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Supervisors: Lukáš Malý, George Baravdish
Examiner: Neda Haj-Hosseini
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skriva ut enstaka kopior för enskilt bruk och att använda det oförändrat för icke-
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senare tidpunkt kan inte upphäva detta tillst̊and. All annan användning av doku-
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Abstract

Brain tumors pose a big challenge in the field of neuro-oncology. Gliomas are the
largest subgroup. Magnetic resonance imaging is a non-invasive tool for detect-
ing and characterizing these tumors. Mathematical models, such as the reaction-
diffusion equation, can be used for understanding the intricate behavior of gliomas.
This thesis aims to improve the understanding and prediction of tumor growth by
modifying and evaluating a reaction-diffusion mathematical model and incorpo-
rating magnetic resonance (MR) images, namely intensity from T1-weighted and
T2-weighted images, and apparent diffusion coefficient values.

Image data from five patients was used. The finite difference method was
used to approximate the solution, and brain segmentation is performed using the
software package FSL. The Jaccard index is used to compare the simulation results
with the ground truth, being the segmented tumor area. A spatially varying
proliferation rate is introduced and histology images are used to construct an
initial condition for the reaction-diffusion mathematical model.

The results show improvement in performance based on the Jaccard index,
with the highest values achieved when using a diffusion matrix given as an affine
function of intensity in T1-weighted images. Incorporating a spatially varying
proliferation rate reduces the number of iterations required to reach the maximum
Jaccard index compared to a constant proliferation rate, but this does not influence
the simulation time. The introduction of the p-Laplace operator, particularly with
a value of p = 1.8 instead of the usual Laplace operator (where p = 2), leads to
a higher Jaccard index, indicating an improvement in the model’s performance.
The best Jaccard index achieved was 0.4909 with p = 1.8 compared to the basic
model (JI = 0.4382 with p = 2). An initial tumor cell density is constructed using
histology images.

In conclusion, insights are provided into improving tumor growth modeling by
incorporating MR images, the p-Laplace operator, a spatially varying proliferation
rate and possibility of constructing the initial conditions for tumor cell density
based on histology images.
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Chapter 1

Introduction

This chapter introduces the biological mechanisms behind tumor growth and pro-
gression, more specifically gliomas. The fundamentals of magnetic resonance imag-
ing (MRI) are introduced as well as the modalities used in this thesis. A brief in-
troduction to mathematical modelling for brain tumors using a reaction-diffusion
equation is given.

1.1 The Biology of Brain Tumors

The cell is the fundamental building block of life in organisms and it is responsible
for many of the functions necessary for survival. Cells replicate and divide into
two or more daughter cells, each containing a complete copy of the parent cell’s
chromosomes. Throughout this process, the cell is prone to mutations, which can
alter their normal behavior. One example of abnormal behavior due to mutations
is uncontrolled cell division. This can result in the formation of a mass of cells
known as tumor. Tumors can either be benign or malignant. Benign tumors are
non-cancerous growths and do not spread to other parts of the body. Malignant
tumors are cancerous growths and can spread to other parts of the body. This
process is called metastasis [25]. In this thesis, we are interested in tumors arising
in the brain, more specifically gliomas. This type of tumor arises from the glial
cells in the brain which includes astrocytes, oligodendrocytes and ependymal cells,
is classified based on the type of glial cell they arise from [26].

Gliomas are graded based on their malignancy. The main groups of gliomas are
high-grade gliomas and low-grade gliomas. Low-grade gliomas, usually classified
as grade I or grade II tumors, grow slowly and are less aggressive. High grade
gliomas grow more rapidly and are more aggressive, usually classified as grade III
or grade IV tumors [26].
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CHAPTER 1. INTRODUCTION

1.2 Medical Imaging

Medical imaging techniques are used to create visual representations of the interior
of a body for clinical analysis and medical intervention. It is a crucial aspect
of modern medicine, allowing doctors to diagnose, monitor, and treat diseases
effectively.

One of the most commonly used medical imaging methods is MRI. It produces
detailed images of the interior of the body using radio waves and a strong mag-
netic field. MRI uses non-ionizing radiation, in contrast to X-rays and computer
tomograph (CT) scans. Instead, it generates signals from body atoms using radio
waves and a powerful magnet. It’s a non-invasive procedure and is generally safe
for most patients and the images produced by these signals can then be interpreted
by radiologists [9].

The foundation of MRI is based on the fact that hydrogen ions (protons) in the
body can act as magnets due to their spin property, which can be thought of as an
intrinsic angular momentum, where there is no motion in space. The protons are
charged and have a spin which generates a magnetic field. As a result, the body’s
protons can be influenced by external magnetic fields, meaning, one can align the
spin direction of the protons with an external magnetic field. This can result in
a net magnetization from the protons in the body, in the same direction as the
external magnetic field. In addition, the external magnetic field generates a torque
on the protons, causing them to precess at the so called Larmor frequency [9]. A
more detailed description is given in Chapter 2.

In MRI, tumors are typically identified as distinct, abnormal formations that
stand out from the surrounding tissue. When it comes to brain tumors in particu-
lar, their type and stage might affect how they appear. Depending on the imaging
sequence employed, brain tumors typically manifest on the MRI as regions of high
or low intensity. They often appear as irregular and asymmetrical masses that
contrast with the surrounding healthy brain tissue. After the administration of a
contrast agent, some brain tumors may also exhibit enhancement (look brighter
on the images), which aids in defining the tumor’s boundaries.

1.3 Mathematical Modeling

Mathematical models, particularly those involving partial differential equations
(PDEs), can be very useful in modeling tumor progression. One common approach
is to use a reaction-diffusion equation, which describes how the concentration of
one or more substances changes as a result of local reactions (chemical reactions,
growth, and decay) and diffusion (spreading out as a result of random motion). In
the context of tumor growth, the substance whose concentration we are interested
in could be the cell density of tumor cells. The reaction term then represents the
rate at which tumor cells proliferate (for example, through cell division), and the
diffusion term represents the spread of tumor cells through tissue [17].
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1.4. AIM

Mathematically, a simple reaction-diffusion equation is given by

∂u(x, t)

∂t
= D∆u(x, t) + f(u(x, t)), (1.1)

where u(x, t) is the tumor cell density, ∆ is the Laplace operator, D is the diffusion
coefficient, and f(u(x, t)) represents the reaction term usually of the form f(u) =
ρu(1 − u), where ρ > 0 is the proliferation rate. This reaction term could take
many forms, depending on how one wants the tumor growth to be modeled. In
general, the diffusion matrix is expected to depend on position in space, then (1.1)
becomes

∂u(x, t)

∂t
= ∇ · (D(x)∇u(x, t)) + f(u(x, t)), (1.2)

where D(x) is the diffusion matrix. To be able to solve (1.2) in a given domain
Ω, it is necessary to provide an initial condition u(x, 0) = ϕ(x) and a boundary
condition on the surface S of Ω. There are mainly three types of boundary con-
ditions: Dirichlet boundary conditions, which specify the value of the solution at
the boundary, Neumann boundary conditions which specify the normal derivative
of the solution at the boundary, and Robin boundary conditions, which is a com-
bination of Dirichlet and Neumann boundary conditions. In this thesis, the focus
will be on Neumann boundary conditions. The Neumann boundary condition is
then of the form

D(x)∇u(x, t) · n(x) = 0 for x ∈ S,

where n(x) is the normal vector to the surface S. In a physical context, the deriva-
tive of a quantity often represents a rate of change or a flux. For the reaction-
diffusion equation modeling tumor growth, the Neumann boundary condition rep-
resents the flux of the cell density at the boundary of the domain, which is assumed
to be 0.

