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Abstract—The Particle filter can in theory estimate the state
of any nonlinear system, but in practice it suffers from an
exponential complexity in terms of the number of particles as the
dimension of the state increases. The marginalized particle filter
can potentially reduce this problem by improving the estimates,
particularly for lower number of particles. However, it turns out
that for certain systems, it does not provide any improvement
in the accuracy of the estimate. The core cause of degeneracy is
linked to when the uncertainty of the linear state conditioned on
the nonlinear state is 0. Conditions for determining when this
occurs are presented and applied to common constant velocity,
constant acceleration and constant jerk models with various
sampling methods. Interestingly, some combinations are useful
while others should be avoided. These findings are supported
using simulated systems.

Index Terms—Marginalized particle filter, Rao-Blackwellized
particle filter, Variance reduction, Particle filter

I. INTRODUCTION

The Kalman filter (KF) is a well recognised method for
estimating the state of a linear system. When the system
contains some mild nonlinearities, the extended Kalman filter
(EKF) has proven to be a good method. In order to estimate
more complicated nonlinear systems, the particle filter (PF)
is a common option [1], [2]. A drawback of the method
however is the potentially large computational complexity
needed to arrive at a good estimate. In practice, the number
of required particles has been found to increase exponentially
with the dimension of the state [2]. One attempt at reducing
this problem is to marginalize some of the states, resulting in
the marginalized particle filter (MPF), also known as the Rao-
Blackwellized particle filter (RBPF) [2]–[4]. This is dependent
on there existing a conditionally linear substructure in the
system, meaning that the state being estimated can be split
up as

xk =

(
xl
k

xn
k

)
,

and its update can be described by

State update:

xn
k+1 = fn

k (x
n
k ) + Fn

k (x
n
k )x

l
k + wn

k (1a)

xl
k+1 = f l

k(x
n
k ) + F l

k(x
n
k )x

l
k + wl

k (1b)
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Measurement:

yk = hk(x
n
k ) + Hk(x

n
k )x

l
k + ek, (1c)

where yk is the observed measurement, wn
k and wl

k are process
noises and ek is the measurement noise, all assumed zero mean
with covariances

Cov

(
wn

k

wl
k

)
=

(
Qk,l Qk,nl

Qk,ln Qk,n

)
Cov(ek) = Rk.

The dimensions of xn
k , xl

k and yk are nn, nl and ny re-
spectively. Further fn

k , f l
k and hk are arbitrary vector valued

functions, and Fn
k , F l

k and Hk are arbitrary matrix valued
functions (all of appropriate dimensions to fit the equations).

Some research has been done regarding the accuracy im-
provement of the estimate when using an MPF instead of
a plain PF. Much of the work has focused on providing an
asymptotic estimate of how much the estimate is improved
as the number of particles approaches infinity [5]–[8]. These
results typically depend on the proposal of xn

k+1 being inde-
pendent of all values xl

0:k, meaning that Fn
k (x

n
k ) = 0, which

is not assumed here. In [9], empirical results for the RMSE
of estimates are instead provided, combined with an analysis
of the computational time of the filters.

However, in [10], we showed that for some common models,
such as the constant velocity (CV) model sampled with a
constant noise assumption, the MPF provides no improvement
at all to the accuracy of the estimate, independent of the
number of particles. This is linked to the fact that for those
models the covariance Cov(xl

k|xn
0:k, y0:k) → 0, as k → ∞. In

fact, it is possible to show that once Cov(xl
k|xn

0:k, y0:k) = 0
occurs, the MPF will behave identically to the PF, with the
possible exception of better positioned particles from previous
steps.

For this reason, this paper is focusing on determining what
circumstances are needed for the MPF to not provide any
improvements. Four conditions are presented which determine
if the MPF will provide a better accuracy than the PF or not.
For the sake of simplicity and ease of reading, these conditions
will be formulated for the less general model class seen in (2),
though the conditions can fairly easily be extended to work
for all systems described by (1).



State update:

xn
k+1 = fn

k (x
n
k ) + Fnxl

k + wn
k (2a)

xl
k+1 = f l

k(x
n
k ) + F lxl

k + wl
k (2b)

Measurement:

yk = hk(x
n
k ) + ek, (2c)

where

Cov

(
wn

k

wl
k

)
=

(
Qn Qnl

Qln Ql

)
Cov(ek) = R.

