of P (s : s + 1).The proof is by induction. If s′ = 1,
(18) obviously holds. Pick i ∈ U(1). Suppose that (18) holds
for s′ = s̄ for any W of length s̄, i.e., for W = {(s, P (s)) :
s ∈ [1, s̄]}. Now consider W of length s̄+ 1. Let

|{P : ∃s ∈ [1, s̄] s.t. P (s) ∼ P}| = `.

By the inductive hypothesis, [Q(s̄)]ji ≥ ε` for all j ∈
∪s̄s=1M(s). We first consider the case that P (s̄+ 1) 6∼ P (s)
for all s ≤ s̄. By the definition of FIFW, there exists
o ∈ U(s̄+ 1) ∩M(s̄). For j ∈M(s̄+ 1), it holds

[Q(s̄+ 1)]ji =

n∑
h=1

[P (s̄+ 1)]jh[Q(s̄)]hi

≥ [P (s̄+ 1)]jo[Q(s̄)]oi ≥ ε`+1.

For j ∈ (∪s̄s=1M(s)\M(s̄+ 1)), it holds

[Q(s̄+ 1)]ji = [Q(s̄)]ji ≥ ε` > ε`+1.

Therefore, for all j ∈ ∪s̄+1
s=1M(s), [Q(s̄+ 1)]ji ≥ ε`+1 always

holds. On the other hand, if P (s̄+1) ∼ P (s) for some s ≤ s̄,
obviously we have

U(s̄+ 1) ⊂M(s̄+ 1) ⊂ ∪s̄s=1M(s).

Therefore,

[Q(s̄+ 1)]ji =

n∑
`=1

[P (s̄+ 1)]j`[Q(s̄)]`i

=
∑

`∈U(s̄+1)

[P (s̄+ 1)]j`[Q(s̄)]`i.

That is, [Q(s̄+ 1)]ji is a convex combination of [Q(s̄)]`i, ` ∈
Us̄+1, which yields [Q(s̄ + 1)]ji ≥ ε`. Combining the argu-
ments above, we obtain the desired conclusion. �

Lemma 7 gives lower bounds to the positive entries of P (1 :
s′) corresponding to the agents in U(1). Note that ` is at most
equal to n. This means that the influence of the stubborn agents
in the starting discussion event of a walk, on those that are
influenced by it, is always bounded away from 0. With Lemma
7, the proof of Theorem 4 can be easily given as follows.
Proof of Theorem 4. By Lemma 7, each Qd = P (s2d−1 :
s2d) has at least one positive column with entries no less
than εn. Recalling the definition of the Dobrushin ergodicity
coefficient of any stochastic matrix A ∈ Rm×m

δ(A) =
1

2
max
i,j∈[m]

m∑
k=1

|Aik −Ajk|,
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see e.g., [4], it is easy to verify that δ(Qd) ≤ 1−εn. Moreover,
a well known property is that δ(A1A2) ≤ δ(A1)δ(A2) for all
A1, A2 ∈ Rm×m [4]. Therefore,

δ(P (1 : s2d)) ≤ δ(Q1) . . . δ(Qd) ≤ (1− εn)d,

which yields lims→∞ δ(P (1 : s)) = 0. Due to the continuity
of δ, we obtain δ(P (1 :∞)) = 0. Thus, P (1 :∞) is a rank-1
matrix, which gives the desired result. �

APPENDIX F
PROOF OF THEOREM 5 AND COROLLARY 1

Proof of Theorem 5.
Necessity. Let P∗ be a never-consensus set. Conversely,

assume that the associated IFG I includes a subgraph I1 =
(P̃I1 ,EI1) with a spanning tree such that ∪Pk∈P̃I1

Mk = V .
Without loss of generality, let |P̃I1 | = |P̃∗| = K. Then there
exists a node P rt which is linked by paths to all nodes of
I. We remind that “node” here refers to a transition matrix,
not to an agent of the underlying concatenated FJ problem.
Sorting the indexes of all nodes in a non-decreasing order
according to their distance over the graph I from P rt, the
node sequence can be written as P rt, P [1], . . . , P [K−1], with
Dist(P [q1], P rt) ≤ Dist(P [q2], P rt) for any 1 ≤ q1 ≤ q2 ≤
K − 1 (here Dist(·, ·) is a function which represents the
distance between two nodes). Consider the infinite recursive
matrix product

Q = . . . P rtP [K−1] . . . P [1]P rt.

