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Disturbance-Parametrized Robust Lattice-based
Motion Planning

Abhishek Dhar, Carl Hynén Ulfsjöö, Johan Löfberg and Daniel Axehill

Abstract—This paper introduces a disturbance-parametrized
(DP) robust lattice-based motion-planning framework for non-
linear systems affected by bounded disturbances. A key idea in
this work is to rigorously exploit the available knowledge about
the disturbance, starting already offline at the time when a library
of DP motion primitives is computed and ending not before the
motion has been executed online. Given an up-to-date-estimate
of the disturbance, the lattice-based motion planner performs a
graph search online, to non-conservatively compute a disturbance
aware optimal motion plan with formally motivated margins to
obstacles. This is done utilizing the DP motion primitives, around
which tubes are generated utilizing a suitably designed robust
controller. The sizes of the tubes are dependent on the upper
bounds of the disturbance appearing in the error between the
actual system trajectory and the DP nominal trajectory, which in
turn along with the overall optimality of the plan is dependant on
the user-selected resolution of the available disturbance estimates.
Increasing the resolution of the disturbance parameter results
in smaller sizes of tubes around the motion primitives and can
significantly reduce the conservativeness compared to traditional
approaches, thus increasing the performance of the computed
motion plans. The proposed strategy is implemented on an Euler-
Lagrange-based ship model which is affected by a significant
wind disturbance and the efficiency of the strategy is validated
through a suitable simulation example.

I. INTRODUCTION

THE problem of motion-planning deals with generating a
feasible/optimal trajectory, which connects an initial state

of a system to a desired final state, while avoiding unsafe
states, which represent physical constraints of the system as
well as obstacles in the environment. Many motion-planning
strategies [1]–[5] are proposed in literature. The solutions pro-
posed in [1], [2], are sampling-based strategies and are based
on the standard Rapidly exploring Random Tree (RRT) and
RRT* algorithms. These solutions aim at random explorations
in the concerned state space and finding sample states, which
can be feasibly connected. On the other hand, the planning
strategies like the potential field approach [3], the navigation
function based approach [4], cell decomposition methods [5],
etc. aim at utilizing the knowledge of the environment and
to create a feasible path from an initial state to a final state
either by utilizing a model of the feasible environment or by
systematically combining cells, obtained by decomposing the
environment. However, in practise most system models are
affected by uncertainties, appearing due to various factors,
particularly incomplete knowledge of the model, including
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the case of having exogenous disturbances. Unfortunately, the
classical motion-planning algorithms usually do not consider
the effect of model uncertainties during the planning stage and
rely on a motion-executing controller to handle the uncertain-
ties. To ensure a safe as well as efficient motion plan in the
presence of uncertainties, ideally available knowledge about
the uncertainties should be taken into account already at the
planning stage.

To guarantee safe motion in cluttered environment in the
presence of uncertainties, various robust motion-planning al-
gorithms have been proposed in the literature. The strategies
proposed in [6]–[11] deal with the motion-planning problems
for linear systems affected by uncertainties. The results in [6],
[7] propose robust RRT strategies, which extend the standard
RRT algorithm to the cases of linear systems having additive
noise and uncertainty in state estimation. The approaches
in [8], [10] guarantee safe motion for systems with linear
models, in uncertain cluttered environments. An invariant-
set based robust motion planner is proposed in [11], which
handles linear systems with parametric uncertainty as well
as bounded additive disturbances. Although these approaches
are efficient robust motion-planning solutions, they are not
suitable to handle systems with nonlinear models, which is
mostly the case in practise. The approaches in [12]–[16]
address the robust motion-planning problem for nonlinear
systems with uncertainties. A learning-based robust motion
planner is proposed in [12], which utilizes contraction theory
to generate a safety certificate for trajectories of a non-
linear system affected by additive disturbances. A control
barrier function based robust RRT strategy is proposed for
uncertain nonlinear systems in [14] and the performance is
validated through numerical simulations. The strategies in
[15], [16] generate funnel libraries to handle uncertainties in
robust motion planning. These strategies can efficiently handle
nonlinear systems affected by external disturbances during
runtime. However, as the funnels vary in shape and size,
additional efforts/conditions are required to maintain feasible
composition of the funnels during online implementation.
Furthermore, all the solutions guarantee robustness based on
worst-case disturbance knowledge and is apparently incapable
of utilizing additional disturbance information (for example
local estimates of disturbance affecting a certain region of the
navigable state space) during planning. In the robust motion
planning strategies in [12]–[16], the planning performance can
be improved apparently only if the worst-case bound of the
disturbance is decreased.

The drawbacks mentioned above are mitigated in this pa-
per, which proposes a novel disturbance-parametrized robust



lattice-based motion-planning strategy for nonlinear systems
affected by a bounded exogenous additive disturbance. The
lattice based motion planner [17]–[19] is an efficient sampling-
based motion planning strategy, which converts a motion-
planning problem into an online graph-search problem. In
this strategy the state space is suitably discretized and the
overall motion is generated by utilizing precomputed motion
primitives, which connect the initial and the final states of the
system, through the discretized states while avoiding obstacles
during runtime. However, the lattice-based motion planners
are not inherently enabled to handle model uncertainties. The
approach in [20] proposes the use of graduated fidelity lattices
to handle uncertainties occurring due to additive noise. The
efficiency of the planner in [20] is dependent on heuristics
and the performance is validated through simulation and real-
time experiments. The proposed robust lattice-based motion
planners in this paper analytically guarantees collision free,
resolution optimal and disturbance-aware motions for uncer-
tain nonlinear systems. Already by intuition it is clear that
availability of more information about the disturbance can
help to obtain better motion plans. To obtain an optimally
performing plan which is less conservative than the traditional
worst-case disturbance handling based approaches, uncertain-
ties should ideally also be rigorously considered already at the
planning stage and all knowledge available at a certain point
in time should be exploited by the algorithm. This forms the
central idea behind the proposed strategy, in which the motion
planner is enabled to utilize useful disturbance information
effectively. The intuitively clear benefits with this approach are
confirmed theoretically as well as in a challenging numerical
example in the work.

