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System identification learns mathematical models of dynamic systems starting from
input–output data. Despite its long history, such research area is still extremely active.
New challenges are posed by identification of complex physical processes given by the
interconnection of dynamic systems. Examples arise in biology and industry, e.g., in the
study of brain dynamics or sensor networks. In the last years, regularized kernel-based
identification, with inspiration from machine learning, has emerged as an interesting
alternative to the classical approach commonly adopted in the literature. In the linear
setting, it uses the class of stable kernels to include fundamental features of physical
dynamical systems, e.g., smooth exponential decay of impulse responses. Such class
includes also unknown continuous parameters, called hyperparameters, which play
a similar role as the model discrete order in controlling complexity. In this paper,
we develop a linear system identification procedure by casting stable kernels in a full
Bayesian framework. Our models incorporate hyperparameters uncertainty and consist
of a mixture of dynamic systems over a continuum spectrum of dimensions. They
are obtained by overcoming drawbacks related to classical Markov chain Monte Carlo
schemes that, when applied to stable kernels, are proved to become nearly reducible (i.e.,
unable to reconstruct posteriors of interest in reasonable time). Numerical experiments
show that full Bayes frequently outperforms the state-of-the-art results on typical
benchmark problems. Two real applications related to brain dynamics (neural activity)
and sensor networks are also included.

system identification | regularization | Bayesian methods | sensor and brain networks

System identification builds mathematical models of dynamic systems starting from
input–output measurements (1, 2). It has been around for more than half a century,
with the term coined by Zadeh (3). Over the years, several approaches and frameworks
for System Identification have been suggested. In the 1960s, two major avenues were
laid out:

(a) Based on traditional statistics, it was suggested to parameterize the system model
with finite-dimensional parameter structures and apply statistical techniques, like
maximum likelihood or prediction error methods (PEM), to estimate the parameters.
This can be called “the classical system identification framework” and is described in
refs. 1 and 2. A recent extension to regularized/kernel criteria is treated in ref. 4.

(b) Realization-based techniques (“subspace methods”). States in state-space models are
estimated directly using input–output measurements. These states are then used
to construct state-space models with linear algebraic techniques. This approach is
treated in, e.g., ref. 5.

Despite such long history, research in data-based dynamical modeling is still extremely
active. Many complex physical processes, arising, e.g., in biology and industry, require an
increasingly deep knowledge for improved prediction and control. This often requires to
handle high-dimensional data, posing new challenges. Examples include the identification
of complex physical systems like networks consisting of many interconnected dynamic
systems, (6–9) for applications in engineering, biomedicine, and neuroscience.

In recent years, the regularization techniques described in refs. 4 and 10 have proved
to be a powerful alternative to classical identification procedures based on PEM. Instead
of postulating parametric structures, using the concept of discrete model order to control
their complexity, the unknown dynamic system is directly searched for in a high-
dimensional space. Ill-posedness is then circumvented by including some information
on the physics of the problem. Resulting estimators look for solutions that balance
adherence to experimental data and a penalty term accounting for dynamic systems
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features. Useful regularizers introduced in recent years embed
notions of stability, e.g., smooth exponential decay of impulse
responses whose convolutions with the inputs define the outputs
in the linear and time-invariant setting (11–13). This makes
the search space manageable by inducing a ranking of possible
solutions: among dynamic systems that describe the data in a
similar way, the one that is, in some sense, more stable will be
selected.

Kernel methods are an important tool to induce the desired
ranking of solutions (14), with roots in functional analysis
(15, 16). A positive definite kernel induces a reproducing kernel
Hilbert space (RKHS) whose functions inherit its properties.
For instance, the so-called stable kernels are important in
system identification since they induce RKHSs containing only
absolutely summable impulse responses (17–19). There is also
a fundamental relationship between regularization in RKHSs
and Bayesian regression (20, 21) that arises when the kernel is
interpreted as a covariance function (22–24). In the stochastic
framework, the ranking of different solutions is induced by a
Gaussian prior over a function space. We will follow this Bayesian
viewpoint, focusing on linear system identification and adopting
high-order autoregressive with exogenous inputs (ARX) models
as search spaces. This allows us to formulate the kernel just in
terms of a covariance matrix, modeling impulse responses as
(zero-mean) Gaussian vectors.

Our study focuses on the so-called stable spline/TC kernels
introduced in refs. 11, 25 and 13. Such impulse response
model was also derived through maximum entropy concepts
in ref. 26 using the approach proposed by Jaynes to derive
complete statistical prior distributions from incomplete a priori
information (27). Among all the probabilistic descriptions that
comply with some constraints, the maximum entropy criterion
selects the one with the largest entropy. Such solution corresponds
to the distribution that can be realized in the greatest number
of ways according to Jaynes’ concentration theorem. When
exponential stability is the only available knowledge about a
linear dynamic system, the maximum entropy prior is defined
by the stable spline/TC kernel. It models impulse responses by
means of Gaussian priors that include information on smooth
exponential decay. Related covariances depend on positive scale
factors λi, one assigned to each impulse response as a rule,
and a (possibly) common decay rate α assuming values over
the unit interval. Such hyperparameters are typically unknown
and have to be estimated from data. Their (continuous) tuning
regulates model complexity, replacing the concept of (discrete)
order selection encountered in the classical setting. For example,
large λi associated with a value of α close to one lead to
complex stochastic models: impulse responses coefficients have
large variance and decay to zero very slowly.