1.4 Aim

The aim of this thesis is to enhance the understanding and prediction of tumor
growth by modifying and evaluating the reaction-diffusion model based on medi-
cal images. This includes the intensity from T1-weighted and T2-weighted images,
and apparent diffusion coefficient (ADC) values, as well as histology images. This
study will also look into the effect of the p-Laplace operator (3.17) on the simulation
results. The ultimate goal is to provide a more realistic and accurate representa-
tion of tumor growth, which could potentially contribute to better diagnostic and
therapeutic strategies.
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CHAPTER 1. INTRODUCTION

1.5 Research Questions

The research questions of this thesis are as below:

1. How to improve a reaction-diffusion model by optimizing its parameters.

2. Is it possible to extract tumor cell density from patient images?

3. How can properties of various MR sequences be incorporated into the model?

4. How can the simulations be evaluated? Is the tumor growth realistic?

1.6 Related Work

Mathematical modeling of brain tumor growth, with a particular focus on reaction-
diffusion models, has seen extensive research interest in recent years. The applica-
tion of reaction-diffusion models has been invaluable in providing deeper insights
into the growth patterns of brain tumors, aiding in the development of personal-
ized treatment strategies. In this section, several key studies that have significantly
contributed to this growing field and are closely related to the subject of this thesis
will be discussed.

The authors in [22], incorporate spatial heterogeneity of the diffusion by as-
suming differing rates of diffusion in white matter and gray matter and use a
reaction-diffusion equation to model the cell density of the tumor. Although the
precise ratio between the diffusion coefficient in white matter and gray matter
can vary across different models, they specifically assumed a 5-fold difference in
diffusion rates. They created a precise map of the white and gray matter inside
a synthetic brain used for MR simulations. By doing so, they could visualize and
study the distinct growth patterns that emerged due to the difference in diffusion
rates in the brain.

Further advancements were made in [11] by including anisotropic extension of
gliomas. This modification was based on the observation that glial cells have a
preference to migrate along the direction of fiber tracts. Their simulations out-
comes were compared with two clinical cases demonstrating that the shape and
kinetic evolution of low-grade gliomas centered around the insula were better sim-
ulated with anisotropic rather than isotropic diffusion. This indicates that it may
be necessary to take into account the anisotropy of the cell diffusion tensor while
simulating the growth and invasion of gliomas. In order to identify the main white
matter tracts in the brain, the study described in [21] established a mathematical
model based on diffusion tensor imaging. The anisotropic model offered a marginal
advantage over other reaction-diffusion models, but merely for tumors with strong
anisotropy.

A parameter estimate approach for reaction-diffusion tumor growth models
using medical images captured at different time points was proposed in [13]. This
method calculates the model’s patient-specific parameters, offering a means of
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1.6. RELATED WORK

adjusting the general model to specific patient data. Their findings show that
when one parameter, the proliferation rate of tumor cells, was fixed, several more
factors could be uniquely identified.

9



Chapter 2

Magnetic Resonance Imaging

This chapter provides a more technical view of MRI, focusing on the key concepts
of T1 and T2 relaxation times. These fundamental properties are very important
in differentiating tissue types in MRI, thus forming the basis for image contrast.

In addition, this chapter explains MRI modalities that are used in this the-
sis, such as T1-weighted, T2-weighted, and diffusion tensor imaging (DTI). These
modalities, offer diverse perspectives on tissue properties. This chapter aims to
provide a basic foundation for understanding the technical side of MRI and its
application in medical imaging.

2.1 Relaxation Times

2.1.1 T1-relaxation Time

During an MRI scan, magnetic field is generated, referred to as B0, by the magnet.
This magnetic field aligns the nuclear spins of the atoms within the body, resulting
in the creation of a net magnetization.

Net magnetization is a vector quantity that describes the collective alignment
of nuclear spins. It is typically represented by three components: Mx, My, andMz.
The Mz component corresponds to the magnetization aligned with the direction
of the static magnetic field B0, while Mx and My represent the magnetization in
the perpendicular directions. The net magnetization is said to be in a state of
equilibrium when it is aligned with the external magnetic field, B0. However, it is
possible to disrupt this equilibrium state by altering Mz such that it reaches zero,
resulting in the absence of net magnetization in that direction. This can be done
by applying a radiofrequency (RF) pulse. The return of Mz to its equilibrium
state is governed by the spin lattice relaxation time (T1). Different tissues in the
body exhibit different T1 values, which are dependent on both the magnitude of
B0 and the specific tissue type. For a more detailed description of the RF pulse
and the physics behind, please see [9].
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2.2. MRI MODALITIES

2.1.2 T2-relaxation Time

The transverse magnetization is usually denoted by Mx and My. These magnetic
moments are disturbed from their equilibrium state when the RF pulse is applied
and then turned off. As time goes on, this leads to phase incoherence in the
transverse plane and the eventual decay of Mx and My to 0. The process of decay
is governed by the spin-spin relaxation time (T2), which measures the time it takes
for the transverse magnetization to decrease exponentially. The value of T2 varies
among different tissues, and is influenced by both the magnitude of the applied
magnetic field (B0) and the tissue type. It is important to note that T2 is always
shorter than the spin lattice relaxation time (T1). For a detailed description please
see [9].

2.2 MRI Modalities

To acquire an MR image, a pulse sequence is applied and it needs to be repeated
several times to acquire the desired images. The time between these repetitions
(the time from one RF pulse to the next) is called repetition time (TR). This
determines the amount of Mz recovered each sequence.

Another important time is echo time (TE). It is the time between the applied
RF-pulse and the detection of the signal from the tissue of interest. The amount of
the transverse magnetization for each MRI sequence is controlled by TE. Depend-
ing on how TR and TE are chosen, different contrasts of MR images are generated.
For a detailed description on image acquisition, please see [9].

2.2.1 Structural MRI

T1-weighted (T1-w) Images

A T1-w image shows variations in T1 relaxation times. This is achieved by utiliz-
ing a short TE and a short repetition TR during the image acquisition process,
which provides distinct contrasts between different tissues. In this modality, cere-
brospinal fluid (CSF) appears darker compared to other tissues, as it has a short
T1 relaxation time. Fat appears brighter in the image due to its longer T1 relax-
ation time. White matter appears bright, while gray matter appears as a shade of
gray in the T1-w image [19], see Figure 2.1a.

T2-weighted (T2-w) Images

A T2-w image highlights the differences in T2 relaxation times between different
tissues. Both TE and TR are long for T2-w images. In a T2-w image, CSF appears
bright due to its long T2 relaxation time, white matter exhibits a slightly bright
signal, while gray matter, appears darker than white matter[19], see Figure 2.1b.
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CHAPTER 2. MAGNETIC RESONANCE IMAGING

(a) (b)

Figure 2.1: (a) T1-w and (b) T2-w images of a patient from the UPenn-GBM
dataset [1].

