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Abstract—A new class of iterated linearization-based nonlinear
filters, dubbed dynamically iterated filters, is presented. Con-
trary to regular iterated filters such as the iterated extended
Kalman filter (IEKF), iterated unscented Kalman filter (IUKF)
and iterated posterior linearization filter (IPLF), dynamically
iterated filters also take nonlinearities in the transition model into
account. The general filtering algorithm is shown to essentially
be a (locally over one time step) iterated Rauch-Tung-Striebel
smoother. Three distinct versions of the dynamically iterated
filters are especially investigated: analogues to the IEKF, IUKF
and IPLF. The developed algorithms are evaluated on 25 different
noise configurations of a tracking problem with a nonlinear
transition model and linear measurement model, a scenario
where conventional iterated filters are not useful. Even in this
“simple” scenario, the dynamically iterated filters are shown to
have superior root mean-squared error performance as compared
with their respective baselines, the EKF and UKF. Particularly,
even though the EKF diverges in 22 out of 25 configurations,
the dynamically iterated EKF remains stable in 20 out of 25
scenarios, only diverging under high noise.

I. INTRODUCTION

State estimation in dynamical systems is a universal problem
occurring in the fields of engineering, robotics, economics,
etc. State estimation requires a system model describing the
dynamical evolution of the system and a measurement model
relating the measured quantities to the state of the system. If
the model is affine with additive Gaussian noise, the most well-
known state estimation algorithm is the analytically tractable
Kalman filter, which is the optimal estimator in the mean-
squared error (MSE) sense [1].

In many practical problems, a nonlinear system model
is necessary to accurately describe the system. This means
that the state estimation problem is no longer analytically
tractable and approximate inference techniques must be used.
Approximate inference in state-space models is a well-studied
field in signal processing, machine learning, etc. Here, we shall
focus on linearization-based approximate inference techniques.
These inference techniques linearize the nonlinear model lo-
cally (in each time instance) and then employ the Kalman
filter. Analytical linearization leads to the extended Kalman
filter (EKF), while sigma-point filters, such as the unscented
Kalman filter (UKF) and the cubature Kalman filter (CKF), can
be thought of as statistical linearization filters [1]–[3].

General (Gaussian) state-space models, in the form of a
transition model and a measurement model, may equiva-
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lently be probabilistically interpreted as a transition density
and a measurement density. Under this interpretation, the
linearization-based approximate inference techniques can be
thought of as approximating the transition and measurement
densities, e.g.,

xk+1 = f(xk,wk) p(xk+1|xk)
a≈ q(xk+1|xk)

yk = h(xk, ek) p(yk|xk)
a≈ q(yk|xk),

where p(xk+1|xk) and p(yk|xk) are the transition and mea-
surement density and q(xk+1|xk) and q(yk|xk) the corre-
sponding approximations. Particularly, the linearization-based
filters assume affine Gaussian densities for q(xk+1|xk) and
q(yk|xk) and the Kalman filter is then applied to this “aux-
iliary” model. The quality of the auxiliary model, and in
extension the estimation performance of linearization-based
filters, is thus highly dependent on the point (distribution in
the statistical case) about which the models are linearized.
Typically, the linearization point (distribution) is chosen to be
the mean (distribution) of the current state estimate. However,
a large error in the state estimate can lead to significant
linearization errors that may cause even larger estimation
errors in the next time step. This may, in the worst case,
cause the filter to diverge. To alleviate such issues, several
variants of iterated filters have been developed, such as the
iterated extended Kalman filter (IEKF), the iterated unscented
Kalman filter (IUKF) and the iterated posterior linearization
filter (IPLF) [4]–[8]. These filters essentially iterate the mea-
surement update, where each iteration the measurement model
is re-linearized with the “latest” iterate. The research efforts
within the field of iterated filters have particularly focused
on finding a better linearization point for the measurement
model, which is motivated by the fact that nonlinearities in
the measurement model (likelihood) affect the resulting state
estimate to a greater extent than nonlinearities in the transition
model (prior). Nevertheless, these methods are for instance not
useful in the case of a nonlinear transition model but linear
measurement model.

