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Abstract

Suppose data-driven black-box models, e.g., neural networks, should be used as
components in safety-critical systems such as autonomous vehicles. In that case,
knowing how uncertain they are in their predictions is crucial. However, this
needs to be provided for standard formulations of neural networks. Hence, this
thesis aims to develop a method that can, out-of-the-box, extend the standard
formulations to include uncertainty in the prediction. The proposed method in
the thesis is based on a local linear approximation, using a two-step lineariza-
tion to quantify the uncertainty in the prediction from the neural network. First,
the posterior distribution of the neural network parameters is approximated us-
ing a Gaussian distribution. The mean of the distribution is at the maximum a
posteriori estimate of the parameters, and the covariance is estimated using the
shape of the likelihood function in the vicinity of the estimated parameters. The
second linearization is used to propagate the uncertainty in the parameters to
uncertainty in the model’s output. Hence, to create a linear approximation of the
nonlinear model that a neural network is.

The first part of the thesis considers regression problems with examples of
road-friction experiments using simulated and experimentally collected data. For
the model-order selection problem, it is shown that the method does not under-
estimate the uncertainty in the prediction of overparametrized models.

The second part of the thesis considers classification problems. The concept of
calibration of the uncertainty, i.e., how reliable the uncertainty is and how close it
resembles the true uncertainty, is considered. The proposed method is shown to
create calibrated estimates of the uncertainty, evaluated on classical image data
sets. From a computational perspective, the thesis proposes a recursive update
of the parameter covariance, enhancing the method’s viability. Furthermore, it
shows how quantified uncertainty can improve the robustness of a decision pro-
cess by formulating an information fusion scheme that includes both temporal
correlational and correlation between classifiers. Moreover, having access to a
measure of uncertainty in the prediction is essential when detecting outliers in
the data, i.e., examples that the neural network has yet to see during the train-
ing. On this task, the proposed method shows promising results. Finally, the
thesis proposes an extension that enables a multimodal representation of the un-
certainty.

The third part of the thesis considers the tracking of objects in image se-
quences, where the object is detected using standard neural network-based object
detection algorithms. It formulates the problem as a filtering problem with the
prediction of the class and the position of the object viewed as the measurements.
The filtering formulation improves robustness towards false classifications when
evaluating the method on examples from animal conservation in the Swedish
forests.
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Populärvetenskaplig sammanfattning

Det finns en pågående trend i samhället mot mer automation. Ofta behövs det
då modeller som beskriver de system som ska automatiseras. Sådana modeller
kommer att vara centrala för att ge prediktioner av framtida tillstånd i systemen.
Tack vare att det har blivit billigare att mäta på olika system samtidigt som det
finns bättre tillgång till kraftfullare beräkningsresurser för modellering har det
blivit vanligare att använda flexibla datadrivna modeller. Dessa modeller anpas-
sas sedan till insamlad data för att ge en bra beskrivning av systemet som önskas
modelleras. Artificiella neuronnätverk är ett exempel på en datadriven modell.
Om dessa datadrivna modeller ska vara användbara för beslutsfattande i säker-
hetskritiska system är det viktigt att det går att beskriva osäkerhet i deras predik-
tioner. Syftet med denna avhandling är att konstruera metoder för att beräkna
osäkerhet i prediktioner från neuronnätverk.

Metoden som vi föreslår är baserad på att linjärisera det icke-linjära neuron-
nätverket med avseende på de parametrar som beskriver nätverket. Detta för att
skapa en linjär approximation av modellen. För linjära modeller finns det tidi-
gare arbete gjort för att beräkna osäkerhet i prediktionen, och genom att göra
en linjär approximation av neuronnätverket möjliggör vi användande av dessa
resultat.

Avhandlingen undersöker tre olika sorters problem där neuronnätverk ofta
används som en del av lösningen. Dessa är regressionsproblem, klassificerings-
problem, och objektdetektion i bilder. Regressionsproblemen kommer att kretsa
kring ett exempel där däckfriktionen modelleras som en funktion av hur mycket
hjulen på bilen glider. För dessa problem undersöks det även hur valet av modell-
ordning påverkar den beräknade osäkerheten. Här visas det att den föreslagna
metoden inte underskattar osäkerheten.

För klassificeringsproblem beskrivs olika mått för att mäta osäkerhet samt
hur man kan veta ifall man kan lita på den beräknade osäkerheten eller inte. Neu-
ronnätverken som används för att lösa dessa problem blir större och mer kompli-
cerade, detta gör det än viktigare att metoden för att beräkna osäkerhet är beräk-
ningseffektiv. För att göra den förslagna metoden mer beräkningseffektiv presen-
teras därför bland annat en rekursiv formulering av metoden. För klassificering
undersöks det även hur osäkerheten kan användas för att detektera exempel som
inte ingår i den insamlade data neuronnätverket är tränat på. Det presenteras
även hur prediktioner från flera nätverk och prediktioner över tid kan fusioneras
(vägas samman) så att besluten blir mer robusta. Till sist presenteras en utökning
av metoden som möjliggör mer komplicerade osäkerhetsbeskrivningar.

Bidraget i delen som behandlar objektdetektion är att inkludera prediktionen
från neuronnätverket i ett filtreringsramverk. Här är det centralt att inkludera
osäkerhet i prediktionen. Genom exempel hämtade från naturvård, där svens-
ka rovdjur följs med kamerafällor, visas det i avhandlingen att inkludering av
osäkerheten i prediktionen och filtreringsramverket leder till att beslutssystemet
blir mindre känsligt för feldetektioner från neuronnätverket.
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Background





1
Introduction

For predictions from data-driven models to be viable for safety-critical applica-
tions, it is crucial to know how confident they are in their predictions. Here neu-
ral networks (nns) are an example of such data-driven black-box model. Hence,
methods to quantify the uncertainty in the prediction of nns are required, which
is the topic of this thesis. This introductory chapter gives an overview and moti-
vation of the problem of quantifying the uncertainty in the predictions from the
nns. Furthermore, the contributions of the thesis, as well as an outline of the
content of the thesis, are presented.

1.1 Background and motivation

It is an important part of science and technology to model the world around us,
i.e., for understanding and controlling parts of it. Obtaining such models has
traditionally been a tedious and time-consuming process based on physical in-
sight and expert domain knowledge. As the computational resources on modern
computers have increased, in combination with it becoming easier and cheaper
to measure signals from different systems and save those measurements, the use
of data-driven black-box models has become an appealing option. One example
of such a flexible black-box model is nns, which has been used in various applica-
tions. They have shown impressive results in everything from image recognition
[1], learning the structure of proteins [2], and language modeling [3, 4]. They
have also been used in safety-critical applications such as various control tasks
[5, 6] and detecting diseases in medical images [7].

Lately, some companies have implemented fully autonomous vehicles, e.g.,
Tesla, Waymo, Embark Trucks Inc., Scania and Einride to mention a few. One ex-
ample is the self-driving bus currently tested at Scania, as seen in Fig. 1.1. Some
fully autonomous vehicles are already on public roads, but using black-box mod-
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4 1 Introduction

Figure 1.1: One of the early autonomous buses developed by Scania.

els such as nn in fully autonomous vehicles comes with considerable risk. This
risk is partly due to their lack of ability to assess uncertainty in their predictions.
Self-driving car accidents, e.g., [8–10], highlight this risk. For example, the lack
of understanding of its surroundings contributed to the Uber accident in 2018
[8]. Hence, with the knowledge of the uncertainty in the prediction, decision pro-
cesses where nns are a vital component can make more informed decisions and
provide situational awareness needed for autonomy. The lack of ability to express
uncertainty is one of many reasons why the use of the nn in safety-critical appli-
cations is limited [11–13]. As Box [14] famously said, “all models are wrong, but
some are useful”. Here, the ability to express some uncertainty in the prediction
of the model is one essential component that drastically increases the usefulness
of a given model. To this end, the field of automatic control, which has a long
history of modeling with the inclusion of uncertainty, could play a crucial role
[15].

The impressive power of machine-learning models has recently been displayed
by large language models such as ChatGPT [3], BARD, and models generating
images such as DALL-E [16]. These successes have also revealed our lack of un-
derstanding of the reasons behind their decisions. This concern that we lack
understanding of the reasons behind the decision taken by these models, in com-
bination with the models’ immense ability to solve challenging tasks, has even
led to some researchers and companies suggesting a pause on these models’ re-
search and development [17]. To quantify the uncertainty in predicting these
models could be one piece of the puzzle since it provides trustworthiness behind
the decision taken by the model, which can counterbalance the lack of intuition
provided in predictions from black-box models. In the second step, using the
prediction from the model in a decision process, access to uncertainty in the pre-
diction makes the decision more interpretable.

Detecting outliers and adversarial examples is another area where the knowl-
edge of uncertainty in the prediction is crucial. Especially for nns it has been
demonstrated how vulnerable they are to adversarial attacks. For example, [18]
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(a) Training data. (b) Validation data with ood
samples.
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(c) Distribution for the prediction entropy in
the validation data.

Figure 1.2: Detection of ood samples (outliers) using the uncertainty in the prediction. As
training data, images of handwritten digits (mnist) are used, while during prediction, ood
samples consisting of images of clothing items (fmnist) are mixed with the images of the num-
bers. By studying the predicted entropy in Fig. 1.2c one can clearly distinguish the ood sam-
ples. This detection capability is because they have higher entropy, meaning their predictions
are more uncertain compared to images used to train the nn.

shows that with minor adjustments to the input image, an nn misclassified a
stop sign as a speed limit sign. Here, uncertainty can be used to detect those
adversarial examples.

Example 1.1
Consider an example where an nn is trained to classify images of handwritten
digit images from the mnist dataset [19], see Fig. 1.2a. However, the images of
the handwritten digits have been mixed up with images of clothing items from
the Fashion mnist (fmnist) dataset [20], see Fig. 1.2b. With knowledge of un-
certainty in the prediction, e.g., using the prediction entropy, the adversarial out-
of-distribution (ood) examples can be distinguished. For example, the entropy
in the prediction of the fmnist is much higher than that for images from mnist
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images. See Fig. 1.2c.

Another advantage of the knowledge of the uncertainty in the prediction is
that it enables the fusion of the prediction from the nn with predictions from
other sources of information. For example, modern advanced driver assistance
systems (adas) can have many sensors, e.g., lidar, radar, and cameras, to assist
the driver. Some of them usually have models based on nns, e.g., cameras used
for object detection. However, for the decision algorithm in the adas helping
the driver to make the correct decision, information from the sensor measuring
the distance from the object could be helpful to fuse with the prediction from the
object detection algorithms. Fusion of the prediction could also be done over time.
For example, if objects in an image sequence are supposed to be classified, some
classifications might be more uncertain than others. Combining them can lead
to a better understanding of the scenario. This can be illustrated by an example
inspired by the classification of images in adas.