2.2.2 Diffusion Weighted Imaging

Diffusion weighted imaging (DWI) utilizes a magnetic field gradient during image
acquisition to highlight the areas where water diffusion takes place. Multiple DWI
scans are acquired from different directions to build a diffusion tensor image (DTI),
allowing the assessment of diffusion in three dimensions. The structure of the brain
tissue influences water diffusion in the brain. For example, in dense tissue, such as
the axons of neurons, water diffusion is constrained and tends to occur along the
length of the axons. This is referred to as anisotropic diffusion. Diffusion of water
is more random in locations where the tissue is less dense, and this is referred to
as isotropic diffusion. DTI is a group of methods that generates the images of
diffusion properties of tissue based on the eigenvalues calculated from DWI. The
process of how to acquire DTI images is beyond the scope of this thesis, more
details can be be found in [14].

For acquiring a DTI, a tensor is obtained, usually denoted as D, a mathemati-
cal object that takes the concept of vectors and matrices and expands it to higher
dimensions. This tensor contains information regarding the diffusion direction
within each voxel. It can be used to compute several measurements that provide
information about the tissue. The main measurements are fractional anisotropy
(FA), which quantifies the spread of eigenvalues, and mean diffusivity (MD), which
shows the average of all three eigenvalues. Additionally, radial diffusivity (RD),

12



2.2. MRI MODALITIES

which is the average of the two smaller eigenvalues, represents diffusion in direc-
tions perpendicular to the third direction, and axial diffusivity (AD), quantifies the
value of the primary eigenvalue, or the direction of highest diffusion [14]. Figure 2.2
shows brain images for MD (also called ADC), AD and FA from the UPenn-GBM
dataset [1, 2, 5].

(a) (b) (c)

Figure 2.2: (a) ADC image, (b) AD image, (c) FA image [1].

Assuming D has eigenvalues λ1, λ2, and λ3 such that λ1 ≤ λ2 ≤ λ3, the
measurements described above can be calculated as

MD =
λ1 + λ2 + λ3

3
, RD =

λ1 + λ2

2
, AD = |D| = λ3

FA =

√
3[(λ1 −MD)2 + (λ2 −MD)2 + (λ3 −MD)2]

2(λ2
1 + λ2

2 + λ2
3)

.
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Chapter 3

Mathematical Model
for Brain Tumors

In this chapter a mathematical model is introduced for modeling tumor growth.
In this thesis, the focus is modeling of tumor growth in the brain. Fick’s law
of diffusion is used to get the reaction-diffusion equation. A Neumann boundary
conditions is imposed and an initial condition is established to provide a realistic
starting point for the model.

3.1 Domain

The domain of our system is Ω ⊂ R3, which represents the anatomical brain
enclosed by the skull. The brain has a very complex structure and is heterogeneous.
In this model, we assume that the tumor can only grow in the white matter and
gray matter. Therefore, define the domain in the model such that Ω = Ωw ∪
Ωg, where Ωw is the region of the brain containing white matter and Ωg is the
region of the brain containing gray matter. The partitioning of the domain in this
manner allows us to accurately capture the distinct physiological characteristics
of these two types of brain tissue, which can be crucial in understanding the
dynamics of tumor growth within the brain. This approach to defining the domain
of the mathematical model aligns with the methodologies outlined in the work of
Murray [18].

3.2 Reaction-Diffusion Equation
via Laplace Operator ∆

We assume that growth of glioma tumor cells is governed by proliferation and
diffusion. Proliferation takes into account cell division. Here, diffusion is used to
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3.2. REACTION-DIFFUSION VIA LAPLACE OPERATOR ∆

approximate tumor cell motility. We will then use the reaction diffusion equation

∂u(x, t)

∂t
= ∇ · (D(x)∇u(x, t)) + f(u(x, t)) in Ω× (0, T ), (3.1)

where the left-hand side describes how a quantity changes over time and the right-
hand side describes the spatial evolution of that quantity. If we let u = u(x, t) be
the cell density in Ω at time t ∈ [0, T ], the mass m of the tumor inside Ω is then
given by the volume integral

m(t) =

∫
Ω
u(x, t) dx. (3.2)

To take into account cell division and cell death the term f(u) is introduced so
that the net proliferation rate is given by

dmf

dt
=

∫
Ω
f(u(x, t)) dx (3.3)

It is assumed that the cells diffuse according to Fick’s law of diffusion. It states
that particles move from high concentrations to low concentrations and the flux
points to the most rapid decreasing direction of the cell density. Mathematically
the flux J is described by

J(x, t) = −D(x)∇u(x, t), (3.4)

where ∇ is the gradient operator and D(x) is the diffusion coefficient. The total
flux across the boundary S = ∂Ω is given by

dmflux

dt
= −

∫
S
J(x, t) · n(x) dS, (3.5)

where n(x) is the outward unit vector normal to S. By the divergence theorem we
have

−
∫
S
J(x, t) · n(x) dS =

∫
Ω
∇ · J(x, t) dx. (3.6)

Equations (3.3) and (3.5) can be put together as a balance equation

dmtot

dt
=

dmflux

dt
+

dmf

dt
, (3.7)

where mtot is the total mass in Ω, mflux refers to the mass that is diffusing inside
Ω, and mf refers to the net mass that is generating in Ω. Therefore, by combining
(3.2)–(3.7) we obtain

d

dt

∫
Ω
u(x, t) dx =

∫
Ω
∇ · (D(x)∇u(x, t)) dx+

∫
Ω
f(u(x, t)) dx. (3.8)

Assuming (3.1) to be true, then (3.8) holds. Note that equation (3.1) does not
capture the bio-mechanical properties of the brain and therefore there is not any
deformation of the brain.
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CHAPTER 3. MATHEMATICAL MODEL FOR BRAIN TUMORS

3.2.1 Boundary and Initial Condition

We impose the Neumann boundary condition

D(x)∇u(x, t) · n(x) = 0 on S × (0, T ), (3.9)

where n(x) is the outward normal unit vector to the boundary S. The boundary
condition states that tumor cells never leave, or come from outside of Ω. We
assume an initial cell density at time t = 0 for the model is

u(x, 0) = ϕ(x) in Ω. (3.10)

The initial condition ϕ(x) (seed) is usually assumed to have the form

ϕ(x) = e−(x−x0)2/d2 , (3.11)

where d > 0 and x0 is the center of the seed, as in [22, 21] as well as others. Such
an assumption stems from the fact that there is no information of initial tumor
cell density from MR images alone.

In this thesis, we will use both (3.11) and an initial tumor cell density with the
help of histology images. It is important to note that with this initial condition,
it is assumed that the tumor has grown already to that size and starts to diffuse.

3.3 Proliferation

The term f(u) in equation (3.1) can be thought of as the net proliferation rate of
the tumor cells. To model the proliferation, we consider the generalized logistic
function

f(u) = ρuα(1− uβ), (3.12)

where α, β, and ρ are positive constants. It is of interest to investigate what values
of these constants give realistic results, if at all. In related works, see [18, 22], it
is assumed that α = β = 1.

To get a sense of the behavior of the proliferation term, we study the ordinary
differential equation (ODE)

dw(t)

dt
= f(w), (3.13)

where w(t) is some unknown quantity. One obtains exponential growth in case
f(w) = ρu, i.e the solution to (3.13) is

w(t) = w0e
ρt,

where w0 = w(0) is an initial condition. This is not realistic tumor growth since
w → ∞ as t → ∞. A more realistic tumor growth is expected with parameters
α = 1 and β = 1, which is called the logistic growth. The solution to (3.13) is

w(t) =
w0

w0 + (1− w0)e−ρt
.