To get to this expression from (1), let Fn
k (x

n
k ) = Fn,

F l
k(x

n
k ) = F l, Hk(x

n
k ) = 0, and remove the time dependencies

from the covariances Qk,• and Rk.
The rest of this paper is organized as follows. First, the MPF

will be introduced in Section II. Then, Section III presents
conditions to determine if, for any given system, the MPF
will provide an improvement or not. In Section IV, these
conditions are applied to setups of constant velocity (CV),
constant acceleration (CA) and constant jerk (CJ) models.
Finally, in Section V some of these models are simulated to
confirm the findings of the previous sections.

II. MPF THEORY

The MPF can be viewed as a mixture of a PF and a Kalman
filter (KF). The nonlinear states are estimated using a PF where
the particles are propagated according to (1a) or (2a) and the
weights are updated according to how well the observations fit
their predictions in (1c) or (2c). The linear states are instead
estimated using a KF, where the time update is provided by
(1b) or (2b). The measurement update is provided by (1a)
and (1c) or (2a) where the already propagated nonlinear states
are viewed as virtual measurements.

The full algorithm for the system seen in (2) can be seen
in Algorithm 1

For those interested in the exact expressions, a good descrip-
tion is provided in [3]. One issue with using this algorithm is

Algorithm 1 The MPF

0 Initialize:

x
n,(i)
0 ∼ p(xn

0 )

x
l,(i)
0|−1 = xl

0

PKF
0|−1 = P l

0

1 PF measurement update using (2c)
2 Resampling based on PF weights
3 PF time update using (2a)
4 KF measurement update using (2a) with x

n,(i)
k+1 as virtual

measurements
5 KF time update using (2b)
6 repeat from 1

that it assumes that the noises wn
k and wl

k in step 4) and 5)
are uncorrelated. One way of solving this is to rewrite (2b) as

xl
k+1 = f l

k(x
n
k )+QlnQ

−1
n (xn

k+1−fn
k (x

n
k ))+F̄ lxl

k+w̄l
k, (3)

where

Cov(w̄l
k) = Q̄l = Ql −QlnQ

−1
n Qnl

F̄ l = F l −QlnQ
−1
n Fn.

A full proof of this reformulation can be found in [3].
The root of the issues explored in this work can be found

in this reformulation. Primarily, there is a risk that Q̄l = 0,
which results in the equivalence to a system with no unknown
process noise. In such a case, there is a risk that the KF
uncertainty PKF

k|k−1 → 0. This KF uncertainty is the same
as Cov(xl

k|xn
0:k, y0:k) which, as discussed above, causes the

MPF to provide no increase in accuracy compared to a plain
PF when it approaches 0.

Note that this is not the same as stating that the estimate
provided by the filter has no uncertainty in xl

k. The uncertainty
is only 0 conditioned on a trajectory xn

0:k, which is not known.
Instead, each particle will contain its own trajectory, meaning
that for each particle there will be a separate estimate of xl

k.
The uncertainty is therefore represented by the spread of the
mean term of the particles rather than the internal uncertainty
of each particle.

III. MPF DEGENERACY

In order to determine exactly when PKF
k|k−1 will converge to

0, and consequently, the MPF will not provide any additional
benefits, some insights into the behaviour of the uncertainty
will be used to create conditions for when this occurs. Full
derivations are lengthy and out of scope of this contribution,
so we provide intuitive motivations and the core results as five
rules of thumb, split into a primary condition and multiple
secondary conditions.

1) If rank(Qn) = rank(Q) holds, all uncertainty present
in the state update can be expressed in only wn

k meaning
that Q̄l = 0. If this does not occur Q̄l ̸= 0 holds,
and there is no possibility for PKF

k|k−1 → 0. The most
common way for this to occur is if Q is full rank.

rank(Qn) < rank(Q) =⇒ PKF
k|k−1 ̸→ 0. (4)

This condition means that as long as rank(Qn) < rank(Q)
holds, we know that implementing an MPF will result in some
accuracy improvement, and do not need to do any further
testing. This is good news since in most cases, condition 1)
will hold, meaning that the general understanding that MPF
will improve the accuracy of the estimate holds in most cases
as well, and can be tested with a very simple test.

The following conditions will attempt to determine what
happens when condition 1) does not hold. For these rules,
Rank(Qn) = Rank(Q) will be assumed implicit.

2) If Q̄l = 0, all uncertainty of xl
k comes from the

initial uncertainty. If further, |λi(F̄
l)| ≤ 1 ∀i, the



system defined by (3) is stable meaning that this initial
uncertainty will approach 0 over time.(

|λi(F̄ )| ≤ 1 ∀i
)

=⇒ PKF
k|k−1 → 0 (5)

This requirement can be equivalently stated as F̄ l being
stable.

