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Abstract
Using sensors to observe real-world systems is important in many applications. A
typical use case is target tracking, where sensor measurements are used to compute
estimates of targets. Two of the main purposes of the estimates are to enhance
situational awareness and facilitate decision-making. Hence, the estimation quality
is crucial. By utilizing multiple sensors, the estimation quality can be further
improved. Here, the focus is on target tracking in decentralized sensor networks,
where multiple agents estimate a common set of targets. In a decentralized context,
measurements undergo local preprocessing at the agent level, resulting in local
estimates. These estimates are subsequently shared among the agents for estimate
fusion. Sharing information leads to correlations between estimates, which in
decentralized sensor networks are often unknown. In addition, there are situations
where the communication capacity is constrained, such that the shared information
needs to be reduced. This thesis addresses two aspects of decentralized target
tracking: (i) fusion of estimates with unknown correlations; and (ii) handling of
constrained communication resources.

Decentralized sensor networks have unknown correlations because it is typically
impossible to keep track of dependencies between estimates. A common approach
in this case is to use conservative estimators, which can ensure that the true un-
certainty of an estimate is not underestimated. This class of estimators is pursued
here. A significant part of the thesis is dedicated to the widely-used conservative
method known as covariance intersection (CI), while also describing and deriving
alternative methods for CI. One major result related to aspect (i) is the conserva-
tive linear unbiased estimator (CLUE), which is proposed as a general framework
for optimal conservative estimation. It is shown that several existing methods,
including CI, are optimal CLUEs under different conditions.

A decentralized sensor network allows for less data to be communicated com-
pared to its centralized counterpart. Yet, there are still situations where the com-
munication load needs to be further reduced. The communication load is mostly
driven by the covariance matrices since, in this scope, estimates and covariance
matrices are shared. One way to reduce the communication load is to only ex-
change parts of the covariance matrix. To this end, several methods are proposed
that preserve conservativeness. Significant results related to aspect (ii) include
several algorithms for transforming exchanged estimates into a lower-dimensional
subspace. Each algorithm corresponds to a certain estimation method, and for
some of the algorithms, optimality is guaranteed. Moreover, a framework is devel-
oped to enable the use of the proposed dimension-reduction techniques when only
local information is available at an agent. Finally, an optimization strategy is pro-
posed to compute dimension-reduced estimates while maintaining data association
quality.
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Populärvetenskaplig sammanfattning
Att använda sensorer för att övervaka exempelvis personer eller fordon är viktigt
inom en rad olika områden. Ett typfall är målföljning, där sensorer och algoritmer
används för att skatta positioner och hastigheter hos ett antal mål över tid. Mål-
följning har studerats under en lång tid inom framförallt militära tillämpningar,
men på senare år används det även inom många civila områden som t.ex. inom
bilindustrin. Ett klassiskt exempel är problemet där radarmätningar kombineras
med rörelsemodeller i ett s.k. kalmanfilter för att rekursivt skatta ett mål med så
hög noggrannhet som möjligt.

Genom att använda flera sensorer är det möjligt att göra målföljningen ännu
bättre. Ett sensornätverk består av sensorer och beräkningsenheter där de senare
ansvarar för att beräkna skattningar av mål. Beräkningsenheterna kan potentiellt
även kommunicera skattningar till andra beräkningsenheter. I en centraliserad nät-
verksdesign skickas mätningarna från alla sensorer till en central beräkningsenhet.
Detta leder i många fall till optimala resultat med avseende på målföljningspre-
standa. Nackdelen är att sensornätverkets totala förmåga blir beroende av att
den centrala beräkningsenheten fungerar. Fallerar den centrala beräkningsenheten
blir hela nätverket oanvändbart. För säkerhetskritiska tillämpningar är just den
egenskapen ofta oacceptabel. Dessutom blir det i praktiken nästintill omöjligt att
realisera en centraliserad lösning för stora sensornätverk, detta med avseende på
beräkningskraft, kommunikationsresurser samt komplexitet. Därför är alternativa
nätverksdesigner av intresse.

I denna avhandling studeras målföljning i decentraliserade sensornätverk. I
decentraliserade sensornätverk skickas mätningar från sensorerna till lokala be-
räkningsenheter vilka beräknar lokala skattningar av målen. Sedan kommuniceras
skattningarna till andra beräkningsenheter där de fusioneras för ökad precision.
En fördel med en sådan design är att den saknar kritiska delar vilket ger ett ro-
bust sensornätverk där vissa delar kan tillåtas fallera eller vara oåtkomliga utan
att nätverkets förmåga bryter ihop totalt. En nackdel med decentraliserade nät-
verk är att det skapas beroenden mellan skattningar som i många fall inte går att
känna till explicit. Ignoreras beroendena riskeras det att redan använd informa-
tion återanvänds och att den fusionerade skattningens osäkerhet blir mindre än
vad den borde vara. Denna avhandling fokuserar på följande två delproblem av
decentraliserad målföljning: (i) fusion av skattningar med okända beroenden; och
(ii) hantering av en begränsad kommunikationsresurs.

Ett populärt angreppssätt till (i) är att använda konservativa skattare. Orsa-
ken är att en konservativ skattare har egenskapen att inte återanvända informa-
tion samt att inte underskatta osäkerheten av en beräknad skattning, något som
även gäller i fallet med okända beroenden mellan skattningar. På så vis erhålls
en robust fusionerad skattning, dock med baksidan att en del av precisionen går
förlorad. Ett signifikant resultat kopplat till delproblem (i) är ett ramverk kallat
CLUE (eng. conservative linear unbiased estimator) som löser generella konserva-
tiva skattningsproblem med hjälp av matematisk optimering. Det visas även hur
flertalet etablerade konservativa skattningsmetoder faller ut som specialfall inom
CLUE-ramverket.
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viii Populärvetenskaplig sammanfattning

I delproblem (ii) studeras kommunikationsbegränsningar och hur dessa slår på
skattningsegenskaper som konservativitet och prestanda. Först föreslås ett antal
metoder som bevarar konservativitet trots att endast en delmängd av osäkerhetsin-
formationen kommuniceras. Konceptet vidareutvecklas senare till att transformera
skattningarna som delas till en lägre dimension. På så vis kan kommunikations-
kravet reduceras avsevärt. Huvudbidraget för (ii) består i flertalet algoritmer som
transformerar kommunicerade skattningar på ett effektivt sätt. Slutligen adresse-
ras två praktiska aspekter av den transformations-baserade strategin för vilka även
lösningar föreslås.
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xvi Notation

Notation

Abbreviations

Abbreviation Meaning
i.f.f. if and only if
i.i.d. independent and identically distributed
l.h.s. left hand side
r.h.s. right hand side
w.l.o.g. without loss of generality
w.r.t. with respect to

ANEES average normalized estimation error squared
BLUE best linear unbiased estimator
BSC Bar-Shalom Campo
CAM constant acceleration model
CI covariance intersection
CIE common information estimate

CLUE conservative linear unbiased estimator
COIN conservativeness index
CPM constant position model
CRLB Cramér-Rao lower bound
CVM constant velocity model
DCA diagonal covariance approximation
DR dimension-reduced or dimension-reduction
DSN decentralized sensor network
DTT decentralized target tracking
EKF extended Kalman filter
EVP eigenvalue problem
GEVO generalized eigenvalue optimization
GEVP generalized eigenvalue problem
GIMF generalized information matrix filter
GNN global nearest neighbor
ICI inverse covariance intersection
KF Kalman filter or Kalman fuser
LE largest ellipsoid (method)
LKF local (extended) Kalman filter
LMI linear matrix inequality
MC Monte Carlo
MSE mean squared error
NKF naïve (extended) Kalman filter
PCA principal component analysis
PCO principal component optimization
PD positive definite
PSD positive semidefinite
RMSE root mean squared error
RMT root mean trace
RO robust optimization
SDP semidefinite program
SSM state-space model



1
Introduction

In target tracking, dynamic targets are estimated over time. A target tracking
scene is visualized in Figure 1.1. A sensor measures the positions of three targets at
multiple time instants. The measurements are corrupted by noise and yield a rough
estimate of the targets’ instant positions. By processing multiple measurements
over time, improved estimates can be obtained. Besides, it is possible to extract
additional features, such as the velocities of the targets. This task is accomplished
by a target tracking system.

A basic target tracking system is illustrated in Figure 1.2. The processing
unit computes target estimates, here denoted tracks, using a sequence of measure-
ments. The tracks are then used in human-machine interface, situational aware-
ness, decision-making, and other high-level functions. Track quality is therefore
essential for the target tracking system to be useful.

×

××

×

××

×

×
×

(a) Targets and measurements (b) Estimated target trajectories

Figure 1.1. A target tracking scene with three targets. (a) The black crosses rep-
resent the target location measurements at different time instants, while the black
dots mark the target locations. (b) The result of processing multiple measurements
over time for each target. The black curves and black triangles represent the esti-
mated target trajectories and the latest target estimates, respectively.
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2 1 Introduction

sensor measurements processing unit tracks

human-machine interface
situational awareness
decision-making

Figure 1.2. A basic target tracking system.