16



3.3. PROLIFERATION

However, it is interesting to investigate whether β ̸= 1 can model cancer growth
better. Assuming α = 1 and β > 0, the solution to (3.13) becomes

w(t) =
1

(1 +Ke−βρt)1/β
,

where K = −1 + 1/wβ
0 . In Figure 3.1 we can see the behavior of w(t) for some

different values of β. From the figure we can observe that the quantity w(t) grows
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Figure 3.1: The solution to the ODE (3.13) with generalized logistic function term
for different values of β.

more rapidly as β increases. In this thesis, tumor growth of HGG is modelled with
α = 1, and β = 2.

In other works such as [11, 15], β = 1 is used to model a logistic growth of
brain tumors, [15] uses β = 1 to model LGG glioma growth. However, the choice
of β is not necessarily limited to this value, and it is plausible that the growth of
HGG gliomas could be more rapid. Hence, it would be worthwhile to explore a
different value of β.

Necrosis and Space Variance

In reality, tumor cells begin to change to necrosis, a form of cell death due to
insufficient nourishment. This phenomenon is a critical aspect of tumor growth
and progression, and should be incorporated into tumor growth mathematical
models to improve its accuracy and realism. A simplifying assumption made so
far is that the cell proliferation rate, denoted as ρ, is space-independent. However,
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CHAPTER 3. MATHEMATICAL MODEL FOR BRAIN TUMORS

in reality, ρ can vary across different regions within the tumor [6]. The space
variance of ρ is implemented in this thesis, see Section 4.6.

3.4 Diffusion Matrix

In [17], the diffusion matrix is a diagonal matrix in the form D = dI, where d > 0
and I is the identity matrix. This works only on a homogeneous brain, that is,
tumor cells diffuse equally across the brain region Ω. As [18] points out, tumor
cells diffuse at different rates between the two main regions of the brain, white
matter and gray matter. The diffusion matrix is then changed to incorporate this
observation by making it spatially dependent such that

D(x) =

{
DgI for x ∈ Ωg ,

DwI for x ∈ Ωw ,
(3.14)

where Dw > 0 is the diffusion coefficient in white matter tissue and Dg > 0
is the diffusion coefficient in gray matter tissue. This type of diffusion will be
called bimodal diffusion in this thesis. According to [18] it can be assumed that
Dw ≈ 5Dg. The reaction-diffusion (1.2) with the diffusion matrix (3.14) is the
model used in [18], [10]. In this thesis, a new diffusion matrix is defined

D(x) = c(x)DwI + (1− c(x))DgI, (3.15)

where c(x) is between 0 and 1 and is based on the intensity of MR images. This
type of diffusion will be called gradient diffusion. In T2-w images, where gray
matter appears brighter than white matter, Equation (3.16) becomes

D(x) = c(x)DgI + (1− c(x))DwI. (3.16)

Both the bimodal diffusion and gradient diffusion will be used and the results are
compared in Chapter 5.

Let the intensity value of a voxel be denoted as V (x). The goal is to transform
this value into a normalized intensity, which is represented as c(x). The math-
ematical representation of this process starts with identifying the minimum and
maximum values within the original volume

Vmin = min
x∈Ω

V (x), Vmax = max
x∈Ω

V (x).

The normalized intensity value is obtained by dividing each element in the
shifted volume by the range, i.e.,

c(x) =
V (x)− Vmin

Vmax − Vmin
.

However, the normalization process assumes that the brain region Ω has already
been defined so that CSF and the ventricles (where tumor growth does not occur)
can be disregarded. Segmentation is used to identify and exclude these regions from
the analysis, as detailed in the materials and methods section. This approach is
similar to the methodology described in [27].
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3.5. REACTION-DIFFUSION VIA p-LAPLACE OPERATOR ∆p

3.5 Reaction-Diffusion Equation
via p-Laplace Operator ∆p

It can be useful to investigate how the model behaves when the p-Laplace operator
is introduced [16], in particular with 1 < p ≤ 2. The p-Laplace operator is defined
as

∆pu(x) = ∇ ·
(
|∇u(x)|p−2∇u(x)

)
, (3.17)

where x ∈ R3 and |∇u| is defined as

|∇u| =

[(
∂u

∂x1

)2

+

(
∂u

∂x2

)2

+

(
∂u

∂x3

)2
] 1

2

. (3.18)

Using (3.17), a general reaction-diffusion equation via the p-Laplace operator
can be constructed

∂u(x, t)

∂t
= ∇ ·

(
D(x)|∇u|p−2∇u(x, t)

)
+ f

(
u(x, t)

)
. (3.19)

This is a non-linear PDE, which is hard to solve with standard methods. Fur-
thermore, it introduces singularities when |∇u| = 0. Figures 3.2–3.4 illustrate
the effect of the p-Laplace operator on tumor growth simulations for three dif-
ferent diffusion matrices at T = 60, each solved for three different p-values and
f(u(x, t)) = ρu(1− u2). The domain is a a 50× 50× 50 cube and the bimodal dif-
fusion is used. The parameters used for this simulation experiment are Dw = 0.5,
Dg = 0.1, ρ = 0.085, and u∗0 = 0.9 with a time step ∆t = 0.05.
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Figure 3.2: Simulation has constant diffusion coefficient of 0.5.
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Figure 3.3: From the 32nd to the 50th layer, the diffusion coefficient is set at
0.1. For the 25th to the 31st layer, we set zones of progressively lower diffusion
coefficient, ranging from 0.2 to 0.5.
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Figure 3.4: The same progression happens above the middle layer, and below the
middle layer but in reverse.
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Chapter 4

Materials and Methods

4.1 Data

The datasets used in this thesis are the University of Pennsylvania glioblastoma
(UPenn-GBM) [1, 2, 5] and IVY Glioblastoma Atlas Project (IvyGAP) [4]. The
UPenn-GMB dataset contains MR images such as T1-w, T2-w, and DTI, of patients
diagnosed with a brain tumor. T1-w images are used to segment the brain into
white matter, gray matter and CSF. The UPenn-GBM dataset also includes tumor
segmentations, both automatic performed by a computer and manually performed
by clinicians. In this thesis, we only use the automatic segmentation to avoid
biases. An example of the tumor segmentation can be seen in Figure 4.1

Figure 4.1: Example of tumor segmentation from the UPenn-GBM dataset in a
T1-w image [1]. The green highlights edema/invasion, red highlights the tumor
enhancement and yellow highlights the necrosis.
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CHAPTER 4. MATERIALS AND METHODS

The tumor segmentations are compared with our synthetic tumor. The method-
ology is described in the evaluation section of this chapter. The UPenn-GBM
dataset has more than 600 patients, but in this thesis we only use four for simula-
tions, and from the IvyGAP-dataset one patient is used for incorporating histology
(Table 4.1). Clinical and radiomic data for patients can also be found in [2].

Table 4.1: Data used in this thesis for the simulations.