In Bayesian regularization, Empirical Bayes (EB) is one of the
most used criteria to tune hyperparameters (28–31). It relies
on the concept of marginal likelihood (ML) which, in our
setting, corresponds to the total probability where all the impulse
responses are integrated out. One important ML feature is its
connection with the concept of equivalent degrees of freedom
(32) which allows EB to incorporate Occam’s factors (33,
section 2). Hence, unnecessarily complex models can be automat-
ically penalized. When identification data become available, ML
is optimized w.r.t. the λi and α. Next, hyperparameters are set to
their estimates and impulse responses estimates become available
in closed form. This defines the stable spline/TC estimator
which has been proved to challenge classical PEM (10). It is
an important option for linear system identification available in

the popular MATLAB system identification toolbox (34). A more
sophisticated technique than EB studied in this paper interprets
not only the impulse response but also the hyperparameters as
random variables by introducing hyperpriors. This leads to an
approach known as full Bayes (FB) in the literature and calls
for calculation of minimum variance estimates which include
hyperparameters uncertainty (35). EB finds justifications also
in this setting: If hyperpriors are poorly informative, with the
ML unimodal and well concentrated around its peak, EB will
return impulse responses estimates close to the optimal ones
[33, section 4]. However, while ML asymptotics have been well
studied in the literature, e.g., refs. (31, 36–38) and 39 for studies
on tail decay rates in the context of Gaussian processes, small
samples properties are much harder to be understood (40, 41).
Due to its nonconvex nature, the ML shape could be complex
(possibly multimodal) also when using ARX models with a small
number of inputs, a problem that can be further exacerbated
in the study of dynamic networks. It is thus of interest to
investigate whether FB may have advantages over EB in linear
system identification. It is the purpose of this paper to show that
this is the case.

Markov chain Monte Carlo (MCMC) is a key class of
algorithms to implement FB. One of the most ubiquitous versions
exploits the Metropolis–Hastings algorithm, e.g., refs. 35 and
42–44 for applications in system identification. MCMC algo-
rithms first reconstruct the posterior of interest in sampled form
by generating a suitable Markov chain. Then, minimum variance
estimates are extracted by Monte Carlo integration. Since ARX
models lead to regularized linear regression, the use of MCMC
could appear straightforward in our context. Poorly informative
distributions can be assigned to the hyperparameters and, follow-
ing, e.g., ref. 45, an MCMC scheme similar to Gibbs sampling
could be implemented. Even if theoretically correct, we will
show that such approach does not work in practice due to some
stable kernels peculiarities. In fact, as illustrated in SI Appendix,
impulse response realizations generated during an MCMC run
can carry a huge amount of information on α, hence inducing
full-conditional distributions highly concentrated around their
peak. This in practice undermines chain’s irreducibility, i.e., the
capability of visiting all the relevant parts of the posterior. Slow
mixing affects the simulation, making it impossible to achieve
convergence in a reasonable time. To solve this problem, we
design a scheme based on the ML. Marginalization as a tool
to enhance the effectiveness of simulation schemes has been
pointed out also recently, e.g., to sample covariance matrices
and in the presence of correlated latent variables (46, 47).
Here, we show that interpreting impulse responses as nuisance
parameters and integrating out from the joint posterior is crucial
to sample efficiently α. In addition, we prove that all the scale
factors λi can still be updated in an automatic way, as happens
when no marginalization is performed and Gibbs sampling is
adopted. The proposed scheme does not fall exactly inside the
classical MCMC class since some algorithmic parts do not use the
Metropolis–Hastings algorithm. However, it permits to sample
all the hyperparameters still guaranteeing convergence to the
desired posterior.

The procedure is tested on artificial and real data. First,
we use known benchmark problems taken from the system
identification literature and show that FB leads to state-of-the-
art generalization performance. It improves prediction capability
over EB and also over the classical approach equipped with a
special oracle-based procedure to tune model order. Advantages
become more and more evident as system complexity (measured,
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Fig. 1. Modern distributed sensors/agents are equipped with large storing capabilities and make available a large amount of data. Measurements are often
generated by interconnected phenomena, as depicted in the left panel. Such complex physical systems arise in several fields of science and engineering. They
can be artificial, like power grids and sensor/robots networks which cooperate to obtain a common goal, or can be encountered in biology, e.g., the brain
network in neuroscience (6–9). They can be seen as a set of nodes associated with measurable (noisy) outputs y. As depicted in the right panel, each node can
communicate with other nodes. Links can be defined, e.g., by time-invariant linear systems each characterized by a function known as impulse response in the
literature. Such systems are driven by known inputs or nonmeasurable noises whose convolutions with the impulse responses define the output. Identification
of these networked phenomena may unveil key information about their working and control. The algorithm proposed in this paper can be applied to estimate
the linear dynamics which govern any node (line-by-line identification) when first-principle models are not conceivable or too difficult to obtain.

e.g., by the number of inputs) increases. This makes the proposed
procedure appealing also for the identification of complex linear
systems when first-principle models are not conceivable or too
expensive/difficult to obtain (48–51) (Fig. 1 and related caption).
As a proof of concept, two real applications are also considered:
prediction of brain dynamics (neural activity) from blood oxygen-
level-dependent time series and thermodynamic monitoring of a
building through a wireless sensor network.