(a) Centralized sensor network (b) Decentralized sensor network

Figure 1.3. Sensor networks. Black and colored circles resemble sensor nodes and
processing units, respectively. The solid and dotted arrows illustrate sensor-to-
processing unit and inter-processing unit communication, respectively.

1.1 Motivation
In network-centric target tracking [112], multiple sensors and processing units con-
stitute the nodes of a network. The nodes are connected in a communication
network, which allows for information to be shared among the nodes. The commu-
nicated information is subject to data fusion in the processing units. Adding more
sensors and processing units facilitates information extraction and sharing, where
data fusion techniques can be used to enhance the track quality. The price paid
is increased complexity in terms of computations, communication, and system de-
sign. How and to what extent the complexity is increased depends on the network
design. In a centralized sensor network, see Figure 1.3a, all sensors communicate
their measurements to a central processing unit. This arrangement allows for op-
timal tracking performance but suffers from high communication demands and
single points of failure.

An important application of network-centric target tracking is the battle scene
depicted in Figure 1.4. Manned and unmanned agents, e.g., aircraft, ships, and
land vehicles, cooperate with support from ground stations and cloud services for
a common goal. The agents have their own tracking system, with sensors and
processing units that are used to extract information and track targets. Informa-
tion, e.g., track data, is communicated between the agents for improved situational
awareness and decision-making. For large networks, a huge amount of critical in-
formation must be exchanged. To be practically useful, this type of network needs
to be robust and flexible enough to allow for heterogeneous agents to work effi-
ciently in dynamic environments, including switching network topologies. Hence,
a centralized sensor network is not suitable for this type of applications.

This thesis focuses on decentralized target tracking (DTT). A decentralized
sensor network (DSN) is illustrated in Figure 1.3b. This type of network is, e.g.,



1.1 Motivation 3

Cloud 
service

Figure 1.4. Network-centric battle scene. The network contains heterogenous agents,
e.g., aircraft, ships, land vehicles, ground stations, and cloud services. The agents
have their own target tracking systems and share information, e.g., track data, with
each other.

realized by wireless ad hoc networks such as wireless sensor networks [170]. Ac-
cording to [72], a DSN is characterized by the following properties:

C1 There is no single point of failure. Failure of one node of the network does
not cause a complete network breakdown.

C2 There is no central communication management system. Nodes can, in gen-
eral, only communicate on a node-to-node basis.

C3 There is no global knowledge about the network topology locally available
at the nodes.

In a DSN, measurements are passed to a local processing unit, where local
tracks are computed. The local tracks are then exchanged between the processing
units to enhance the tracking quality by fusion. A decentralized design yields the
following advantages over a centralized counterpart [93, 171]:

• Robustness. Since there is no single point of failure, a decentralized design
is inherently fault-tolerant.

• Modularity. The network is decomposed into smaller, self-contained subsys-
tems, which reduces the overall complexity and makes the network scalable.
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This also makes the system design process easier since these components can
be developed and maintained separately.

• Flexibility. It is possible to connect, update, and disconnect the self-contained
subsystems on-the-fly.

These properties are vital for the scene illustrated in Figure 1.4.

Remark 1.1. A DSN is an example of distributed processing. However, the terms decen-
tralized and distributed should not be used interchangeably. While distributed sensor
networks have multiple interconnected processing units, there is typically a central coor-
dinator or some global processing result is obtained, e.g., globally available tracks [34].
This work is limited to methods that are able to cope with the constraints imposed by
C1–C3, thereby excluding many distributed processing techniques.

1.2 Decentralized Target Tracking
Data association and state estimation are fundamental components of the pro-
cessing unit within a target tracking system. The data association involves the
assignment of measurements to tracks, which often requires solving an optimiza-
tion problem in order to identify the optimal pairings between measurements and
tracks based on a specified cost function. In state estimation, the tracks are
updated by incorporating the assigned measurements. The existing body of litera-
ture pertaining to target tracking, particularly in a centralized setting, is extensive,
with numerous publications dedicated to this topic. The famous multihypothesis
tracker (MHT, [147]) was developed already in the seventies. More recent mul-
titarget tracking solutions are often based on the random finite set framework
[118, 151, 173, 177]. Comprehensive books useful for the design and evaluation of
target tracking systems in general are found, e.g., in [17, 18, 27]. However, in the
context of DSNs, there remains a considerable amount of work to be undertaken
to properly address the specific issues that arise in DTT.

Figure 1.5 provides a schematic view of the processing unit in a DTT system
which contains the following functional components:

1. Measurement-to-track association. Assigns measurements to the local tracks.

2. State estimation. Updates local tracks with the assigned measurements.

3. Track-to-track association. Assigns local tracks to the received tracks.

4. Track fusion. Fuses local tracks with the assigned tracks.

5. Communication management. Decides which track information to exchange.

These functions are run recursively. The dashed line in Figure 1.5 illustrates that
local tracks are predicted and used in the next time step. Roughly speaking, a
centralized target tracking system involves steps 1–2 but not steps 3–5.
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processing unit

sensors measurement-to-track
association

state
estimation

datalink track-to-track
association

track
fusion

communication
management

exchanged
tracks

Figure 1.5. A decentralized target tracking system.

Remark 1.2. There are other ways to model a DTT system than the functional break-
down of Figure 1.5. For instance, basically all target tracking systems contain some track
management logic, which is excluded here. It should, however, be noted that there is
no distinct generic model used to illustrate every target tracking system. In the current
scope, the model in Figure 1.5 is sufficiently rich.

The DSNs considered in this thesis are modeled as a network of agents. Each
agent typically has one or several sensors, but in some cases none. Moreover, each
agent comprises a self-contained target tracking system and a communication sys-
tem. The agent can operate on its own under constraints C1–C3 and independently
of the other agents. Two important examples of agents are illustrated in Figure 1.6:

• Fighter aircraft. A modern fighter aircraft is equipped with many sensors,
e.g., radar, infrared search and track (IRST), and electronic warfare (EW)
sensors. It typically also has a tactical datalink through which it can com-
municate tracks with other aircraft, command & control, unmanned aerial
vehicles (UAVs), ships, and ground vehicles.

• Autonomous vehicles. Modern vehicles, and in particular autonomous vehi-
cles, use many sensors, e.g., radar and cameras, for safe operations in dense
environments. In vehicle-to-everything (V2X, [141]) networks, autonomous
vehicles use a datalink to communicate with other agents such as other ve-
hicles, pedestrians, satellites, cloud services, and ground stations.

The essence of both agent examples, including the DSNs they operate within,
is the huge amount of data that is transferred. Tracks and other estimates are
exchanged between agents and further processed. This results in dependencies,
i.e., the tracks become correlated with each other. For small, simple networks, the
correlations might be tractable. However, in general, it is impossible to maintain
explicit knowledge about these correlations among all agents. The issue of having
only partial knowledge about correlations is a fundamental aspect of DTT.

In the scope of this thesis, a track is specified by a state estimate, i.e., a vec-
tor, and a covariance matrix. These are the quantities that are being exchanged
between agents for track fusion. Simply neglecting the correlations generally leads
to undesirable results where the actual covariance matrix of a fused track is under-
estimated. In the worst case, tracks start to diverge due to incorrect uncertainty
assessment [93]. To avoid this, the notion of conservativeness has been introduced.
A conservative estimator is able to guarantee that the computed covariance matrix
is no smaller than the covariance matrix of the actual error. Several estimation
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radar IRST

EW processing unit
tactical datalink


other aircraft
command & control
UAVs
ships
ground vehicles

(a) Fighter aircraft (left) connected a tactical sensor network (right)

radar

camera

processing unit
V2X datalink


other vehicles
cloud services
satellites
pedestrians
ground stations

(b) Autonomous vehicle (left) connected to a V2X network (right)

Figure 1.6. Examples of agents in decentralized sensor networks. Each agent has
sensors and a processing unit, and communicates with other agents using a datalink.
Examples of possible types of agents in each network are provided to the right of
the corresponding subfigure.

methods that are conservative under different conditions exist today. The most
well-known include covariance intersection (CI, [90]), inverse covariance intersec-
tion (ICI, [130]), and the largest ellipsoid (LE, [24]) method. However, there is no
general framework for conservative estimation problems. In the literature, the no-
tion conservativeness is frequently referred to as consistency or covariance consis-
tency [90, 125, 130]. However, to prevent any potential confusion with alternative
interpretations of consistency, the term conservativeness is employed throughout
this work.

Another crucial aspect of network-centric estimation problems is communica-
tion constraints [145]. State estimates and covariance matrices need to be com-
municated for a legion of targets and to and from many agents. At some point,
the communication link will become a bottleneck, and hence the finite size of the
communication resource must be taken into account. There are also situations
where the communication needs to be reduced for other reasons, e.g., to be able
to operate with a low electromagnetic signature. Hence, there is a need to study
DTT under communication constraints [100].