Example 1.2
Given camera images, an algorithm relying on an nn is employed to detect po-
tential obstacles for the vehicle, enabling the adas to assist the driver in making
well-informed decisions. For instance, consider the image sequence depicted in
Fig. 1.3, where a moose suddenly appears in front of the vehicle. If the algo-
rithm’s confidence in recognizing an object exceeds a predefined threshold over
several consecutive frames, the adas takes automatic action by reducing the ve-
hicle’s speed to prevent a collision. This threshold is represented graphically by
a black line in Fig. 1.3. In this visual representation, individual predictions are
indicated in red, while the fused prediction incorporates information about the
uncertainty in the prediction, are shown in blue. By incorporating sequential in-
formation and utilizing the fused prediction, the adas can detect the presence
of the moose earlier. This early detection provides the driver with more time to
make a well-informed decision and take action to avoid a collision.

Hence, as described, including information regarding the uncertainty in the
prediction comes with many advantages. Some of them are that knowledge of the
uncertainty enables:

(i) Detection of outliers and adversarial examples.

(ii) Fusion of predictions from other sensors and fusion over time.

This combination gives the user a better understanding of decisions in processes
of which nns are a part. The decisions become more trustworthy since outliers
can be detected, and the decisions get more robust since one can infer redundan-
cies in the detection system where information from multiple sensors and models
are combined.
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Figure 1.3: Example of a scenario where images from a dash camera are used to detect an object
in front of a vehicle. In this scenario, a moose is about to cross the road. The lower part of the
image shows the classification of the object in the image, where an nn does the classification. A
decision process detects an object in front of the car if the confidence for a classification exceeds
a threshold for two frames. In this example, it is shown that the object is detected earlier by
fusing the information from earlier images in the sequence.

1.2 Problem formulation

The overall goal of this thesis is to develop a method that could be used to quan-
tify the uncertainty in the prediction from nns. An nn can be seen as a para-
metric function f (x; θ), where x ∈ X is the input to the model and θ ∈ Θ is the
parameters of the nn, i.e., the weights and biases. Given some input data xn ∈ X
and corresponding measurements of some signal in a system yn ∈ Y , n = 1, . . . , N ,
the nn is then trained to predict the value of future outputs y⋆ . Hence, this thesis
aims to develop a method that could give that answer to the question “what is
the probability that the prediction from the nn is correct”, i.e.,

p(y⋆ = ŷ|x⋆ , θ) (1.1)

Here ŷ = f (x⋆ ; θ̂N ) is the prediction of the output for the new input, x⋆ , given
learned parameters θ̂N from the training of the model. The method should also
be able to be used out-of-the-box for any trained nn. The focus of the thesis is:

(i) Develop methods to quantify uncertainty in the prediction of nns.

(ii) Validate the method regarding when it is viable and how much the quanti-
fied uncertainty can be trusted.

(iii) Illustrate applications where knowledge of the uncertainty can lead to more
robust decisions.
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1.3 Contributions

The seven papers included in the thesis present the main scientific contributions.
This section divides the contributions into two categories.

1.3.1 Development and validation

One of the main contributions of the thesis is the development and validation
of a method to quantify uncertainty in the predictions from nns. The method
goes under the name linearized Laplacian approximation (lla) of Bayesian nns.
The method is based on two linearizations, one to compute the uncertainty in the
parameters of the nn and one to propagate the uncertainty in the parameters to
an uncertainty in the prediction. Paper A presents the regression problems and
Paper D the classification problems. The method is experimentally validated,
compared to other methods used to quantify the uncertainty in the prediction,
and analytically validated using statistical theory. We empirically validate the
method using both real-world and simulated data. For example, in Paper C, Pa-
per D, and Paper F, we compare the method to other methods used in the litera-
ture to quantify the uncertainty in the prediction. For nns, it is also common to
use overparameterized models, i.e., to use too flexible models. Hence, Paper B in-
vestigates how overparameterization affects the quantified uncertainty from the
lla. The paper shows that the method does not underestimate the uncertainty.
In Paper F, it is shown how to compute the uncertainty using a recursive formu-
lation efficiently, and the method is extended in Paper E to represent multimodal
distributions.

1.3.2 Robust decisions

This thesis’s second contribution category is to illustrate how using quantified
uncertainty in the prediction can lead to more robust and trustworthy decisions
when the decision process relies on predictions from nns. In Paper D, Paper E,
and Paper F, the increased robustness is illustrated by, e.g., detecting outliers
(ood samples). Another advantage of the knowledge of uncertainty in the predic-
tion is the inclusion of the prediction from the nn in a fusion framework. Here,
combining the information from thenn’s prediction with information from other
sensors or a sequence of predictions is possible. A fusion framework that can han-
dle sequential fusion and fusion from multiple sensors is developed in Paper E.
Paper G extends the concept and shows how including information from previ-
ous frames leads to fewer missed detections when tracking an object in an image
sequence. In the application in Paper G, the lla is not used. Instead, the paper
shows how standard object-detection algorithms implicitly include uncertainty
in the prediction, allowing us to use their prediction in a fusion framework.
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1.4 Thesis outline

The thesis is divided into two parts, with edited versions of published papers in
the second part.

1.4.1 Part I

The first part goes through some theoretical background relevant to the uncer-
tainty quantification of predictions from nns relevant to the second part of the
thesis. In Chapter 2, some core concepts of system identification are presented
that are needed to develop the method proposed in the thesis. Chapter 3 de-
scribes the proposed method, lla, and provides the reader with some intuition
for the suggested method. Chapter 4 presents different sources of uncertainty
and strategies to quantify the uncertainty in the prediction. Finally, Chapter 5
concludes the first part of the thesis by summarizing the contributions and sug-
gesting directions for future work. Some content in this first part is based on the
author’s Licentiate’s thesis [21].

1.4.2 Part II

The second part of the thesis consists of a collection of papers listed below. The
contents of the paper are unchanged compared to the originals. However, some
typesetting has been altered in order to comply with the format of the thesis. If
not stated otherwise, the author has been the driving force in developing the pa-
pers’ theory and the manuscripts’ writing. The author has also done the software
implementations as well as conducting the simulation experiments and process-
ing work of the experiment data. Most of the ideas for the papers have been
developed in discussions between the authors and Isaac Skog, Daniel Axehill,
and Fredrik Gustafsson. See below for a detailed comment on each publication.
For the authors of the paper, the abbreviation for their names are used, i.e., the
author of this thesis Magnus Malmström (MM), Isaac Skog (IS), Daniel Axehill
(DA), Fredrik Gustafsson (FG), and Anton Kullberg (AK).

Paper A

Magnus Malmström, Isaac Skog, Daniel Axehill, and Fredrik Gustafs-
son. Asymptotic prediction error variance for feedforward neural net-
works. In Proc. of 21st IFAC World Congress, (IFAC), Online (Berlin,
Germany), 2020. Jul 11-17.

Summary: When using predictions from black-box models, such as nns, in
safety-critical applications, it is crucial to know how much to trust predictions
from them. Here, the paper proposes a method to include uncertainty in the
prediction fromnns using commonly used techniques in system identification. A
simulation study evaluating the method shows how the error originating from the
model mismatch and the error originating from the noise is affected by increasing
the nn size.
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Background and authors’ contributions: The paper’s main idea originated
from FG and was further developed in discussion with MM, IS, and DA. The
idea was implemented in collaboration between MM and IS, and MM wrote the
manuscript with input from IS, DA, and FG.

Paper B

Magnus Malmström, Isaac Skog, Daniel Axehill, and Fredrik Gustafs-
son. On the validity of using the delta method for calculating the
uncertainty of the predictions from an overparameterized model. In
Proc. of 22nd IFAC World Congress, (IFAC), Yokohama, Japan, 2023.
Jul 9-17.

Summary: The paper analyses how overparametization affects the uncertainty
in the prediction. That is, when the method presented in Paper A (referred to as
the delta method) is used to quantify the uncertainty in the prediction. Two
different categories of overparametization are identified, where the uncertainty
in the prediction from the overparameterized model is compared to the uncer-
tainty in the prediction from using a canonical (minimal) model. It is shown that,
for the overparameterized model, the uncertainty is larger or equal compared
to the canonical model. Equality holds when the added parameters do not add
flexibility to the model. Hence, for an overparameterized black-box model, the
uncertainty quantified by the delta method is not underestimated. The results
are shown to hold analytically and are validated using simulation experiments.

Background and authors’ contributions: The idea of this paper originated
from discussions among all the authors. MM was the driving force in formaliz-
ing the theory and designing the experiments. MM wrote the manuscript with
feedback from IS, DA, and FG.

Paper C

Magnus Malmström, Isaac Skog, Daniel Axehill, and Fredrik Gustafs-
son. Modeling of the tire-road friction using neural networks includ-
ing quantification of the prediction uncertainty. In Proc. of IEEE 24th
Int. Conf. on Inf. Fusion (FUSION), pages 1–6, Sun City, South Africa/
Virtual, 2021. IEEE. Nov 1-4.

Summary: Modeling tire-road friction is important to modern cars’ advanced
driver assistance systems (adas). When modeling the friction, it is desirable to in-
clude some measure of the uncertainty in the prediction. The paper investigates
modeling tire-road friction using several parametric models (both black-box and
grey-box). All models include uncertainty in the prediction, where the method
presented in Paper A is used to quantify the uncertainty in the prediction for the
parametric black-box models. The data used in the paper comes from real-world
experiments of a car braking on ice.
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Background and authors’ contributions: The idea of the paper originates
from a discussion among all authors regarding how to validate the method pro-
posed in Paper A to quantify uncertainty in prediction from nns. MM did the
processing of the data and implementation of the algorithms. MM wrote the
manuscript with feedback from IS, DA, and FG.

Paper D

Magnus Malmström, Isaac Skog, Daniel Axehill, and Fredrik Gustafs-
son. Uncertainty quantification in neural network classifiers–a local
linear approach. arXiv preprint arXiv:2303.07114, Under review for
possible publication in Automatica, 2023.

Summary: The paper extends the proposed method from Paper A to cover
classification problems. That is, proposing a method to estimate the probability
mass function (pmf) and the covariance of the estimated pmf. Here, a theoretical
limit of the lowest variance of the parameters, the so-called Cramér-Rao lower
bound (crlb), is derived. We are putting the method into a Bayesian setting
where the prior of the parameters is included. The paper suggests a method for a
proper risk assessment and a method for fusing predictions from multiple classi-
fiers using the quantified uncertainty. The proposed method is shown to produce
a correct estimate of the uncertainty. That is, the uncertainty is calibrated. The
evaluation was performed on two classical image classification tasks, i.e., mnist
and cfar10.