Readers who are not so familiar with concepts encountered in
system identification find also a brief tutorial in the first part of
SI Appendix.

Classical System Identification

Modeling of Dynamical Systems: ThreeMain Players. Modeling
of dynamical systems is characterized by three key components.

The first one is a family of parameterizedmodels. Any model
can be seen as a map from past observed input–output data
available at time t, denoted by Z t , to a prediction of the next
(scalar, for simplicity) output y(t + 1) ∈ R, denoted by ŷ(t +
1|θ ,Z t). When the parameter vector θ varies over a set Dθ , the
models define a model structure.

The second component is a parameter estimation method
which determines the parameters on the basis of the observed
data. The archetypical approach is to determine θ as the one
that minimizes the error between the observed outputs and the
ones predicted by the model. Different loss functions Vn can be
chosen to measure such discrepancy. An important example is
the quadratic loss which leads to the following prediction error
method (PEM)

Fit to a dataset Z :

Vn(θ ,Z) =
1
n

n∑
t=1

(
y(t)− ŷ(t|θ ,Z t−1)

)2 [1a]

Parameter estimate for an estimation dataset Ze :

θ̂n = arg min
θ∈Dθ

Vn(θ ,Ze). [1b]

The third phase is a validation process where the model is
validated or falsified. Model quality can be measured in terms
of capability to predict unseen data contained in a validation

set Zv. Different prediction horizons h are also used for this
purpose: Outputs yv(t) inZv are compared with the h-step ahead
predictions ŷh

v(t) := ŷv(t|θ̂n,Z t−h
v ) computed by the estimated

model using the validation outputs only up to instant t − h. An
useful generalization measure is also the h-step ahead percentage
prediction fit:

Fh = 100

(
1−
‖yv − ŷh

v‖

‖yv − ȳv‖

)
, [2]

where ȳv is the average value of the validation outputs. When
only the inputs contained in Zv can be exploited by the model
to predict future values, a simulated output is obtained with
the related fit denoted by F∞. In practice, since the output data
in Zv cannot be used, the model calculates the simulation by
assuming the system initially at rest at t = 0 and then replacing
any yv(t) with its t-step ahead prediction.

Parametric Linear Model Structures. A general model structure
for multiple-input single-output (MISO) time-invariant linear
systems is given by the transfer functions Gk from inputs uk to
output and the transfer function H from a white noise source
e to output additive disturbances. In discrete time, using one
time unit as sampling interval and q to denote the shift operator
qy(t) = y(t + 1), one has

y(t) =
p∑

k=1

Gk(q, θ)uk(t) + H(q, θ)e(t) [3a]

Ee2(t) = σ 2; Ee(t)e(k) = 0 if k 6= t, [3b]

where E denotes mathematical expectation. The system impulse
responses are then obtained by expanding the Gk(q, θ) and
H(q, θ) in the inverse (backwards) shift operator:

Gk(q, θ) =
∞∑

j=1
gk(j, θ)q−j, k = 1, . . . , p [4]

H(q, θ) = h0(θ) +
∞∑

j=1
h(j, θ)q−j, [5]
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where h0(θ) = 1 is typically assumed. In the above equations, the
index j assumes only nonnegative values due to system causality
and, given θ , the scalars gk(j, θ) and h(j, θ) are the impulse
response coefficients of the deterministic and stochastic system
part, respectively. For expressions of the associated h-step ahead
predictors ŷh

v(t) and related predictor impulse responses, e.g., ref.
[1, section 3]. The issue is how to parameterize Gk and H .

Popular Black-Box LinearModels. Popular black box (no physical
insight or interpretation) parameterizations are to let Gk and H
be rational in the shift operator:

Gk(q, θ) =
Bk(q, θ)
Fk(q, θ)

; H(q, θ) =
C(q, θ)
D(q, θ)

, [6]

where all the Bk, Fk, C and D are polynomials of q−1 while
the parameter vector θ contains the (unknown) polynomial
coefficients. In many real applications, the polynomials order
(which determine the dimension of θ ) are also unknown and
needs to be determined using Ze.

ARMAX models are obtained letting Fk = D and represent
fundamental descriptions of many dynamic systems encountered
in nature (1). Another very common case is Fk = D and C = 1
which gives the ARX model. It is the key component of our
Bayesian model described below.

Full Bayesian Linear System Identification

ARX Parametrization. With Fk = D and C = 1 in Eq. 3a, one
obtains the ARX model D(q)y =

∑p
k=1 Bk(q)uk + e, or

y(t) =
p∑

k=1

Bk(q)uk(t) + (1− D(q))y(t) + e(t)

=
p+1∑
k=1

m∑
r=1

bk(r)uk(t − r) + e(t), [7]

where bk(r) are the coefficients of the polynomials Bk(q) for the
p inputs,−bp+1(r) are those related to the D(q) polynomial, the
(p + 1)-th input up+1(t) := y(t) is the output, and m is the
order of the polynomials. As m increases, such formulation can
approximate with arbitrary accuracy any linear system in Eq. 3.