To get the contradiction, it suffices to show that the matrix
product P [K−1] . . . P [1]P rt includes a positive column. For
ease of notation, let P (1) = P rt, P (2) = P [1], . . . , P (K) =
P [K−1]. Pick i ∈ U(1). We claim that the reachable set is
R(i, 0 : s′) = ∪s′s=1M(s) for all 1 ≤ s′ ≤ K. This can
be proved by induction. At first, the claim holds for s′ = 1.
Suppose the claim holds for s′ = s̄ < K. Assume Dist(P (s̄+
1), P (1)) = q, i.e., there exists a path of I such that

P (1)→ P (s1)→ · · · → P (sq−1)→ P (s̄+ 1).

Here with a bit abuse of notation, P (s) represents the repre-
sentative matrix Pk such that P (s) ∼ Pk. By the sorting rule,
sp ≤ s̄ for all p < q. According to the induction assumption,
we obtain

M(sq−1) ⊂ ∪s̄s=1M(s) = R(i, 0 : s̄).

By the definition of I, M(sq−1) ∩ U(s̄+ 1) 6= ∅. Therefore,

R(i, 0 : s̄+ 1) = R(i, 0 : s̄) ∪M(s̄+ 1) = ∪s̄+1
s=1M(s).

The claim is then proved, and then ∪Ks=1M(s) = V , meaning
that P (1 : K) has a positive column. This enforces that Q
is a well defined rank-1 matrix. This is impossible, since
P∗ is an never-consensus set. Therefore, we have reached a
counterexample, and the necessity is proved.

Sufficiency. Given that any quasi-strongly connected sub-
graph I1 of the IFG satisfies ∪Pk∈P̃I1

Mk 6= V , we use proof
by contradiction. Suppose P∗ is not a never-consensus set, then
there must be a Q(s) = P (1 : s) with each P (s) ∈ P∗ that

converges to a rank-1 matrix as s grows to infinity. Necessarily,
there must exist an s1 ≥ 1 and i ∈ U(s1), such that

R(i, s1 − 1 : s2) = V (19)

for some s2 ≥ s1. Consider the subgraph of the IFG induced
by {P (s) : s1 ≤ s ≤ s2}, denoted as I2. According to
Proposition 3, I2 is quasi-strongly connected and

∪Pk∈P̃I2
Mk = V.

We then get the contradiction. Therefore, no Q(s) can con-
verge to a rank-1 matrix. The proof is then completed. �
Proof of Corollary 1. By the arguments above, if the
system (3) achieves consensus, the associated IFG of PS
must include a quasi-stronly connected subgraph I1 such that
∪Pk∈P̃I1

Mk = V . Then by Lemma 6, the Corollary follows.
�

APPENDIX G
PROOF OF THEOREM 6

Without loss of generality, assume PS = P̃S . Let the root
node of the IFG be P rt, with stubborn agents set as U rt.
Consider the submatrix of P (s) corresponding to columns
and rows of U rt, denoted as P (s)|Urt . By (4), P rt|Urt is
a stochastic matrix with all positive entries. Since in the
IFG there is no edge pointing to P rt, [P (s)]ij = 0 for all
i ∈ U rt, j ∈ V\U rt and s ≥ 1. Moreover, if P (s) 6= P rt, it
must be P (s)|Urt = I . Therefore, each P (s) can only be in
one of the following two forms

( U rt

U rt P rt|Urt 0
∗ ∗

)
,

(U rt

U rt I 0
∗ ∗

)
,

where “∗” represents a matrix with undetermined entry values.
Hence,

P (1 : s)|Urt = Πs
j=1P (j)|Urt = (P rt|Urt)s

′
, (20)

where s′ is the number of times that P rt appears in
P (1), . . . , P (s). Therefore, we have lims→∞ P (1, s)|Urt =
1c> for some positive c ∈ Rurt

(here urt = |U rt|).
Suppose that P1 is a child of P rt in the tree. Consider the

restriction of P (s) to U rt∪U1. There can only be three cases:
1) if P (s) = P rt, only the columns corresponding to U rt

in P (s)|Urt∪U1 are positive. As there is no edge of the
trellis graph linking P1 to P rt, it should be U rt∩U1 = ∅.
Then