Background and authors’ contributions: The idea of this paper originated
from discussions among all the authors. MM has been the driving force in for-
malizing the theoretical results, designing the experiments, and writing the code
for them. MM wrote the manuscript in collaboration with IS, DA, and FG.

Paper E

Magnus Malmström, Isaac Skog, Daniel Axehill, and Fredrik Gustafs-
son. Fusion framework and multimodality for the Laplacian approxi-
mation of Bayesian neural networks. arXiv preprint arXiv:2310.08315,
Submitted for possible publication in IEEE Trans. Aerosp. Electron.
Syst., 2023.

Summary: Having quantified the uncertainty in the prediction of nns, e.g.,
using the method proposed in Paper D, fusing the prediction with predictions
from other models (e.g., other nns) is possible. Here, we investigate the fusion
of predictions from multiple independently trained nns. Presented with a se-
quence of images that belong to the same class, the paper presents a method to
fuse predictions considering the correlation over time. The fusion is for the case
when using the same classifier for all the images and multiple classifiers. The
paper also extends the method proposed in Paper D to represent multimodal dis-
tributions. It shows how combining multiple predictions and representing a mul-
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timodal distribution improves the calibration of the uncertainty and the ability
to detect ood examples.

Background and authors’ contributions: The idea of fusing predictions orig-
inated from discussions among all the authors, while the multimodal represen-
tation originates from MM. MM implemented the algorithms and designed the
experiments. Formalizing the theory and writing the manuscript was done by
MM with input from IS, DA, and FG.

Paper F

Magnus Malmström, Isaac Skog, Daniel Axehill, and Fredrik Gustafs-
son. Detection of outliers in classification by using quantified uncer-
tainty in neural networks. In Proc. of IEEE 25th Int. Conf. on Inf.
Fusion (FUSION), Linköping, Sweden, 2022. IEEE. Jul 4-7.

Summary: Having a frequentist view, the method proposed in Paper A is ex-
tended to cover classification tasks. The paper suggests a recursive algorithm for
updating the parameters’ covariance to decrease the proposed method’s compu-
tational complexity. The paper also shows how to detect images that the nn finds
challenging to classify using the quantified uncertainty in the prediction.

Background and authors’ contributions: The paper’s main idea comes from
MM, who is also responsible for implementing and formalizing the theory. MM
wrote the manuscript with input from IS, DA, and FG.

Paper G

Magnus Malmström, Anton Kullberg, Isaac Skog, Daniel Axehill, and
Fredrik Gustafsson. Extended target tracking utilizing machine-learning
software – with applications to animal classification. arXiv preprint
arXiv:2310.08316, Submitted for possible publication in IEEE Signal
Process. Lett., 2023.

Summary: The paper proposes a filtering framework to track objects in an
image sequence over time. Here, the measurements to the filter are assumed
to come from standard object-detection algorithms that detect the objects in the
images, where predictions from the algorithms are used as measurements for
the filter. The paper shows that including the predicted class of the object from
previous frames improves the prediction of the object’s class in the current frame.
The proposed method is evaluated on camera trap images of Swedish carnivores.

Background and authors’ contributions: The paper’s main idea comes from
MM, who is also responsible for implementing and formalizing the theory. The
weight of the influence from previous images originates from discussions be-
tween MM and AK. MM wrote the manuscript with input from AK, IS, DA, and
FG.
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Complete list of publications

All the work the Ph.D. student contributed to during his studies is listed below.
Here, the contributions are presented chronologically. The papers included in
the thesis are marked with ⋆.

Magnus Malmström, Isaac Skog, Sara Modarres Razavi, Yuxin Zhao,
and Fredrik Gunnarsson. 5G Positioning - A Machine Learning Ap-
proach. In Proc. of IEEE 16th Workshop on Positioning Navig. Com-
mun. , (WPNC), Bremen, Germany, 2019. 23-24 Oct.

⋆ Magnus Malmström, Isaac Skog, Daniel Axehill, and Fredrik Gustafs-
son. Asymptotic prediction error variance for feedforward neural net-
works. In Proc. of 21st IFAC World Congress, (IFAC), Online (Berlin,
Germany), 2020. Jul 11-17.

Jacob Eek, David Gustafsson, Ludwig Hollmann, Markus Nordberg,
Isaac Skog, and Magnus Malmström. A novel and fast approach for
reconstructing CASSI-raman spectra using generative adversarial net-
works. In 2022 11th Int. Conf. on Image Proc. Theory, Tools and App.
(IPTA), pages 1–6, Salzburg, Austria, 2022. IEEE. Apr 19-22.

⋆ Magnus Malmström, Isaac Skog, Daniel Axehill, and Fredrik Gustafs-
son. Modeling of the tire-road friction using neural networks includ-
ing quantification of the prediction uncertainty. In Proc. of IEEE 24th
Int. Conf. on Inf. Fusion (FUSION), pages 1–6, Sun City, South Africa/
Virtual, 2021. IEEE. Nov 1-4.

⋆ Magnus Malmström, Isaac Skog, Daniel Axehill, and Fredrik Gustafs-
son. Detection of outliers in classification by using quantified uncer-
tainty in neural networks. In Proc. of IEEE 25th Int. Conf. on Inf.
Fusion (FUSION), Linköping, Sweden, 2022. IEEE. Jul 4-7.

⋆ Magnus Malmström, Isaac Skog, Daniel Axehill, and Fredrik Gustafs-
son. On the validity of using the delta method for calculating the
uncertainty of the predictions from an overparameterized model. In
Proc. of 22nd IFAC World Congress, (IFAC), Yokohama, Japan, 2023.
Jul 9-17.

⋆ Magnus Malmström, Isaac Skog, Daniel Axehill, and Fredrik Gustafs-
son. Uncertainty quantification in neural network classifiers–a local
linear approach. arXiv preprint arXiv:2303.07114, Under review for
possible publication in Automatica, 2023.

⋆ Magnus Malmström, Isaac Skog, Daniel Axehill, and Fredrik Gustafs-
son. Fusion framework and multimodality for the Laplacian approxi-
mation of Bayesian neural networks. arXiv preprint arXiv:2310.08315,
Submitted for possible publication in IEEE Trans. Aerosp. Electron.
Syst., 2023.
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⋆ Magnus Malmström, Anton Kullberg, Isaac Skog, Daniel Axehill,
and Fredrik Gustafsson. Extended target tracking utilizing machine-
learning software – with applications to animal classification. arXiv
preprint arXiv:2310.08316, Submitted for possible publication in IEEE
Signal Process. Lett., 2023.



2
System identification of neural

networks

In this chapter, training an nn is formulated as a problem of estimating a para-
metric model from measurements. This formulation will make it possible to
use tools from estimation theory and system identification theory to develop a
method to quantify the uncertainty of the prediction made by nns. The concepts
of model structure, model sets, the notion of a true system, uniqueness, and iden-
tifiability will be reviewed. Furthermore, the chapter discusses the model selec-
tion problem and will conclude with some remarks regarding overparameteriza-
tion. Even though the concepts presented in this chapter are valid for general
models, the special case of the model based on nn is emphasized.

2.1 Problem formulation

Consider the problem of learning a model to describe the relationship between
some input (independent variables) x ∈ X and measurements of the output (de-
pendent variable) y ∈ Y , given some training data

T ≜ {yu , xn}Nn=1. (2.1)

Here, N is the number of training data points. The measurements y come from
some underlying true system S under consideration, and it is assumed that some
function f ∗(x) describes the true relationship to be modeled. In this thesis, the
focus is on using parametric models to model this relationship, i.e., f (x, θ) where
θ ∈ Θ ⊂ Rnθ contains nθ parameters. The thesis will focus on using nns, but the
analysis is valid for most parametric models.

The parameters are learned, a.k.a. estimated, to learn the model which best
describes the data by minimizing some loss function LN (θ), i.e.,

θ̂N = arg min
θ

LN (θ). (2.2)

15
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If the loss function is chosen according to some statistical properties of the mea-
surements, the loss function becomes the (log) likelihood. The loss function is
sometimes also referred to as the cost function. The input will be assumed to be
real numbers throughout the thesis, i.e., X ⊂ Rnx . For the output, mainly two
cases will be considered, either Y ⊂ Rny where ny is the dimension of the output,
i.e., a regression problem, or Y = {1, . . . , M}, i.e., a classification problem with M
classes. For the regression problem the loss function is given as

LN (θ) ≜
1
N

N∑
n=1

||yn − f (xn; θ)||2, (2.3)

i.e., the mean squared error loss, and for the classification problem as

LN (θ) ≜
N∑
n=1

ln fyn(xn; θ). (2.4)

i.e., the cross-entropy loss function. Here, the subindex n denotes the n’th train-
ing data point, and yn in (2.4) is used as an index operator for the subscript m of
fm(x; θ). For the regression problem in (2.3), the statistical assumption is that the
true system is measured with additive observation noise e, which is identically
and independently distributed according to some distribution with variance λ0
and mean E[e] = 0. The statistical assumption in (2.4) is that the measurements
are categorically distributed.

The parametric model, together with the estimated parameters, is then used
to predict a new output ŷ = f (x⋆ ; θ̂N ) of the system given some input x⋆ . In this
thesis, the aim is to analyze how to quantify the uncertainty in the prediction, i.e.,
to compute

p(ŷ = y⋆ |x⋆ , θ), (2.5)

where y⋆ denotes the true output for the input x⋆ .

2.2 Model sets and model structure

To carry out the analysis of the prediction-error variance and put the estimation
of the parametric model f (x; θ) in a system identification framework, the concept
of models, model structure, model sets, and true system used in, e.g., [31], need
to be introduced and formalized. Thus, a prediction model is defined as:

Definition 2.1 (Prediction model). A prediction model f (x1:m, y1:m−1) predicts
the current output of a system given information about current and past inputs
as well as past outputs.