It is now useful to introduce the (column) vectors θk which
contain the polynomial coefficients {bk(r)}mr=1 and are associated
with the p+1 predictor impulse responses. We also build the vector
Y with the observations y(t), for t = 1, .., n, and p + 1 Toeplitz
matrices 8k ∈ Rn×m using the input–output data as follows:

8k =

 uk(0) uk(−1) . . . uk(−m + 1)
uk(1) uk(0) . . . uk(−m + 2)
. . .

uk(n− 1) uk(n− 2) . . . uk(n− m)

 , [8]

for k = 1, . . . , p + 1. Note that the first p matrices contain
the inputs while the last one is built using only the outputs
since up+1(t) corresponds to y(t). We can now rewrite Eq. 7 in
matrix-vector form as follows

Y =

p+1∑
k=1

8kθk

+ E = 8θ + E, [9]

where each 8kθk contains convolutions between the predictor
impulse response θk and past input or output data, θ gathers
all the impulse responses coefficients, 8 is assumed full rank to
simplify exposition, and the noise vector E is Gaussian.

Full Bayesian Model. ARX models are easy to estimate but may
suffer from high variance. Bayesian regularization is adopted to
face this difficulty by assigning to θ a prior distribution. As
anticipated in Introduction, we adopt a full Bayesian model where
the hyperparameters which define such prior are also seen as
random variables.

Conditional on the knowledge of their covariance matrices
6k, the θk are zero-mean and independent Gaussian vectors, i.e.,

θk
∣∣6k ∼ N

(
0,6k

)
, k = 1, . . . , p + 1, [10]

and, using ⊥ to indicate statistical independence,

θi
∣∣6i ⊥ θj

∣∣6j, i 6= j.

Our covariances6k are stochastic matrices that have to embed an
important feature of stable physical systems: Predictor impulse
responses are expected to decay smoothly and exponentially to
zero. They depend on scale factors {λ2

k}
p+1
k=1 and a common decay

parameter α which form a set of mutually independent random
variables. Each of the p + 1 objects 6k could be also assigned
a different decay rate, making α a vector of dimension p + 1.
This leads to minor modifications in the algorithm presented
later on but may lead to improved models, as commented upon
in “Material and Methods”.

Conditional on α and its scale factor λ2
k , the covariance 6k is

perfectly known, being defined by the stable spline/TC kernel as
follows:

6k
∣∣λ2

k ,α = λ2
kKα , [11]

where Kα is an m× m matrix with i, j entry

Kα(i, j) = αmax(i,j). [12]

In this way, α regulates how fast the impulse response variance
goes to zero as time progresses. A simple way to understand the
nature of our impulse response prior is to draw some realizations
from a zero-mean Gaussian vector with stable spline covariance.
This is done in Fig. 2 for two different decay rates α and with the
scale factor set to one. One can see that the stability parameter
determines the effective dimension of the model. Hence, the
choice of the size m of each θk is not problematic as in the classical
system identification framework. One has just to set it to a value as
large as possible to capture predictor dynamics, compatibly with
the computational resources. This choice can be also driven by
the available information on the specific application under study.
It may suggest which m can be seen as an upper bound on the
number of past inputs and outputs able to influence significantly
the next output value.

The predictor model is now fully specified by assigning
hyperpriors not only to the scale factors λ2

k and the decay rate α,
but even to σ 2 in Eq. 3b. In fact, the noise variance affects the
model and so it is natural to also treat it as a hyperparameter.
All of these random variables are assumed mutually independent,
i.e., σ 2

⊥ α and σ 2
⊥ λ2

k for any k. The stability parameter α
is modeled as a uniform random variable on the unit interval.
The scale factor λ2

k is instead given the well-known Jeffrey’s prior
(52), widely used to include (in practice) only nonnegativity
information. It follows Jeffrey’s “noninformative prior finding

4 of 11 https://doi.org/10.1073/pnas.2218197120 pnas.org

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 L
IN

K
O

PI
N

G
S 

U
N

IV
E

R
SI

T
E

T
 (

SI
C

) 
L

IN
K

O
PI

N
G

S 
U

N
IV

E
R

SI
T

E
T

SB
IB

L
IO

T
E

K
 o

n 
Ja

nu
ar

y 
19

, 2
02

4 
fr

om
 I

P 
ad

dr
es

s 
13

0.
23

6.
88

.1
21

.



Fig. 2. Linear and time-invariant dynamic systems are characterized by their impulse responses. Given any input, such functions allow to compute the
corresponding system output through convolutions. In this paper, impulse responses are seen as stochastic zero-mean Gaussian vectors with covariance
proportional to the stable spline kernel in Eq. 12. The figure reports some realizations drawn from the stable spline prior when � = 0.8 (Left) and � = 0.9 (Right).
One can see that the model encodes information on smooth exponential decay of impulse responses of stable dynamic systems. The parameter � assumes
values on the unit interval and regulates the decay rate. Values close to one indicate that the impulse response goes to zero slowly.

principle” related to invariance under monotone transformations,
e.g., refs. 53 and 54 for other interesting discussions about
this topic. One obtains that the (improper) probability density
function p(λ2

k) is proportional to 1/λ2
k , hence we can write

α ∼ U(0, 1), λ2
k ∼

1
λ2

k
. [13]

The measurement noise E is assumed independent of all the θk
and, conditional on the variance σ 2, one has

E
∣∣σ 2
∼ N

(
0, σ 2In), [14]

where In is the n × n identity matrix. The noise variance is also
given a Jeffrey’s prior, i.e.,

σ 2
∼

1
σ 2 . [15]

Another advantage of Jeffrey’s priors, exploited later on, is that
the posteriors of σ 2 and λ2

k conditional on θ are easy to sample
since they correspond to inverse-gamma distributions.