In this paper, we seek to fill this gap by developing a class
of iterated filters encompassing both the transition model and
the measurement model in the iterative process, which we dub
dynamically iterated filters. Note that a dynamically iterated
filter based on posterior linearization was first derived in [9]
for models with non-additive state transition noise. Further,
the L-scan IPLF in [10] is somewhat similar to the dynamical
IPLF developed here, but requires access to past observations



and is thus not strictly a filter. In this paper, we particularly
focus on additive noise models and treat both analytical as
well as statistical linearization in a common framework. The
algorithms developed here are essentially dynamically iterated
analogues of the IEKF, IUKF and IPLF, as well as other
iterated sigma-point filters and does thus not require access to
past observations. These new iterative algorithms encompass
both the transition model as well as the measurement model.
Thereby, the proposed algorithms constitute a generalization
of conventional iterated filters. To illustrate the benefits of
the proposed algorithms, it is empirically shown that iterat-
ing over the transition linearization improves the estimation
performance even in the case of a linear measurement model.
Thus, the contributions are twofold:

• A detailed derivation of dynamically iterated filters
• An extensive numerical evaluation of the developed al-

gorithms as compared to standard nonlinear filters
The paper is organized as follows. In Section II, analytical

and statistical linearization as well as the (affine) Kalman
smoother equations are restated for completeness. In Sec-
tion III, the state estimation problem is formulated in terms of
approximate transition and measurement densities. Section IV
derives the dynamically iterated filters and connects the final
solution to iterated (affine) smoothers. Lastly, Section V pro-
vides a numerical example of the developed algorithm in a
tracking scenario where conventional iterated filters are not
useful.

II. BACKGROUND

For clarity, we here present analytical and statistical lin-
earization in a common framework, as well as restate the well-
known Kalman smoother equations.

A. (Affine) Kalman Smoother

The well-known Kalman filter and Rauch-Tung-Striebel
(RTS) smoother equations are repeated here for clarity in terms
of a time update, measurement update, and a smoothing step.
These can for instance be found in [11]. Assume an affine
state-space model with additive Gaussian noise, such as

xk+1 = Afxk + bf + w̃k (1a)
yk = Ahxk + bh + ẽk. (1b)

Here, w̃k ∼ N (w̃k;0,Q+Ωf ) and ẽk ∼ N (ẽk;0,R+Ωh)
are assumed to be mutually independent. Note that usually,
Ωf = Ωh = 0. For this model, the (affine) Kalman smoother
update equations are given by Algorithm 1.

B. Analytical and Statistical Linearization

Given a nonlinear model

z = g(x),

we wish to find an affine representation

g(x) ≈ Ax+ b+ η, (5)

Algorithm 1 (Affine) Kalman smoother

1) Time update

x̂k+1|k = Af x̂k|k + bf (2a)

Pk+1|k = AfPk|kA
⊤
f +Q+Ωf . (2b)

2) Measurement update

x̂k|k = x̂k|k−1 +Kk(yk −Ahx̂k|k−1 − bh) (3a)
Pk|k = Pk|k−1 −KkAhPk|k−1 (3b)

Kk ≜ Pk|k−1A
⊤
h (AhPk|k−1A

⊤
h +R+Ωh)

−1. (3c)

3) Smoothing step

x̂s
k|K = x̂k|k +Gk(x̂

s
k+1|K − x̂k+1|k) (4a)

Ps
k|K = Pk|k +Gk(P

s
k+1|K−

AfPk|kA
⊤
f −Q−Ωf )G

⊤
k (4b)

Gk ≜ Pk|kA
⊤
f (AfPk|kA

⊤
f +Q+Ωf )

−1 (4c)

with η ∼ N (η;0,Ω). In this affine representation, there are
three free parameters: A,b and Ω. Analytical linearization
through first-order Taylor expansion selects the parameters as

A =
d

dx
g(x)|x=x̄, b = g(x)|x=x̄ −Ax̄, Ω = 0, (6)

where x̄ is the point about which the function g(x) is
linearized. Note that Ω = 0 essentially implies that the
linearization is assumed to be error free.

Statistical linearization instead linearizes w.r.t. a distribution
p(x). Assuming that such a distribution p(x) = N (x; x̂,P) is
given, statistical linearization selects the affine parameters as

A = Ψ⊤P−1 (7a)
b = z̄−Ax̂ (7b)

Ω = Φ−APA⊤ (7c)
z̄ = E[g(x)] (7d)

Ψ = E[(x− x̂)(g(x)− z̄)⊤] (7e)

Φ = E[(g(x)− z̄)(g(x)− z̄)⊤], (7f)

where the expectations are taken w.r.t. p(x). The major dif-
ference from analytical linearization is that Ω ̸= 0, implying
that the error in the linearization is captured.