The identification problem is to find a suitable model that can describe the
measured data as well as possible. A search over a set of candidate models is
conducted in order to find this, which leads us to the natural definition of model
set as:
Definition 2.2 (Model set). A model setM∗ is a collection of candidate models.
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Example 2.3
One example of a model set is, e.g., the set of all linear models,

M∗ = {all linear models}. (2.6a)

Another example of a model set is the set of all fully connected nns,

M∗ = {fully connected nns}. (2.6b)

A final example is a finite set of specific models

M∗ = {f1(x1:m, y1:m−1), f2(x1:m, y1:m−1), f3(x1:m, y1:m−1)}. (2.6c)

Most model sets of interest contain an infinite number of models. Hence, an
exhaustive search over all those model sets is intractable. Instead, the search
is usually done over a subset of these models. This subset is often constructed
by parameterizing the set “smoothly” over some “nice” areas, which refers to the
fact that the model is differentiable with respect to the parameters and that the
parameters come from an open set. This could be done by restricting the para-
metric model f (x; θ) to have a limited number of parameters nθ and that the
gradient of the model with respect to the parameters should be well defined, i.e.,
the model should be differentiable with respect to the parameters [31]. This gives
the formal definition of model structure as:

Definition 2.4 (Model structure). A model structure M is a differential map-
ping from a connected open subset Θ of R to a model setM∗, such that the gradi-
ent of the predictor function is smooth. That is

M : θ ∈ Θ→M(θ) = f (x; θ) ∈ M∗, (2.7)

whereM(θ) is one model in the model structure.

Knowing if the model set includes S is often interesting. That is, if there exists
a θ0 such thatM(θ0) = S , which is denoted S ∈ M∗. This assumption is hard to
fulfill in practice, but the concept is theoretically important when estimating the
models [31].

2.2.1 Neural networks

In many cases, models that are linear in the parameters are not flexible enough
to represent the given data. For more flexible models, more complex model sets
need to be used [32]. An example of a model set with more complex models is
the set containing nns. The recursions below can describe one model in this set.

h(0) = x, (2.8a)

a(l+1) =
(
h(l) 1

)⊤
W (l), l = 0, · · · , L, (2.8b)

h(l) = σ
(
a(l)

)
, l = 1, · · · , L, (2.8c)

y = a(L). (2.8d)
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Figure 2.1: Schematic illustration of a fully-connected nn with nx inputs, ny outputs, and L-
layers where every layer has dl nodes l = 1, ..., L. The bias term in hidden layers (nodes marked
with the number 1), as well as the input in the nn are indicated with green nodes. The white
nodes apply the nonlinear activation function σ (·) to the sum of all inputs. The blue nodes are
the output nodes which sums all the inputs to them.

The number of layers in the network is denoted L, W (l) are the weights of the l’th
layer, a(l) is the contribution from layer (l−1) to layer l and h(l) is the activation of
the contribution from the (l − 1)’th layer at the l’th layer, referred to as the hidden
node. In Fig. 2.1, a schematic illustration of a fully-connected nn with nx inputs,
ny outputs , and dl nodes in the l’th hidden layer. This gives that the dimension
of W (l) is (dl−1 + 1) × dl .

Furthermore, σ (·) is a so-called activation function operating element-wise.
Some of the most commonly used activation functions are the sigmoid function
σ (u) = 1/(1 + e−u), the hyperbolic tangent σ (u) = tanh(u), the rectified linear unit
(relu) σ (u) = max{u, 0}, the leaky relu σ (u) = max{u, 0.1u}, and the exponential
linear unit (elu)

σ (u) =

u, u ≥ 0,
α(eu − 1), u < 0,

(2.9)

where α is a hyperparameter that the user can choose. In Fig. 2.2, these activation
functions and their derivatives are shown.

Collecting the biases and the weights of the nn into a parameter vector, i.e.

θ = {W (l)}Ll=0. (2.10)

an nn can be written as a parametric model, f (x; θ).
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(b) Derivative of the activation functions

Figure 2.2: Some of the most commonly used activation functions together with their deriva-
tives.

2.2.2 Model-order selection

In system identification, an important aspect is to select the size of the model
set under consideration, i.e., choosing the number of model parameters based
on the trade-off between flexibility and overparameterization. Overparameteri-
zation refers to using a model with unnecessarily many parameters, i.e., a too-
flexible model. Selecting the correct number of model parameters is also called
model-order selection or the order-selection problem [31]. For models that are
linear in the parameters, such as polynomials, selecting the correct model-order
is equivalent to selecting the number of basis functions. Fornns, the model-order
depends on the number of hidden layers and nodes in those hidden layers.

A commonly used approach to select the model-order is to study the loss func-
tion LN (θ) for different choices of the number of parameters nθ . Evaluated on
training data, it is natural that the loss function decreases as the number of pa-
rameters increases since the model is more flexible. However, this might not be
desirable since models with a larger number of parameters may suffer from over-
parameterization and higher variance in their prediction. Instead, it is possible
to study a version of the loss function with a penalty factor for using models with
higher order. Two classical penalty functions are Akaike’s information criterion
(aic) suggested by [33] and Bayesian information criterion (bic) suggested by
[34]. In the case of Gaussian observation noise, aic and bic are given by

LN (θ̂N )
(
1 +

2d
N

)
, (2.11a)

and

LN (θ̂N )
(
1 +

d logN
N

)
, (2.11b)

respectively.
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A related approach to model-order selection is the so-called effective number
of parameters [35]. Here, instead of talking about the number of used parameters
in the model, one is concerned with which combinations of parameters are most
important. One approach to control the number of effective parameters is to use
so-called l2 regularizations where the two norms of the size of the parameters are
penalized in the loss function (2.3) and (2.4).

2.3 Uniqueness

Due to the ambiguities in the model structure, the choice of parameters for nn
is not unique. This ambiguity comes from symmetries in the nnmodel structure
and the activation function, as well as possible overparameterizations in terms
of nodes needed to describe the true input-output relationship; see [36] and [37]
for details. Hence, the parameter estimate θ̂N is non-unique and will depend
on factors such as the training data realization, the initial condition, and the
choice of optimization algorithm and its implementation. Let us define the set
of parameter vectors that minimize the loss function (2b) as

Dθ̂N
≜ {θ̂N ∈ Θ : θ̂N = arg min

θ
LN (θ)}. (2.12)

Depending on whether the true model belongs to the chosen model set M∗ or
not, several different sources contributing to the prediction uncertainty will be
considered. If f ∗ = S ∈ M∗ there exists a non-empty parameter set

Dθo ≜ {θ0 ∈ Θ : f (x; θ0) = f ∗(x) ∀x}, (2.13)

of parameter vectors where θio ∈ Dθo is the i’th parameter vector such that the
nnmodel describes the input-output relationship perfectly. Otherwise, if S <M,
from [31], it is known that the parameter estimate converges to a vector θi∗ that
gives the best fit of the training data in the least-squares sense. That is, θi∗ ∈ Dθ∗ ,
where

Dθ∗ ≜ {θ∗ ∈ Θ : θ∗ = lim
N→∞

arg min
θ

LN (θ)}. (2.14)

If S ∈ M∗, then Dθ∗ ≡ Dθo and the parameter estimate converges to one vector in
this set Dθo .

2.3.1 Canonical representation of a model

A canonical model is an irreducible, or minimal, representation of the model if
there is no model with fewer parameters that can represent the given data, as
well as the canonical model. A related concept is redundant parameters, i.e.,
parameters that do not add flexibility to the model. If a model has redundant
parameters, it is also reducible.
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To handle the fact that the choice of parameters in the nn, in general, is non-
unique and hence not globally identifiable, see Def. 2.10, a canonical representa-
tion of a parametric model fc : Rnx × Rnθc → Rny with a corresponding canoni-
cal, i.e., unique and irreducible, parameter vector θc ∈ Rdc is introduced. Here,
the number of parameters in the canonical representation nθc is less or equal to
the number of parameters in the non-canonical representation of the model nθ ,
nθc ≤ nθ . For the canonical representation of a parametric model, it holds that
given any θ, there exists a unique θc such that

f (x; θ) = fc(x; θc), ∀x. (2.15)

Hence, fc ∈ M∗ can represent any input-output relation that f ∈ M∗ can, but
the parameterization is assumed unique and potentially of lower dimension. Fur-
thermore, assume that there exist k differentiable mappings Ti , i = 1, .., k, re-
lating any parameter vector θi in the original representation of the model and
the corresponding one θc in the canonical representation of the model such that
θc = Ti(θi).

There could be the case that multiple choices of θi result in irreducible mod-
els, i.e., models with the same number of parameters that give the same predic-
tion. In that case, any of those models could be considered the canonical rep-
resentation of the model. Therefore, it is a choice of which of these irreducible
models should be the canonical representation of the model and which parame-
ters θi should be considered to be θc. After a choice of which realization of the
model that should be considered canonical has been made, one could consider θc
unique and relate them to the other irreducible parameters by some mapping Ti .

2.3.2 Symmetries in neural networks

In [36], it is shown that for a two-layer nn with sigmoid activation functions,
there exist only two kinds of transformations on θc such that θc = Ti(θi), namely:

(i) Interchange of nodes at the same layer, i.e., interchange h(l)
i and h

(l)
j with

each other.

(ii) Change of sign of the parameters due to symmetries in the activation func-

tion, i.e., W i(l)
j,k = −W c(l)

j,k and W
i(l−1)
.,j = −W c(l−1)

.,j . For sigmoid activation
functions, which are symmetric around 0.5, the sign change will also result
in a move of information to the bias term. This added information could
be described as W i(l)

0,k = W
c(l)
0,k + W c(l)

j,k . For activation functions symmetric
around zero, e.g., tanh, moving any information to the bias term is unnec-
essary. See Fig. 2.2a for illustrations of the activation functions.

These two transformations for a two-layer nn with a sigmoid as activation func-
tion will generate a family with 2d1d1! elements. See [36, 38] for more details of
constructing such a mapping in an irreducible two-layer nn with sigmoid activa-
tion functions.
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Remark 2.5. One can notice that these transformations are linear, i.e., θc = Tiθ
i . Hence,

the parameters for all irreducible nns, i.e., nns that have the same number of parameters
as the canonical representation, can be written as a linear combination of the parameters
of the canonical representation.

Example 2.6
To illustrate these symmetries, consider an example where measurements are

generated by the model

f ∗(x) = D sin
(
C arctan

(
(1 − E)x + E/B arctan(Bx)

))
. (2.16)

The signal in (2.16) describes how the normalized traction force (ntf) depends
on the wheel slip, x. The parameters B, C, D, and E depend on the surface.
Here they are choosen as B = 14, C = 1.6, D = 0.6, and E = −0.2. For further
description of the tire-road friction model, see, e.g., [39, 40] and Paper C.