A. Summary of contribution

The contribution in this paper is twofold: firstly, a dis-
turbance parametrized robust lattice-based motion planner is
proposed for a general class of nonlinear systems, affected
by bounded additive disturbance. In the proposed solution,
there are basically three points in time of relevance: offline
at optimal motion primitive computation, online at the time
for motion planning (i.e., graph search here), and online
at the time for motion execution/control. The knowledge of
the range of the disturbances expected online are exploited
when computing optimal DP motion primitives offline. An
important property of these primitives is that they will be able
to provide a resolution-optimal disturbance feed-forward from
the considered range of disturbances. The result is a resolution-
optimal plan taking the disturbance non-conservatively into
account, which along with a suitably tuned robust controller
provides the right amount of margin to obstacles; too much
may lead to a highly sub-optimal solution, too little would not
guarantee robust feasibility. The obtained margin to obstacles
characterizes a fixed-size tube around each generated DP
motion primitive. Finally, during motion execution online,
any remaining uncertainty is rigorously handled by the robust
feedback controller using current sensor information. It is
proved that the optimal motion primitives associated with the
actual uncertain plant always stay within the characterized tube
around the DP motion primitives generated by the proposed

strategy. The benefits of utilizing the disturbance estimates can
lead to improvement of performance in the following ways

• The optimal nominal plan is computed using available
knowledge about the disturbance at different points in
time, which enables the motion planner to optimally
and effectively exploit the disturbance rather than to
suboptimally attenuate its effect on-line using the motion-
executing controller, and as a result, the overall perfor-
mance can be improved.

• Exploiting the disturbance estimates leads to a reduction
in the necessary margin to obstacles, which reduces the
size of tubes around the nominal trajectory and hence
potentially generates better routes.

• Since the tubes are guaranteed to contain the optimal
solution associated with the actual uncertain dynamics, a
reduction in the tube size leads to a reduction in deviation
of the nominal trajectory from the optimal one.

The second contribution is a detailed illustration of the
implementation of the proposed strategy on a general Euler-
Lagrange (EL) system subject to constraints. A suitable feed-
back controller for the error dynamics (between the nominal
and the actual trajectories of the EL systems) as well as the
bounded sets (defining the tubes), containing the error for
all time, are explicitly designed. The performance with the
proposed design is illustrated through a simulation experiment,
which considers a ship model (satisfying the EL dynamics)
subject to path and operational constraints and are affected
by significant wind disturbances. It is observed that with
more available disturbance estimates, the motion planner can
achieve better performance in terms of generating better paths.

Notation: Given two sets P,Q then P ⊕ Q ≜
{
a + b :

a ∈ P, b ∈ Q
}

, P ⊖ Q ≜
{
a : a ⊕ Q ⊆ P

}
. Given

a set P, |P| denotes the cardinality of P. R and N are
the sets of all real and integer numbers, respectively and
N[m:n] ≜ {m,m + 1, · · · , n − 1, n},∀m,n ∈ N and m < n.
The notations ∥·∥ and ∥·∥∞ denote the 2-norm and the infinity
norm of the argument vectors/matrices, respectively. Given a
vector x ∈ Rn and a non-singular matrix Q ∈ Rn×n, the
weighted vector norm ∥x∥Q is defined as ∥x∥Q ≜

√
xTQx.

The notation diag(n1, n2, · · · , ni), for some finite value of i
and ∀(nj , j) ∈ R×N[1:i], denotes a diagonal matrix in Ri×i,
with nj ∈ R,∀j ∈ N[1:i] as the diagonal entries of the matrix.

II. PROBLEM FORMULATION

The paper focuses on the motion-planning problem for
uncertain nonlinear systems in the form

ẋ(t) = f(x(t), u(t)) + d(x, t), x(0) = xini (1)
where x(t), u(t) are the system state and the control input
vectors, respectively. The state and control inputs are subject
to the following safety constraints

x(t) ∈ X\O ≜ X ⊂ Rn; u(t) ∈ U ⊂ Rm

where the region O ⊂ X ⊆ Rn represents the obstacle region
in the state space, which must be avoided by the system
(1). The model uncertainty is represented through the additive
exogenous disturbance d(x, t). It is considered that the (time-
average) estimates of the disturbance, locally affecting various



subspaces of the feasible state space X , are available. Let
the set of available estimates of the disturbance be defined
as follows

D≜{∂i, i ∈ I+H | ∥∂i∥<∂,∀i ∈ I+H , ∥∂i−∂j∥⩽δ, ∀i, j ∈ I+H}
(2)

where H = |D| is a finite integer and ∂ ∈ R. The subspaces,
affected by the disturbances are characterized as regions within
X , with the number of regions equal to |D|. The regions are
represented as Ai, where i ∈ I+|D|. The regions Ai,∀i ∈ I+|D|
satisfy the following

|D|⋃
i=1

Ai = X ;

|D|⋂
i=1

int(Ai) = ∅ (3a)

N (Ai) ≜ {Aj

∣∣ Ai ∩ Aj ̸= ∅,∀j ̸= i, j ∈ I+|D|} (3b)

R(Ai) ≜ Ai ∪N (Ai),∀i ∈ I+|D|} (3c)

Fig. 1 illustrates a partitioned state space, where the feasible
space is divided into 14 regions, along with describing N (Ai)

Fig. 1: Schematic illustrating a partitioned state space

and R(Ai) for i = 5. The set N (Ai) defined in (3b), is the
set of all the regions which are adjacent to the region Ai and
therefore, all members of N (Ai) share boundary points with
Ai. The set R(Ai), defined in (3c) is comprised of Ai and all
the regions adjacent to Ai. The disturbance estimates in each
of the regions Ai, i ∈ I+|D| are represented as dp(Ai), such
that dp(Ai) ∈ D,∀i ∈ I+|D|.

Assumption 1. The disturbance estimates dp(Ai),∀i ∈ I+|D|
satisfy the following

1. ∥dp(Ai)− dp(Aj)∥ ⩽ δ, ∀(Aj , j) ∈ N (Ai)× I+|D|.
2. ∥d(x, t)− dp(Ai)∥ ⩽ ϵ,∀(x, t, i) ∈ Ai × R× I+|D|.

The bound δ in Assumption 1 is same as that in (2). In case
|D| increases to |D| = H > H , indicating availability of
more disturbance estimates, then the number of divisions of
the feasible state space can be increased following the increase
in |D|, provided the following assumption holds

Assumption 2. The disturbance estimates dp(Ai),∀i ∈ I+|D|
satisfy the following

1. ∥dp(Ai)− dp(Aj)∥ ⩽ δ < δ,∀(Aj , j) ∈ N (Ai)× I+|D|.
2. ∥d(x, t)− dp(Ai)∥ ⩽ ϵ < ϵ,∀(x, t, i) ∈ Ai × R× I+|D|.

where δ and ϵ are defined in Assumption 1.

Remark 1. Any arbitrary increase in the number of avail-
able disturbance estimates would not be enough to satisfy
Assumption 2, since the bound on ∥dp(Ai)−dp(Aj)∥, ∀(Aj , j) ∈
N (Ai) × I+|D| has to be satisfied for any arbitrary pair of
disturbance estimates affecting neighbouring regions. An ef-
fective way of availing more disturbance estimates satisfying
Assumption 2 is by obtaining new estimates, such that each
such new estimate is a convex combination of a unique pair of
the old disturbance estimates affecting neighbouring regions.