3) In Algorithm 1 step 4, a measurement update is per-
formed using the update of x

n,(i)
k+1 . If the covariance

of the noise in that measurement is low rank, there
will be some perfect information available from the
measurement. If enough such information is present
(meaning that the covariance is of low enough rank),
it will be possible to get a perfect estimate of xl,(i)

k−1|k−1.
If this is combined with Q̄l = 0, there will be no new
information added meaning that PKF

k|k−1 → 0.

(nn ≥ nl + rank(Qn)) and
(
the system with state and

measurement updates (2a) and (2b) is detectable
)

=⇒ PKF
k|k−1 → 0. (6)

4) If the rewritten system is unstable, and there are no per-
fect measurements, the uncertainty caused by the initial
uncertainty will increase during the time update, and
then decrease during the measurement update, resulting
in some non zero steady state.(

rank(Qn) = nn

)
and

(
∃i s.t. |λi(F̄

l)| > 1
)

=⇒ PKF
k|k−1 ̸→ 0 (7)

5) By a combination of the reasoning for 3) and 4), if the
provided measurement is low rank, but not low rank
enough to get a perfect estimate of the whole state, while
the system also contains unstable elements, the outcome
can not be determined by these conditions.

(rank(Qn) < nn) and (nn < nl + rank(Qn)) and(
∃i s.t. |λi(F̄

l)|>1
)
=⇒ The outcome is undetermined

(8)

As mentioned above, the MPF is not expected to result in
any improvement in accuracy when PKF

k|k−1 = 0, meaning that
these conditions also tell whether implementing the MPF will
improve the estimate or not.

Worth noting is the special case when the user is only
interested in estimating the state during a specific time frame
during which PKF

k|k−1 ̸= 0 despite the uncertainty approaching
0 for large enough k. In this special case, an improvement
will be had from the MPF despite the conditions presented
here implying otherwise. This is primarily of interest when
|λi(F̄ )| = 1 which may cause PKF

k|k−1 to approach 0 very
slowly.

IV. EXAMPLE APPLICATIONS

In this section we will apply the conditions presented above
to CV, CA and CJ models derived using different assumptions
of the noise when sampling. This is an area where MPF and
PF solutions have commonly been applied [2], [9], [11]. Of

note here, is that while the dynamics of the system are linear,
the measurements can be highly nonlinear, thus motivating the
particle based approach.

For the sake of simplicity, all models presented here will
be one-dimensional, though the results are easy to generalize.
These models have the update matrices

FCV =

(
1 T
0 1

)
(9a)

FCA =

1 T T 2/2
0 1 T
0 0 1

 (9b)

FCJ =


1 T T 2/2 T 3/6
0 1 T T 2/2
0 0 1 T
0 0 0 1

 , (9c)

respectively, where T is the sampling time. As a further
delimitation, it has been decided that the nonlinear state xn

k

contains the position and its nn − 1 first derivatives.
The state transition matrix can then be partitioned as

F =

[
An Fn

Al F l

]
,

for all cases, where An ∈ Rnn×nn , Al ∈ Rnl×nn , Fn ∈
Rnn×nl , F l ∈ Rnl×nl . Then the state update, can be written
on the form of (2a) and (2b) as

xn
k+1 = Anxn

k︸ ︷︷ ︸
fn
k (xn

k )

+ Fnxl
k+wn

k (10a)

xl
k+1 = Alxn

k︸ ︷︷ ︸
f l
k(x

n
k )

+ F lxl
k +wl

k. (10b)

As can be seen in the conditions, the covariance matrix also
plays an important role in how PKF

k|k−1 behaves. This changes
based on which sampling method is used for discretizing
continuous-time integrators. Therefore, a number of sampling
methods and their outcomes are collected in this contribution.
For ease of reading, the actual covariance matrices have been
moved to the Appendix.

A. Constant noise

The covariance matrices for the models when derived with
a constant noise sampling method (Zero order hold, ZOH) are
presented in Appendix A

Interestingly, for all cases it holds that no matter the
selection of xn and xl, rank(Qn) = rank(Q) = 1, not
fulfilling condition 1). As such, conditions 2), 3), 4) and
5) have to be considered. In Tab. I, λ(F̄ l) is presented for
different configurations of linear and nonlinear states for the
models above. The expected outcome of each situation based
on the conditions presented above is also shown in the table.