Given some measurement of (2.16), consider the problem in (2.3) where f (x; θ)
is a two-layer nn, i.e.,

f (x; θ) = θ5σ (θ1x + θ3) + θ6σ (θ2x + θ4) + θ7. (2.17)

See Fig. 2.3 for a schematic illustration of such a model. The signal generated
by (2.16) can be modeled exactly using a model such as in (2.17), see Paper A.
However, due to the symmetries in the nn, there is no unique parametrization.
The parameters are found by training the nn using the adam optimizer, [41],
with the standard settings for the hyperparameters, initializing the parameters
using the Xavier initialization, [42]. The experiment is repeated 200 times for dif-
ferent parameter initializations and data separations into training batches. The
batches are subsets of training-data, using one batch at a time in the optimization
algorithm. Define the canonical representation of the model by

fc(x; θc) = 0.6σ (−6.8x + 0.0064) − 1.4σ (−40x + 0.0039) + 0.42, (2.18)

where the other values of the parameters minimizing (2.3) are referred to as the
non-canonical representation of the model.1

In Fig. 2.4a, the two parameters connecting the hidden layer with the output

layer, i.e., θ5 = W
(1)
11 and θ6 = W

(1)
12 , are plotted for the different realizations.

One can see that the parameters converge to some finite sets of different values,
i.e., eight different clusters. The number of clusters coincides with the predicted
number of the clusters for a two-layer nn with d1 = 2 presented above in this
section. However, in Fig. 2.4a, it can be seen that the path the optimization solver
takes from the initialization of the parameters to the optimal parameters looks
far from direct. Even though a parameter is initialized close to a specific cluster,
it might converge to another cluster, e.g., the initialization near the red cluster
converges to the blue cluster, see Fig. 2.4b.

1Notice that since the canonical representation of the model and non-canonical representation of
the model have the same size, there are no redundant parameters in the non-canonical model, i.e., all
are irreducible.
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Figure 2.3: Schematic illustration of a fully-connected nn with one input, one output, and one
hidden layer with two nodes in the hidden layer. The bias term in the hidden layers (nodes
marked with the number 1), as well as the input in the nn are indicated with green nodes. The
white nodes apply the nonlinear activation function σ (·) to the sum of all inputs. The blue node
is the output node which sums all its input.

The prediction is equally good for all the clusters, so a natural next question is
if the uncertainty in the parameters for the different clusters is different. Paper B
further investigates this question. Next, it is shown how a mapping between the
different clusters can be constructed.

Example 2.7
Returning to the setup in Ex. 2.6, one can compare the values of the canonical
realization of the parameters (in the red cluster) given in (2.18) and a realization
from the light blue cluster given by

f (x; θi) = −1.4σ (−40x + 0.0061) + 0.60σ (−6.8x + 0.0036) + 0.42. (2.19)

It is possible to see that the parameters are related via the transformation given
by

Ti =



0 1 0 0 0 0 0
1 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 1 0
0 0 0 0 1 0 0
0 0 0 0 0 0 1


, (2.20)

i.e., interchanging the nodes in the same layer corresponding to similar opera-
tions (bias or linear combination) with each other, which is the first sort of trans-
formation described earlier in this section.

Noteworthy is that the somewhat abstract function Ti is only needed for the
forthcoming analysis of the suggested method in Paper A and not for the applica-
tion of the discussed methods, which is shown in Paper B.
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(a) Parameters for different realizations. For a couple of realizations, the
path of intermediate iterations from the initial parameter values to the
optimum is visualized.
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(b) Clusters of the parameters for different realizations. The final value
and the initialization of the parameters are color-coded such that realiza-
tions that converge to the same cluster have the same color.

Figure 2.4: Illustration of how symmetry in the nn can lead to different optimal parameters
for different realizations. The parameters are clustered in eight clusters. Here, the parameters
connecting the hidden layer to the output layer are visualized, i.e., θ5 and θ6, where the num-
bering of the parameters can be seen in Fig. 2.3 and (2.17).
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2.4 Regularity conditions and identifiability

To pursue the analysis of the prediction error variance, some regularity condi-
tions regarding both the observed data generated by the true system and the
smoothness of the models in the model structure and the loss function need to be
imposed.

2.4.1 Identifiability and informativity

Given a training-data set, the user chooses a model set to estimate a model. How-
ever, the estimator might not converge, or the model might not be reasonable.
That the estimate does not converge can be a consequence of both the choice of
model structure for which the search is conducted and the consequence of that
the data set is not informative enough. Here, we are using the definition of infor-
mativity from [31] and [43], but modified for the static systems.

Definition 2.8 (Informativity). A data set, x1:N is informative enough with re-
spect to a model setM∗ if for any two models f (x; θ1) and f (x; θ2) in the model
set

f (x; θ1) − f (x; θ2) = 0, ∀x =⇒ θ1 = θ2. (2.21)

Example 2.9
Consider the model set of polynomials of degree n, which is an example of a
nonlinear static model. For the data to be informative enough, at least n + 1
unique data points are needed.

For further discussions on informativity, see, e.g., [43]. Throughout this thesis,
it will be assumed that the generated training-data is informative enough such
that all models in the true system have been persistently excited.

Considering the chosen model structure, one has to make sure that the model
structure is globally identifiable, i.e., two choices of parameters θ will result in a
different output from the model. First, let us define the concept of (local) identi-
fiability of a model using the uniqueness-oriented definition suggested in [31].
Definition 2.10 (Identifiability). A parametric model structure is locally iden-
tifiable at value θ∗ if ∃δ > 0 such that for all ||θ − θ∗|| < δ

f ( · ; θ∗) = f ( · ; θ) =⇒ θ = θ∗. (2.22)

For a model structure to be globally identifiable at θ∗, the same must hold as
δ→∞, i.e., it has to be locally identifiable at all θ∗.

Taking the smoothness of the models in the model sets into consideration, the
following assumption from [44] is needed.
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Assumption 2.11. Let Θ be compact, and assume that the model is three times
continuously differentiable. Assume as well that both the model and its deriva-
tives, component-wise, are bounded. For the loss function, it will be assumed
that it is three times differentiable with respect to the parameters and the pre-
diction error and the norm of derivatives and cross-derivatives are bounded, as
described in [44].

These assumptions are needed to show that the discussed estimators are con-
sistent, which is used in Paper A to show the asymptotic results of the estimator.

2.4.2 Implications for neural networks

Due to the symmetries in nns, the model structure will not be globally identifi-
able with a global minimizer to (2.2), but rather to a set of local minimizers where
each one is locally identifiable. The fact that the model is not globally identifi-
able is handled by the transformation Ti between the local minima, introduced
in Sec. 2.3.2.

In [36], it is also shown that apart from the transformations generated by Ti
given in Sec. 2.3.2, the parameter θ is globally identifiable for an irreducible two-
layer nn. This holds for an nn where the activation function σ (·) is such that the
class of functions {σ (ax + b), a > 0} ∪ {σ ≡ 1} is linearly independent. One can
interpret this condition as the contributions from all the hidden nodes in h(1) are
different and not constant.

2.5 Overparameterization

As stated in Sec. 2.2.2, an essential problem in system identification is selecting
the correct model-order. This is a compromise such that the model is flexible
enough to represent the underlying true system but not too flexible such that it
models the noise. Selecting the correct model-order is especially difficult when
using nns. However, what is often done in practice is to use already established
structures that are flexible enough to model the true system, e.g., GoogLeNet [45],
AlexNet [1], Resnet [46], LeNet [47]. The use of standard structures leads to the
fact that the models are often overparameterized. Hence, when introducing a
method to quantify the uncertainty in the prediction from nns, it is important to
determine how overparameterization affects the uncertainty. Overparameteriza-
tion is the topic of Paper B. For the method proposed in the thesis, the uncertainty
is not overestimated compared to the canonical (minimal) representation needed
to model the true system. This result is under the assumption that there are more
training-data points than parameters (N ≫ nθ). However, this might not been
true for nns, as is shown by the so-called double descent.

In statistical modeling, it is well known that as the model-order (nθ) increases,
the uncertainty in the prediction on validation data decreases until a certain point
where the model interpolates the training-data, i.e., overfits the training-data,
and as a consequence the uncertainty on validation data increases. However, nns
seem to break this known fact since when the model-order increases even further,
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the uncertainty on validation data decreases again, in a second minimum, the so-
called double descent [48]. Some approaches suggested in the literature try to
explain this phenomenon. For example, the commonly used activation functions
such as relu, combined with using weight decay during nn training, have a
regularizing effect, similar to penalizing the size of the parameters [49]. Another
explanation of the double descent is that as the model-order increases beyond
the number of points in the training-data set, N < nθ , an increase in the model-
order leads to a decrease in the norm of the parameters in the model, i.e., also a
regularizing effect [50]. This regularizing effect prevents the nn from overfitting
to the training data.





3
Linearized Laplacian approximation

This chapter provides some background theory for the linearized Laplacian ap-
proximation (lla). The lla is the proposed method used throughout the thesis
to quantify the uncertainty in the predictions from nns. It is a method to approx-
imate any trained nn as a Bayesian nn (bnn). In other words, put the prediction
from an nn into a context that naturally includes the uncertainty in the predic-
tion. In short, lla can be described in three steps:

(i) Train the model to find θ̂N by minimizing the loss fuction, e.g., (2.3) and
(2.4).

(ii) Compute the covariance Pθ of the parameters of the nn by linearizing the
loss function. That is, the Laplacian approximation of a bnn.

(iii) Propagate the uncertainty of the parameters to uncertainty in the predic-
tion by linearizing thennwith respect to the parameters. This linearization
is referred to as the delta method.

This chapter covers the last two steps. For the first step, interested readers are
referred to classical books such as [32, 51].

3.1 Laplacian approximation

In practice, training a bnn can be computationally expensive, if not practically
impossible. Approximating an already trained nn as a bnn is an approach still
to gain the advantages of including uncertainty in the prediction while still not
explicitly learning the uncertainty in the prediction. One such approximation
is the so-called Laplacian approximation of a bnn. The idea of the Laplacian
approximation is to assume that the parameters are Gaussian distributed with

29
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the mean given by the values of the parameters and the covariance given by the
curvature of the loss landscape. That is, for a model f (x; θ),

θ ∼ N (θ̂N , P
θ
N ). (3.1)

The Laplacian approximation per se is a well-known method to approximate the
posterior distribution with a Gaussian distribution. Here, the mean is given by
the maximum a posteriori estimate and the covariance by the inverse of the Fisher
information matrix [52]. The method is motivated by Bernstein-von Mises theo-
rem, which states that, under some regularity conditions, the posterior converges
in the limit of infinite data to a multivariate normal distribution [53]. The intu-
ition of the approximation is to approximate the loss function with a quadratic
one, i.e., to approximate the problem as a linear regression problem. Another
motivation of the method is that sufficiently close to a (local) minimum, a linear
model can approximate a nonlinear model well. The method is also commonly
used for nns and was early introduced to approximate bnns [54]. However, the
question is, how accurate is it to approximate the loss function as a quadratic
one?