1.3 Problem Statement
The main goal of this thesis is to increase the performance and usability of DTT
systems. The research focus is related to the track fusion and communication man-
agement components of Figure 1.5. In particular, the following two subproblems
are addressed:
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P1 Robust track fusion under unknown correlations. To be useful, the track
fusion needs to consider both conservativeness and tracking performance.

P2 Efficient usage of the communication resource. The main design criteria
for the communication management are the amount of communicated data,
conservativeness, and tracking performance.

1.4 Publications
Detailed comments are provided below for each of the publications included in the
thesis. The authors are abbreviated according to: Robin Forsling (RF), Gustaf
Hendeby (GH), Fredrik Gustafsson (FG), Zoran Sjanic (ZS), Benjamin Noack
(BN), Anders Hansson (AH), and Johan Löfberg (JL).

Publication I: Consistent Distributed Track Fusion Under
Communication Constraints [54]

R. Forsling, Z. Sjanic, F. Gustafsson, and G. Hendeby. Consistent
distributed track fusion under communication constraints. In Proceed-
ings of the 22nd IEEE International Conference on Information Fusion,
Ottawa, Canada, July 2019.

Summary: This conference paper considers fusion of tracks in a network-centric
target tracking problem. Explicit communication constraints are given by only
allowing the diagonal elements of track covariance matrices to be communicated.
Under such conditions, the conservativeness of a communicated track is typically
lost. Several methods are proposed for preserving conservativeness under the as-
sumed communication constraints.

Author’s contributions: The idea behind the communication constraints came
from ZS. The methods for preserving conservativeness were developed mainly by
RF in collaboration with GH. The experimental evaluation was designed by RF
with support from all authors. RF authored the paper with input from the co-
authors. The implementations, experimental design, and simulations were carried
out by RF.

Publication II: Conservative Linear Unbiased Estimation Under
Partially Known Covariances [56]

R. Forsling, A. Hansson, F. Gustafsson, Z. Sjanic, J. Löfberg, and
G. Hendeby. Conservative linear unbiased estimation under partially
known covariances. IEEE Transactions on Signal Processing, 70:3123–
3135, June 2022. © 2022 IEEE
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Summary: In this journal paper an estimation framework called conservative
linear unbiased estimation (CLUE) is formulated for estimation under unknown
and partially known correlations. Fundamental properties of the CLUE are derived.
A method is proposed based on robust optimization for computing a CLUE in
general configurations. It is shown that several established methods are special
cases of an optimal CLUE under different conditions.

Author’s contributions: FG was the one who first came up with the CLUE idea.
RF developed the CLUE theory and related properties, primarily in collabora-
tion with GH and AH. RF proposed, in close collaboration with JL, using robust
optimization for computing a CLUE in general cases. RF showed that several
established methods are special cases of an optimal CLUE under different condi-
tions. RF authored the paper with input from the co-authors. The examples were
designed by RF, who also implemented the algorithms in the evaluation.

Publication III: A Quarter-Century of Covariance Intersection:
Correlations Still Unknown? [53]

R. Forsling, B. Noack, and G. Hendeby. A quarter-century of covari-
ance intersection: Correlations still unknown? IEEE Control Systems
Magazine. Accepted for publication in Sep. 2023. Scheduled for the
Apr. 2024 issue. © 2024 IEEE

Summary: This tutorial-like journal paper centers around a widely-used estima-
tion method named covariance intersection (CI). Crucial aspects related to CI are
addressed, for instance, sources of correlations, optimality, computational consid-
erations, and alternatives to CI. The paper also acts like a survey for decentralized
data fusion in general and for CI and its alternatives in particular. At the end, an
outlook is given that predicts future applications and theoretical advances related
to CI.

Author’s contributions: The idea behind the paper originated from BN who had
collected references for a survey paper dedicated to CI. RF contributed with the
writing of the main content and side content, sorting out references, designing, and
implementing the examples, and designing the outlook. All in close collaboration
with BN and GH. RF and BN contributed equally to the paper.

Publication IV: Communication Efficient Decentralized Track
Fusion Using Selective Information Extraction [55]

R. Forsling, Z. Sjanic, F. Gustafsson, and G. Hendeby. Communication
efficient decentralized track fusion using selective information extrac-
tion. In Proceedings of the 23rd IEEE International Conference on
Information Fusion, Rustenburg, South Africa, July 2020.
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Summary: This conference paper proposes an alternative problem formulation
compared to Publication I for track fusion under communication constraints. The
communication is reduced by the exchange of selectively chosen information pro-
jections. This leads to an optimization problem where the information projections
are derived by estimating the track fusion result as a function of the information
projections.

Author’s contributions: In discussions with each co-author, RF proposed the
problem formulation as a continuation of Publication I. RF developed the opti-
mization formulation in collaboration with the other authors. Two methods for
selecting information were proposed by RF in collaboration with GH. RF authored
the paper with input from the co-authors. RF was responsible for carrying out
the implementations, experimental design, and simulations.

Publication V: Optimal Linear Fusion of Dimension-Reduced
Estimates Using Eigenvalue Optimization [57]

R. Forsling, Z. Sjanic, F. Gustafsson, and G. Hendeby. Optimal linear
fusion of dimension-reduced estimates using eigenvalue optimization.
In Proceedings of the 25th IEEE International Conference on Informa-
tion Fusion, Linköping, Sweden, July 2022.

Summary: This conference paper proposes a further development of the con-
cept introduced in Publication IV. An extension of those ideas is formulated as
a dimension-reduction problem, which involves transforming exchanged estimates
into a lower-dimensional subspace. It was shown that this boils down to an eigen-
value problem for which optimal dimension-reduction can be performed under
certain conditions.

Author’s contributions: The eigenvalue formulation for dimension-reduction was
originally derived by RF, and further developed with inputs from GH and FG. Two
dimension-reduction algorithms, corresponding to two different estimation meth-
ods, were proposed by RF, who also authored the paper, with input from the
co-authors. RF was responsible for carrying out the implementations, experimen-
tal design, and simulations.

Publication VI: Decentralized State Estimation In A
Dimension-Reduced Linear Regression [59]

R. Forsling, F. Gustafsson, Z. Sjanic, and G. Hendeby. Decentralized
state estimation in a dimension-reduced linear regression. 2023. URL
https://arxiv.org/abs/2210.06947. Preprint, arXiv.

Summary: This journal paper generalizes the framework proposed in Publication
V for additional estimation methods. Optimal guarantees are provided for all of
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the dimension-reduction algorithms except the one corresponding to CI. In the
case of CI, a convergence analysis is provided. The paper provides an analysis
of the communication benefits and an experimental evaluation of the proposed
methods. Message coding functionality is also provided. The manuscript has
been submitted for possible publication in the IEEE Transactions on Signal and
Information Processing over Networks.

Author’s contributions: RF extended the methodology proposed in Publication
V for additional estimation methods in discussions with the co-authors. RF devel-
oped the theoretical results, including the convergence analysis, and authored the
paper with input from the co-authors. The algorithms for dimension-reduction
and message coding were designed and implemented by RF. The experimental
evaluation was designed and carried out by RF with input from the co-authors.

Publication VII: Decentralized Data Fusion of
Dimension-Reduced Estimates Using Local Information Only [58]

R. Forsling, F. Gustafsson, Z. Sjanic, and G. Hendeby. Decentral-
ized data fusion of dimension-reduced estimates using local informa-
tion only. In Proceedings of the IEEE Aerospace Conference, Big Sky,
MT, USA, Mar. 2023. © 2023 IEEE

Summary: This conference paper addresses a practical aspect of the dimension-
reduction techniques developed in Publications V and VI. That is, in reality, an
agent who is about to exchange dimension-reduction estimates with another agent
needs to have access to information local to the second agent. In general, this is not
a realistic assumption. To this end, the common information estimate is proposed
as a representation of information shared by the network. Several properties of
the common information estimate are derived.

Author’s contributions: RF and GH expanded on the methodology suggested in
Publication IV to develop the concepts behind the common information estimate.
The theoretical properties were derived by RF, who also authored the paper, with
input from the co-authors. The implementations, experimental design, and simu-
lations were carried out by RF.

Publication VIII: Track-To-Track Association for Fusion of
Dimension-Reduced Estimates [60]

R. Forsling, Z. Sjanic, F. Gustafsson, and G. Hendeby. Track-to-track
association for fusion of dimension-reduced estimates. In Proceed-
ings of the 26th IEEE International Conference on Information Fusion,
Charleston, SC, USA, June 2023.
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Summary: In this conference paper, dimension-reduction is based on data asso-
ciation performance. This is in contrast to Publications IV–VI, where track fusion
performance was considered. The proposed problem formulation is analyzed the-
oretically, and problem properties are highlighted. An optimization algorithm is
developed based on the problem analysis.

Author’s contributions: RF originally proposed the problem formulation, and
the co-authors helped to further develop it. The problem analysis was executed
by RF, who also developed the optimization algorithm. RF authored the paper
with input from the co-authors. The implementations, experimental design, and
simulations were carried out by RF.