B. Continuous noise

The covariance matrices obtained if continuous noise is
instead used to sample the model are presented in Appendix B.



TABLE I: Eigenvalues of F̄ and resulting expected outcomes for different configurations (ZOH)

Nonlinear states
(
p
) (

p v
) (

p v a
)

CV −1 - -
PKF
k|k−1

→ 0 by condition 2) - -

CA −2±
√
3 not necessary -

PKF
k|k−1

̸→ 0 by condition 4) PKF
k|k−1

→ 0 by condition 3) -

CJ
1, −5± 2

√
6 values range from

(
−0.26 −3.7

)
to not necessary(

−4.7 −48
)

as a function of T
PKF
k|k−1

̸→ 0 by condition 4) undetermined, by condition 5) PKF
k|k−1

→ 0 by condition 3)

Here, all the covariance matrices are full rank, meaning that
according to condition 1), PKF

k|k−1 ̸→ 0. As such, the MPF is
expected to improve the estimate for all selections of linear
and nonlinear states.

C. Pulse-Noise

Another possible sampling method is to assume that the
noise enters the system as a pulse, either at the start of the
sampling interval or at the end. If the noise is assumed to
enter at the end of the interval, the covariances are as given
in Appendix C. For all of these matrices, rank(Qn) = 0
and rank(Q) = 1, meaning that according to condition 1)
PKF
k|k−1 ̸→ 0.
If the noise is instead assumed to enter as a pulse at the

start of the interval, the noise covariances are presented in
Appendix D Here rank(Qn) = rank(Q) will always hold
meaning that the other conditions once again have to be
examined. This analysis is presented in Tab. II.

V. SIMULATIONS

Here, some of the different setups presented above will be
simulated. The improvement in accuracy, or lack thereof of
the MPF over the plain PF will be compared to the outcome
predicted in the previous section. The primary indicator of the
accuracy provided by the filters will be the mean squared error
MSE of the position. To keep the tests simple, and to allow for
an easy comparison with the optimal estimate, the position is
measured directly hk(x

n
k ) = p, with Gaussian measurement

noise, with covariance R. For each of the simulations, a
100 step trajectory was simulated and then estimated by the
filters. This was repeated 100 times for each CV setup, 1000
times for the CA setups, and 100 times for the CJ setup. For
each number of particles, the states and measurements were
simulated anew, which is the cause for the slight variations
which can be seen in the KF for different numbers of particles.

The MSE is only counted for step 20 and onward as this is
deemed to be where PKF

k|k−1 has approximately converged to
its stationary value meaning that if PKF

k|k−1 → 0 occurs, the
effects of it should be noticeable by this point.

The performance of the MPF versus the PF on CV models
was studied in [10], and is presented here again to validate that
the more general conditions formulated in this contribution
give the same result. The CA and CJ models are significantly
more difficult for both the PF and MPF to estimate. For this
reason, a method for detecting and removing failed filtering
attempts has been implemented. First of all, every simulation

where the particles got completely depleted is considered
failed. Secondly, outlier detection was implemented to detect
other runs that had abnormally high errors. To provide com-
plete information, the number of failed filtering attempts will
also be provided in the plots. The parameters used for the
simulations can be seen in Tab. III.

TABLE III: Parameter settings for simulations

Model CV CA & CJ
T 1 1
R 1 10
x0 0 0
P0 10I 10−3I
σ2 (see Appendix) 1 0.01

The results for the CV models can be seen in Fig. 1. No-
tably, for the continuous noise and pulse noise at the end of the
time step, in Figs. 1c and 1d, the MPF results in an improved
MSE compared to the PF. This corresponds well with the
results presented in Section IV. In comparison, when the noise
is either zero order hold or a pulse at the start of the sampling
interval, there appears to be no meaningful improvement by
the MPF. Looking at Tabs. I and II, PKF

k|k−1 → 0 is expected
for both of these models, meaning that the outcome seen here
agrees with the previous results.

The tested CA models can be seen in Fig. 3.
For the constant noise model with xn = p, the model using

pulse noise at the end of the time step and the continuous
noise model, a clear improvement can be seen from the MPF
in Figs. 3a, 3c and 3d, both in fewer failed attempts and in
a lower MSE. According to the previous section, all of these
models should have such an improvement. The constant noise
case with xn =

(
p v

)T
, seen in Fig. 3b, seems to have the

least clear improvement from the MPF. Out of the simulated
models, it is also the one which is not expected to have an
improvement from implementing the MPF according to the
conditions provided.