Example 3.1
Consider the model

f (x; θ) = tanh(θ2x + θ1). (3.2)

The model (3.2) is an nn consisting of one node and one hidden layer. Assume
that the true system under consideration has the same structure as (3.2) with
θ2 = 1 and θ1 = −1. Given some measurements of the true system, the mean
squared error (2.3) is minimized between the measurements and a model with
structure as in (3.2). For simplicity, assume that the optimization algorithm has
found the true parameters, i.e., θ̂N = θ0. The loss function can then be linearized
around the estimated parameters θ̂N . That is

f̃ (x; θ) = f (x; θ) + ϕ⊤(x)(θ̂N − θ) (3.3a)

ϕ(x) =
[
1 − tanh2([θ̂N ]2x + [θ̂N ]1) x(1 − tanh2([θ̂N ]2x + [θ̂N ]1))

]
. (3.3b)

Fig. 3.1 is depicts the loss function LN (θ) for the nonlinear model f (x; θ) and
the linearized model f̃ (x; θ). Fig. 3.1a shows the one-dimensional loss function
where θ2 = θ0

2 , while Fig. 3.1b shows the two-dimensional loss function. Here,
one can see that the linear approximation is valid in the proximity of the true pa-
rameters. However, the approximation worsens when moving away from the true
parameters. It is the curvature of the loss function using the linearized model,
which, around the current parameter estimate, gives the uncertainty of the pa-
rameters in the Laplacian approximation.

Ex. 3.1 illustrates some limitations of using the Laplacian approximation. These
limitations are that it is a local approximation that might not be accurate too
far away from the linearization point. The method also requires that the opti-
mization method used to train the model has found a local minimum of the loss
function.
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Figure 3.1: Visualization of the loss landscape for a nonlinear model and the quadratic ap-
proximation of that loss landscape using a linearized model. This visualization illustrates the
curvature of the loss function using the linearized model, which gives the covariance of the pa-
rameters in the Laplacian approximation.

3.1.1 Hessian of the loss function

From Bernstein-von Mises theorem [53], if the true model belongs to the consid-
ered model set, the maximum a posteriori estimate θ̂N converges in distribution
to

θ̂N
d−→ N (θ̂N ; θ0, I−1

θ ), (3.4)

when the information in the training data T tends to infinity. The same holds
for the maximum likelihood estimate when the true model belongs to the con-
sidered model set [31]. Here, θ0 denotes the true parameters and Iθ the Fisher
information matrix. When choosing the loss function as the likelihood function,
Paper A and Paper D show that the inverse of the Fisher information matrix gives
the covariance of the Laplacian approximation. In Paper A, the mean squared
loss function (2.3) is considered while in Paper D considers the cross entropy loss
(2.4).

In optimization theory, which the algorithms used to train the nn are based
on, a central concept is the Hessian of the loss function [55]. That is the second
derivative of the loss function with respect to the decision variables, e.g., here are
the parameters. Close to the optimum, the direction in which the Hessian of the
loss function is the largest is the direction in which the parameters’ values are the
most certain, i.e., the covariance of the parameters is the lowest. Hence, a close
connection exists between the Hessian of the loss function and the inverse of the
Fisher information matrix [31, 56–58].

However, in practice for optimization methods, it is common to use an approx-
imation of the Hessian [55]. One reason to use the approximations is because
the cost of computing the true Hessian is high compared to the gained perfor-
mance. This is more evident when compared to the performance using multiple
steps with a slightly worse stepsize, which can take less computational resources.
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Here, the worse stepsize is a consequence of using an approximation of the Hes-
sian, but using the approximation is also the reason for the lower computational
cost. This reduction in computation time is especially true if the model has many
parameters, for instance, as an nn have. The lower computational cost is one of
the reasons why two of the most used optimization (training) algorithms for nns,
rms-prop and adam-optimizer, rely on an approximation of the Hessian [41, 59].

One common approach to approximate the Hessian of the loss function is
by a quadratic approximation, which is, e.g., used in the Gauss-Newton method.
The motivation for using this approximation is that close to the optimum, the
nonlinear loss function is close to quadratic; hence, the approximation of the
Hessian of the loss function is close to the true Hessian. Here, one can recall
that similar arguments were used to motivate the choice of covariance of the
parameters in the Laplacian approximation of bnns.

Example 3.2
To illustrate the connection between the Hessian of the loss function and the

uncertainty in the parameters, consider again the setting of Ex. 2.6. In Fig. 3.2,
the loss function for the canonical representation (2.18) of the nn is shown. Here,
the parameters connecting the hidden layer to the output layer are changed while
fixing all the other parameters. The loss function is steeper in one direction. A
projection of the eigenvector corresponding to the Hessian matrix’s largest eigen-
value is the loss function’s steeper direction. In contrast, the projection of the
eigenvector corresponding to the smallest eigenvalue of the Hessian matrix is a
flat direction in the loss function. The smaller eigenvalues of the Hessian would
represent larger parameter covariance and a more uncertain prediction, and vice
versa. Using this interpretation of the Hessian, one can see that directions with
larger curvature in the loss function correspond to directions where the parame-
ter estimate is confident. In comparison, directions with a smaller curvature cor-
respond to directions where the parameter estimate is more uncertain compared
to the other direction. One can also see that the solver moves slower in the direc-
tion corresponding to the uncertain combination of the parameters compared to
the combinations of parameters that are certain.

3.1.2 Approximation of the covariance

Annn often has millions of parameters, which might result in the amount of data
needed to store P θN being larger than the available memory capacity. Here, a com-
mon approach to handle this is to approximate P θN . There exist many different
low-rank approximations, but one of the most common ones is to approximate
P θN as a block-diagonal matrix [60] or to use the approximation

P θN ≈
[
P θrN 0
0 0

]
, (3.5)

where P θrN denotes the covariance of the estimated parameters θr corresponding
to the weights and biases of the r last layers in the nn [27, 61]. Another approach
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Figure 3.2: Loss function as a function of the parameters connecting the output layer and the
last hidden layer, i.e., θ5 and θ6, see Fig. 2.3 and (2.17). The figure also includes the directions
of the projected eigenvectors corresponding to the smallest and largest eigenvalue of the covari-
ance matrix of the parameters. That is, in which directions the parameters are the most certain
and most uncertain.

to approximate the P θN is a singular value decomposition to compute the effective
number of parameters [35]. Some combinations of parameters have more influ-
ence on the prediction than others. These directions are directions where the
parameters are certain, e.g., the steeper direction in Fig. 3.2.

3.2 The delta method

The second linearization in the lla is used to propagate the uncertainty in the
parameters to uncertainty in the prediction. To linearize is a well-known trick
in the statistical literature and is sometimes referred to as the delta method [57].
It has also successfully been used for nns see e.g., [36, 62–67]. The main idea is
that by linearizing the model, the parameters enter additively, i.e.,

f (x; θ) = f (x; θ̂N ) +
∂f (x; θ)
∂θ

∣∣∣∣∣
θ=θ̂N

(θ̂N − θ). (3.6)

Assuming that the distribution of the parameters is known and Gaussian dis-
tributed Dθ = N (θ|θ̂N , Pθ), as is the case for the Laplacian approximation. Then,
the linearized model will also be Gaussian-distributed according to

f (x⋆ ; θ) ∼ N (f (x⋆ ; θ̂N ), P fN ) (3.7)
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for new inputs x⋆ where the covariance of the distribution is given by

P
f
N =

(
∂f (x⋆ ; θ)

∂θ

∣∣∣∣∣
θ=θ̂N

)⊤
P θN
∂f (x⋆ ; θ)

∂θ

∣∣∣∣∣
θ=θ̂N

. (3.8)

Since the idea behind the delta method is a second linearization or Taylor approx-
imation, the method, in combination with the Laplacian approximation, will by
us, from hereon, be referred to as the linearized Laplacian approximation (lla).
The linearization can also be interpreted as a projection of the uncertainty from
the parameters onto the prediction [36, 62–64]. With this interpretation, the
norm of the projection gives the uncertainty in the prediction [68].

Creating an ensemble of predictions and computing a mean and covariance
from the ensemble is a straightforward approach to quantifying the uncertainty
in the prediction from a model. The delta method is one approach to move the un-
certainty in the parameters to uncertainty in the prediction. A second approach
is to sample parameters from Dθ and evaluate the model for all the samples. An
advantage of creating the ensemble of predictions using the lla compared to
creating it directly by sampling parameters from the Laplacian approximation
is that it, in comparison, requires a lower computational effort. This is a result
of mainly two factors. Firstly, the dimension of the distribution from which the
samples are drawn is significantly larger for the Laplacian approximation. This is
a consequence of the Laplacian approximations drawing samples of parameters
of the nn, often in the order of hundreds or millions. In contrast, the lla draws
samples from the prediction of the nn, which has a significantly lower dimen-
sion (often between one and a hundred). Secondly, and more importantly, the
lla does not require more than two forward passes1, i.e., evaluations of the nn
multiple times. The lower computational complexity is essential when using the
nn in a safety-critical application with limited computational capacity.

However, one has to pay a price in accuracy for this lower computational com-
plexity. This trade-off can be illustrated by an example using the model from
Ex. 3.1.

Example 3.3
Consider the same model with the same true system as in Ex. 3.1. For a new

input x⋆ , we are interested in the probability that the prediction from the model
is correct, i.e., the probability density function (pdf) p(y⋆ = ŷ|x⋆ , θ), where ŷ =
f (x⋆ ; θ̂N ). Assume that one is using the Laplacian approximation to quantify the
uncertainty in the parameters and that it is

Pθ =
[

0.02 0.002
0.002 0.02

]
. (3.9)

For this example, we can analytically compute the pdf for the delta method,
while a second approach is to approximate the pdf by sampling from Dθ =
N (θ|θ̂N , Pθ) and evaluate the model f (x; θ) for all the samples. The samples

1The lla requires one forward pass to compute f (x; θ) and one to compute the derivative of f (x; θ)
with respect to θ.
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(a) Distribution of the parameters (small).
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(b) Distribution of the predicted value,
when the uncerainty of the parameters are
small.
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(c) Distribution of the parameters (large).
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(d) Distribution of the predicted value,
when the uncerainty of the parameters are
large.