III. PROBLEM FORMULATION

To set the stage for the algorithm development, the general
state estimation problem is described here with a probabilistic
viewpoint. To that end, consider a discrete-time state-space
model (omitting a possible input uk for notational brevity)
given by

xk+1 = f(xk) +wk (8a)
yk = h(xk) + ek (8b)

p(wk) = N (wk;0,Q), p(ek) = N (ek;0,R). (8c)



Here, xk, yk, wk and ek denote the state, the measurement,
the process noise and the measurement noise at time k,
respectively. It is further assumed that xk ∈ X ,∀k and that
wk and ek are mutually independent. Note that (8a) and (8b)
can equivalently be written as a transition density and a
measurement density as

p(xk+1|xk) = N (xk+1; f(xk),Q) (9a)
p(yk|xk) = N (yk;h(xk),R). (9b)

Further, the initial state distribution is assumed to be given by

p(x0) = N (x0; x̂0|0,P0|0). (10)

Given the transition and measurement densities and a se-
quence of measurements y1:k =

[
y⊤
1 . . . y⊤

k

]⊤
, the state

estimation problem consists of computing the posterior of the
state sequence (trajectory), i.e., computing

p(x0:k|y1:k) =
1

Z1:k
p(x0)

k∏
i=1

p(yi|xi)p(xi|xi−1), (11)

where

Z1:k =

∫
X
p(x0)

k∏
i=1

p(yi|xi)p(xi|xi−1)dx0 · · · dxk,

is the marginal likelihood of y1:k. The posterior (11) is com-
monly referred to as the joint smoothing distribution which, in
the case of linear f and h, can be analytically found through
the Kalman smoother, e.g., the RTS smoother [11].

In the setting considered here, i.e., in filtering applications,
the densities of interest are rather the marginal posteriors

p(xk|y1:k) =
p(yk|xk)

∫
X p(xk|xk−1)p(xk−1|y1:k−1)dxk−1

Zk
,

(12)
for all times k, where

Zk =

∫
X
p(yk|xk)p(xk|xk−1)p(xk−1|y1:k−1)dxk−1dxk.

Again, in the case of linear f and h, the (analytical) solution
is given by the Kalman filter [1].

In the general case, the marginal posteriors can not be com-
puted analytically. Inspecting (12), there are two integrals that
require attention. We turn first to the Chapman-Kolmogorov
equation

p(xk|y1:k−1) =

∫
X
p(xk|xk−1)p(xk−1|y1:k−1)dxk−1. (13)

Assuming that p(xk−1|y1:k−1) is Gaussian, (13) has a closed
form solution given by (2), if p(xk|xk−1) is Gaussian and
(8a) is affine. Therefore, as (9a) is Gaussian, we seek an affine
approximation of the transition function f as

f(xk−1) ≈ Afxk−1 + bf + ηf , (14)

with p(ηf ) = N (ηf ;0,Ωf ). Hence, the transition density
p(xk|xk−1) is approximated by q(xk|xk−1) as

q(xk|xk−1) = N (xk;Afxk−1 + bf ,Q+Ωf ). (15)

If Af ,bf and Ωf are chosen to be the analytical linearization
of f around the mean of the posterior p(xk−1|y1:k−1), the
EKF time update is recovered through (2). Similarly, statistical
linearization around the posterior at time k − 1 recovers the
sigma-point filter time updates. This yields an approximate
predictive distribution q(xk|y1:k−1), which can then be used to
approximate the second integral of interest (and subsequently,
the posterior at time k). Explicitly, the second integral is given
by

Zk ≈
∫
X
p(yk|xk)q(xk|y1:k−1)dxk. (16)

Similarly to (14), (16) has a closed form solution if p(yk|xk)
is Gaussian and (8b) is affine. Thus, as (9b) is Gaussian, we
seek an affine approximation of the measurement function h
as

h(xk) ≈ Ahxk + bh + ηh, (17)

with p(ηh) = N (ηh;0,Ωh). Hence, the measurement density
p(yk|xk) is approximated by q(yk|xk) as

q(yk|xk) = N (yk;Ahxk + bh,R+Ωh), (18)

which leads to an analytically tractable integral. With (15)
and (18), the (approximate) marginal posterior (12) is now
given by

q(xk|y1:k) =
q(yk|xk)q(xk|y1:k−1)∫

X q(yk|xk)q(xk|y1:k−1)dxk
, (19)

which is analytically tractable and given by (3). Note that an-
alytical linearization of (17) around the mean of q(xk|y1:k−1)
recovers the EKF measurement update whereas statistical lin-
earization recovers the sigma-point measurement update(s).

The quality of the approximate marginal posterior (19)
thus directly depends on the quality of the approximations
(15) and (18). The quality of (15) and (18) in turn directly
depends on the choice of linearization points or densities,
which is typically chosen to be the approximate predictive
and previous approximate posterior distributions. This choice
is of course free and iterative filters such as the IEKF, IUKF
or IPLF have been proposed to improve these approximations
[4]–[6], [12]. These filters can be thought of as finding an
approximate posterior qi(xk|y1:k) which is then used to re-
linearize the function h, producing a new approximation
qi+1(xk|y1:k). This is then iterated until some convergence
criterion is satisfied; typically until a fixed point is reached or
a maximum number of iterations has been reached.