Empirical and Full Bayes Estimators

Structure of the Minimum Variance Estimate. Let the hyper-
parameter vector η contain {λ2

j }
p+1
j=1 ,α and σ 2. The a priori

probability density function p(θ , η) is thus defined by Eqs. 10,
13, and 15. We assume that it summarizes all the knowledge
on impulse responses and hyperparameters before observing the
first measurement contained in the output vector Y , [12, section
5.1].

Our target is to compute the posterior p(θ |Y ) and to extract
from it the predictor impulse responses estimates

E(θ |Y ) =
∫
θp(θ |Y )dθ. [16]

However, this integral is analytically intractable also because
marginalization w.r.t. η is first needed. This is highlighted by
the following posterior reformulation

p(θ |Y ) =
∫

p(θ , η|Y )dη =
∫

p(θ |η, Y )p(η|Y )dη. [17]

The integral on the r.h.s. of Eq. 17 contains two important
factors: the marginal hyperparameters posterior p(η|Y ) and the
conditional distribution p(θ |η, Y ). This latter term has a simple
structure. Bayes rule shows that the probability density function
of θ conditional on η and Y is still Gaussian and available in
closed-form, [12, Appendix]. In fact, letting 6η be the prior
covariance of θ conditioned on η, i.e.,

6η = blkdiag(λ2
1Kα , . . . , λ2

p+1Kα), [18]

one has

E(θ |η, Y ) =
∫
θp(θ |η, Y )dθ [19a]

=
(
8>8

σ 2 +6−1
η

)−1
8>

σ 2 Y [19b]

= 6η8
>

(
86η8

> + σ 2In

)−1
Y . [19c]

The last two expressions are equivalent but have different
computational cost, with Eq. 19b to be preferred as the dataset
size n grows. The formulation in Eq. 19c gives instead useful
information on the structure of Eq. 19a. In fact, let vη(i) ∈
R(p+1)m be the i-th column of 6η8> and let cη(i) ∈ R be the
i-th component of (the column vector)

(
86η8

> + σ 2In
)−1 Y .

Then, Eq. 19c can be rewritten as

E(θ |η, Y ) =
n∑

i=1
cη(i)vη(i), [20]
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a result that can be also seen as the finite-dimensional version of
the famous representer theorem (55). In view of the stable spline
kernel structure reported in Eq. 12, the time-course of any basis
vector vη(i) is regulated by the stability parameter α.

Let us now reconsider the minimum variance estimate in Eq.
16 that, differently from Eq. 20, incorporates also hyperparam-
eters uncertainty. Combining Eqs. 17 and 20, one has

E(θ |Y ) =
n∑

i=1

∫
cη(i)vη(i)p(η|Y )dη. [21]

By exploiting EB and combinations of covariances that include
many different decay parameters, previous works on regularized
system identification like (56, 57) showed improved performance
over the stable spline/TC kernels. Eq. 21 points out that a new
dimension is already reached by the Full Bayes estimate. In
fact, E(θ |Y ) is sum of n basis vectors that automatically embed
a continuous spectrum of different α values weighted by the
marginal p(η|Y ). Now, the issue is to numerically compute such
estimates.

Empirical Bayes. The marginal hyperparameters posterior
present inside the integral in Eq. 17 satisfies

p(η|Y ) ∝ p(Y |η)p(η), [22]

where p(Y |η) is the marginal likelihood, already indicated with
ML. Using Laplace’s integration, as described, e.g., in [12,
Appendix], one proves that

− log p(Y |η) =
1
2

Y >6−1
Y Y +

1
2

log det 2π6Y , [23]

where
6Y = 86η8

> + σ 2In,

for large n, equivalent but more efficient expressions, along with
their numerical implementations, are discussed in ref. 34. In Eq.
23, the last term given by log det 2π6Y is the Occam’s factor
mentioned in Introduction which controls complexity. The ML
hyperparameters estimate is then given by

ηML = arg min
η

1
2

Y >6−1
Y Y +

1
2

log det 2π6Y . [24]

This corresponds to using Eq. 1b, where η replaces θ and the
loss function Vn has become the minus log marginal likelihood.
EB first solves Eq. 24 and then computes Eq. 19 setting η to its
estimate ηML as summarized in Algorithm 1.

Algorithm 1: Empirical Bayes (EB)

1. Compute the hyperparameters estimate ηML by solving the
optimization problem in Eq. 24;

2. set η to ηML and compute the impulse response estimates
using Eq. 19b or, equivalently, Eq. 19c.

If data Y are sufficiently informative, since the prior on η
is rather flat, one can expect p(η|Y ) in Eq. 22 to be quite
concentrated around ηML. This permits to interpret EB as a
tool for approximating the true posterior in Eq. 17 via

p(θ |Y ) ' p(θ |ηML, Y ).

This however points out that the multiresolution features enjoyed
by Eq. 16, e.g., in terms of decay parameters as described after
Eq. 21, can never be obtained by EB.