Figure 3.3: Visualization of the accuracy of the delta method. To the left are the samples from
N (θ|θ̂N , Pθ) shown for two choices of covariance matrix Pθ . The right figures show the uncer-
tainty in predicting the function in (3.2). The red line is the delta method approximation, and
the histogram is from evaluating (3.2) using the samples on the left.
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Figure 3.4: Illustration of an ella can be used to approximate a multimodal distribution. On
the left is the original distribution, and on the right is the approximation using an ensemble of
three lla.

when using Pθ in (3.9) is seen Fig. 3.3a, and the samples where the covariance
of the parameter has been scaled with a factor of ten in Fig. 3.3c. As shown in
Fig. 3.3b, the pdf from the delta method approximates the empirical pdf com-
puted using the sampling scheme well. However, as the uncertainty in the pa-
rameters increases, the delta method approximation accuracy decreases. This de-
crease is seen in Fig. 3.3d where the covariance of the parameter has been scaled
with a factor of ten, and the approximation is not accurate anymore.

3.3 Ensemble linearized Laplacian approximation

The lla is a local approximation that requires the found parameters to be close to
one local minimum of the loss function. The requirement comes from that both
the first linearization is accurate enough, and the uncertainty in the parameters
is not large such that the second linearization is accurate enough, see Ex. 3.1 and
Ex. 3.3. One approach to tackle the first limitation, i.e., that the lla only can
represent distributions with one mode, is to combine multiple lla from indepen-
dently trained models. This extension is presented in Paper E and referred to as
the ensemble lla (ella).

Example 3.4
Assume a similar setup as in Ex. 3.2. In this case, one can expect the distribution
to be multimodal, e.g., as the left distribution on Fig. 3.4. In this case, the lla
could only capture one of the modes since it is a local approximation. However,
by combining multiple llas, it is possible to capture better the overall shape of
the distribution, e.g., the right part of Fig. 3.4.
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To model a multimodal landscape can be motivated by symmetries in nns de-
scribed in Sec. 2.3.2 and the transformation between optima in the loss landscape
described in [69]. The ella is similar to the Gaussian mixture model, where mul-
tiple Gaussian distributions approximate a non-Gaussian distribution. Given the
unimodal Gaussian distributions, there is a question of how to combine them, i.e.,
should it be equally likely to end up in any of the modes, or should one mode be
more likely than the other? In Paper E, it is chosen that every mode is equally
likely.

A disadvantage with the ella is that it requires training multiple models.
Hence, it adds additional computational complexity compared to only using one
nn. Since the nns are trained independently, it is also the case that some of the
trained nns end up in the same mode. A remedy to this problem is to use so-
called repulsive sampling during the training [70]. In repulsive sampling, the
nns are trained in parallel, using a penalty factor to ensure that the nns do not
end up in the same (local) optimum.

3.4 Summary

To summarise, lla is based on two linearizations. The first linearization is used
to approximate the parameters’ covariance, referred to as the Laplacian approx-
imation. The second linearization propagates the uncertainty in the parameters
quantified using the Laplacian approximation to uncertainty in the prediction,
hence the name lla. The ella is an extension where multiple independently
trained nns are combined to give the flexibility to represent multimodal distri-
butions.





4
Uncertainty in neural network

predictions

This chapter provides an overview of the sources of uncertainty in the prediction
fromnns and a roadmap of different methods used in the literature. The purpose
of the overview is to put the suggested method presented in Chapter 3 and the
method presented in Paper G into a broader context.

4.1 Sources of uncertainty

The uncertainty in the prediction stems from three different sources: errors caused
by the optimization algorithm that is used to train the nn, errors in the data
(aleatoric uncertainty), and errors in the model (epistemic uncertainty). In this
thesis, the focus is on uncertainty from the two latter sources. The error in the
data comes from noise in the measurements, i.e., a stochastic error. An approach
to handle the stochastic measurements and decrease the error caused by the data
is to include more data in the training data used to train the nn. Some of the
errors caused by the model could come from the fact that the model class is not
flexible enough to describe the true system. This error leads to a systematic bias
in estimating the parameters and, hence, in the prediction from the model. A
remedy to handle these errors is to increase the model’s flexibility. However, the
systematic bias could also be a result of a lack of training data in a given region,
which, as for the stochastic error, is solved by increasing the amount of training
data.

The difference between the stochastic error (variance) and systematical error
(bias) can be visualized in the estimate of the parameters using, e.g., how an
increased number of training data points leads to a reduced stochastic error. Here
is illustrated by an example. The example considers the same nonlinear system
as in Ex. 2.6, i.e., using an nn to estimate the normalized traction force (ntf)
using measurements of the wheel slip as inputs. However, compared to Ex. 2.6,
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for simplicity, consider a model that is linear in its parameters, i.e.,

f (x; θ) = ϕ⊤(x)θ, (4.1)

where ϕ⊤(x) is some (potentially) nonlinear transformation of the input x. There
is, however, a connection between nns and models that are linear in their param-
eters, i.e., one could consider an nn as a collection of nonlinear basis functions
that are linearly combined in the output layer [71]. For the nn case, the basis
function could be given as

ϕ⊤ =
(
h(L) 1

)⊤
, (4.2a)

where

θ = W (L). (4.2b)

Example 4.1
Given a varying number of noisy measurements of the ntf for a given wheel

slip, the problem is to model this relationship using a model given by (4.1). The
number of measurements varies between 10 and 1000, the mean of the noise is
zero, and the variance is 10−3, i.e., a signal-to-noise ratio (snr) of 30 dB. Assume
that the true model describing the relationship between the ntf and wheel slip
is given by

f 0(x; θ1) = ϕ⊤1 θ1, (4.3a)

ϕ1 =
(
σ (6x + 6) σ (−40x + 0.0061) σ (−6.8x + 0.0036) 1

)⊤
, (4.3b)

for the parameters θ1 =
(
0.40 1.44 −0.60 −0.42

)⊤
, where x is the wheel slip.

Apart from using the model described in (4.3) where the true system is in the
model set S ∈ M∗, the model

f ∗(x; θ2) = ϕ⊤2,mθ2, (4.4a)

ϕ2 =
(
σ (−40x + 0.0061) σ (−6.8x + 0.0036) 1

)⊤
, (4.4b)

is also used to model the measurements. That is a model where the true system
is not included in the model set, S < M∗. Both (4.3) and (4.4) are linear in the
parameters; hence, the parameters can be estimated by the linear least squares
solution (llss).

In Fig. 4.1a, the estimate of the parameter corresponding to the third nonlin-
ear basis function in (4.3) (second in (4.4)), is plotted as the models are estimated
using more samples. From Fig. 4.1a, one can observe that the stochastic error de-
creases as the number of training data increases. Due to the systematic error, the
parameters converge to different values, as seen in the difference in the horizontal
lines. However, despite the systematic error in Fig. 4.1b, it is nearly impossible
to distinguish the predictions from the two models.
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Figure 4.1: Illustration of the stochastic and systematic deterministic uncertainty, both using a
model with and without the true system in the model set, see (4.3) and (4.4).

4.2 Roadmap of uncertainty methods

The uncertainty in the prediction of nns can be quantified using many different
methods [37, 72–75]. For a survey of different methods, see [76]. There are numer-
ous approaches to categorize these different methods, which can have broader
or narrower categories. This thesis identifies two broad top categories, namely
methods using an ensemble of nns and methods where the structure of the nn
is changed such that the nn is learning the uncertainty in the prediction.

Fig. 4.2 shows a diagram categorizing different methods presented in the lit-
erature into the categories mentioned above. The core method presented in the
thesis, lla, (Paper A, Paper D, Paper E) belongs to the category of ensemble ap-
proaches while the method proposed in Paper G belongs to the category where
the nn learns its own uncertainty. The sub-categories of the proposed method
have been marked red in the diagram.

4.3 Ensemble methods

A straightforward approach to quantify the uncertainty in the prediction is com-
puting a mean and variance using an ensemble of predictions.

4.3.1 Multiple models

One method in that category is the so-called deep ensemble [83]. The methods
train multiple models on the same data, where all models in the ensemble pre-
dict new outputs. Training multiple models does not guarantee that the models
will converge to different optima, i.e., all the models could be identical. The
nns could be trained in parallel using so-called repulsive training to make it less
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Figure 4.2: Schematic illustrations over the categorizing of the methods to quantify uncertainty
in the prediction. (i): [54, 77], (ii): [78–82] (iii): Paper G, (iv): [70, 83], (v): Paper A, Paper D,
Paper E, [60, 61, 65, 66], (vi): [84, 85], (vii): [86–88], (viii): [89].
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likely that they are identical [70]. Combining models has also been shown to
improve prediction performance, e.g., [90, 91]. Multiple independently trained
models can also model uncertainty caused by error training algorithms. The en-
semble can represent the uncertainty caused by the training algorithm because
the multiple realizations can represent the different local optima the training al-
gorithm could find.

4.3.2 Multiple inputs

Where training a single nn is computationally expensive, training an ensemble
of nns can often be infeasible, particularly if one uses enormous nns with many
parameters. Hence, a method to create these ensembles without training multiple
nns has been suggested in the literature, e.g., the so-called test time augmenta-
tion [89]. In time augmentation, to create an ensemble of predictions, first, an
ensemble of inputs to predict is created. This ensemble of inputs is created by
augmenting (changing/transforming) the input for which one would like to know
the uncertainty in the prediction. Then, the nns predict the values of all the aug-
mented inputs to create an ensemble from which uncertainty in the prediction
can be computed. In Fig. 4.2, test time augmentation is categorized as multiple
inputs. The method is commonly used in applications where there is little train-
ing data available and where there exist transformations of the input that should
not affect the prediction of the input. One example of such an application is in
medical imaging, where the prediction of a rotated image should be the same as
the prediction of a non-rotated one. An advantage of test time augmentation is
that it is straightforward to implement. However, test time augmentation does
not incorporate how close to its optimal value the parameters in the nn have
converged to after the training phase. Another disadvantage is that it requires
specifying a transformation that should keep the prediction of the output the
same for the augmented input. This transformation can be challenging to find.
For example, rotational invariance, which is valid for some applications where
images are classified, might not be valid for others, e.g., if the nn should classify
handwritten images, a rotated image of a six is a nine.

4.3.3 Approximating the parameter distribution

Another category of methods is those that approximate the parameter distribu-
tion of the nn. The approximation is made during training where values of the
parameters are sampled during prediction to create an ensemble of predictions
[60, 61, 65, 66, 84–88], Paper A, and Paper D.

Methods such as Monte-Carlo (mc) dropout [86, 87] and mc batchnorm [88]
use regularization techniques to approximate the distribution of the parameters
of thenn. For example, some parameters are dropped during training in dropout,
so the network should not overfit the training data. In mc dropout, the idea is to
also use dropout during the prediction to create an ensemble of predictions.