Licentiate Thesis: Decentralized Estimation Using Conservative
Information Extraction [52]

R. Forsling. Decentralized Estimation Using Conservative Informa-
tion Extraction. Licentiate Thesis No. 1897, Linköping University,
Linköping, Sweden, Dec. 2020.

Summary: The Licentiate thesis has a full overlap with Publications I and IV,
and a partial overlap with Publication II. Content exclusive to the Licentiate
thesis includes extensions of two estimation methods, namely, inverse covariance
intersection and the largest ellipsoid method.

Author’s contributions: The contributions exclusive to the Licentiate thesis were
developed by RF with inputs from GH, ZS, and FG.

Not Included Publications
Detailed comments are provided below for related publications that have been
excluded1 from the thesis. The authors are abbreviated according to: Robin
Forsling (RF), Daniel Bossér (DB), Isaac Skog (IS), Gustaf Hendeby (GH), Magnus
Lundberg Nordenvaad (MLN), Jakub Matoušek (JM), and Jindřich Duník (JD).

Distributed Point-Mass Filter with Reduced Data Transfer Using
Copula Theory [119]

J. Matoušek, J. Duník, and R. Forsling. Distributed point-mass filter
with reduced data transfer using copula theory. In Proceedings of the
2023 American Control Conference, pages 1649–1654, San Diego, CA,
USA, June 2023.

1The publications have been excluded to narrow down the scope of the thesis.
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Summary: In this conference paper, a distributed point-mass filter is proposed.
The developed filter is applicable for bandwidth-constrained distributed state es-
timation of stochastic dynamic systems. The proposed solution is benchmarked
with well-known moment-based data fusion methods.

Author’s contributions: RF authored the introduction and the parts involving
the moment-based methods. JM did the main work with input from JD and RF.
JM carried out the implementations and simulations with support from RF.

Underwater Environment Modeling for Passive Sonar
Track-Before-Detect [28]

D. Bossér, R. Forsling, I. Skog, G. Hendeby, and M. L. Nordenvaad. Un-
derwater environment modeling for passive sonar track-before-detect.
In OCEANS 2023, Limerick, Ireland, June 2023.

Summary: This conference paper deals with track-before-detect using passive
sonars in a complex underwater environment. Two models relating to the under-
water environment are developed: an autoregressive (AR) model is proposed to
improve the tracking performance in the case of fluctuating signal energy, and a
multi-source model is proposed to estimate spatially distributed background noise.

Author’s contributions: RF developed the AR model with input from IS and
GH. RF was involved in the authoring of the first two sections, including the parts
about the AR model. DB did the main work with input from IS, GH, RF, and
MLN. The implementations and simulations were carried out by DB with support
from RF.

1.5 Source Code Accessibility
To promote reproducibility, Matlab® source code related to this thesis is publicly
accessible at https://github.com/robinforsling/dtt. This includes the source
code for all numerical evaluations and all examples where it is applicable. The
repository also contains a DTT simulation environment that can be adapted for
testing and evaluating new theory and algorithms.

1.6 Thesis Outline and Contributions
The main theme of this thesis is DTT, with a heavy focus on track fusion and
communication management aspects. Publications I–VIII are distributed over
Chapters 2–5. The chapters are organized as follows:

Chapter 2 provides the mathematical preliminaries, states the linear estimation
problem, and defines the notion of conservativeness. Prior work is also outlined.
Parts of Publication III appear in Section 2.2.
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Chapter 3 introduces the decentralized single-target tracking problem, which
is the primary DTT setting studied in this thesis. Methods and models for state
estimation and track fusion are provided. Two main sources of correlations are
described. Section 3.3 considers a DTT problem under particular communication
constraints and is an edited version of Publication I. Section 3.1.4 is based on
Publication III.

Chapter 4 introduces a conservative estimation framework applicable to decen-
tralized track fusion problems. Several properties of the framework are derived.
A key result is the utilization of a standard optimization methodology for general
conservative estimation. It is shown how several established track fusion methods
are special cases of the proposed framework. The chapter is essentially an edited
version of Publication II. Parts of Publication III appear in Section 4.4.4.

Chapter 5 proposes a framework for communication efficient DTT based on
dimension-reduction techniques. The chapter provides two main paradigms, in-
cluding several submethods, for dimension-reduction. Optimality guarantees are
derived for some of the submethods. A solution is proposed to the problem of
only having access to local information when reducing dimensionality. Differ-
ent practical aspects are discussed and an optimization strategy is developed for
dimension-reduction in the multitarget configuration. Section 5.1.1 is based on
Publications IV–VI. Sections 5.2–5.3 are edited versions of Publication VI. Sec-
tion 5.4.2 is an edited version of Publication VII. Section 5.5 is an edited version
of Publication VIII.

Chapter 6 concludes the thesis and provides a brief future outlook.





2
Preliminaries and Prior Work

The first part introduces necessary mathematical concepts, basic statistics, and
linear estimation theory. An optimal linear estimator is defined. The concept of
conservativeness is provided with a formal definition. The second part reviews
prior work related to decentralized estimation in general, and conservative estima-
tion and communication management in particular.

The content of Section 2.2 is partly based on [53] © 2024 IEEE.

2.1 Preliminaries
Linear algebra and basic statistics are the cornerstones of the theory and methods
developed in this work.

2.1.1 Scalars, Vectors, Matrices, and Operators
Denote by N, R, Rn, and Rm×n the sets of all natural numbers, all real numbers, all
n-dimensional real-valued vectors, and all m×n real-valued matrices, respectively.
Let Sn+ and Sn++ denote the sets of all n×n symmetric positive semidefinite (PSD)
matrices and all n×n symmetric positive definite (PD) matrices, respectively. For
A,B ∈ Sn+, the matrix inequalities � and � are defined as

A�B ⇐⇒ (A−B) ∈ Sn+, A�B ⇐⇒ (A−B) ∈ Sn++. (2.1)

The identity matrix is denoted I and 0 is a matrix of zeros. The transpose, inverse,
and pseudoinverse of a matrix A are denoted AT, A−1, and A+, respectively. The
rank, trace, and determinant of a matrix A are denoted rank(A), tr(A), and
det(A), respectively. Let A ∈ Sn++. The ellipsoid of A is given by the set of points
E(A) = {a ∈ Rn |aTA−1a ≤ 1}. The boundary of this ellipsoid is given by the set

15
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of points {a ∈ Rn |aTA−1a= 1}. For A,B ∈ Sn++, it holds that

A�B ⇐⇒ E(A)⊇ E(B), A�B ⇐⇒ E(A)⊃ E(B). (2.2)

Let A,B ∈ Sn+. A function J : Rn×n→ R is matrix nondecreasing if

A�B =⇒ J(A)≤ J(B), (2.3)

and matrix increasing if

A�B ∧A ,B =⇒ J(A)< J(B). (2.4)

For instance, the function tr(WA) is matrix nondecreasing if W ∈ Sn+, and matrix
increasing if W ∈ Sn++ [29].

Let V ⊆ Sn+. An element A ∈ V is the minimum element of V if

B �A,∀B ∈ V, (2.5)

and a minimal element of V if B ∈ V and

B �A =⇒ B =A. (2.6)

For Ai ∈ Rmi×n, where i= 1,2, . . . ,N , col(·) is defined as

col(A1,A2, . . . ,AN ) =


A1
A2
...
AN

 . (2.7)

For Ai ∈ Rmi×ni , where i= 1,2, . . . ,N , diag(·) is defined as

diag(A1,A2, . . . ,AN ) =


A1 0 . . . 0

0 A2
. . .

...
...

. . .
. . . 0

0 . . . 0 AN

 , (2.8)

which is a block diagonal matrix. In case all Ai are scalars, this reduces to a
diagonal matrix.

An eigenvalue λ(A) of a matrix A is given by [67]

Au= λu, (2.9)

where u is the associated eigenvector. If A ∈ Sn++, then the eigenvalue problem
(EVP) in (2.9) has n solutions, not necessarily unique. A generalized eigenvalue
λ(A,B) of the matrix pair (A,B) is given by [136]

Au= λBu, (2.10)
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where u is the associated generalized eigenvector. If A,B ∈ Sn++ then the general-
ized eigenvalue problem (GEVP) in (2.10) has n solutions, not necessarily unique.
The ith (generalized) eigenvalue λi and associated (generalized) eigenvector ui
form the pair (λi,ui). The eigendecomposition of a matrix A ∈ Sn+ is defined as

A= UΣUT =
n∑
i=1

λiuiu
T
i , (2.11)

where Σ = diag(λ1,λ2, . . . ,λn), and U =
[
u1 u2 . . . un

]
is an orthogonal matrix

such that uT
i uj = δij with δij denoting the Kronecker delta [67]. The (generalized)

eigenvalues are assumed to be in descending order, i.e., λmax = λ1 ≥ ·· · ≥ λn =
λmin.