Full Bayes. It is useful to indicate with V the random vector
containing all the unknown variables θ , σ 2, α and {λ2

k}
p+1
k=1. The

notation Ig(a, b) denotes the inverse-gamma of parameters a, b
with probability density function

p(x) ∝ x−a−1e−b/x , x > 0. [25]

Algorithm 2 describes our Full Bayes strategy. It builds a suitable
Markov chain and returns an approximation θ̂ of the minimum
variance estimate reported in Eq. 16. One feature of our FB
algorithm is the use of ML to sample α in Step 3. Another one
is that the samples θ (i) generated at any run and used to update
the scale factors are not part of the chain’s state (as in the classical
MCMC schemes mentioned in Introduction). Indeed, they are
not used in Step 3. However, such θ (i) reconstruct the posterior
of θ in sampled form, as reported in the following Proposition
whose proof is discussed in SI Appendix.

Proposition 1. Let {θ (i)
}
M
i=1 and {µ(i)

}
M
i=1 be the vectors returned

by Algorithm 2. Let χA(·) be the indicator function of a generic
set A ⊂ Rm(p+1) and let P denote probability. Then, for all
starting points of the chain (excluded a set of null measure w.r.t.
the posterior of impulse responses and hyperparameters) and any set
A, the following convergences hold with probability one:

lim
M→∞

M∑
i=1

χA(θ (i))
M

→ P(θ ∈ A|Y ),

lim
M→∞

M∑
i=1

µ(i)

M
→ E(θ |Y ). [26]

SI Appendix also illustrates how Algorithm 2 is (in some sense)
necessary to implement FB in stable kernel-based linear system
identification since it overcomes critical flaws of classical MCMC
schemes.

Numerical Experiments

Three Estimators at Stake. We report results coming from
simulated and real experiments. In any experiment, data are
divided into an estimation (Ze) and a validation (Zv) dataset.
The latter has to be interpreted as a container of future data that
could not be used to estimate the model. Then, the performance
of an identification procedure is measured by the h-step ahead
percentage prediction fits Fh defined in Eq. 2.

Three estimators will be adopted. The first one, denoted by
PEM-Or, provides a useful reference on prediction performance.
It relies on the classical system identification framework coupled
with an oracle for model order selection. In statistical litera-
ture, the term oracle often indicates information about model
properties coming from ideal/unrealistic sources. For PEM-Or,
the validation set and the related fits Fk are an “approximate
oracle”. They permit to control the model discrete dimension
by maximizing a proxy for the average prediction capability of
future data. Specifically, PEM-Or uses ARMAX structures of
different discrete dimensions d with polynomial orders ranging
from 1 to 30. Any structure is fitted to the estimation data Ze
and the prediction fits Fh (which turn out function of d ) are
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Algorithm 2: Full Bayes (FB)

Initialization: Let θ (0) be the initial impulse responses values,
e.g., the least squares estimate θ (0) =

(
8>8

)−1
8>Y . Let also

α(0) be the initial value of the decay rate α, e.g., α(0) = 0.9,
and let 1 be the SD of the random walk used in Step 3, e.g.,
1 = 0.02.
For i = 1, 2, . . . , M , repeat the following steps.

1. Update the noise variance by setting σ 2(i) to a sample drawn
from the conditional density

σ 2∣∣(V \ σ 2, Y
)
∼ Ig

(n
2

,
1
2
∥∥Y −8θ (i−1)∥∥2

)
.

where Ig(a, b) is the inverse-gamma of parameters a and b
with pdf given in Eq. 25.

2. Build Kα through Eq. 12 with α = α(i−1). Update the scale
factors by setting each λ2(i)

k to a sample drawn from the
conditional density

λ2
k
∣∣(V \ λk, Y

)
∼ Ig

(m
2

,
(θ (i−1)

k )>K−1
α θ

(i−1)
k

2

)
.

3. Let a = α(i−1) + 1z(i), where z(i) is zero-mean Gaussian
with unit variance (all the {z(i)

}
M
i=1 are mutually indepen-

dent). If a < 0 or a ≥ 1, set the acceptance probability
p = 0, otherwise

p = min
(

1,
p(Y |ηa)
p(Y |ηb)

)
,

where ηa, ηb are the hyperparameter vectors containing σ 2(i),
the scale factors λ2(i)

k and, respectively, the decay rate a and
α(i−1) while the marginal likelihood p(Y |η) is defined by
Eq. 23 for any η. Finally, set α(i) = a with probability p,
otherwise, let α(i) = α(i−1).

4. Build 6η using Eq. 18 with the hyperparameter vector η
containing σ 2(i), the scale factors λ2(i)

k and α(i). Then, define

µ(i) =
(
8>8

σ 2 +6−1
η

)−1
8>

σ 2 Y,

and let θ (i) be a sample drawn from the conditional density

θ
∣∣(V \ θ , Y

)
∼ N (µ(i), 6̂), where 6̂ =

(
8>8

σ 2 +6−1
η

)−1

.

Return the {θ (i)
}
M
i=1 as the sampled version of p(θ |Y ) and the

impulse response estimates as θ̂ = 1
M
∑M

i=1 µ
(i).

computed for h = 1, . . . , 20. Next, the procedure has access to
Zv to control complexity: The dimension d is selected as the one
maximizing the average value of the prediction fits. Hence, in
light of the nature assigned to Zv, PEM-Or has to be seen as an
ideal scheme not implementable in real applications.