Other methods use the curvature of the loss function to create the ensem-
ble. For example, [60, 61] saves samples of parameters later in the training, i.e.,



44 4 Uncertainty in neural network predictions

when the training is close to the optima of the loss function. The Laplacian
approximation, see Sec. 3.1, is another approach where the parameter distribu-
tion is assumed Gaussian and where the covariance is given by a linearization
[65, 66, 84, 85].

A disadvantage of many ensemble methods is that they require multiple for-
ward passes of the nn to create the ensemble. A remedy for this problem is lla
presented in Paper A and in Paper D. Here, the uncertainty in the parameters is
propagated to uncertainty in the prediction such that only two forward pass are
required. For more information on lla, see Chapter 3.

However, the lla is a local approximation and can only represent distribu-
tions with one mode, which is also the case for many methods relying on approx-
imating the parameter covariance of the nn. For the lla, the extension ella
presented in Paper E and Sec. 3.3 can be used to represent distributions with
multiple modes, see, e.g., Ex. 3.1 and Ex. 3.3. However, this method requires
training multiple nns. In Fig. 4.2, ella could have been classified as multiple
models, but since it is based on a Laplacian approximation, in this thesis, it is
chosen to belong to the category which approxmate the parameter distribution.

Another area for improvement with methods that rely on creating ensembles
is that they need help representing the model’s bias due to a model mismatch.
The bias could, e.g., be caused by using a model with too low flexibility, having a
too high regularization on the parameters, or using an overparameterized model.

4.4 Learned uncertainty

Methods from the second category, where the uncertainty in the prediction is
encoded, can represent the bias due to the model mismatch, i.e., the models that
learn their own uncertainty. This thesis will further divide the methods into three
different sub-categories: sampling-based methods, methods explicitly modeling
the uncertainty, and methods implicitly modeling the uncertainty, see Fig. 4.2.

4.4.1 Sampling-based methods

By modeling some distribution for the parameters or the prediction, it is possible
to obtain uncertainty in the prediction from the nn by sampling from the poste-
rior distribution of the prediction, i.e., using a bnn [54]. To learn the posterior
by sampling is a difficult task. However, there have been some recent advances
to use clever Markov Chain mc (mcmc) sampling implementations to train the
bnn [77, 92]. One example is to combine the training algorithm, e.g., stochastic
gradient, with mcmc sampling to approximate a bnn [92]. However, although
the formulation is simple and elegant, the posterior has no closed expression to
draw samples from. Specifying meaningful prior for nns is also challenging and
poorly understood [93]. Due to the challenges in training the nns by sampling,
methods exist to approximate the bnn by already trained nns. See Sec. 4.3.3 for
further description of these approximations.
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4.4.2 Explicitly modeling the uncertainty

Instead of learning the uncertainty in the prediction using some sampling scheme,
one could explicitly model it. To explicitly model the uncertainty can be, e.g.,
done by changing the model to include an uncertainty measure in the prediction
[78–82]. A consequence of changing the model is that it also requires changing
the loss function. Hence, more advanced training algorithms might be required.
Explicitly modeling the uncertainty could also be done by training a second nn
to learn the uncertainty [94]. Explicitly learning the uncertainty in the predic-
tion requires further assumptions regarding the distribution. A disadvantage of
explicitly learning the uncertainty is that it often requires more training data due
to the more complicated loss function and training algorithm. For these methods,
the learned uncertainty might also be incorrect, or there is an uncertainty in the
learned uncertainty.

4.4.3 Implicitly modeling the uncertainty

Some constructions of the model can implicitly include information from which
uncertainty in the prediction can be attained. One example of implicitly includ-
ing uncertainty in the prediction is the nn architecture-based object detection
models Single Shot MultiBox Detector (ssd) [95]. Here, the ssd algorithm pro-
vides multiple predictions of the object’s class and position in the image. How-
ever, these are usually truncated, so only the most likely output is used. Hence,
in Paper G, it is suggested to use multiple predictions to quantify the uncertainty
in the prediction from the nn. Multiple predictions, in turn, enable the use of
the prediction from the nn in a tracking framework.

4.5 Summary

To summarize, there exist three different significant sources of uncertainty. Firstly,
due to an error caused by the training algorithm, i.e., the network has not con-
verged to the correct parameters. Secondly, due to errors in the data, and thirdly,
due to errors in the model. The method presented in this thesis covers uncer-
tainty due to the two later sources. Here, many different approaches exist to
quantify uncertainty in the prediction from nns. The gold standard would be to
use a bnn directly. However, it might not be feasible due to high computational
complexity and lack of a closed-form expression of the posterior for the bnn. In-
stead, one could, e.g., let the nn learn its own uncertainty or approximate the
bnn using ensembles. A disadvantage of methods relying on learning their own
uncertainty is that they require more intricate training algorithms. The fact that
they need intricate training algorithms might make them more vulnerable to the
uncertainty caused by the error in the training phase. Regarding the methods
based on ensembles, one disadvantage is that they cannot model the uncertainty
due to a model mismatch. That is because, for the ensemble, the model structure
is fixed, and if a model mismatch exists, it will be present in all the models in
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the ensemble. On the other hand, they do not need an advanced training algo-
rithm. Some methods can even be used out-of-the-box for already trained nns.
Another advantage is that some methods based on the ensemble, which requires
training multiple nns, can consider the uncertainty due to the error caused by
the training algorithm. However, since they require training of multiple models,
they have a high computational complexity.



5
Concluding remarks

The first part of the thesis has given some background theory, which forms the ba-
sis for the methods developed in the second part. We have provided an overview
of methods to quantify uncertainty in the predictions from nns, where the em-
phasis has been on the suggested methods used in Part II of the thesis. This final
chapter of the first part summarizes the scientific contributions of the thesis and
gives some conclusions of the work. The chapter will conclude with some possi-
ble future directions for further research.

5.1 Summary of contributions

This section summarises the main contributions of the thesis. The contribution
can be divided into two categories: the development of the method and how
to make more robust decisions using the developed method of quantified uncer-
tainty.

5.1.1 Uncertainty quantification in the prediction of neural
networks

One of the main contributions of the thesis is the development of the two meth-
ods to quantify uncertainty in predictions from nns. Firstly, the lla used for re-
gression and classification tasks suggested in Paper A and Paper D, and secondly,
the method for objected detection tasks suggested in Paper G. An extension of the
lla, which enables the modeling of multimodal distributions, is also presented
in Paper E. To provide a context in which the suggested methods fit, Chapter 4
of the thesis presents an overview of methods used in the literature to quantify
uncertainty in the prediction from nns. The thesis uses simulation data and real-
world data from experiments on road-friction data and camera trap images to
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validate the methods.
The thesis compares the lla to different methods to quantify the uncertainty

in the prediction of nns in Paper D, and in Paper C compare the lla to other
data-driven models that including uncertainty in their prediction. The compar-
ison validates that the lla creates a reliable estimate of the uncertainty in the
prediction. The uncertainty estimate from the lla is shown to be reliable and
more calibrated, or at least as calibrated, compared to commonly used methods
in the literature. Since overparameterization is common when modeling using
nns, in Paper B, it analyzes how overparameterization affects the quantified un-
certainty from the lla. Here, the uncertainty is shown not to be underestimated.
The thesis provides non-standard computation of the Fisher information matrix
for the regression and classification tasks required for the lla.

5.1.2 Robust decision making and trustworthy decisions

Two of the main benefits of having access to the uncertainty in the prediction
from a model is that the decisions based on those predictions can become more
robust and trustworthy. As shown in Paper D, Paper E, and Paper G, with ac-
cess to the uncertainty in the prediction, predictions from nns can be used in
a sensor-fusion framework where multiple predictions can be combined. These
predictions could come from other models predicting the same signal or previous
predictions from the same model. Hence, introducing redundancies for the deci-
sion process, including predictions from nns, can lead to more robust decisions.
Outliers and ood examples can be detected using the measure of the uncertainty
in the prediction as shown in Paper D, Paper E, Paper F and Paper G. A measure
of the uncertainty in the prediction is important for any safety-critical system
where a missed detection or an incorrect interpretation of the situation can lead
to severe problems. Access to the uncertainty also provides a better understand-
ing of why the decision system is making a specific decision. The knowledge that
a decision process is more robust and its decisions can be better understood leads
to a more trustworthy system.

5.2 Conclusions

This section summarises the scientific contributions of the papers in Part II of the
thesis. From the theoretical analysis, the simulations, and the experiments in the
thesis, one can conclude that the proposed methods produce a reliable estimate of
the uncertainty in the prediction. The conclusion is based on comparing the lla
to other models and other methods used to quantify the uncertainty in the pre-
diction. For the lla, it is possible to conclude that using the method for overpa-
rameterized models is accurate enough. It is viable because the method does not
underestimate the quantified uncertainty in the prediction, i.e., the predictions
are not overly confident. To be able to use the method for overparameterized
models is especially of high importance for nns since they often are overparame-
terized in order to be able to model the true system, even if it is complicated.
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For detection of ood examples, it is also shown that knowledge of the uncer-
tainty is highly important. Overall, the fact that having access to the uncertainty
lets us combine multiple predictions in a sensor-fusion framework. As a result,
having access to this leads to the conclusion that using the uncertainty makes it
possible to make a more robust decision in decision processes that include pre-
dictions from nns.

5.3 Future work

Several directions exist in which this thesis work can be extended. One direc-
tion would be to continue the integration of the prediction of the nns into a
sensor-fusion framework using both the ood detection and the sequential fusion
of prediction to create more robust decision systems.

The thesis suggests that for large nns with many parameters, a part of the
parameters in the network can be considered fixed, and only the uncertainty for
the parameters in the layers toward the network’s end needs to be computed. It is
only computed for the last layers because the amount of data needed to store the
full covariance matrix might be larger than the available memory capacity. Here,
an interesting future research direction would be to investigate how accurate this
approximation is. In particular, is it of higher importance to learn the parame-
ters in the later layers that combine the created basis functions from the earlier
layers? A related suggested research direction is to investigate other methods to
approximate the covariance matrix. As shown in Paper D, covariance scaling is
required to get reliable uncertainty quantification of the prediction from the nn.
That this scaling is necessary indicates that the approximation of the covariance
matrix might miss to capture some uncertainty and not be completely accurate.

As shown in Paper E, fused predictions from multiple nns provided excel-
lent ood detection capability, while the multimodal method provided the most
calibrated quantified uncertainty in the prediction. Hence, a future direction
would be the combination of them, i.e., how should the samples from the differ-
ent modes be drawn considering the uncertainty in the different modes?

Using the quantified uncertainty to do model selection or pruning of the nn
could be another future research direction. Pruning can reduce the memory re-
quirements of the nn, which is vital for their use on edge devices.
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