2.1.2 Statistics
For mathematical clarity, random variables and realizations thereof are explic-
itly differentiated with respect to (w.r.t.) notation. Boldface is used to express
random variables, e.g., a, and normal face is used to express a realization of a
random variable. For instance, a is a realization of a. Let E(a) and cov(a) =
E
(
(a−E(a))(a−E(a))T

)
denote the expected value and covariance matrix of a,

respectively. The inverse of a covariance matrix is called an information matrix,
or simply information. A random variable a is said to be Gaussian distributed
with mean µ= E(a) and covariance matrix Σ = cov(a) if a∼N (µ,Σ). The cross-
covariance matrix of a and b is defined as cov(a,b) = E

(
(a−E(a))(b−E(b))T

)
.

For brevity, covariance matrices and cross-covariances matrices are in the following
referred to as covariances and cross-covariances, respectively.

2.1.3 Linear Estimation
Let x ∈ Rnx be the state to be estimated. It is assumed that x is given in a
Cartesian coordinate frame. For i = 1,2, . . . ,N , assume yi = Hix + vi, where
yi ∈ Rni , Hi ∈ Rni×nx , and vi is noise with cov(vi) = Ri and E(vi) = 0. The
cross-covariance between vi and vj is denoted by Rij =RT

ji. Let ny =
∑N
i=1ni,

y =


y1
y2
...
yN

 , H =


H1
H2
...

HN

 , R=


R1 R12 . . . R1N

R21 R2
. . .

...
...

. . .
. . . R(N−1)N

RN1 . . . RN(N−1) RN

 . (2.12)

and v = col(v1,v2, . . . ,vN ), where y ∈ Rny and H ∈ Rny×nx . Hence, the model

y =Hx+v, R= cov(v), (2.13)

is obtained. The data y and yi are here interpreted as estimates of Hx and Hix,
respectively, but might as well be measurements related to x. By definition

cov(y) = cov(y−E(y)) = cov(y−Hx) = cov(v) =R, (2.14)
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and similarly, cov(yi) = cov(vi) =Ri.
A property of a general ny × ny covariance R is that R ∈ Sny+ . However, here

it is frequently assumed that R ∈ Sny++. The difference is, in many cases, only
technical. If R ∈ Sny+ and R is singular, then the pseudoinverse R+ is used instead
of R−1. Unless otherwise stated, it is assumed that R ∈ Sny++. It is always assumed
that Ri ∈ Sni++.

Consider the model in (2.13). In linear estimation, an estimator x̂ of x with
covariance P is computed as

x̂=Ky, P =KRKT, (2.15)

where K =
[
K1 K2 . . . KN

]
∈ Rnx×ny is the estimation gain. A particular

value x̂ = Ky of x̂ is called an estimate of x, and P is also referred to as the
estimate covariance. For brevity, the pair (x̂,P ) is often just referred to as an
estimate. The estimation error is defined as x̃ = x̂− x, and x̃ = x̂− x is the true
error of the estimate. The quantity E(x̃x̃T) is the covariance of the estimation
error, here also referred to as the true covariance of the estimator or estimate.
Moreover, the quantity E(x̃Tx̃) is the mean squared error (MSE) of x̂ [96].

If E(x̂) = x, then x̂ is an unbiased estimator of x. By assumption, y =Hx+v
and E(v) = 0. Hence

E(x̂) = E(Ky) = E(K(Hx+v)) =KHx+E(v) =KHx, (2.16)

from which it follows that E(x̂) = x ⇐⇒ KH = I.
Remark 2.1. In many cases, there is no need to differentiate between an estimator x̂ (or
y) and the estimate x̂ (or yi); the actual meaning is given by the context. This explicit
notation is kept for consistency since it is useful in some parts of this thesis.

In practice, it is often desirable to use an estimator that is optimal w.r.t. some
loss function J(P ) of P . Here, J(P ) is assumed to be a matrix increasing function.
The best linear unbiased estimator (BLUE) is defined in Definition 2.2. This
alternative definition of the BLUE is adapted from [56].

Definition 2.2 (Best Linear Unbiased Estimator). Assume y = Hx + v, where
R = cov(v). An estimator x̂? = K?y with P ? = K?R(K?)T is the best linear
unbiased estimator if K? is the solution to

minimize
K

J(P )

subject to KH = I

P =KRKT,

(2.17)

for a given matrix increasing function J .

The solution to (2.17) is given by K? = (HTR−1H)−1HTR−1. Hence, the
BLUE estimate is computed as [94]

x̂? = (HTR−1H)−1HTR−1y, P ? = (HTR−1H)−1. (2.18)
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In fact, by the Gauss-Markov theorem, it follows that KRKT � P ? for all K such
that KH = I. As a consequence, an estimate computed according to (2.18) is
optimal for every matrix increasing J(P ) among all linear unbiased estimators [94].
In addition, since tr(P ) = tr(E(x̃x̃T)) = E(x̃Tx̃) is a matrix increasing function, the
BLUE also is MSE optimal. Example 2.3 illustrates a BLUE.

Example 2.3: Best Linear Unbiased Estimator
Let nx =N = 2. Assume that H1 =H2 = I, and that

R1 =
[

9 −2
−2 2

]
, R2 =

[
2 2
2 9

]
, R12 =

[
1 1
−1 1

]
,

are given. Construct H and R according to (2.12). The BLUE covariance P ? is
computed using (2.18) which results in

P ? =
[

0.89 −0.77
−0.77 1.78

]
.

In Figure 2.1, P ? is compared to P = KRKT, where K is randomly generated
subject to KH = I. The figure demonstrates that under these circumstances
E(P ?) ⊆ E(KRKT). This is an implication of the Gauss-Markov theorem, i.e., if
an arbitrary K is such that KH = I, then KRKT � P ?.

R1
R2
P?

KRKT for random K
subject to KH = I

Figure 2.1. Results of Example 2.3. A geometrical interpretation of the BLUE is
that the ellipse of every KRKT subject to KH = I is larger than, or equal to, the
ellipse of the BLUE covariance P ?.

2.1.4 Conservative Estimation
A central concept in this thesis is conservativeness. A conservative estimator is
defined as:
Definition 2.4 (Conservative Estimator). An estimator x̂, with associated covari-
ance P , is called a conservative estimator if

P −E(x̃x̃T)� 0. (2.19)

If this holds, then (x̂,P ) is called a conservative estimate.
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This property becomes relevant if, for instance, R is only partially known.
If R is fully known, then for any linear estimator P = KRKT = E(x̃x̃T) such
that P − E(x̃x̃T) ≡ 0, and hence (x̂,P ) is a conservative estimate. Example 2.5
illustrates an estimator that is not conservative.

Example 2.5: A Non-Conservative Estimator
Assume the same setting as in Example 2.3, except that R12 is now unknown. A
naïve way of handling that R12 is unknown is by assuming R12 = 0, and then use
the BLUE given this assumption. This results in the gain and covariance

K = (HTB−1H)−1HTB−1, P = (HTB−1H)−1 =
[
1.27 0

0 1.27

]
,

where B = diag(R1,R2). However, in this case the covariance P , E(x̃x̃T), where
x̃=Ky−x is the estimation error. The covariance E(x̃x̃T) is as usual given by

E(x̃x̃T) =KRKT =
[

1.14 −0.64
−0.64 1.87

]
.

Hence, P −E(x̃x̃T)� 0, which means that this estimator is not conservative. The
example is illustrated in Figure 2.2, where also P ? from Example 2.3 is provided.

R1
R2
P?

P

E(x̃x̃T)

Figure 2.2. Results of Example 2.5. Since E(E(x̃x̃T))* E(P ), the estimate (x̂,P ) is
not conservative.

2.2 Review of Prior Work
This section starts with a brief historical overview of almost five decades of de-
centralized and distributed estimation. Then follows a review of work specifically
related to conservative track fusion and communication management.

2.2.1 A Historical Perspective on Decentralized and
Distributed Estimation

The topic of estimation in distributed and decentralized sensor networks has under-
gone significant development, resulting in the invention of several effective method-
ologies. A main issue arises from the management of correlations among estimates,
resulting in different underlying assumptions for each approach.
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Pioneering work focused on distributed implementations of the Kalman filter
(KF). The technical report in [178] outlines several formulations of the KF algo-
rithm for managing multisensor data in a distributed setting. The method in [78]
exploits the structure of systems split into interconnected linear dynamical subsys-
tems in order to decompose the KF. The authors of [162] have derived an optimal
distributed version of the KF, which is extended in [179] and [26], and is similar
to the later derived distributed KF in [68, 99]. Such methods represent algebraic
reformulations of the KF and thereby produce optimal estimates under certain con-
ditions, but restrict the estimates to be merged to follow specific filtering schemes.
Although some relaxations exist, e.g., [148], they require specific prerequisites that
can limit their use in complex network architectures. In particular, these methods
prohibit a fully decentralized solution, cf. properties C1–C3 in Section 1.1.

A widely used class of decentralized data fusion methods relates to hierarchical
systems that implement tracklet or channel filter fusion [39, 72, 77]. Other exam-
ples include the generalized information matrix filter (GIMF) and derivates thereof
[168, 169]. These filters keep track of and explicitly subtract common information
from the fusion result. By storing the state over multiple time steps, correlations in-
duced by process noise can also be addressed to a certain degree [120, 121]. Specific
methods tailored for common process noise reconstruct the joint covariances [149].
For such approaches, sample-based techniques prove to be effective [142, 163].