However, none of these algorithms, except [9], encompass
the approximate density (15), even though this approximation
directly affects the approximate marginal posterior as well.
This is motivated by the fact that nonlinearities in the likeli-
hood affect the posterior approximation to a greater extent than
the prior. Nevertheless, standard iterated filters are for instance
not useful in the case of a nonlinear transition function f but
linear measurement function h, even though the linearization
of f also affects the quality of the approximate posterior.
Next, a general linearization-based algorithm encompassing
both the transition density as well as the measurement density
approximations is developed.



IV. DYNAMICALLY ITERATED FILTER

To derive an algorithm encompassing both the transition
density (15), as well as the observation density (18), at time k,
we naturally need to seek an approximate posterior over both
xk−1 as well as xk. To do so, we generalize the derivation
in [8] to extend backwards one step. Define two auxiliary
variables, gk, gk−1 as

gk−1 = f(xk−1) + ψ (20a)
gk = h(xk) + ϕ (20b)

p(ψ) = N (0, αI), p(ϕ) = N (0, βI), (20c)

where ψ and ϕ are independent of each other as well as the
process noise w and the measurement noise e. Note that as
α, β → 0, gk−1 → f(xk−1) and gk → h(xk). Now, the true
joint posterior of xk−1, xk, gk−1 and gk is given by

p(xk−1:k,gk−1:k|y1:k) ∝
p(xk−1:k|y1:k)p(gk|xk)p(gk−1|xk−1). (21)

Following [8], we assume that the approximate posterior can
be decomposed in the same manner, i.e.,

qθ(xk−1:k,gk−1:k|y1:k) ≈
qθ(xk−1:k|y1:k)qθ(gk|xk)qθ(gk−1|xk−1), (22)

where θ are the parameters of the affine approxima-
tion of the transition model and measurement model, i.e.,
θ = [Af ,bf ,Ωf ,Ah,bh,Ωh].

We now seek a θ such that qθ(xk−1:k,gk−1:k|y1:k) is
close to p(xk−1:k,gk−1:k|y1:k), in some sense. Formally, the
optimal parameters θ∗, and hence the optimal affine approxi-
mations of f and h, are found through

θ∗ =argmin
θ
L(θ). (23)

The loss L(θ) is free to choose, but a natural choice of dissim-
ilarity measure between distributions is the Kullback–Leibler
(KL) divergence, which we pursue here. The KL divergence
between the true joint posterior and the approximate joint
posterior is given by

KL (p(xk−1:k,gk−1:k|y1:k)∥qθ(xk−1:k,gk−1:k|y1:k)) =

KL (p(xk−1:k|y1:k)∥qθ(xk−1:k|y1:k))+

E [KL(p(gk|xk)∥qθ(gk|xk))] +

E [KL(p(gk−1|xk−1)∥qθ(gk−1|xk−1))] ≜ L(θ). (24)

See Appendix A for the derivation. Note that the expectations
in L(θ) are taken with respect to the true joint posterior
p(xk−1:k|y1:k). It is noteworthy that L(θ) can be decomposed
into three distinct terms, each dealing with each respective
factor of (22). The first term is simply the KL divergence
between the true and approximate joint posterior of the states
at time k and k − 1. The second and third terms are the
expected KL divergences of the affine approximation of the
measurement model and transition model, respectively, where
the expectation is taken with respect to the true joint posterior
p(xk−1:k|y1:k).

q(xk−1|y1:k−1) q(xk|y1:k−1) q(xk|y1:k)

q(xk−1|y1:k)

TU

MU

S
Re-linearize

Re-linearize

Re-linearize

Iterated Filters

Fig. 1: Schematic illustration of a dynamically iterated filter. Ordinary iterated
filters, marked in dotted orange, only re-linearize the measurement update. Dy-
namically iterated filters also re-linearize the time update through a smoothing
step, marked in blue. The time update (TU) and the smoothing step (S) are
linearized w.r.t. the smoothed distribution q(xk−1|y1:k). The measurement
update (MU) is linearized w.r.t. the current posterior q(xk|y1:k). The steps
are iterated until some convergence criterion is met.

It is impractical to minimize (24), seeing as the expectations
are taken w.r.t. the true joint posterior p(xk−1:k|y1:k). Never-
theless, an iterative procedure may be used to approximately
solve this minimization problem.