The concerned motion-planning problem can be formulated as
a constrained optimal control problem (COCP) as follows

min
x(t),u(t),Tf

J =

∫ Tf

0

l(x(t), u(t))dt

x(0) = xini; x(Tf ) = xf (4a)
ẋ(t) = f(x(t), u(t)) + d(x, t) (4b)

x(t) ∈ X ; u(t) ∈ U (4c)

The running cost l(x, u) is chosen to define the performance
measure J . The disturbance d(x, t) in (4b) is considered to
satisfy Assumption 1. The COCP in (4) is designed to return
a feasible trajectory for the system in (1) to travel from the
initial state xini to a desired final state xf while respecting all
the imposed safety constraints. However, COCP (4) is ill-posed
since the disturbance term in d(x, t) in (4b) is not fully known
and thus COCP (4) only illustrates a conceptually defined
problem. This motivates the objective of this work, which
is to reformulate the COCP (4) to account for the effect of
model uncertainty while ensuring constraint satisfaction and
to design a robust lattice-based motion planner, which will
provide a feasible solution for the COCP.

III. DISTURBANCE PARAMETRIZED ROBUST
LATTICE-BASED MOTION PLANNER

In this section a disturbance-parametrized (DP) system dy-
namics based solution to the robust motion planning problem,
proposed in the last section is presented.

A. Parametrized disturbance based system model and model
mismatch error

The DP model associated with the uncertain system (1) is
considered to be as follows

ẋ = f(x(t), u(t)) + d(x), x(0) = xini (5)

where d(x) represents the parametrized disturbances, satisfy-
ing the following

d(x) = dp(Ai), if x ∈ Ai (6)

The error between the nominal state x and the actual state x
is defined as x̃ ≜ x− x. Similarly, the difference between the
nominal input u and the actual implemented input u is defined
as ũ ≜ u − u. Therefore, the error dynamics is computed as
follows

˙̃x(t) =ẋ− ẋ = f(x(t), u(t)) + d(x, t)− f(x(t), u(t))− d(x)

=f̃(x̃(t), ũ(t), x(t), u(t)) + d̃(x, x, t), x̃(0) = 0 (7)



where

f̃(x̃(t), ũ(t), x(t), u(t)) ≜ f(

x︷ ︸︸ ︷
x̃+ x,

u︷ ︸︸ ︷
ũ+ u)− f(x, u) (8a)

d̃(x, x, t) ≜ d(x, t)− d(x) (8b)

The procedure to compute the nominal input u is depicted
later in the subsection III-B.

Lemma 1. The disturbance d̃(x, x, t) defined in (8b) satisfies

∥d̃(x, x, t)∥ ⩽ ∆ ≜ δ + ϵ,∀(x, x) ∈ Ai ×Aj ,Aj ∈ N (Ai)

where δ and ϵ are defined in Assumption 1.

Proof. The disturbance d̃(x, x, t) is reformulated as follows

d̃(x, x, t) = d(x, t)− d(x),∀(x, x) ∈ Ai ×Aj ,Aj ∈ N (Ai)

=d(x, t)− dp(Aj) = d(x, t)− dp(Ai) + dp(Ai)− dp(Aj)

⇒∥d̃(x, x, t)∥ ⩽ ∥d(x, t)− dp(Ai)∥+ ∥dp(Ai)− dp(Aj)∥
(9)

Utilizing Assumption 1 in (9), it is proved that the claimed
assertions hold. ■

Lemma 2. If the number of partitions within X is increased
following Assumption 2, then in similar line of proof of Lemma
1, it can be shown that d̃(x, x, t) (defined in (8b)) satisfies

∥d̃(x, x, t)∥ ⩽ ∆ ≜ δ + ϵ,∀(x, x) ∈ Ai ×Aj ,Aj ∈ N (Ai)

where ∆ < ∆ (since δ < δ and ϵ < ϵ).

Let PX be the number of regions, that constitute X . For any
scalars H,H ∈ I+ with H < H , let Lemma 1 hold for PX =
H and Lemma 2 hold for PX = H . Then a variable ∆p is
defined as follows

∆p =

{
∆ if PX = H

∆ if PX = H
(10)

Assumption 3. If ∥d̃(x, x, t)∥ ⩽ ∆p,∀t ∈ I, then there exists
a controller ũ = ν(t, x̃) and a continuously differentiable
function V (t, x̃) > 0 such that the following hold

1. α1(∥x̃∥) ⩽ V (t, x̃) ⩽ α2(∥x̃∥)

2.
∂V

∂x̃
f̃(x̃(t), ũ(t), x(t), ν(t, x̃))+

∂V

∂t
⩽−α3(∥x̃∥)+β(∆p)

where αi(·), i ∈ {1, 2, 3} and β(·) are class κ-functions of
their respective arguments.

The conditions in Assumption 3 imply that the closed-loop
error dynamics (7) with respect to feedback controller ν(t, x̃)
is uniformly ultimately bounded (UUB) [Chapter 4, [21]],
[22]. Therefore, there exists a time instant T (x̃(0),∆p) > 0
and a region Wp such that

Wp ≜ {x̃ ∈ Rn : ∥x̃∥ ⩽ α3
−1(β(∆p))} (11a)

lim
t→T−

h(x̃(t),Wp) → 0

x̃(t) ∈ Wp,∀t ⩾ T

}
if x̃(0) /∈ Wp (11b)

x̃(t) ∈ Wp,∀t ∈ R if x̃(0) ∈ Wp (11c)

where h(·, ·) returns the Hausdorff distance between the argu-
ments. The set Wp can be alternately represented as follows

Wp =

{
W ≜ {x̃ ∈ Rn : ∥x̃∥ ⩽ α3

−1(β(∆))}, if PX = H

W ≜ {x̃ ∈ Rn : ∥x̃∥ ⩽ α3
−1(β(∆))}, if PX = H

(12)

Corollary 1. Since x̃ = x − x and ũ = u − u, then for any
trajectory (x(τ), u(τ)) of the DP system (5) and the controller
u(τ) = u(τ) + ν(τ, x̃(τ)), if

x(τ), x(τ) ∈ R(Ai), (i, τ) ∈ I+J × [ t, t ] (13)

then the following is deduced from Lemma 1 and (11c),
1. ∥d̃(x, x, τ)∥ ⩽ ∆,∀τ ∈ [ t, t ]
2. x(τ) ∈ x(τ)⊕Wp,∀τ ∈ [ t, t ] if x(t) ∈ x(t)⊕Wp

Remark 2. The set Wp constitutes a tube around the nominal
trajectory x(t), such that the states of the uncertain systems
x(t) remain within the tube for all time. A key factor deciding
the size of the tube is the upper bound ∆p. Using Lemma
1, Lemma 2 and (12), it is inferred that W ⊂ W , since
∆ < ∆ and the functions α(·), β(·) defining the set Wp in
(12), are class κ-functions. This implies that by exploiting
more disturbance estimates and increasing the number of
partitioned regions while satisfying Assumption 2 leads to a
reduction in the size of the tube around the nominal states
x(t), that is guaranteed to contain the uncertain system states
x(t) for all time.