Dataset T1-w, T2-w ADC Histology Segmentations Patient

UPenn-GBM Yes Yes No Yes 1-4
IvyGAP Yes No Yes Yes 5

4.2 Data Pre-Processing

To compute the diffusion matrix in the implementation code, it is necessary to
segment the brain into white matter, gray matter and CSF. For this we use the
FMRIB’s automated segmentation tool (FAST) in the FMRIB Software Library
(FSL) [28, 12]. The results of using FAST on a T1-w image with a tumor is shown
in Figure 4.2. It is clear that the segmentation inside the red circle is inaccurate
and does not provide us with useful information about the tumor. In addition, any

Figure 4.2: An example of brain structure segmentation with FSL. Purple is white
matter, yellow is gray matter and orange is CSF. Encircled with red is the location
of the tumor. FSL wrongly classifies the tumor as CSF or gray matter.

information about white matter, gray matter and CSF is lost in the affected area.
To take this into account, we take advantage of the symmetry of the brain. The
segmentation is performed on the healthy half of the brain to avoid any additional
errors in the segmentation. Then the healthy half of the brain is mirrored (Figure
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4.3), and a seed of a tumor is then planted in the white matter approximately into
the mirrored area of the tumor.

Figure 4.3: Mirrored brain.

4.3 Numerical methods

We solve (3.1) using MATLAB by following the numerical implementation in [10].
The model can be written as

∂

∂t
u(x, t) = A(x)u(x, t) + f

(
u(x, t)

)
, (4.1)

where A is a differential operator so that the first term on the RHS corresponds to
the term ∇· (D(x)∇u(x, t)) of (3.1). We partition our time domain [0, T ] , T > 0,
in N + 1 equally spaced points

0 = t0 < t1 < t2 < ... < tN = T.

The time derivative is approximated with the Euler forward method, this gives us

ui+1(x) = ui(x) + ∆t
(
A(x)ui(x) + f(ui(x))

)
,

where i ∈ {0, 1, 2..., N − 1}, ∆t > 0 is the step-size in time, and ui = u(x, ti).
The spatial derivatives in A are approximated using finite differences. The space
domain Ω is partitioned in equally spaced points, K points in the the x-direction,
L points in the y-direction, and M in the z-direction, forming a 3D-lattice

x0 < x1 < x2 < ... < xK−1,

y0 < y1 < y2 < ... < yL−1,

z0 < z1 < z2 < ... < zM−1.
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Define the forward finite difference with the operator ∂+
x and the backward finite

difference with the operator ∂−
x in the x-direction

∂+
x u

i(x, y, z) =
1

h

(
ui(x+ h, y, z)− ui(x, y, z)

)
,

∂−
x u

i(x, y, z) =
1

h

(
ui(x, y, z)− ui(x− h, y, z)

)
,

where h > 0 is a step-size in space. Then the second order difference in the
x-direction is approximated by the alternating schema

∂x(d11∂u
i) =

1

2

(
∂−
x (d11∂

+
x u

i) + ∂+
x (d11∂

−
x u

i)
)

where d11 corresponding to the first diagonal elements of D.

The difference operators along the y− and z-direction are defined analogously.

4.3.1 Thresholds and Normalization

Initial Condition

When implementing the initial condition, a threshold value, u∗0 is chosen in order
to confine cells in a small volume. In this thesis, the value of u∗0 = 0.9 is used for
all the simulations, where the Gaussian seed (3.11) was planted. It is clear that it
has an effect on the number of iterations needed for the simulated tumor to reach
a certain volume. If the threshold is too small then the simulation starts with a
very big tumor, whilst if the threshold is close to 1, then we get a very small initial
tumor, and it might not have the time to grow since it can diffuse a lot faster than
it proliferates. The placement of the seed is determined by calculating the centroid
of the segmented tumor, which is denoted as x0.

Gradient Diffusion

For the case where we use an MR intensity based diffusion matrix, first, the in-
tensity voxel values are normalized as described in Section 3.4. Since the black
background voxels should not be counted in the normalization, the segmentation
for white matter and gray matter is used to find Vmin and Vmax.

Tumor Detection Threshold

A threshold is introduced based on the simulated tumors cell density u(x, t). If
u(x, t) > 0.16, determining whether a voxel represents tumor tissue. The use of
this threshold, corresponding approximately to the percentage of tumor cells being
detectable by T2-w images, is motivated in [23].
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4.4 Evaluation

The Jaccard index is used as a measure to compare the simulated tumor and the
ground truth. A similar approach is employed in [2] to compare their anisotropic
model with the model in [22]. The Jaccard index measures the similarity between
two sets. For any two finite sets A1 and A2, the Jaccard index is defined as:

J(A1, A2) =
|A1 ∩A2|
|A1 ∪A2|

,

where a ratio of 0 means that the two sets have nothing in common, while a ratio
of 1 means that the two sets are identical.

4.5 Histology

Histology is the knowledge of examining the organization and arrangement of cells,
tissues, and organs at a microscopic level to better understand their function,
structure, and potential abnormalities or diseases. Tissue samples are obtained
through biopsy, surgery, or autopsy. Histology images can aid us to approximate
initial tumor cell densities that can be used in our model.

4.5.1 Initial tumor cell density condition

The initial cell density of the tumor is determined by the condition (3.10). How-
ever, in the absence of data, an estimation must be made for the function ϕ(x).
This initial cell density is concentrated within a very small volume and in the the
model the assumption is that the function ϕ(x) takes the form (3.11).

The IvyGAP database [4] has both histology and MR data which is used in
this section. The tumors are subdivided into blocks and labeled with letters, for
example as in Figure 4.4. One patient from this dataset is included. Hematoxylin
and eosin (H&E) images from three different blocks are selected. By using the
software QuPath [3], cells are detected and a heat map is generated, representing
tumor cell density, see Figure 4.5. The maximum cells detected per pixel area is
found in the red region, and the minimum is found on the dark blue/black region
of the heat map in Figure 4.5. The maximum number of detected cells per pixel
area is approximately 0.011, and the minimum is approximately 0.0009. In the
green region, the value is around 0.0025. Thus, it can be assumed that cell density
u(x, t) values close to 1 correspond to the maximum value of cells detected per
pixel area for this specific tumor slice of patient 5.

The acquired heat map images from QuPath is processed using MATLAB to
enhance color values and convert them into matrices, as QuPath lacks this func-
tionality. The resulting matrices are then resized to smaller dimensions, specifically
to a size of 9 × 9. These resized matrices are used to create slices, which are in-
serted into a larger empty 9× 9× 9 array. The remaining sections of the array are
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(a) (b)

Figure 4.4: (a) T1-w image of patient 5 (b) Resected tumor of patient 5 [4].

(a) (b) (c)

Figure 4.5: (a) H&E image with feature boundaries from a slice of the resected
tumor, (b) Tumor annotation for corresponding H&E image, black is necrosis,
green is cellular tumor, blue is perinecrotic tumor and orange is blood vessel, (c)
Cell density heat map of corresponding H&E image [4].

obtained by interpolation to fill in the gaps. Figure 4.6 illustrates the difference
between the two different initial conditions.