A. Iterative Solution

To practically optimize (23), we assume access to an i:th
approximation to the state joint posterior p(xk−1:k|y1:k) ≈
qiθ(xk−1:k|y1:k). We then use qiθ(xk−1:k|y1:k) in place of
p(xk−1:k|y1:k) in (24) and thus optimize an approximate loss,
i.e., the approximate optimization problem is given by

θ∗ = argmin
θ

KL
(
qiθ(xk−1:k|y1:k)∥qi+1

θ (xk−1:k|y1:k)
)
+

Eqiθ(xk−1:k|y1:k)

[
KL(p(gk|xk)∥qi+1

θ (gk|xk))
]
+

Eqiθ(xk−1:k|y1:k)

[
KL(p(gk−1|xk−1)∥qi+1

θ (gk−1|xk−1))
]
,

where the expectations are now over qiθ(xk−1:k|y1:k). Suffi-
ciently close to a fixed point, the first KL term is approximately
0 and the final optimization problem is thus given by

θ∗ = argmin
θ

Eqiθ(xk−1:k|y1:k)

[
KL(p(gk|xk)∥qi+1

θ (gk|xk))

+ KL(p(gk−1|xk−1)∥qi+1
θ (gk−1|xk−1))

]
. (25)

Technically, the optimal θ∗ is given by statistical lin-
earization of f and h w.r.t. the current approximation
qiθ(xk−1:k|y1:k), see e.g., [8]. Note that statistical lineariza-
tion of f w.r.t. qiθ(xk−1:k|y1:k) only requires the marginal
qiθ(xk−1|y1:k). Similarly, statistical linearization of h only
requires the marginal qiθ(xk|y1:k). Thus, the algorithm con-
ceptually amounts to predicting forward in time, performing
a measurement update and smoothing backwards in time
in order to provide new linearization points (densities) for
both the transition density as well as the measurement den-
sity simultaneously. These steps are then iterated until fixed
point convergence, finally providing an approximate posterior
q(xk−1:k|y1:k). The general algorithm is summarized in Al-
gorithm 2 and schematically depicted in Fig. 1.



Algorithm 2 Dynamically iterated filter

Require: q(xk−1|y1:k−1) = N (xk−1; x̂k−1|k−1,Pk−1|k−1)
Compute x̂0

k|k−1,P
0
k|k−1 by (2)

Compute x̂0
k|k,P

0
k|k by (3)

Compute x̂0
k−1|k,P

0
k−1|k by (4)

i← 0
while not converged do

Calculate (Af ,bf ,Ωf ) by analytical or statistical lin-
earization of f about x̂i

k−1|k,P
i
k−1|k

Compute x̂i+1
k|k−1,P

i+1
k|k−1 by (2)

Calculate (Ah,bh,Ωh) by analytical or statistical lin-
earization of h about x̂i

k|k,P
i
k|k

Compute x̂i+1
k|k ,P

i+1
k|k by (3)

Compute x̂i+1
k−1|k,P

i+1
k−1|k by (4)

i← i+ 1
end while
return x̂i

k|k,P
i
k|k, x̂

i
k−1|k,P

i
k−1|k

Note that the algorithm is applicable to all possible combi-
nations of models with linear and nonlinear f and h. Further,
even though the developed solution is essentially an IPLF
also encompassing the transition density, by changing the lin-
earization method from statistical to analytical, an “extended”
version is recovered in similar spirit to the IEKF. Furthermore,
an IUKF version, similar to [5], may also be recovered by
“freezing” the covariance matrices Pi

k−1|k = Pk−1|k−1 and
Pi

k|k = Pi
k|k−1 and only updating these during the last

iteration. It is also worthwhile to point out that the dynamically
iterated filters are essentially “local” iterated smoothers, anal-
ogous to the iterated extended Kalman smoother (IEKS) [13]
and the iterated posterior linearization smoother (IPLS) [10],
operating on just one time instance and observation. Therefore,
as noted in [9], a byproduct of the algorithm is a one-step
smoothed state estimate and the method can thus be thought
of as an iterated one-step fixed-lag smoother as well.

All that is left is to determine a stopping criterion for the
iterations. Similarly to [8], a stopping criterion for the iterative
updates may be formed on the basis of the KL divergence
between two successive approximations of the posterior, i.e.,

KL(qi(xk|y1:k)∥qi+1(xk|y1:k)) < γ.

Another possibility to check for fixed-point convergence is to
instead use the smoothed density q(xk−1|y1:k) in a similar
manner as the posterior. This is not investigated in detail here.
Instead, in the numerical example in Section V, a fixed number
of iterations are used for simplicity.