Remark 3 (Worst case scenario). It is possible that only the
worst-case upper bound of the disturbance (affecting the entire
feasible state space) for example, ∥d(x, t)∥ ⩽ ∆̂,∀(x, t) ∈
X×R, is available instead of the (local) disturbance estimates.
This can be treated as a special case of the proposed design
approach, in which the entire feasible state space can be
considered as a single region with the estimated disturbance
vector being the zero vector. Further, the bounds δ and ϵ
(defined in Assumption 1) are characterized such that δ = 0
and ϵ is equal to the worst-case disturbance upper bound.

B. Reformulated COCP for motion-planning

The COCP (4) is reformulated to include implementable
constraints which guarantee constraint satisfaction for the tra-
jectories associated with the uncertain system (1). The motion-
planning COCP is now based on the DP system dynamics (5)
and is formulated as follows

min
x(t),u(t),Tf

J =

∫ Tf

0

l(x(t), u(t))dt

ẋ(t) = f(x(t), u(t)) + d(x) (14a)

x(t) ∈ Xwp; u(t) ∈ Uwp (14b)

x(0) = xini ∈ Xwp; x(Tf ) = xf ∈ Xwp (14c)

where Xwp and Uwp denote the tightened state and input
constraints, respectively, defined as follows

Xwp ≜ X ⊖Wp; Uwp ≜ U ⊖ ν(t,Wp) (15)

The COCP (14) generates a feasible trajectory for the DP
system (5), such that it travels from the initial position xini



to the desired final position xf , while satisfying the tightened
constraints (14b). Since x(0) = x(0) = xini, the following is
inferred from (14b) using (15) and Corollary 1

x(t) ∈ x(t)⊕Wp ⊂ X ; x(Tf ) ∈ xf ⊕Wp ⊂ X
u(t) = u(t) + ν(t, x̃(t)) ∈ u(t)⊕ ν(t,Wp) ⊂ U

C. Lattice-based motion planner with robust constraint satis-
faction

The lattice-based motion-planning strategy converts a
motion-planning COCP into a discrete graph-search problem
by limiting the controls to a discrete subset of available
actions, represented using a set of motion primitives. At the
outset, the obstacle-free feasible state space is discretized as
per a desired discretization. The discretized state space consists
of all reachable states, that form the graph. Subsequently,
motion primitives are computed, which are feasible state and
control trajectories of the concerned system connecting one
reachable state with another in the discretized state space.

To develop a lattice-based planner for the motion planning
problem in (14), discretized state space Xdp is obtained from
the obstacle-free tightened feasible state space Xwp, defined
as

Xwp ≜ X ⊖Wp

The set of motion primitives Mp, associated with the DP sys-
tem (5), is then constructed and a motion primitive mp ∈ Mp

is defined as follows

mp = (x(t), u(t), d(x(t))) ∈ Xwp × Uwp ×Dwp, t ∈ [0, T ]
(16)

where Dwp ≜ {dp(Ai),∀i ∈ I+J }. A set A(x(t) is defined
such that

A(x(t)) = Ai, if x(t) ∈ Ai, i ∈ I+J (17)

The motion primitives are computed as follows: let xk ∈ Xdp

be any point in the discretized state space and xk+1 ∈ Xdp be a
point in the neighbourhood of xk, such that xk ∈ A(xk) ⊂ X
and xk+1 ∈ R(A(xk)) ⊂ X . Then the motion primitives
are computed for each xk ∈ Xdp and their corresponding
neighbourhood points xk+1 ∈ Xdp by solving the following
COCP

min
x(t),u(t),T

J =

∫ T

0

l(x(t), u(t))dt

x(0) = xk; x(T ) = xk+1 (18a)

ẋ(t) = f(x(t), u(t)) + d(xk) (18b)

x(t) ∈ R(A(xk))⊖Wp; u(t) ∈ Uwp (18c)

The constraint (18c) ensures the feasibility of the state
transitions, which guarantees that the uncertain state x(τ),
associated with the solution x(t) of COCP (18), satisfies
x(τ) ∈ R(A(xk)),∀τ ∈ [0, T ] (necessary to satisfy Corollary
1). The solution of the COCP (18) constitutes a motion prim-
itive mp (defined in (16)), in which the motion is governed
by the following

xk+1 =fm(xk, d(xk),mp)

≜xk + Td(xk) +

∫ T

0

f(x(t), u(t))dt (19)

The motion-planning COCP (14) can now be approximated by
the following graph-search problem, posed as a discrete COCP,
which is solved online to guarantee collision free motion

min
{mpk

}M−1
k=0 ,M

Jm =

M−1∑
k=0

lm(xk,mk)

x0 = xini; xM = xf ∈ Xwp (20a)

xk+1 = fm(xk, d(xk),mpk
) (20b)

mpk
∈ Mp(xk) (20c)

c(xk,mpk
) ∈ Xwp (20d)

The following proposition proves that the uncertain system
states always remain within a region Wp around the planned
motion, obtained from (20) by combining a finite number of
pre-computed motion primitives.

Proposition 1. Let xk = x(kT ). If x0 = x(0) = xini, then
the state x(t) of the uncertain system (1) satisfies the following
for all k ∈ I[1:M ]

xk ∈ xk ⊕Wp

x(t̄) = x(t̄)⊕Wp,∀t̄ ∈ [(kT, (k + 1)T ]

with the control input u(t̄) = u(t̄)+ ν(t̄, x̃(t̄)),∀t̄ ∈ [kT, (k+
1)T ] , where the utilized nominal control u(t̄) is encoded in
mpk

,∀k ∈ I[0:M−1].