4.5.2 Proliferation Index

In [6], the authors investigate the changes in proliferating cell nuclear antigen
(PCNA) expression in glioblastoma cells along a stereotactic biopsy (a minimally
invasive procedure used to obtain tissue samples) trajectory. These trajectories
refer to the paths taken by the probe to reach different regions within the tumor.
PCNA is used to stain cells to visualize and quantify the number of proliferating
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(a) (b)

Figure 4.6: (a) Initial condition ϕ(x) constructed using (3.11), (b) initial condition
ϕ(x) constructed using three different slices from H&E stained images.

cells in different regions of the tumor. The proliferation index is calculated as the
ratio of observed active proliferating cells and total cancer cells. Table 4.3 shows
the median, mean and standard deviation of this ration at different levels in the
tumor. Level 0 refers to the beginning of the solid tumor. A negative level is
proximal along the trajectory and positive distal along the trajectory. The results
suggest that the proliferation rate is spatially dependent.

Unfortunately, calculations as in [6] cannot be performed since it is not possible
to see the actively proliferating cells from the IvyGAP database histology images,
or any other histology dataset. For this reason, we take similar values as in [6].

It is important to note that the approach of having fixed levels along the biopsy
trajectory has limitations. Tumor subregions can vary significantly from patient
to patient, making it important to adjust these levels to the individual patient.
This method makes a clear distinction for the solid tumor. However, no other
information about the tumor is provided. Therefore, the cell proliferation indices
with regard to the position alone are not accurate measures. The authors in [6]
provide another table that looks at the mean, median and standard deviation with
respect to CT-scans, see Table 4.3. These values help us define the proliferation
rate.

Table 4.2: Proliferating index with respect to biopsy level [6].

Level Mean Median Standard Deviation

-20mm 0.47 0.38 0.47
-10mm 1.95 0.66 3.45

0 7.02 5.45 6.26
+10mm 1.98 0.39 2.62
+20mm 0.19 0.09 0.31
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Table 4.3: Proliferating index with respect to radiographic appearance [6]. PH =
region of hypodensity on CT-image, CE = contrast enhancing region, CH = region
of hypodensity on the CT-image within the contrast-enhancing region of tumor.

Level Mean Median Standard Deviation

PH 0.90 0.38 1.43
CE 3.91 1.38 5.98
CH 4.31 2.67 4.92

4.6 Implementation of Spatially Varying
Proliferation Index

Inspired by [6], the space varying proliferation rate ρ = ρ(x) can be implemented
by dividing the tumor into two parts, see Figure 4.7. The radius r0 corresponds
to the level PH, r1 to the levels PH and CE.

Note that both r0 and r1 must be time dependent, otherwise the tumor would
not grow. This, in turn makes the proliferation rate time dependent as well.
The histology images provided by the IvyGAP dataset do not provide sufficient
information for an approximation of the proliferation rate. Therefore, the values
obtained from [6] act as a useful reference for selecting appropriate proliferation
rates.

The necrotic region of a brain tumor in an MR image can be represented by
the radius denoted as r0, which can be extracted from the MR images. On the
other hand, the second radius, denoted as r1, can be estimated using MR images
as an approximation. The focus in this thesis is primarily on utilizing these radii
to define the spatially varying proliferation rate, and therefore r0 is not considered
as necrotic tissue.

r0

r1

Figure 4.7: Tumor divided into two different regions defined by the radii r0 and
r1.

For the simulations, the thresholds r0 = 0.4R and r1 = 0.7R are used, where
R is the current radius of the tumor. These thresholds are selected by trial and
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error. The spatially varying proliferation is given by

ρ(x) =


0.04 for |x− x0| ≤ r0,

0.08 for r0 < |x− x0| ≤ r1,

0.05 for |x− x0| > r1

(4.2)

where x0 is the point of the center of the planted seed. When trying to use
similar values to the median in Table 4.3, the tumor starts growing in the region
r0 < |x− x0| < r1 prior to developing within the region |x− x0| ≤ r0 which is not
realistic. Therefore the values (0.04, 0.08, 0.05) are used.
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Chapter 5

Results

This chapter presents the results of the thesis for five patients, which includes
tumor simulations on T1-w, T2-w and ADC images with two different diffusion
matrices (bimodal and gradient diffusion matrix). Heat maps of simulated tumors
with the best and worst Jaccard index (JI) are also provided for patient 1. The seg-
mented (ground truth) tumor is shown in red, while the simulated tumor is shown
in green and yellow. The yellow color indicates the overlap between the simulated
and segmented tumor, and the green color represents the non-overlapping portion
of the simulated tumor with the segmentation.

In addition to the images, tables are provided for the different diffusion matrices
used on three different MR modalities, T1-w, T2-w, and ADC images, as well as
3 different p-values, showing the maximum JI and the corresponding iteration at
which the maximum is achieved. These tables provide a quantitative evaluation
of the tumor simulation performance using the bimodal and gradient diffusion
matrices. The number of iterations needed to reach maximum JI is also shown.

For the bimodal diffusion matrix, the T1-w image is used for the segmentation
of white matter, gray matter and CSF. Therefore, no calculation is performed for
other modalities since the segmentation was similar to the one from T1-w.

Two main observations can be made from the tables in this chapter. The
first observation is that the JI is higher when using the gradient diffusion matrix
than when using the bimodal diffusion matrix. The second observation is for T1-w
images, we always get a somewhat higher JI for p = 1.8. Even when varying the
parameters Dw, Dg and ρ, see Tables 5.2–5.7, we still get a higher JI on T1-w
images.

Figures 5.1–5.4 illustrate the differences between the ground truth and the
simulated tumor and the simulated cell density u(x, t). In Figures 5.3 and 5.4,
we can observe that the tumor cell density is lower than that in Figure 5.1. The
shape of the tumor however is very similar for all cases shown. Similar results are
seen for the rest of the patients; therefore, only the best results are summarized
in Table 5.8 for these patients.

Figure 5.5 illustrates the differences between the ground truth and the sim-
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ulated tumor with an initial condition constructed from H&E stained histology
images. There are subtle difference but the overall shape stays the same compared
to Figures 5.1–5.4.

Figure 5.6 illustrates how the radius of the simulated tumor grows with respect
to the iterations. The radius of the simulated tumor is observed to be close to
spherical and therefore an average radius from the planted seed point is calculated.

Table 5.1: Results for patient 1 with different p values. The parameters used are:
Dw = 0.5, Dg = 0.1, ρ = 0.04, u∗0 = 0.9.

D bimodal (3.14) D gradient (3.16)
MR modality p value JI Iteration JI Iteration

T1-w 2 0.4382 1764 0.4498 1686
T2-w 2 - - 0.4550 1638
ADC 2 - - 0.4557 1663

T1-w 1.9 0.4511 1690 0.4581 1658
T2-w 1.9 - - 0.4617 1677
ADC 1.9 - - 0.4623 1693

T1-w 1.8 0.4628 1718 0.4720 1658
T2-w 1.8 - - 0.4617 1811
ADC 1.8 - - 0.4398 1838

Table 5.2: Results for patient 1 with different p values. The parameters used are:
Dw = 0.51, Dg = 0.1, ρ = 0.04, u∗0 = 0.9.

D bimodal (3.14) D gradient (3.16)
MR modality p value JI Iteration JI Iteration

T1-w 2 0.4389 1759 0.4501 1681
T2-w 2 - - 0.4547 1634
ADC 2 - - 0.4557 1663

T1-w 1.9 0.4515 1692 0.4590 1627
T2-w 1.9 - - 0.4624 1680
ADC 1.9 - - 0.4623 1683

T1-w 1.8 0.4627 1728 0.4726 1653
T2-w 1.8 - - 0.4598 1825
ADC 1.8 - - 0.4444 1907

31



CHAPTER 5. RESULTS

Table 5.3: Results for patient 1 with different p values. The parameters used are:
Dw = 0.52, Dg = 0.1, ρ = 0.04, u∗0 = 0.9.