The second estimator EB uses the Empirical Bayes scheme
summarized in Algorithm 1. Finally, the third estimator is
denoted by FB and implements the new Full Bayes procedure
defined by Algorithm 2. Note that, differently fromPEM-Or,EB
and FB are implementable in practice since they use only the data
contained in Ze to estimate the model. Some implementation
details regarding the three identification procedures can be found
in Material and Methods.

Benchmark Problems. Simulated data are used to test the three
estimators through some known benchmark problems proposed
in ref. 10. Two Monte Carlo studies of 1,000 runs are considered.
At any run, an ARMAX model of order 30 is randomly generated
(details are in Material and Methods). In the first and second study,
the number of inputs p in Eq. 3 is set to 2 and 5, respectively.
System input is different at any run and is realization of white
Gaussian noise of unit variance. The datasetsZe andZv contain,
respectively, 300 and 1,000 input–output pairs collected after
getting rid of initial conditions effect. The rationale underlying
the large size of the validation set is to obtain a good proxy for
the average prediction performance of the estimated models on
unseen data. When using EB and FB, the dimension of each θk is
set to 40. Increasing this dimension does not influence obtained
results, as detailed in the last part of SI Appendix. To deal with
initial conditions effects, the first 40 input–output pairs in Ze
are used just as entries of the regression matrix.

Fig. 3 displays the mean of the fits Fh as a function of the
prediction horizon h (Top panels) and the MATLAB boxplots
of the 1,000 values of F1 (Bottom panels). It is apparent that
the prediction capability of FB is superior than that of EB.
Advantages become more evident when the number of inputs
augments (Right panels). This can be explained considering that
FB is theoretically immune to the presence of local minima when
tuning hyperparameters and system estimates can account for all
the ML complexity. Such features can become more and more
important as the problem dimension increases. Interestingly,
FB outperforms also PEM-Or. This is remarkable since the
oracle is an ideal tuning which has access to Zv to control
complexity. The explanation here is that PEM-Or selects the
model order balancing bias and variance among a finite set of
given models. FB deals with such trade-off using a continuous
set of regularization parameters. In addition, it provides a system
estimate which takes into account all of their uncertainty,
averaging over a continuous spectrum of dimensions. In this way,
it can obtain better-performing trade-offs. Furthermore, one has
to consider that these benchmark problems use a dataset Ze of
relatively small size (300) and quite complex systems (ARMAX of
orders 30), a situation where advantages of regularization emerge
more clearly.

BrainDynamics:NeuralActivityPrediction. Blood oxygen level–
dependent (BOLD) time series measured in a brain region (often
through fMRI) are strongly connected with neural activity (58)
(Fig. 4). Prediction of BOLD signals, obtained also exploiting
data collected in adjacent regions, is important, e.g., for control
and therapeutic purposes (59, 60). Obtained models give insights
into brain connectivity, with lack of links among regions which
can detect the onset (or consequences) of a disease (9, 61, 62).
The Dynamic Causal Model (DCM), originally developed in
ref. 63 to describe such relationships, is formulated in state space
whose dimension equals the number of considered brain areas.
Any state component describes the neural activity in a region.
The inputs may be experimentally designed (task-related stimuli)

PNAS 2023 Vol. 120 No. 18 e2218197120 https://doi.org/10.1073/pnas.2218197120 7 of 11
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Fig. 3. Identification of simulated ARMAX models. Top Average of the h-step ahead fitsFh as defined in Eq. 2. Bottom Boxplots of the 1,000 values ofF1. Recall
that PEM+Or uses additional information, having access to the validation set to control model complexity.

or just stochastic noises describing random neural fluctuations
(resting-state) (64). Finally, the output in a region is the BOLD
signal modeled as a nonlinear transformation of its neural
activity corrupted by additive noise (58), expressed as fraction
of signal change w.r.t. the basal value. We consider the same
dataset described in (9, section 2.4) consisting of BOLD signals
associated with seven brain regions simulated via DCM. Our
problem is to predict the output of the first region considering
the time series coming from the surrounding areas as six inputs to
an ARMAX or regularized ARX model. This linear setting finds
support also in real applications where linear models are known
to give good approximations of the actual neural processes even
if brain dynamics are known to be nonlinear (59).

The dataset contains around 900 samples for any of the 7 time
series collected in the cerebral regions with sampling time 1.5 s. It
is split into an identification setZe and a validation setZv of equal
size. The three identification procedures are implemented with
the same settings used to solve the benchmark problems. In this
study, the choice m = 40 corresponds to a temporal interval of 1
min. We have also repeated the experiment with m = 100, a large
value to retain the relevant temporal dependencies (65), obtaining
the same results described in the next lines. The prediction fits
of brain activity are in Left panel of Fig. 5. FB generalization
capability is close to that of the oracle and outperforms EB.
The simulated outputs are shown in Right panels: the percentage
simulation fits F∞ of FB and PEM-Or are close to 53% while
those of EB are only around 10%. The reason is that the dynamic
model estimated by EB has a component close to instability (a

root of the polynomial D in Eq. 6 is much close to 1), and this
deteriorates the generalization performance for large prediction
horizons.