P (s) =

(U rt ∪ U1

U rt ∪ U1 O1 0
∗ ∗

)
,

where

O1 =


U rt U1 ∩Mrt U1\Mrt

U rt P rt|Urt 0 0
U1 ∩Mrt A 0 0
U1\Mrt 0 0 I

,
and A is the corresponding submatrix of P rt;
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2) if P (s) = P1, then

P (s) =

(U rt ∪ U1

U rt ∪ U1 O2 0
∗ ∗

)
,

where

O2 =

(U rt U1

U rt I 0
U1 0 P1|U1

)
;

3) if P (s) 6= P rt or P1, then P (s) =

(
I 0
∗ ∗

)
.

Therefore, P (1, s)|Urt∪U1 is a product of O1, O2 (here we
ignore I in the product). According to Example 1, P (1 :
s)|Urt∪U1 converges to a rank-1 matrix as s goes to infinity,
and moreover, by the form of O1, it must be

lim
s→∞

P (s[0], s)|Urt∪U1 = [1c>|0], s0 ≥ 1. (21)

Here s[0] can be arbitrary, since the previous analysis does
not depend on the starting time. Due to the fact that P1 is
arbitrarily chosen, (21) holds for all children of P rt.

Now we consider the restriction of P (s) on U rt ∪ U1 ∪ U2,
where P2 is a child of P1 and U2 is the corresponding stubborn
agents set. By (21), for any s[0] > 0, there exists s[1] ≥ s[0]

such that [P (s[0] : s)]ij ≥ δ
2 for all i ∈ U rt ∪ U1, j ∈ U rt

and s ≥ s[1], where δ := mini∈[urt] ci > 0. Therefore, it
is possible to split the event axis at the following instances
s[0] = 1, s[1], . . . , s[2d−1], s[2d], . . . in such a way that for all
d > 0

• s[2(d−1)] < s[2d−1] < s[2d] − 1;
• [P (s[2(d−1)] : s)]ij ≥ δ

2 for all s ≥ s[2d−1] − 1 and
i ∈ U rt ∪ U1, j ∈ U rt;

• P (s[2d−1]) = P1, P (s[2d] − 1) = P2;
• P (s) 6= P1, P2 for s[2d−1] < s < s[2d] − 1.

Let Qd = P (s2(d−1) : s[2d] − 1). For i ∈M1 ∩ U2, j ∈ U rt,

[P (s[2(d−1)] : s[2d−1])]ij ≥ [P1]io[P (s[2(d−1)] : s[2d−1] − 1)]oj

≥ δε

2
,

where o ∈ U1. Since P (s) 6= P1, P2 for s[2d−1] < s < s[2d] −
1, it must be [P (s)]ii = 1 for i ∈M1∩U2 and s[2d−1] < s <
s[2d] − 1. As a consequence, for any i′ ∈ U2,

[P (s[2(d−1)] : s2d − 1)]i′j

≥ [P (s[2(d−1)] : s[2d−1])]ij [P2]i′i ≥
δε2

2
.

In addition, it holds [P (s[2(d−1)] : s2d − 1)]i′j ≥ δ
2 for i′ ∈

U rt ∪ U1. That is, the j-th column of Qd is positive with all
entries larger than δε2

2 . Therefore, Qd . . . Q2Q1 converges to
a rank-1 matrix as d goes to infinity, which leads to

lim
s→∞

P (s0 : s)|Urt∪U1∪U2 = [1c>|0], s0 ≥ 1. (22)

Because P2 is arbitrarily chosen, (22) holds for all nodes in
the second and third layers of the tree. The argument can be
iterated, which yields

lim
s→∞

P (s0 : s)|∪Kk=1Uk
= [1c>|0], s0 ≥ 1. (23)

This means that, for the time varying linear system x(s +
1) = P (s)x(s), [x(s)]i converges to c>x(0)|Urt for all i ∈
∪Kk=1Uk. If i /∈ ∪Kk=1Uk, by the structure of P (s), [x(s)]i
must be a convex combination of x(s)|∪Kk=1Uk, which means
lims→∞[x(s)]i = c>x(0)|Urt for all i ∈ V . We then complete
the proof. �
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