D bimodal (3.14) D gradient (3.16)
MR modality p value JI Iteration JI Iteration

T1-w 2 0.4337 1470 0.4503 1674
T2-w 2 - - 0.4550 1635
ADC 2 - - 0.4558 1783

T1-w 1.9 0.4472 1360 0.4600 1626
T2-w 1.9 - - 0.4624 1681
ADC 1.9 - - 0.4630 1690

T1-w 1.8 0.4612 1364 0.4733 1670
T2-w 1.8 - - 0.4576 2242
ADC 1.8 - - 0.4393 2371

Table 5.4: Results for patient 1 with different p values. The parameters used are:
Dw = 0.60, Dg = 0.1, ρ = 0.04, u∗0 = 0.9.

D bimodal (3.14) D gradient (3.16)
MR modality p value JI Iteration JI Iteration

T1-w 2 0.4458 1748 0.4520 1683
T2-w 2 - - 0.4564 1670
ADC 2 - - 0.4393 1920

T1-w 1.9 0.4575 1744 0.4624 1637
T2-w 1.9 - - 0.4658 1681
ADC 1.9 - - 0.4563 1744

T1-w 1.8 0.4579 1781 0.4740 1670
T2-w 1.8 - - 0.4293 1950
ADC 1.8 - - 0.4002 2018
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Table 5.5: Results for patient 1 with different p values. The parameters used are:
Dw = 0.5, Dg = 0.09, ρ = 0.04, u∗0 = 0.9.

D bimodal (3.14) D gradient (3.16)
MR modality p value JI Iteration JI Iteration

T1-w 2 0.4393 1777 0.4490 1688
T2-w 2 - - 0.4551 1638
ADC 2 - - 0.4556 1662

T1-w 1.9 0.4528 1695 0.4580 1591
T2-w 1.9 - - 0.4616 1671
ADC 1.9 - - 0.4623 1691

T1-w 1.8 0.4652 1720 0.4722 1652
T2-w 1.8 - - 0.4621 1808
ADC 1.8 - - 0.4490 1877

Table 5.6: Results for patient 1 with different p values. The parameters used are:
Dw = 0.5, Dg = 0.05, ρ = 0.04, u∗0 = 0.9.

D bimodal (3.14) D gradient (3.16)
MR modality p value JI Iteration JI Iteration

T1-w 2 0.4380 1869 0.4461 1708
T2-w 2 - - 0.4548 1645
ADC 2 - - 0.4555 1652

T1-w 1.9 0.4559 1770 0.4572 1596
T2-w 1.9 - - 0.4618 1674
ADC 1.9 - - 0.4624 1682

T1-w 1.8 0.4742 1752 0.4705 1610
T2-w 1.8 - - 0.4644 1765
ADC 1.8 - - 0.4533 1858

33



CHAPTER 5. RESULTS

Table 5.7: Results for patient 1 with different p values. The parameters used are:
Dw = 0.5, Dg = 0.1, ρ = (0.04, 0.08, 0.05), u∗0 = 0.9.

D bimodal (3.14) D gradient (3.16)
MR modality p value JI Iteration JI Iteration

T1-w 2 0.3371 1280 0.4447 973
T2-w 2 - - 0.4464 1015
ADC 2 - - 0.4473 991

T1-w 1.9 0.3283 1265 0.4686 974
T2-w 1.9 - - 0.4498 928
ADC 1.9 - - 0.4497 921

T1-w 1.8 0.3384 1246 0.4724 972
T2-w 1.8 - - 0.4642 928
ADC 1.8 - - 0.4616 977
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Figure 5.1: Tumor simulation using a bimodal diffusion matrix with p = 2,
Dw = 0.5, Dg = 0.1, ρ = 0.04 and u∗0 = 0.9.
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Figure 5.2: Tumor simulation using a gradient diffusion matrix and p = 2,
Dw = 0.5, Dg = 0.1, ρ = 0.04 and u∗0 = 0.9.
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Figure 5.3: Tumor simulation on T1-w images using a gradient diffusion matrix
with p = 1.8, Dw = 0.5, Dg = 0.1, ρ = 0.04 and u∗0 = 0.9.
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Figure 5.4: Tumor simulation using a gradient diffusion matrix and p = 1.8,
Dw = 0.5, Dg = 0.1, ρ = (0.04, 0.08, 0.05) and u∗0 = 0.9.
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Figure 5.5: Tumor simulation with histology based ϕ(x), p = 1.8, Dw = 0.5,
Dg = 0.1 and ρ = 0.04.
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Figure 5.6: Plot of average tumor radius against iteration for three different p-
values with gradient diffusion. The parameters use here are Dw = 0.5, Dg = 0.1,
ρ = 0.04 and u∗0 = 0.9, ∆t = 0.05.

Table 5.8: Summary of best results for patients 1–4 with parameters Dw = 0.5,
Dg = 0.1, ρ = 0.04 and u∗0 = 0.9.

Patient Modality p-value Diffusion matrix JI

1 T1-w 1.8 Gradient diffusion 0.4720
2 T1-w 1.8 Gradient diffusion 0.4909
3 T1-w 1.8 Gradient diffusion 0.4325
4 T1-w 1.9 Gradient diffusion 0.4417
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Chapter 6

Discussion

In this chapter, the discussion will revolve around the outcomes of the thesis. The
fulfillment of the aim, along with an assessment of the extent to which our results
can contribute to research and potential applications in the field is discussed.
Furthermore, limitations of this thesis will be taken into account, and future work
will be suggested.

6.1 Parameters

The reaction-diffusion equation (1.2), commonly used to model brain tumors, un-
dergoes three key modifications in this thesis. Firstly, the diffusion matrix D
incorporates the use of T1-w, T2-w, and ADC images through a diffusion matrix
(3.16) that relies on the normalized intensity of the MR images. Secondly, the
p-Laplace operator is introduced into the model (3.19). Lastly, a spatially varying
proliferation rate (4.2) is incorporated.

Tables 5.1–5.7 show an improvement in performance based on the JI index.
Notably, the highest JI index is achieved on the T1-w images when a combination
of the convex diffusion matrix and p = 1.8 is used. These findings provide valuable
insights into the potential efficacy of the proposed modifications to the standard
reaction-diffusion model. By incorporating the convex diffusion matrix, p-Laplace
operator, and spatially varying proliferation rate, an improved performance is
achieved as indicated by the JI, which suggests further investigation into these
parameters is needed.

Segmenting the brain structure is not needed when the gradient diffusion (3.16),
except when doing the normalization. This of course can be done differently since
errors in the segmentation process can lead to inaccuracies on the location of the
tumor growth.

Table 5.7 shows that when the proliferation rate varies spatially with the speci-
fied parameters values, it takes fewer iterations to reach the maximum JI compared
to using a constant proliferation rate. This reduction in iterations is probably due
to the specific value assigned to ρ, which is 0.08 within the range r0 < r < r1. It
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6.2. TIME ASPECT AND REALISM OF TUMOR

is worth noting that the threshold values for r0 and r1 were made arbitrarily in
this thesis. Further research and experimentations are necessary to validate and
optimize the choice of threshold values and assess their impact on the model. It is
important to note that the patients selected in this thesis have tumors that have
closer to a spherical shape and are not that large to cause big deformations in the
brain.