V. NUMERICAL EXAMPLES

To demonstrate the application of the dynamically iterated
filters, we provide an illustrative example demonstrating the
iterative procedure of the algorithm. We also provide a numer-
ical example of maneuvering target tracking with a nonlinear
transition model but a linear measurement model.

−2 0 2 4 6

Prior p(xk−1|y1 : k−1)
q0(xk−1|y1 : k), iteration 0
q1(xk−1|y1 : k), iteration 1

Smoothed / Prior

−2 0 2 4 6

q0(xk|y1 : k−1), iteration 0
q1(xk|y1 : k−1), iteration 1

Predictive

−2 0 2 4 6

True posterior p(xk|y1 : k)
q0(xk|y1 : k), iteration 0
q1(xk|y1 : k), iteration 1

Posterior

TU

MU

S

Fig. 2: Illustration of the (extended) dynamically iterated filter. The black
curves in the top and bottom plots are the prior p(xk−1|y1:k−1) and true
posterior p(xk|y1:k), respectively. The blue curves from top to bottom
illustrate the approximate smoothed, predictive and posterior densities at
iteration 0, respectively. The orange curves illustrate the same densities during
the second iteration of the filter. The filter thus moves from the prior (top) to
the predictive (middle) to the posterior (bottom) and back up to the smoothed
(top). The time update, measurement update and smoothing step are indicated
similarly to Fig. 1. Notice that iteration 0 exactly corresponds to an EKF.

A. Illustrative example

To illustrate the iterative procedure of the algorithm, we
use an example similar to that in [12] but alter it to include a
dynamical model. Therefore, let the model be given by

xk+1 ∼ N (xk+1; ax
3
k, Q)

yk ∼ N (yk;xk, R),

with a = 0.01, Q = 0.1 and R = 0.1. We assume that a prior
is given at time k−1 as p(xk−1|y1:k−1) = N (xk−1; 3, 4). We
then apply an analytically linearized version of the dynami-
cally iterated filter to this model and plot the intermediary and
final approximate predictive, posterior, and smoothed densi-
ties. The true posterior is found simply through evaluating the
posterior density over a dense grid. The example is illustrated
in Fig. 2, where two iterations are enough for the posterior
approximation to be accurate.

B. Maneuvering Target Tracking

We consider a numerical example of maneuvering target
tracking with a nonlinear transition model but a linear mea-
surement model. This is a typically “easy” tracking scenario
where standard filters generally do well.

Three versions of the dynamically iterated filters are eval-
uated, an extended version (DIEKF), an unscented version
(DIUKF), and a posterior linearization version (DIPLF) based
on unscented transform. These are compared to their respective
non-iterated counterparts, i.e., the EKF and the UKF. For
the unscented filters, we use the tuning parameters α =



√
3/nx, κ = nx(3/2−α2)

α2 and β = 2, where nx is the
dimension of x. This tuning corresponds to a weighting of
1/3 on the central sigma point.

We consider a target maneuvering in a plane
and describe the target using the state vector
x⊤
k =

[
pxk vxk pyk vyk ωk

]
. Here, pxk, pyk, vxk , vyk

are the Cartesian coordinates and velocities of the target,
respectively, and ωk is the turn rate at time k. The transition
model is thus given by

xk+1 = F(ωk)xk +wk, (26)

where

F(ωk) =


1 sin(Tωk)

ωk
0 − (1−cos(Tωk))

ωk
0

0 cos(Tωk) 0 − sin(Tωk) 0

0 (1−cos(Tωk))
ωk

1 sin(Tωk)
ωk

0

0 sin(Tωk) 0 cos(Tωk) 0
0 0 0 0 1

 ,
T is the sampling period and wk ∼ N (wk;0,Q) is the
process noise at time k, with

Q =


q1

T 3

3 q1
T 2

2 0 0 0

q1
T 2

2 q1T 0 0 0

0 0 q1
T 3

3 q1
T 2

2 0

0 0 q1
T 2

2 q1T 0
0 0 0 0 q2

 ,
where q1 and q2 are parameters of the model.

In order to isolate the benefits of iterating over the time
update, a linear positional measurement model is used, i.e.,

yk = Hxk + ek, (27)

with H = diag
[
1 0 1 0 0

]
and ek ∼ N (ek;0, σ

2I).
The prior at time 0 is given by

p(x0) = N (x0; x̂0|0,P0|0),

with x̂⊤
0|0 =

[
130 35 −20 −20 −4 π

180

]
and P0|0 = diag

[
σ2
px

σ2
vx σ2

py
σ2
vy σ2

ω

]
, with

σ2
px

= σ2
vx = σ2

py
= σ2

vy = 5 and σ2
ω = 10−2. The initial

state for the ground truth trajectories are drawn from this
prior.