Proof. The following proof is done by the method of induc-
tion. Let

xk ∈ xk ⊕Wp (21)

Then if the constraint (20d) is satisfied then the following
holds for all t̄ ∈ (k, (k + 1)T )

x(t̄) ∈ Xwp =
(
X/O

)
⊖Wp ⊂ X ⊖Wp

⇒x(t̄)⊕Wp ∈ X (22)

Therefore, the following is concluded using (21), (22) and
Corollary 1 with the control u(t̄) = u(t̄) + ν(t̄, x̃(t̄)), where
u(t) is the control action utilized in the active motion primitive
mk

x(t̄) = x(t̄)⊕Wp,∀t̄ ∈ (k, (k + 1)T ) (23a)
xk+1 = x(t+ T ) ∈ x(t+ T )⊕Wp = xk+1 ⊕Wp (23b)

Since, the initial condition of the uncertain system’s state
satisfy x0 = x0 = xini and the origin is an interior point
of Wp (from (11a)), by recursively utilizing (21)-(23), it is
proved that the claimed assertions hold. ■

D. Discussion on optimality

In this section, the optimality of the solution obtained by
solving the COCP (18) is analysed, with respect to the optimal
solution for the uncertain system (1), which is considered to
exist and would be a known signal if d(x, t) would be known.
Considering the same discretized state space Xdp as considered
for COCP (18) and d(x, t) to be known, the optimal motion



Algorithm 1 Disturbance-Parametrized Robust Lattice-based Mo-
tion Planner
Offline:

• Partition the feasible state space X into
⋃J

i=1 Ai.
• Obtain the disturbance estimates dp(Ai),∀i ∈ I+J ).
• Design the controller ν(t, x̃) and compute Wp.
• Obtain the tightened spaces Xwp and Uwp.
• Discretize Xwp to obtain Xdp.
• Compute the set of motion primitives Mp.

Online:
1: Take inputs xini, xf and O.
2: Solve COCP (20).
3: Measure x(t) and compute x̃(t).
4: Apply the control u(t) = u(t) + ν(t, x̃).

primitive for the system in (1) would be computed by solving
the following

min
x(t),u(t),T

J =

∫ T

0

l(x(t), u(t))dt

x(0) = xk; x(T ) = xk+1 (24a)
ẋ(t) = f(x(t), u(t)) + d(x, t) (24b)

x(t) ∈ R(A(xk)); u(t) ∈ U (24c)

where xk is any point in the discretized state space and xk+1 ∈
Xdp is any point in the neighbourhood of xk. The following
theorem establishes the relation between the optimal solutions
from (18) and (24).

Theorem 1. For xk = xk and xk+1 = xk+1, if d(x, t) and
d(xk) satisfies Assumption 1 and Assumption 3 holds, then the
solution of COCP (24) will lie within the tube dictated by Wp,
around the solution of the COCP (18).

Proof. Let x∗(t) be the optimal state trajectory and u∗(t) be
the optimal control input computed by solving the COCP (24),
and the optimal dynamics are represented as

ẋ∗(t) = f(x∗(t), u∗(t)) + d(x∗(t), t)

The DP system dynamics is considered as

ẋ(t) = f(x(t), u(t)) + d(x(t)) (25)

Since Assumption 1 is considered to hold, then utilizing
Corollary 1, it is claimed that there exists a feedback controller
ν(t, x̃∗) with x̃∗ = x∗ − x, which guarantees that with
u(t) = u∗(t)− ν(t, x̃∗) the following holds

x∗(t) ∈ x(t)⊕Wp, if x(0) ∈ x(0)⊕Wp (26)

Let S be a set of solutions of (25) defined as

S ≜ {(x, u) : (26)} (27)

Let (x∗(t), u∗(t)) represent the optimal solution obtained by
solving COCP (18). Since xk = xk and xk+1 = xk+1

and Assumption 1 and Assumption 3 hold for the dynamic
constraints (18b) and (24b), it is inferred that

(x∗(t), u∗(t)) ∈ S (28)

This proves that the claimed assertion holds. ■

Corollary 2. Let (x∗(t), u∗(t)) and (x∗(t), u∗(t)) represent
the optimal solutions of the COCPs (18) and (24), respectively.
Then, if the number of partitioned regions |D| is increased
satisfying Assumption 2, then (x∗(t), u∗(t)) → (x∗(t), u∗(t))
as |D| → ∞.

Proof. It is inferred from Theorem 1 that the optimal solutions
of COCPs (18) and (24) stay within a region, dictated by
Wp. It is further claimed in Remark 2, that the size of Wp

reduces as the number of partitioned regions increases, while
following Assumption 2. This implies that, with an increase
in the number of partitioned regions, and in turn having more
information about the local estimates of the disturbance, the
optimal solution of COCP (18) tends towards that of COCP
(24). ■

Remark 4. The overall optimality of the solution obtained
from the motion planning COCP (20) is dependent on the
resolution of the discretized state space Xdp.

Remark 5. From Remark 2 it is inferred that using more
disturbance estimates and increasing the number of parti-
tioned regions (following Assumption 2) leads to a reduction
in the size of tubes, which allows the motion planner in (20)
to explore more feasible state space. This in turn potentially
allows the planner to exploit the navigable regions which
would have been infeasible with a large tube size, thus
potentially improving the quality of the overall motion plan.

IV. CASE STUDY: EULER-LAGRANGE (EL) SYSTEM

In this section, an lattice-based planner is designed for
motion-planning of uncertain EL systems in the form

Mq̇(t)+Vm(q(t))q(t)+F (q(t))q(t)+G(x(t))= τ(t)+d(x, t)
(29a)

ẋ(t) = R(x(t))q(t) (29b)

where q(t) ∈ Rn and x(t) ∈ Rn are the generalized velocity
and position vectors of the system (29), respectively and
τ(t) ∈ Rn is the generalized torque applied to the system.
M is the inertial matrix, Vm(q(t)) is the centripetal-Coriolis
matrix, F (q(t)) is the friction matrix, G(x(t)) is the gravity
matrix and R(x(t)) is the rotation matrix. The system is af-
fected by an exogenous disturbance d(x(t), t), which satisfies
Assumption 1 and is subjected to the following constraints

x(t) ∈ X ; ẋ(t) ∈ Ẋ ; τ(t) ∈ U
Assumption 4. The matrices M and R(x(t)) satisfy the
following for all q ∈ Rn

1. M and R(x(t)) are square-invertible matrices
2. R(x(t)) is bounded as ∥R(x(t))∥ ⩽ µj

For simplicity, all the time-dependent expressions are hence-
forth presented using general notations without explicitly ex-
pressing them as time functions (for eg. x(t) = x). The system
in (29) is reformulated following the approach in [Section
7.5.1, [23]] as

M∗(x)ẍ+V ∗
m(x, ẋ)ẋ+F ∗(x, ẋ)ẋ+G∗(x) = (R−1(x))T (τ+d)

(30)



where M∗(x) ≜ R−1(x)TMR−1(x), V ∗
m(x, ẋ) ≜

(R−1(x)TVm(x,R−1(x)x) − R−1(x)T Ṙ(x)R−1(x))R−1(x),
F ∗(x, ẋ) ≜ R−1(x)TF (R−1(x)ẋ)R−1(x) and G∗(x) ≜
R−1(x)TG(x). The dynamics in (30) is further reformulated
as follows

ẍ = Φ(x, ẋ) + Θ(x)(τ + d) (31)

where

Φ(x, ẋ) ≜ −M∗−1(x)
(
V ∗
m(x, ẋ)ẋ+ F ∗(x, ẋ)ẋ+G∗(x)

)
(32a)

Θ(x) ≜ M∗−1(x)R−1(x)T (32b)

The input τ is designed as

τ = Θ−1(x)v (33)

where v(t) is the control input to be formulated and applied
to the system (29) through the transformation (33).