Another important class of distributed estimation algorithms is consensus fil-
tering [133, 134, 183]. Initial consensus schemes did not reliably compute the co-
variances. By combining consensus filtering with CI, [19] have derived robust and
conservative methods, which have been further developed, for instance, in [166],
to increase robustness to network failures. Similarly, [84] have integrated CI into
diffusion-based distributed KFs to provide conservative estimates.

For further reading about early contributions in the field of distributed and
decentralized filtering, the survey provided in [97] is suggested. More recent
overviews, with a particular focus on target tracking, are found in [34, 74, 110, 161].
Multisensor fusion for robotic systems is discussed in [116]. A broad review of
multisensor data fusion techniques is provided by [98], which, e.g., includes the
handling of imprecise information, outliers, and conflicting data. Network-centric
operations are considered in the review [165]. In particular, network-induced ef-
fects such as packet delays and losses or quantization are studied. Distributed
estimation is a key tool for multisensor data fusion, and [31] presents a broad
overview of the underlying theory and the required Bayesian inference techniques.
A concise discussion and review of the past forty years of distributed estimation
presented in [40]. Modern reviews of estimation under unknown correlations can
be found in [14, 106] and [53].

2.2.2 Conservative Track Fusion
Due to properties C1–C3 in Section 1.1, correlations between tracks are in general
unknown [37, 90] when it comes to track fusion in DTT. Nevertheless, the corre-
lations need to be handled carefully. Otherwise, information will be reused. In
these settings, conservative methods provide a reliable option for track fusion [93].
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The most famous method for conservative track fusion under unknown cor-
relations is CI. A typical application for CI is target tracking [158]. Simulta-
neous localization and mapping (SLAM) applications using CI are studied in
[91, 92, 127, 191]. CI has further been used for problems ranging from localization
of multi-robot systems [174] and cooperative localization of robot swarms [101]
over time-of-arrival localization [102] to automotive tracking, human tracking [89],
data validation [76], and medical application [186]. Theoretical aspects of CI are
studied in [36, 37, 150, 171].

In target tracking applications, CI needs to handle the fusion of estimates over
multiple time steps in a dynamic environment. However, recursive application of
CI over time may lead to unnecessarily large covariances, as shown in [11]. There-
fore, MSE optimality is not preserved when applying CI recursively in dynamic
systems [7]. Several fusion schemes involving CI have been developed to better pre-
serve information over time. The algorithms in [3] and [4] are based upon fusion
without and with memory, respectively, and feedback mechanisms to more effi-
ciently use information in dynamic systems. Different robust fusion mechanisms
for merging multiple estimates in time-varying systems are studied in [45, 140],
where CI is compared to different fusion techniques using the joint covariance.

Since CI in many cases is overly conservative, it is relevant to consider other
methods for track fusion. Two important alternatives to CI are ICI [130] and the
LE method [24], which exploits partial knowledge about the correlations. Hence,
these methods are able to utilize information more efficiently, but at the cost of only
providing conservative results, given that certain assumptions are fulfilled. ICI and
LE are evaluated in practical scenarios in [131, 132]. Theoretical properties are
studied in [128, 129, 159]. Exploitation of partial knowledge is also studied in, e.g.,
[5, 6, 9, 10, 91, 130, 160, 182], and is in particular a major part of Chapter 4 of
this thesis.

In [44, 65, 153, 157, 176], problems related to optimal conservative track fusion
are solved using minimax optimization. These papers relax the conservativeness
constraint into a scalar constraint. By doing this, it is possible to derive estima-
tors with smaller covariances. However, as shown in the counterexample in [56],
the solution to this minimax problem does not necessarily produce conservative
estimates. Similarly, in [189], a minimax formulation is suggested where the MSE
is minimized for the maximum possible cross-correlations. A game-theoretic ap-
proach is considered in [103] in terms of a two-player game, where one player tries
to minimize the MSE while the other tunes the correlations to maximize the MSE.
A full maximum cross-covariance is computed in [185]. These approaches have in
common that they try to represent the maximum possible correlations. However,
as the maximum possible correlations are typically not unique, these approaches
cannot, in general, guarantee conservativeness.

2.2.3 Communication Management
In [187], it is shown that the problem of finding an optimal linear mapping that
compresses measurements to be exchanged to a fusion node boils down to an
eigenvalue problem. In [35], the problem is extended to the dynamic case. Estima-
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tion based on dimension-reduced data is handled in a distributed context in [190]
and [156], where in the latter also a non-ideal communication channel is considered.
The authors of [50] address the problem of jointly assigning the dimensionality and
deriving optimal data compression matrices. In [46], the authors propose commu-
nication efficient algorithms for distributed estimation based on transforming the
data using linear mappings. Performance bounds of data compression techniques
are analyzed in [117]. A framework for dimension-reduction including data denois-
ing for distributed algorithms is proposed in [156]. There is numerous additional
work on closely related dimension-reduction problems, see, e.g., [48, 49, 51, 155].
It is also the topic of Chapter 5, where dimension-reduced estimates are computed
based on eigenvalue optimization similar to the work [187]. The authors of [69, 70]
use a gradient descent algorithm to optimize the dimension-reduction.

An alternative strategy for reducing the communication load is to quantize the
data to be exchanged, see, e.g., [124, 152, 172]. A key aspect of quantization in
DSN is how to preserve conservativeness when the communicated data is quantized
[63, 64]. In this thesis, however, it is assumed that quantization effects can be
neglected.





3
Decentralized Single-Target Tracking

The considered decentralized target tracking (DTT) problem is now defined in
a single-target tracking context. Figure 3.1 illustrates a scenario where multiple
agents track a common target in a decentralized sensor network (DSN). The sce-
nario encompasses state estimation, track fusion, and communication management,
but no data association. The state estimation is solved using an extended Kalman
filter (EKF). Several track fusion methods are defined and evaluated. Two main
sources of correlations between estimates can be attributed to common process
noise and shared information. In addition, it is demonstrated how ignoring corre-
lations leads to a loss of conservativeness. At the end, the DSN-based single-target
tracking example is evaluated under communication constraints. In particular, the
agents are allowed to exchange only the diagonal entries of the local covariance
matrices. The contents of this chapter are based on [54] and [53] © 2024 IEEE.

Figure 3.1. A single-target tracking scenario. Multiple agents (colored circles) track
a dynamic target (black circle) using sensors (colored cones) and internal processing
units. The agents exchange local track estimates over a datalink (dotted arrows) for
track fusion.
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processing unit
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Figure 3.2. A decentralized single-target tracking system.

3.1 A Decentralized Single-Target Tracking System
In the single-target tracking case, the measurement-to-track association and track-
to-track association are often trivial and can be disregarded. This case is assumed
here. Hence, the DTT system comprises state estimation, track fusion, and commu-
nication management. A decentralized single-target tracking system is illustrated
in Figure 3.2.

3.1.1 State Estimation
A state-space model (SSM) is used to describe the state of a dynamic target. The
SSM comprises a process model for the target dynamics and a measurement model
that relates measurements to the target state. Let xk be the target state at time
k, then a family of discrete time SSMs is given by

xk+1 = Fkxk +wk, wk ∼N (0,Qk), (3.1a)
zk = h(xk) + ek, ek ∼N (0,Ck), (3.1b)

where Fk is the state transition model, Qk is the covariance of the process noise
wk, zk is a measurement vector, h is a nonlinear measurement function, and Ck is
the covariance of the measurement noise ek. It is assumed that cov(x̃k|l,wk) = 0
for all k ≥ l, where x̃k|l = x̂k|l− xk. Moreover, it is assumed that cov(wk,el) = 0
for all k, l. Subscript k|l denotes filtered quantities evaluated at time k using
measurements up to and including time l.

The SSM in (3.1) is assumed throughout this work. The process model is linear,
but the measurement model in general involves a nonlinear function. The EKF
[86] in Algorithm 3.1 is used to recursively compute a state estimate of xk using a
time update and a measurement update in each filter recursion. If h(xk) = Hkxk,
then the EKF in Algorithm 3.1 reduced to the linear Kalman filter (KF, [95]).
In this scope (x̂k|k,Pk|k) is referred to as a track, a track estimate, or simply an
estimate.

Process Models

A linear process model is fully specified by Fk and Qk. Here, a constant position
model (CPM), a constant velocity model (CVM), and a constant acceleration
model (CAM) are used [107]. Let Ts be the sampling time from k and k+ 1, and
let ⊗ denote the Kronecker product. Let Id be the d× d identity matrix, where
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Algorithm 3.1: Extended Kalman Filter
Input: State-space model (3.1), initial values x̂0|0 = x̂0 and P0|0 = P0

Time update:

x̂k+1|k = Fkx̂k|k, Pk+1|k = FkPk|kF
T
k +Qk. (3.2)

Measurement update:

x̂k|k = x̂k|k−1 +Kk

(
zk −h(x̂k|k−1)

)
, Pk|k = (I −KkHk)Pk|k−1, (3.3)

where Kk = Pk|k−1H
T
k (HkPk|k−1H

T
k +Ck)−1 and Hk = ∂h(x′)

∂x′

∣∣∣
x′=x̂k|k−1

.