We fix q2 = 10−2, T = 1 and sweep over all pairs of

q1 = {10−4, 10−3, 10−2, 10−1, 100}
σ2 = {10−2, 10−1, 100, 101, 102},

i.e., 25 different noise configurations. For each noise config-
uration, we simulate 10 individual targets along 20 different
trajectories of length K = 130 time steps, for a total of 200
simulations per configuration. Note that the 20 trajectories
are different for each noise configuration and that the 10
targets for each trajectory differ only in their measurement
noise realization. However, the trajectories and measurement
noise realizations are exactly the same for each algorithm. Five
example trajectories along with one measurement sample from
each trajectory for a specific noise configuration is depicted
in Fig. 3.

−500 0 500 1000
px [m]

−300

−100

100

300

500

py
[m

]

Fig. 3: Five example trajectories from one noise configuration of the consid-
ered tracking problem. Each trajectory is depicted as a separate color. The
black smaller dots are a specific measurement realization along each trajectory.

To evaluate the performance of each dynamically iterated
filter, we calculate the average position and velocity RMSE
(separately) over the simulations for each of the filters and
their corresponding baselines. We also compute a “relative”
RMSE, relative the non-iterated counterpart, i.e.,

V =
RMSEiter

RMSEbase
, (28)

where clearly, V ∈ [0,∞] and lower is better. A relative score
of 0.9 thus translates to a 10% lower RMSE as compared
to the baseline. This yields a “quick glance” picture of the
expected RMSE performance improvement in each particular
noise configuration for each respective algorithm. For the
DIEKF the non-iterated baseline is the EKF whereas for both
the DIUKF and DIPLF the baseline is the UKF.

The results are presented as 5× 5 matrices where each cell
corresponds to a particular noise configuration for a particular
pair of algorithms, e.g., the results for the DIEKF and EKF
are summarized in one matrix. The results can be found in
Fig. 4 where the position and velocity RMSEs are presented
in Fig. 4(a) and Fig. 4(b), respectively. The leftmost matrix in
each of the figures corresponds to the DIEKF and EKF. The
middle matrix contains the results for the DIUKF and UKF and
the rightmost matrix for the DIPLF and UKF. The top number
in each cell is the RMSE for the dynamically iterated filter
whereas the bottom number corresponds to the baseline. The
color of each cell represents the RMSE of the dynamically
iterated filter relative its baseline, according to (28). A deeper
green color thus indicates a more substantial improvement
than a lighter green. Lastly, an algorithm is considered to
have diverged if its position RMSE is approximately larger
than σ, where σ is the measurement noise standard deviation,
as a position RMSE of σ can be expected by just using the
raw measurements. Divergence is illustrated by a “−” in the
corresponding cell in the matrices.

From Fig. 4(a), it is clear that even though all of the
dynamically iterated filters improve upon their baselines, the



analytically linearized DIEKF benefits the most from the iter-
ative procedure. Astonishingly, the EKF diverges for 22 out
of 25 configurations whereas the DIEKF manages to lower
that to 5 out of 25 and only diverges in the high noise
scenario (σ2 = 102). The performance increase in position
RMSE is more modest for the DIUKF and DIPLF but still sees
improvement, particularly for low process noise regimes. For
the velocity RMSE in Fig. 4(b), the improvement for all of
the three dynamically iterated filters is substantial. For low
process noise regimes the improvement is up to 10-fold for
the DIEKF and 5-fold for the DIUKF and DIPLF. Even for
modest noise levels, the DIUKF and DIPLF roughly manage a
2-fold performance improvement. For the high noise scenario
(σ2 = 102), the DIUKF and DIPLF show a 10-fold performance
improvement and bring the velocity RMSE down to reasonable
levels where the RMSE for the UKF is very high.

VI. CONCLUSION

Dynamically iterated filters, a new class of iterated nonlinear
filters, has been presented. The dynamically iterated filters, as
opposed to previous iterated filters, are applicable to all possi-
ble combinations of (Gaussian) linear and nonlinear transition
and measurement models. The filters were evaluated against
their respective non-iterated baselines in a numerical example

with a nonlinear transition model and a linear measurement
model. Even in this “simple” case, where standard filters
typically perform well, the dynamically iterated filters had
improved RMSE performance, especially for non-measurable
states. Further, even though the EKF diverged in 22 out of
25 configurations considered, the dynamically iterated EKF
was empirically shown to be stable for 20 out of 25 noise
configurations, only diverging for high noise (σ2 = 102).