Assumption 5. There exists a set V such that for all v ∈ V ,
µΘv ∈ U , where µΘ ≜ maxx∈X ∥Θ−1(x)∥

Utilizing (33) in (31), the following is obtained

ẍ = Φ(x, ẋ) + v +Θ(x)d (34)

Remark 6. Since J(x) is bounded (Assumption 4), the matrix
Θ(x) is also bounded by some known scalar µθ as ∥Θ(x)∥ ⩽
µθ,∀x ∈ Rn.

A. Formulating error dynamics

The DP dynamics associated with (29) are given as

Mq̇ + Vm(q)q + F (q)q +G(x) = τ + d (35a)

ẋ = R(x)q (35b)

The dynamics (35) is reformulated following similar steps in
(30)-(31), to obtain

ẍ = Φ(x, ẋ) + Θ(x)τ +Θ(x)d (36)

where Φ(·, ·) and Θ(·) are defined in (32). The control input
to the system (36) is also transformed following (33)

τ = Θ−1(x)v (37)

The overall DP system model with the reformulated input are
given as

ẍ = Φ(x, ẋ) + v +Θ(x)d (38)

The error dynamics associated with the uncertain system (34)
and the DP system (38) are given as follows

¨̃x =Φ̃(x̃, ˙̃x, x, ẋ) + ṽ +Θ(x)d−Θ(x)d

=Φ̃(x̃, ˙̃x, x, ẋ) + ṽ + Θ̃(x, x)d+Θ(x)d̃ (39)

where x̃ ≜ x−x, ṽ ≜ v−v, Φ̃(x̃, ˙̃x, x, ẋ) ≜ Φ(x, ẋ)−Φ(x, ẋ),
Θ̃(x, x) ≜ Θ(x) − Θ(x) and d̃ = d − d. The objective is to
find the region Wp (defined in (11)) for the states [x̃T , ˙̃xT ]T

by designing a suitable control ṽ.

B. Computing feedback control and formulating robust lattice-
based planner

Let f̃(x, x, d) ≜ Φ̃(x̃, ˙̃x, x, ẋ) + Θ̃(x, x)d. A feedback
control input ṽ is chosen as follows

ṽ(x̃, ˙̃x) = −f̃(x, x, d)− k1k2x̃− (k1 + k2) ˙̃x (40)

where k1 > 0 and k2 > 0 are chosen by the designer. The
closed-loop error dynamics with the feedback control ṽi in
(40) is given as

¨̃x = −k1k2x̃− (k1 + k2) ˙̃x+Θ(x)d̃ (41)

Theorem 2. The closed-loop system (41) is UUB with known
ultimate bound.

Proof. To analyse the closed-loop stability of (41), a filtered
tracking error r associated with the tracking error x̃ is defined
as follows

r = ˙̃x+ k1x̃ (42)

A Lyapunov function candidate V (x̃) is defined as follows

V (x̃) = rT r + Γx̃T x̃

where Γ > 0 is a scalar. The derivative of V (x̃) is computed
as follows

V̇ (x̃) = 2
(
rT ṙ + Γx̃T ˙̃x

)
=2

(
( ˙̃x+ k1x̃)

T (¨̃x+ k1 ˙̃x) + Γx̃T (r − k1x̃)
)

=2
(
( ˙̃x+ k1x̃)

T (−k2( ˙̃x+ k1x̃) + Θ(x)d̃+ Γx̃T r − Γk1x̃
T x̃

)
=2

(
− k2r

T r + rTΘ(x)d̃+ Γx̃T r − Γk1x̃
T x̃

)
(43)

Since Θ(x) and d̃ are bounded (from Remark 6, Assumption
1 and Lemma 1), the term Θ(x)d̃ is also bounded as follows

D ≜ ∥Θ(x)d̃∥ ⩽ µθ∆, (44)

Utilizing this in (43), the following is obtained

V̇ (x̃) ⩽ 2
(
− k2∥r∥2 + ∥r∥D − Γk1∥x̃∥2 + Γ∥x̃∥∥r∥

)
=− k2∥r∥2 − Γk1∥x̃∥2 −

(√
k2∥r∥ −

D√
k2

)2

+
D2

k2

−
(√ Γ

k1
∥r∥ −

√
Γk1∥x̃∥

)2

+
Γ

k1
∥r∥2

⩽−
(
k2 −

Γ

k1

)
∥r∥2 − Γk1∥x̃∥2 +

D2

k2
(45)

It is inferred from (45), that with the following gain condition

k1k2 > Γ (46)

V (x̃) decreases if(
k2 −

Γ

k1

)
∥r∥2 + Γk1∥x̃∥2 ⩾

D2

k2
(47)

Therefore, the closed-loop system (41) is ultimately bounded,
with the ultimate bound on x̃ and r being characterized
utilizing (46) and (47) as follows

∥x̃∥ ⩽ C1D; ∥r∥ ⩽ C2D (48)



where C1 ≜ 1√
Γk1k2

and C2 ≜
√

k1

k1k2
2−k2Γ

. Utilizing (42)

and (48), the ultimate bound on ˙̃x is computed as follows

∥ ˙̃x∥ = k1∥x̃∥+ ∥r∥ ⩽ C3D (49)

where C3 = k1C1 + C2. This concludes the proof. ■

Corollary 3. The ultimate bounds in (48) and (49) are utilized
to characterize the regions Wx̃ and W ˙̃x, such that