Output: (x̂k|k,Pk|k)

Table 3.1
State vector x for different process models

d CPM CVM CAM

2 x= [x y ]T x= [x y vx vy ]T x= [x y vx vy ax ay ]T

3 x= [x y z ]T x= [x y z vx vy vz ]T x= [x y z vx vy vz ax ay az ]T

d is the number of spatial dimensions. Table 3.1 summarizes what x contains
for different process models and d, with omitted time indices. The x-, y-, and
z-coordinates are denoted x, y, and z, respectively. The corresponding velocities
are denoted vx, vy, and vz, respectively, and the corresponding accelerations are
denoted ax, ay, and az, respectively.

The CPM is defined as

Fk = Id, Qk = σ2
w,kTsId, (3.4)

where σ2
w,k is the variance of the process. This parameter is related to the maneu-

verability of the estimated target. A more maneuverable target has a larger σ2
w,k

compared to a less maneuverable target. The initial estimate (x̂0|0,P0|0) is derived
from the initial measurement and covariance (z0,C0).

The CVM is defined as

Fk = Id⊗
[
1 Ts
0 1

]
, Qk = Id⊗σ2

w,k

[
T 3
s
3

T 2
s
2

T 2
s
2 Ts

]
. (3.5)

The position components of the estimate are initialized as in the CPM case. The
velocity components are initialized to zero with the covariance initialized to v2

maxId,
where vmax is the assumed maximum velocity along one coordinate.

The CAM is defined as

Fk = Id⊗

1 Ts
T 2

2
2

0 1 Ts
0 0 1

 , Qk = Id⊗σ2
w,k


T 5
s

20
T 4
s
8

T 3
s
6

T 4
s
8

T 3
s
3

T 2
s
2

T 3
s
6

T 2
s
2 Ts

 . (3.6)
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The position and velocity components of the estimate are initialized as in the
CVM case. The acceleration components are initialized to zero with the covariance
initialized to a2

maxId, where amax is the assumed maximum acceleration along one
coordinate.

Measurement Models

Two types of sensor models are considered: a linear sensor and a radar-like sen-
sor. Under the given SSM assumption of (3.1), the measurement model is fully
specified by h(xk) and Ck. In both cases described below, it is assumed that the
measurement noise variances are constant over time.

In the linear case, it is assumed that

h(xk) =Hkxk =
[
Id 0

]
xk, Ck = σ2

eId, (3.7)

where 0 is a zero-matrix of appropriate size, and σ2
e is the measurement noise

variance in each measured coordinate.
Radar-like sensors measure in polar coordinates if d = 2, or spherical coordi-

nates if d = 3. A measurement zk is given w.r.t. the sensor location xsk. If d = 2
and xsk = 0, then the measurement model is defined as

h(xk) =
[
rk
θk

]
=
[ √

x2
k + y2

k

atan2(yk,xk)

]
, Ck = diag(σ2

r ,σ
2
θ), (3.8)

where atan2(·) is the 2-argument arctangent, and rk and θk are the radial distance
and azimuth angle to the target, respectively, at time k. Moreover, σ2

r and σ2
θ are

the measurement noise variances of rk and θk, respectively. If d = 3 and xsk = 0,
then the measurement model is defined as

h(xk) =

rkθk
φk

=


√

x2
k + y2

k + z2
k

atan2(yk,xk)
atan2

(
zk,
√

x2
k + y2

k

)
 , Ck = diag(σ2

r ,σ
2
θ ,σ

2
φ), (3.9)

where φk is the elevation angle to the target at time k, and σ2
φ is the measurement

noise variance of φk. If xsk , 0, then xk, yk, and zk in (3.8) and (3.9) must be
shifted accordingly.

Filter Tuning

All local filters need to be tuned for their particular applications. For well-designed
sensors, this essentially boils down to designing the process noise covariance Qk,
i.e., σw,k. A systematic approach to filter tuning is described in [16]. The authors
of [38] propose a methodology for auto-tuning of filters. In this scope, it is sufficient
to use a simplified method based on ANEES1 defined in Section 3.2.4: 1. Define a
characteristic target trajectory. 2. Run M Monte Carlo (MC) simulations of the
local filter using simulated measurements. 3. Set σw,k such that an ANEES of
approximately 1 is obtained along the target trajectory.

1ANEES = average normalized estimation error squared.
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3.1.2 Track Fusion
In DTT, tracks and covariances are exchanged between agents. The performance
of the track fusion depends on the fusion rule used to combine tracks. In essence,
this fusion rule is an estimator. The following notation is used when describing
track fusion:

• The local tracks to be fused are represented by (y1,R1), . . . ,(yN ,RN ), where
(yi,Ri) is the local track in Agent i. For instance, assume Agent 1 and
Agent 2 compute local tracks, e.g., using EKFs, and that these local tracks
are fused in Agent 2. Then it is said that Agent 1 transmits (y1,R1) to
Agent 2 who fuses (y1,R1) with its local track (y2,R2).

• The estimate computed in the track fusion is denoted (x̂,P ).

Track fusion is a type of data fusion, which is an instantaneous operation, where
two or more tracks evaluated at the same time are merged. This means, in contrast
to state estimation, that time indices in general can be disregarded when describing
track fusion. Nevertheless, for clarity, it is sometimes needed to use time indices
for (yi,Ri). In such a case, the local track is denoted (yi,k|l,Ri,k|l), or simply
(yi,k,Ri,k), and the fused result is denoted (x̂i,k,Pi,k).

An important special case in this work is the fusion of N = 2 local estimates
given as

y1 = x+ v1, R1 = cov(v1), (3.10a)
y2 =H2x+ v2, R2 = cov(v2), (3.10b)

with R12 = cov(v1,v2). This case is handled separately for all track fusion methods
defined in this chapter.
Remark 3.2. In a fusion context, the model in (3.10) is quite general. Firstly, for a
particular agent, say Agent 1, it is always possible to define x such that H1 = I. Secondly,
any fusion method able to fuse two estimates defined as in (3.10) with H1 = I, can
sequentially fuse N > 2 estimates (yi,Ri), where yi =Hix+ vi and Ri = cov(vi).

Bar-Shalom Campo Fusion

The Bar-Shalom Campo (BSC) formula for fusion of two correlated estimates
is derived in [15]. It is essentially the BLUE in the special case of N = 2 and
H1 = H2 = I. This method is generalized for arbitrary H2 in Section 3.A. The
BSC fuser for the model in (3.10) is given in Algorithm 3.3.

Kalman Fusion

If the model in (3.10) holds and R12 = 0, then Algorithm 3.3 reduces to

x̂= P (R−1
1 y1 +HT

2R
−1
2 y2), P = (R−1

1 +HT
2R
−1
2 H2 )−1. (3.12)

This is equivalent to what a Kalman filter would produce when fusing (y1,R1)
and (y2,R2). Hence, it is here called the Kalman fuser (KF). The method yields
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Algorithm 3.3: Bar-Shalom Campo Fuser
Input: Estimates (y1,R1) and (y2,R2), H2, and cross-covariance R12

The estimates are fused according to:

x̂=K1y1 +K2y2, P =R1−K2SK
T
2 , (3.11)

where K1 = I −K2H2, K2 = (R1H
T
2 −R12)S−1, and S = H2R1H

T
2 +R2 −H2R12 −

R21H
T
2 .

Output: (x̂,P )

Algorithm 3.4: Kalman Fuser
Input: Estimates (yi,Ri) and Hi for i= 1,2, . . . ,N

The estimates are fused according to:

x̂= P

N∑
i=1

HT
i R
−1
i yi, P =

(
N∑
i=1

HT
i R
−1
i Hi

)−1

. (3.13)

Output: (x̂,P )

optimal results if R12 = 0. However, if R12 , 0, then the KF in general leads to non-
conservative results, as illustrated in Example 2.5. Nevertheless, KF still remains
relevant in many DTT problems, e.g., as a baseline method. If, in addition, the
KF yields acceptable results for a certain DTT application, then it might be the
preferable option because of its simplicity. An N estimate generalization of the
KF is provided in Algorithm 3.4. Essentially, Algorithm 3.4 is the BLUE given in
(2.18) in the special case when Rij = 0 for all i , j.