6.2 Time Aspect and Realism of Tumor

The heat maps generated by the model with the gradient diffusion and the p-
Laplace operator show a lower tumor cell density compared to the simpler model
with the bimodal diffusion and p = 2. However, despite this variation in cell
density, the overall shape and appearance of the tumor in the heat maps remain
very similar. The correspondence between one variable t in the model and real-
time is unclear. In [24] it is stated that HGG gliomas have a growth rate of 30
mm/year in diameter. Without this correspondence between one iteration and
real time, we cannot extract any growth rate that agrees or disagrees with [24].
Although Figure 5.4 provides some insight in this regard, showing a relationship
between simulated tumor radius and iteration, further investigation is required to
gain a better understanding. If we however assume that the growth should be 30
mm/year in diameter, then from Figure 5.6, 2500 iterations with time step ∆t =
0.05 correspond to about a year.

The authors in [24] state that the radius of the tumor grows linearly for HGG
gliomas which is in agreement with the results for p = 2. They also state that the
tumor becomes lethal, when it reaches a diameter of around 6cm, which gives a
stopping criterion for simulations. As seen in Figure 5.6 for the other two values
of p we see something close to an exponential growth. In [20], larger tumors
exhibited significantly lower growth rates compared to smaller tumors, exhibiting
Gompertzian growth, suggesting that there is a transition in the growth dynamics
of tumors as they increase in size and needs to be accounted for in the mathematical
model.

6.3 Thresholds

The use of the tumor cell density detection threshold 0.16 dictates whether a
voxel classifies as having cancer cells which in turn affects the number of iterations
needed to reach the maximum JI. It is possible that another value might be more
suitable.

Another threshold that can affect the iterations needed to reach the maximum
JI is the choice of u∗0. Choosing this threshold can be tricky since if it is too small
the tumor will diffuse very fast and no voxel will have a tumor cell density above
0.16 so that it can be classified as a tumor voxel. It is certainly possible to optimize
this threshold.
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CHAPTER 6. DISCUSSION

The calculated JI depends on these thresholds as well. An observation is that
the JI gets smaller in the first couple of iterations and then goes up again, this
behavior of the JI is also observed in [21], however, not much explanation is given
about it. This suggests that these threshold values of u∗0 and the tumor detection
threshold need to be tuned differently to avoid the tumor from shrinking in the
beginning of the simulation.

6.4 Limitations

One limitation in this thesis is the lack of MR images of patients before the ap-
pearance of a tumor. Having a pre-cancer MR image of the patient would allow
us to plant the tumor at the real half of the brain where the tumor appears on
the MR image. It is possible that planting the tumor in the ”healthy” part of the
brain, can have an effect on the JI since the simulated tumor might end up outside
the brain region when reflected back to the other half of the brain.

6.5 Future Work

This thesis demonstrates that extracting cell densities from histology images of
patients with brain tumors, allows for the creation of an initial condition based on
these extracted cell densities. To further increase the model’s accuracy, the next
stage involves establishing a relationship between the tumor cell count in histology
images and the intensity of MR images. Thereafter, this information can be used
as an initial condition for the tumor in the model. Machine Learning models can
also be used to achieve this goal.

To increase the realism of the model, it is necessary to incorporate the mass
effect, where an advection term ∇·

(
u(x, t)v

)
can be added, where v is the velocity

of the tumor. The mass effect is the deformation of the brain tissue caused by the
growing tumor [7]. This velocity is determined by another equation, creating a
coupled system [8]. The existing simulated tumor in this thesis does not consider
the mechanical properties of the surrounding tissue. Incorporating the mass effect
would address this limitation and bring the model closer to real-world conditions.

The simulations are run on patients with tumors that do not have an irregular
shape. The tumor is planted on the healthy half part of the brain, which can cause
the JI to drop, since in reality the brain is not symmetrical and no anisotropy is
taken into account. This is probably the reason why the JIs in Table 5.8 have a
mean 0.4592 and standard deviation of 0.0233. The selected patients also have
tumors that are big enough to not distort the surrounding tissue too much. A
future work would then be to test this on other patients with more irregular tumor
shapes and incorporate anisotropy.

40



Chapter 7

Conclusion

The results of this thesis showed an improvement in performance based on the JI,
with the highest JI achieved when using a combination of the gradient diffusion
and a specific parameter value (p = 1.8) on T1-w images. These findings show
that proposed modifications can improve the simulation outcomes. Incorporating
a spatially varying proliferation rate reduced the number of iterations required to
reach the maximum JI compared to a constant proliferation rate.

Regarding the time aspect and realistic tumor growth, the heat maps generated
by the modified model showed lower tumor cell density compared to the original
model. However, the overall shape and appearance of the tumor remained similar
in both models. Finally, the possibility for constructing an initial tumor cell density
using H&E histology images is demonstrated.

7.1 Research Question 1

How to improve the mathematical model by optimizing its parameter.

To improve the model, the gradient diffusion is defined (3.16), a spatially vary-
ing ρ is incorporated into the model and p-Laplace is introduced into the mathe-
matical model.

Tables 5.1–5.7 show an improvement in performance based on the JI index.
Notably, the highest JI index is achieved on the T1-w images when a combina-
tion of the gradient diffusion matrix and p = 1.8 is used. These findings provide
insights into the potential efficacy of the proposed modifications to the standard
reaction-diffusion model. By incorporating the convex diffusion matrix and p-
Laplace operator. The first rows of Figures 5.3 and 5.4 illustrate subtle differences
in the tumor’s shape. This observation suggests that the p-Laplace operator influ-
ences the direction in which the tumor grows. Although this aspect may not be
explicitly highlighted in the results Section, it is demonstrated in the experiments
conducted in Section 3.5. By examining Figures 3.2–3.4, it becomes clear that
when p = 1.8 for T = 60, the tumor exhibits a reduced cell density and increased
size compared to the case when p = 2.

41



CHAPTER 7. CONCLUSION

7.2 Research Question 2

Is it possible to extract a tumor density from patient images?
A “proof of concept” is provided showcasing the possibility of constructing an

initial tumor cell density using H&E stained histology images. This constructed
tumor cell density can then be used as an initial condition for the reaction-diffusion
model modelling tumor growth in the brain. Unfortunately, only three slices of
one block are used, which makes the initial condition construction less accurate.

7.3 Research Question 3

How can properties (such as intensity) of various MR sequences be incorporated
into the model?

By defining the diffusion matrix as (3.16), the intensity of MR images such
as T1 and T2 as well as ADC values are incorporated into the reaction-diffusion
model to account for gradient diffusion. However, there is potential for further
incorporation of the MR-image properties in this model.

7.4 Research Question 4

How can the simulations be evaluated? Is the tumor growth realistic?
In Tables 5.1–5.7, the simulated tumor gets a higher JI when combining the

gradient diffusion, p = 1.8, and spatially varying ρ. However, this does not say
if the growth or shape of the simulated tumor is realistic, since unrealistic tumor
shapes can still get a high Jaccard index. Also, based on the Figures 5.1–5.4 alone,
it is not possible to determine whether the modified reaction-diffusion model yields
a more realistic tumor growth.
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