W x̃
p =

{
x̃ ∈ Rn

∣∣∣ ∥x̃∥ ⩽ C1D,C1 =
1√

Γk1k2
,Γ < k1k2

}
W ˙̃x

p =
{
˙̃x ∈ Rn

∣∣∣ ∥ ˙̃x∥ ⩽ C3D,C3 =
k1√
Γk1k2

+√
k1

k1k22 − k2Γ
,Γ < k1k2

}
It is evident from Theorem 2 and Corollary 3 that

x̃(t) ∈ W x̃
p , ˙̃x(t) ∈ W ˙̃x

p ,∀t ∈ R if x̃(0) ∈ W x̃
p , ˙̃x(0) ∈ W ˙̃x

p

Remark 7. The bounded region for the controller ṽ(x̃, ˙̃x)
defined in (40) is found by utilizing its upper bound as follows

∥ṽ(x̃, ˙̃x)∥ = ∥f̃(x, x, d)∥+ k1k2∥x̃∥+ (k1 + k2)∥ ˙̃x∥ (50)

The upper bounds for ∥x̃∥ and ∥ ˙̃x∥ are characterized in
(48) and (49), respectively. The upper bound for the term
∥f̃(x, x, d)∥ is computed utilizing the mean value theorem as
follows

∥f̃(x, x, d)∥ ≜ ∥Φ̃(x̃, ˙̃x, x, ẋ) + Θ̃(x, x)d∥
⩽ ∥Φ(x, ẋ)− Φ(x, ẋ)∥+ ∥(Θ(x, ẋ)−Θ(x, ẋ))∥∥d∥

⩽ max

ẋ ∈ Ẋ
x ∈ X

(∥∥∥∥∂Φ(x, ẋ)∂x

∥∥∥∥)︸ ︷︷ ︸
h1

∥x̃∥+ max

ẋ ∈ Ẋ
x ∈ X

(∥∥∥∥∂Φ(x, ẋ)∂ẋ

∥∥∥∥)︸ ︷︷ ︸
h2

∥ ˙̃x∥+

max

ẋ ∈ Ẋ
x ∈ X

(∥∥∥∥∂Θ(x, ẋ)

∂x

∥∥∥∥)︸ ︷︷ ︸
h3

∥x̃∥+max

ẋ ∈ Ẋ
x ∈ X

(∥∥∥∥∂Θ(x, ẋ)

∂ẋ

∥∥∥∥)︸ ︷︷ ︸
h4

∥ ˙̃x∥

dm

= (h1 + h3dm)︸ ︷︷ ︸
g1

∥x̃∥+ (h2 + h4dm)︸ ︷︷ ︸
g2

∥ ˙̃x∥ = g1∥x̃∥+ g2∥ ˙̃x∥

(51)

where dm ≜ max(d : ∥dp(Ai)∥ ⩽ d,∀i ∈ I+J ). Therefore,
utilizing (50), (51) and Corollary 3, the following is concluded

∥ṽ(x̃, ˙̃x)∥ ⩽ (g1 + k1k2)∥x̃∥+ (g2 + k1 + k2)∥ ˙̃x∥
⇒ ṽ(x̃, ˙̃x) ∈ (g1 + k1k2)W x̃

p ⊕ (g2 + k1 + k2)W ˙̃x
p

≜ ṽ(W x̃
p ,W

˙̃x
p )

The lattice-based motion planner for the uncertain system (34)
is then designed, which solves COCP (20) and is implemented
following Algorithm 1. The imposed constraints are tightened
as follows

Xw ≜ X ⊖W x̃
p ; Ẋw ≜ Ẋ ⊖W ˙̃x

p ;Uw ≜ U ⊖ µΘṽ(W x̃
p ,W

˙̃x
p )

where µΘ is defined in Assumption 5.

V. SIMULATION RESULTS AND DISCUSSIONS

In this section, the capabilities of the proposed motion
planning algorithm is validated through a simulation example
as well as extension of the strategy to other applications are
discussed.
A. Simulation results

The simulation example considers a ship model [17] as
follows

Mq̇ + Vm(q)q + F (q)q = τ + d

ẋ = R(x)q

where the variables q = [q1, q2, q3]
T , x = [x1, x2, x3]

T , τ =
[τ1, τ2, τ3]

T and the parameters M,Vm(·), F (·), J(·) have the
same meaning as in (29). The states [x1, x2]

T are the gen-
eralized position of the ship and x3 represents the heading
angle of the ship. The inputs τ1 and τ2 are the applied
longitudinal and the lateral forces that affects the roll and pitch
of the ship, respectively and τ3 is the yaw torque. The applied
feedback control ṽ(t, x̃) has the same structure as (40). The
design metrics and operational conditions considered in this
simulation example are as follows

1) The constraints on the input τ , are given as follows

∥τ1∥ ⩽ 1.9×106; ∥τ2∥ ⩽ 1.9×106; ∥τ3∥ ⩽ 3.75×107

2) The robust controller gains k1, k2 are chosen as k1 =
k2 = 1/15.

3) The value of Γ, that characterizes the ultimate bounds
for the error x̃ is chosen as Γ = 0.009.

4) The cost function used in the COCP for computing
motion primitives is as follows

J ≜
∫ Tf

0

(1 + ∥τ(t)∥2W + ∥τ̇(t)∥2W )dt (52a)

W = diag[2.5× 10−7, 2.5× 10−7, 8× 10−9] (52b)

5) The initial states of the ship are chosen as x(0) =
[675, 80, 3π/4]T , q(0) = [vmax, 0, 0]

T , where vmax = 6
knots and the final states are xf = [100, 1730, 3π/4]T ,
qf = [0, 0, 0]T .

For implementing the proposed strategy, a state-lattice is
constructed at first, which includes three steps

1. Discretizing the state space to obtain Xdp.
2. Selecting the (discrete) state pairs to be connected.
3. Solving COCP (defined in (18)) to compute motion

primitives.
The computation of Xdp is done by selecting the fidelity
of the state space, to be used in the search space for the
planner. Since the system under consideration is position and
orientation invariant, motion primitives are computed from
states positioned at the origin with a few heading angles
and further they mirrored and/or rotated to other headings to
obtain full set of motion primitives. These motions primitives
can then be translated and reused at all states in the grid.
The plot of a subset of the motion primitives associated with
the disturbance-free model of the ship (for the case when
the planner is dealing with the worst-case scenario) as well
as with the ship model including parametrized disturbances,



(a) (b)

Fig. 2: Motion primitives with q1(0)=3 knots, x3(0)∈ {0, π/2, π, 3π/2} and x3(Tf )∈ {0, π/4, π, π/2} (a) for disturbance free system dynamics with
tubes dependent upon worst-case bound of disturbance; (b) for DP system dynamics with tubes dependent on the local estimates of the disturbance and their
corresponding bounds.

with various heading angles is shown in Fig. 2. The motion
primitives in Fig. 2a are generated by solving (18) considering
worst-case disturbance scenario (following Remark 3) and
those in Fig. 2b are generated by solving the same COCP

Fig. 3: Worst-case disturbance bound and disturbance parameters

but with parametrized disturbance terms in the system dynam-
ics. The overall plots of the motion primitives in Fig. 2b are
in general asymmetrical in cases when non-zero disturbance
estimates are used in the system dynamics within the optimal
control problems, solved to compute the motion primitives.