Lastly, one CJ model was implemented, with constant noise
and xn = p. Again, a clear improvement can be seen from the
MPF, which agrees with the expected results based on the
conditions.

VI. CONCLUSION

The standard motivation for implementing an MPF is that
it will lead to more accurate estimates for the same number
of particles than a standard PF would. If this is the case, an
MPF should not be implemented if no such improvements can



TABLE II: Eigenvalues of F̄ and resulting expected outcomes for different configurations (Pulse-noise)

Nonlinear states
(
p
) (

p v
) (

p v a
)

CV 0 - -
PKF
k|k−1

→ 0 by condition 2) - -

CA 0, −1 not necessary -
PKF
k|k−1

→ 0 by condition 2) PKF
k|k−1

→ 0 by condition 3) -

CJ 0, −2±
√
3 − 2T2+9

T2+9
not necessary

PKF
k|k−1

̸→ 0 by condition 4) undetermined, by condition 5) PKF
k|k−1

→ 0 by condition 3)

(a) CV model with ZOH (b) CV model with Pulse noise at the start of the time step

(c) CV model with Pulse noise at the end of the time step (d) CV model with Continuous noise

Fig. 1: The stationary MSE of the filters as a function of number of particles used, for CV models

be expected. In this contribution, a number of conditions have
been provided to determine when said improvements occur.
On a positive note for the MPF, we have shown that in any
case where the process noise is full rank or where it has a
higher rank than the process noise of the nonlinear part, the
sought after improvement will be had. The MPF will therefore
provide what was intended in most cases.

The rules provided in this article are easy to check, meaning
that the user can often determine before implementing the
solution, if the work will provide the sought after improvement
or not. It is also possible to understand why that is. For
instance, would a different sampling time change the outcome?
Would changing the noise assumptions have an effect? While

the conditions as presented here only work for a subset of all
models that can be estimated using an MPF, these conditions
can fairly easily be expanded to include all such models.
Further, these conditions have been applied to many setups
of CA, CV and CJ models to show for which of these the
MPF is expected to provide improvements in the accuracy of
the estimates. Many of these have also been backed up by
simulations which confirm the results.
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APPENDIX

The various covariance matrices are presented here. All of
them are scaled by σ2 which is the variance of the noise.

A. Constant noise

QCV = σ2

(
T 4/4 T 3/2
T 3/2 T 2

)
(11a)

QCA = σ2

T 6/36 T 5/12 T 4/6
T 5/12 T 4/4 T 3/2
T 4/6 T 3/2 T 2

 (11b)

QCJ = σ2


T 8/576 T 7/144 T 6/48 T 5/24
T 7/144 T 6/36 T 5/12 T 4/6
T 6/48 T 5/12 T 4/4 T 3/2
T 5/24 T 4/6 T 3/2 T 2

 (11c)

B. Continuous noise

QCV = σ2

(
T 3/3 T 2/2
T 2/2 T

)
(12a)

QCA = σ2

T 5/20 T 4/8 T 3/6
T 4/8 T 3/3 T 2/2
T 3/6 T 2/2 T

 (12b)

QCJ = σ2


T 7/252 T 6/72 T 5/30 T 4/24
T 6/72 T 5/20 T 4/8 T 3/6
T 5/30 T 4/8 T 3/3 T 2/2
T 4/24 T 3/6 T 2/2 T

 (12c)

C. Pulse noise, end of time step

QCV =

(
0 0
0 σ2

)
(13a)

QCA =

0 0 0
0 0 0
0 0 σ2

 (13b)

QCJ =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 σ2

 (13c)

D. Pulse noise, start of time step

QCV = σ2

(
T 2 T
T 1

)
(14a)

QCA = σ2

T 4/4 T 3/2 T 2/2
T 3/2 T 2 T
T 2/2 T 1

 (14b)

QCJ = σ2


T 6/36 T 5/12 T 4/6 T 3/6
T 5/12 T 4/4 T 3/2 T 2/2
T 4/6 T 3/2 T 2 T
T 3/2 T 2 T 1

 (14c)



(a) CV model with xn = p and constant noise (b) CV model with xn =
(
p v

)T and constant noise

(c) CV model with xn = p and continuous noise
(d) CV model with xn = p and pulse noise at the end of the time
step

Fig. 3: The stationary MSE and failed number of simulations of the filters as a function of number of particles used for CA
models
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