Future work includes more extensive testing on other
models as well as determining in what particular scenarios
the statistically linearized versions perform better than the
analytically and vice versa.
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APPENDIX A
LOSS DERIVATION

The KL divergence between the true joint (21) and the
approximate (22) is given by

KL (p(xk−1:k,gk−1:k|y1:k)∥qθ(xk−1:k,gk−1:k|y1:k)) =

∫
p(xk−1:k,gk−1:k|y1:k) log

p(xk−1:k,gk−1:k|y1:k)

qθ(xk−1:k,gk−1:k|y1:k)
dxk−1:kdgk−1:k =∫

p(xk−1:k|y1:k)p(gk|xk)p(gk−1|xk−1) log
p(xk−1:k|y1:k)p(gk|xk)p(gk−1|xk−1)

qθ(xk−1:k|y1:k)qθ(gk|xk)qθ(gk−1|xk−1)
dxk−1:kdgk−1:k =∫

p(xk−1:k|y1:k)p(gk|xk)p(gk−1|xk−1)

[
log

p(xk−1:k|y1:k)

qθ(xk−1:k|y1:k)
+ log

p(gk|xk)

qθ(gk|xk)
+ log

p(gk−1|xk−1)

qθ(gk−1|xk−1)

]
dxk−1:kdgk−1:k =∫

p(xk−1:k|y1:k)p(gk|xk)p(gk−1|xk−1) log
p(xk−1:k|y1:k)

qθ(xk−1:k|y1:k)
dxk−1:kdgk−1:k +

∫
p(xk−1:k|y1:k)p(gk|xk)p(gk−1|xk−1) log

p(gk|xk)

qθ(gk|xk)
dxk−1:kdgk−1:k+∫

p(xk−1:k|y1:k)p(gk|xk)p(gk−1|xk−1) log
p(gk−1|xk−1)

qθ(gk−1|xk−1)
dxk−1:kdgk−1:k =∫

p(xk−1:k|y1:k) log
p(xk−1:k|y1:k)

qθ(xk−1:k|y1:k)
dxk−1:k︸ ︷︷ ︸

KL(p(xk−1:k|y1:k)∥qθ(xk−1:k|y1:k))

+

∫
p(xk|y1:k)p(gk|xk) log

p(gk|xk)

qθ(gk|xk)
dxkdgk︸ ︷︷ ︸

Ep(xk|y1:k)[KL(p(gk|xk)∥qθ(gk|xk))]

+

∫
p(xk−1|y1:k)p(gk−1|xk−1) log

p(gk−1|xk−1)

qθ(gk−1|xk−1)︸ ︷︷ ︸
Ep(xk−1|y1:k)[KL(p(gk−1|xk−1)∥qθ(gk−1|xk−1))]

dxk−1dgk−1 =

KL (p(xk−1:k|y1:k)∥qθ(xk−1:k|y1:k)) + Ep(xk|y1:k) [KL(p(gk|xk)∥qθ(gk|xk))] + Ep(xk−1|y1:k) [KL(p(gk−1|xk−1)∥qθ(gk−1|xk−1))] ≜ L(θ).
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(a) Position RMSE. Clearly, the analytically linearized DIEKF improves the most over it’s baseline the EKF which diverges in 22/25 configurations. The DIUKF
(middle) and DIPLF (right) share similar performance where the DIPLF is slightly better for some configurations.
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(b) Velocity RMSE. Clearly, all three dynamically iterated filters improve substantially over their corresponding baselines. For low noise regimes, up to
10-fold improvements are seen for the DIEKF whereas the DIUKF and DIPLF have approximately a 5-fold improvement. For high noise regimes the results
for the DIUKF and DIPLF are even better with approximately 10-fold improvements.

Fig. 4: RMSE for the dynamically iterated filters as compared to their respective baselines for 25 noise configurations, where each cell corresponds to one
noise configuration given by the figure axes. The top number in each cell is the RMSE for the dynamically iterated filter whereas the bottom number is the
RMSE for the corresponding baseline. A “−” indicates that the positional RMSE of the filter is larger than σ and it is thus considered to have diverged, since
an RMSE of σ corresponds to just using the raw measurements. The left plot in (a) and (b) shows the RMSE for the DIEKF and EKF. The middle figure shows
the DIUKF and UKF and finally, the right most figure shows the DIPLF and UKF. Each cell is colored according to the RMSE of the dynamically iterated filter
relative to the baseline. A relative RMSE of 0.9 corresponds to a 10% reduction of the RMSE.


	Iterated Filters for Nonlinear Transition Models
	dyniter-filter