This exploitation of the knowledge of the disturbance estimates
within the planning paradigm generates motions which exploit
helpful disturbances, thus leads to subsequent modifications in
the shape of the motion primitives. The plot of the worst-case
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Fig. 4: The wind disturbance affecting the ship

disturbance bound as well as the disturbance parameters,
utilized in computing the motion primitive associated with the
DP system model is shown in Fig. 3 and the plot of the wind
disturbance profile in various regions of the navigable space
is shown in Fig. 4. The state space discretization utilized in



the lattice-based motion planner is done following the same
scheme as in [17] using CasADi [24] and IPOPT [25]. The
shaded region along each of the primitives represents the tubes,
which are guaranteed to contain the actual trajectory of the
ship under the effect of the wind disturbance. A very important
observation is that the tube associated with the robust motion-
planning strategy considering a single worst-case scenario is
wider as compared to the one associated with the disturbance
parametrized robust motion planning strategy. Fig 5 shows the
motion of the ship from the chosen initial state to the final
state in an archipelago environment with obstacles (islands),
for both planning strategies. The example illustrates that the
disturbance parametrized robust motion-planning strategy can
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Fig. 5: Motion planning with wind disturbance. The smaller tube makes it
possible to choose a shorter, but narrower path.

generate a better collision free motion as compared to that
generated by the robust motion-planning solution only con-
sidering the worst-case disturbance scenario. This is due to
the reduced size of the tubes around the motion primitives for
the disturbance parametrized solution, that allows the ship to
navigate through the narrow zone, which is rendered infeasible
for the robust planning algorithm for worst-case disturbance
scenario, due to having larger tube size. Fig. 6a plots the
error x̃ associated with the robust motion plan for worst-case
disturbance scenario, whereas Fig. 6b plots the same for the
DP robust motion plan. The errors appearing in the motion
planning strategy dealing with the worst-case scenario are
comparatively larger and have an offset around 0. The plots of
the control inputs associated with the respective strategies are

shown in Fig. 7. The transients in the control inputs (specially
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Fig. 6: The error x̃ associated with (a) Robust lattice-based motion planner
dealing with worst-case disturbance scenario (b) Disturbance parametrized
robust lattice-based motion planner
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Fig. 7: The control inputs associated with (a) Robust lattice-based motion plan-
ner dealing with worst-case disturbance scenario (b) Disturbance parametrized
robust lattice-based motion planner
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in the yaw torque) are observed to be comparatively better
in case of the disturbance parametrization based strategy than
those in the worst-case scenario based planning strategy. To
further compare the performance of both the strategies, the
plots of the performance measure (defined in (52)) associated
with the overall motion for both the scenarios, is shown in
Fig. 8. The motion plan with disturbance parametrization is,
as expected, seen to generate a comparatively more optimized
solution as compared to the motion plan dealing with only a
single worst-case disturbance. The improvement in optimality
in case of the DP motion-planning strategy is also due to
having less conservative tubes around the primitives, thus
enabling to execute a motion through a narrower and shorter
path in the archipelago, which is infeasible for the motion
planner dealing with the worst-case disturbance scenario (see
also Fig. 5).

B. Discussion

The proposed motion-planing algorithm can be an effec-
tive choice for applications like robot-navigation, autonomous
driving and unmanned aerial vehicle (UAV) control, when
these applications consider exogenous disturbances affecting
the system.

In robot navigation applications as well as in autonomous
driving, exogenous disturbances in the system model may
appear in situations when the motion occurs in non-smooth
and unstructured terrains. The bounds on such disturbances
reflects various factors such as friction coefficients or unknown
slopes in various regions of the navigable space. With the
proposed robust motion-planning framework the performance
of the overall motion plan can be improved by using additional
disturbance information, such as the approximate slopes and
ruggedness in various parts of the terrain. Furthermore, in
the case of autonomous driving in highways during freezing
weather conditions, the proposed motion-planner can utilize
weather information in various regions of the highways, which
can give the estimates of friction coefficients on various
parts of the highway, depending on the icing situations. This
information helps the planner to generate better motion plans
and prevents to take unnecessary effort in the regions where
there would possibly be no icing and hence no exogenous
disturbances.

In case of UAVs, the problem of dealing with exogenous
disturbances can be very similar to the example of the ship as
considered in the paper, which is to generate a motion plan
for a UAV when affected by exogenous wind disturbances.
The motion planner can utilize information about the estimates
of the wind disturbances in various sections of the navigable
space and can generate motion primitives which provide a
resolution-optimal disturbance feed-forward.

VI. CONCLUSION

A novel disturbance parametrized robust lattice-based mo-
tion planner is proposed, which handles nonlinear systems sub-
jected to bounded additive disturbances. The planner utilizes
motion primitives, which are computed utilizing the nonlinear
system model, parametrized with local estimates of the distur-
bance, to generate the overall motion. The motion primitives
are equipped with fixed-size tube around them, which are
generated by a suitably designed feedback controller. The con-
troller keeps the error between the trajectories of the uncertain
nonlinear system and the disturbance parametrized system,
bounded for all time. The size of tube is dependent upon the
spectrum of available disturbance estimates. More number of
available disturbance estimates leads in reduction of tube size,
which in turn enables the motion planner to explore additional
navigable spaces, which were infeasible to the planner with a
larger tube size. It is further proved that the optimal motion
primitives associated with the actual uncertain plant and the
ones generated by the proposed strategy always stay within the
characterized tube. Collision avoidance with obstacles is taken
care of during runtime by solving a graph-search problem. The
graph-search algorithm connects the initial state to a region
around the desired final state by sequentially utilizing the



tube-parametrized motion primitives, while avoiding overlap
between the tubes and the obstacles. The proposed strategy
is implemented on an Euler-Lagrange (EL) system, where the
feedback controller and the associated tubes are analytically
derived. A ship model based on the EL dynamics is considered
for simulation, where it is shown that the proposed strategy
guarantees collision free motion through a fixed size tube
from the initial position to the final position, while being
affected by significant wind disturbance. Future work includes
extension of the proposed strategy to deal with multiplicative
uncertainties, dynamic obstacles appearing during runtime,
and to combine the current framework with numerical optimal
control to find solutions not constrained to be on the grid.
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