Sensor Networks: Temperature Prediction. The algorithms are
now tested on real data regarding thermodynamic modeling of
buildings. A wireless sensor network of 24 Tmote-Sky nodes
produced by Moteiv Inc was placed in a small residential
building of about 300 m2. The first node collects temperature
measurements (seen as the output of a linear system) and has
to predict future values on the basis of the profiles of either
relative humidity, or temperature, measured in Celsius, sent by
the other sensors (seen as the system inputs). This problem is
relevant, e.g., for model predictive control and optimization of
energy use (66–68). The measurement period lasted for 8 d with
the temperature values ranging between 5 ◦C and 30 ◦C (sensors
were also placed outdoor and near a radiator). The building was
inhabited with the heating system controlled by a thermostat
manually set every day depending upon occupancy and other
needs. The monitoring period is rather small and does not permit
to obtain a model which describes seasonal variations. Hence, a
“stationary” environment is assumed and ARMAX or regularized
ARX models with 1 output and 23 inputs are used. The sampling
time is 8 min, and data consist of 1,400 samples for the output
and any input. First, they are normalized, so as to have zero mean
and unit variance. Then, they are divided into an identification
set Ze and a validation set Zv of equal size.

Fig. 4. Blood oxygen level–dependent (BOLD) time series measured via fMRI in different brain regions are connected with neural activity. This latter can be
induced, e.g., by external stimuli related to a task to perform and/or random neural fluctuations.
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Fig. 5. Brain activity prediction. Left Fits Fh as defined in Eq. 2. Right Simulated outputs by PEM-Or (Top), FB (Middle), and EB (Bottom).

The temperature prediction fits of the sensor network are
reported in Left panel of Fig. 6 using the three identification
procedures with the same settings previously described. Note
that the predictor length m = 40 corresponds to a large temporal
window of more than 5 h. Results are in line with those obtained
in the benchmark problems: FB outperforms EB and PEM-Or.
The simulated outputs are displayed in the right panels: the
percentage simulation fit F∞ of FB is close to 75% while those
of EB and PEM-Or are, respectively, around 61% and 72%.

Discussion

Control of complexity is crucial in system identification, with
profound implications for model prediction capability. In this
paper, we have shown that model selection for Bayesian linear
system identification, which involves continuous tuning of
hyperparameters, finds an interesting dimension by replacing

EB with FB. This latter is implemented through a stochastic
simulation scheme. It faces some critical issues related to the use of
classical MCMC schemes coupled with impulse responses priors
which embed exponential stability. The identification procedure
here described can now account for all the ML shape, overcoming
nonconvexity issues and making complexity control even more
robust. This reflects also on the structure of impulse responses
estimates which can now incorporate a continuum spectrum
of different stability parameters. This increases the expressive
power of the regularized estimator, improving its ability to
simulate and predict complex linear dynamic systems. We also
envision extensions of the identification procedure here proposed
to the nonlinear setting (69). This could be, e.g., obtained by
replacing the stable kernels here treated with nonlinear versions
(24), like the ones described in refs. 70 and 71 which embed
some fading memory properties present in many real dynamic
systems.

Fig. 6. Temperature prediction using a real sensor network. Left Fits Fh as defined in Eq. 2. Right Simulated outputs by PEM-Or (Top), FB (Middle), and EB
(Bottom).
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Materials and Methods

Given an estimated model and a validation dataset Zv, the percentage
prediction fitsFh in Eq.2 are computed by the function compare of the MATLAB
system identification toolbox with the system at rest (null initial conditions). This
routine allows to compute the prediction over any horizon h, with the simulated
output obtained by setting h to infinity.

PEM-Or is implemented through the command armax. The procedure EB
estimates the regularized ARX model using arxRegul and arx. These routines
tune the hyperparameters by estimating one different decay parameter α for
each predictor impulse response. This can be easily obtained also through FB
with a simple modification of Step 3 of Algorithm 2: it is sufficient to update
separately a differentα for each covariance ofθk . This more sophisticated version
of FB has been also implemented, assessing that all the results remain essentially
the same. For instance, in the benchmark problems, the average fits increase by
around 1% using multiple decay rates.

In any experiment, the number of posterior samples generated by
FB is 10,000. Such chain length has always ensured that quantiles
{0.025, 0.25, 0.5, 0.75, 0.975} of the posterior are estimated at least with
precision given, respectively, by {0.02, 0.05, 0.01, 0.05, 0.02}with probability
0.95 according to the Raftery–Lewis criterion (35) [Chapter 7].

Simulated data come from ARMAX models randomly obtained as follows.
The polynomials Bk , C and D := Fk entering Eq. 6 are generated by using
drmodel.m: the first call defines B1 and D, the others the numerators of the
remaining p rational transfer functions. The system is used and saved when the

following two requirements are satisfied. System poles must stay inside the circle

of radius 0.95 while the signal-to-noise ratio must satisfy 1 ≤
∑p

i=1 ‖Gi‖
2
2

‖H‖2
2
≤ 10

(recall that Gk(q) =
Bk(q)
D(q) , H(q) =

C(q)
D(q) ), where ‖Gi‖2, ‖H‖2 indicate the

`2 norms of the system impulse responses.
Finally, the reader is referred to SI Appendix for the proof of Proposition 1.

Data, Materials, and Software Availability. The code implementing the Full
Bayes approach and the data are available at https://www.dei.unipd.it/~giapi
under the voice Software. Previously published data were used for this work.
Data are taken from the works: (9, 10, 57).
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