Covariance Intersection

CI is one of the most popular methods for fusing estimates under unknown corre-
lations. CI fuses the two estimates defined in (3.10) according to [90]

x̂= P (ωR−1
1 y1 + (1−ω)HT

2R
−1
2 y2), P = (ωR−1

1 + (1−ω)HT
2R
−1
2 H2)−1, (3.14)

with ω ∈ [0,1] typically given by solving

minimize
ω

J(P ), (3.15)

where J(P ) is a matrix increasing function and P is defined in (3.14). If (y1,R1)
and (y2,R2) are conservative estimates, cf. Definition 2.4, then (x̂,P ) computed
according to (3.14) is conservative for all ω ∈ [0,1] irrespective of the actual value of
R12. A generalization of CI applicable for fusing N estimates (yi,Ri) is provided
in Algorithm (3.5). An estimate (x̂,P ) computed according to Algorithm 3.5
is conservative for all ω1, . . . ,ωN ∈ [0,1] satisfying

∑N
i=1ωi = 1 given that each

estimate (yi,Ri) is conservative.
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Algorithm 3.5: Covariance Intersection
Input: Estimates (yi,Ri) and Hi for i= 1,2, . . . ,N

The estimates are fused according to:

x̂= P

N∑
i=1

ωiH
T
i R
−1
i yi, P =

(
N∑
i=1

ωHT
i R
−1
i Hi

)−1

, (3.16)

where ω1, . . . ,ωN are given by

minimize
ω1,...,ωN

J(P )

subject to ωi ∈ [0,1]
N∑
i=1

ωi = 1,
(3.17)

for a matrix increasing function J(P ).
Output: (x̂,P )

3.1.3 Communication Management
The communication management considered here involves functionality and schedul-
ing related to when, what, and with whom to exchange data.

Communication Schedule

Unless otherwise stated, the communication is assumed to be scheduled according
to the basic communication schedule provided in Rule 3.6. This schedule can be
viewed as a type of time-division multiple access technology2, where each user
connected to the network has a dedicated time slot for communication [80].

Rule 3.6 (Basic Communication Schedule). Assume that there are N agents and
that the scenario is sampled at time steps k = 1,2,3, . . . . Then Agent i exchange
its local tracks if and only if (i.f.f.) k ∈ {i, i+N,i+ 2N,. . .}.

Communicated Data

In this thesis, the communicated data is reduced due to communication constraints.
The following two types of data reduction strategies are considered:

1. The communication is constrained such that Agent i is restricted to trans-
mit (yi,Di), where Di is a diagonal representation of Ri. The technique
developed to cope with this communication constraint is referred to as the
diagonal covariance approximation, and is studied in Section 3.3.

2. A local track is transformed into a lower-dimensional subspace before trans-
mission. For instance, assume y2 = x+v2 and R2 = cov(v2), where y2 ∈ Rnx .

2The military Link 16 is one example of a communication network that uses time-division
multiple access communication.
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Instead of exchanging the full estimate (y2,R2), Agent 2 exchanges (yΨ ,RΨ ),
where yΨ = Ψ y2, RΨ = ΨR2ΨT, and Ψ ∈ Rm×nx with m < nx. This tech-
nique is referred to as dimension-reduction and is the topic of Chapter 5.

Communication Recipient

By the properties C1–C3 in Chapter 1, all communication must be assumed to be
on an agent-to-agent basis and without knowledge of the global topology. Hence,
it is assumed that each agent communicates only with its instantaneous nearest
neighbors, a set of agents that may vary over time, and without any knowledge
about what the nearest neighbors of other agents are.

3.1.4 Sources of Correlations
The article in [53] describes three sources of correlations between estimates: (i)
common process noise, (ii) common information, and (iii) correlated sensor noise.
Cases (i) and (ii) are the main sources which are relevant to this work and are
further described in the next. Case (iii) is studied in, e.g., [87, 184].

Common Process Noise

Correlations between two local tracks of the same target state xk might be present
even if the two tracks have been obtained fully isolated from each other and without
any interactions between the agents. What matters is that the agents estimate
the same process, i.e., xk. For instance, assume agents 1 and 2 at time k have
obtained

y1,k|k = xk + v1,k|k, R1,k|k = cov(v1,k|k), (3.18a)
y2,k|k = xk + v2,k|k, R2,k|k = cov(v2,k|k), (3.18b)

where R12,k|k = cov(v1,k|k,v2,k|k) = 0. Assuming the SSM in (3.1), xk evolves
according to the process

xk+1 = Fkxk +wk, wk ∼N (0,Qk).

Assume cov(vi,k|k,wk) = 0 as for the SSM in (3.1). Let yi,k+1|k denote the local
estimate in Agent i computed using the time update of Algorithm 3.1. Then

vi,k+1|k = yi,k+1|k −xk+1 = Fkyi,k|k − (Fkxk +wk) = Fk
(
yi,k|k −xk

)
−wk

= Fkvi,k|k −wk,

for i = 1,2. Since by assumption E(vi,k|k) = E(wk) = 0, also E(vi,k+1|k) = 0, and
hence

R12,k+1|k = cov(v1,k+1|k,v2,k+1|k) = E
(

(Fkv1,k|k −wk)(Fkv2,k|k −wk)T
)

= FkE(v1,k|kv
T
2,k|k)︸              ︷︷              ︸

=0

FT
k −FkE(v1,k|kw

T
k )︸           ︷︷           ︸

=0

−E(wkvT
2,k|k)︸           ︷︷           ︸

=0

FT
k +E(wkwT

k )︸        ︷︷        ︸
=Qk

=Qk.
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Despite that R12,k|k = 0 and that there was no interactions between Agent 1 and
Agent 2, (y1,k+1|k,P1,k+1|k) and (y2,k+1|k,P2,k+1|k) are now correlated.

Consider the SSM in (3.1) but with a linear measurement model h(xk) =Hi,kxk
for each agent. Recursive formulas for the update of R12 are given by [143]

R12,k+1|k = FkR12,k|kF
T
k +Qk, (3.19a)

R12,k|k = (I −Ki,kHi,k)R12,k|k−1(I −Ki,kHi,k)T, (3.19b)

where Ki,k is the Kalman gain of Agent i. The effect of common process noise
over time is illustrated using a one-dimensional state xk in Example 3.7.

Example 3.7: Common Process Noise
The dynamics of R12 are studied under the influence of common process noise.
Let N = 2 agents estimate a scalar state xk. Assume the SSM in (3.1), where the
measurement model of Agent i is zi,k = xk + ei,k and cov(ei,k) = σ2

e for i = 1,2.
Assume a CPM, where Fk = 1 and Qk = σ2

w. Assume that initially

R0|0 =
[
R1,k|k R12,k|k
R12,k|k R2,k|k

]∣∣∣∣
k=0

=
[
σ2
e 0

0 σ2
e

]
.

From Algorithm 3.1 and the formulas in (3.19), it follows that R can be computed
recursively as

Rk+1|k =Rk|k +σ2
w

[
1 1
1 1

]
, (3.20a)

Rk|k =

 σ2
eR1,k|k−1

R1,k|k−1+σ2
e

σ4
eR12,k|k−1

(R1,k|k−1+σ2
e)(R2,k|k−1+σ2

e)
σ4
eR12,k|k−1

(R1,k|k−1+σ2
e)(R2,k|k−1+σ2

e)
σ2
eR2,k|k−1

R2,k|k−1+σ2
e

 . (3.20b)

The cross-correlation between y1,k|l and y2,k|l is defined as

ρk|l =
R12,k|l√

R1,k|l
√
R2,k|l

∈ [−1,1], (3.21)

and is the quantity of interest here since it quantifies how strong the correlations
between estimates are. The cross-correlation after the time update ρk|k−1 and the
cross-correlation after the measurement update ρk|k are plotted in Figure 3.3 as
functions of k for different values of q = σ2

w/σ
2
e . The cross-correlation ρ is higher

after the time update than after the measurement update. This is intuitive since
uncorrelated information is added in the measurement update. A higher q leads
to a larger ρk|k. The same is not always true in case of ρk|k−1.

Common Information

Assume that Agent 2 shares an estimate with Agent 1 who fuses the received esti-
mate with its local estimate. After the fusion, there will be information common
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Figure 3.3. Results of Example 3.7. A higher q = σ2
w/σ

2
e leads to a higher ρk|k. The

same is not always true in the case of ρk|k−1.

to both estimates. This is the problem of common information. As an example,
consider

y1 = x+ v1, R1 = cov(v1), y2 = x+ v2, R2 = cov(v2), (3.22)

where R12 = cov(v1,v2) � 0. Since the estimates are correlated, Agent 1 can fuse
them optimally using Algorithm 3.3. The resulting estimate (x̂,P ) is computed as

x̂=K1y1 +K2y2, P =R1−K2SK
T
2 , (3.23)

where K1 = I −K2, K2 = (R1 −R12)S−1, and S = R1 +R2 −R12 −R21. The
cross-covariance R12,f of x̂ and y2 is given by

R12,f = cov(x̂,y2) = E
(

(K1y1 +K2y2−x)(y2−x)T
)

= E
(

((K1y1 +K2y2)− (K1 +K2)x)vT
2

)
= E

(
(K1v1 +K2v2)vT

2

)
=K1E(v1v

T
2 )︸������︷︷������︸

=R12

+K2E(v2v
T
2 )︸������︷︷������︸

=R2

=K1R12 +K2R2. (3.24)

In the special case of R12 = 0, K2 = PR−1
2 and hence R12,f = P . Common

information is illustrated in Example 3.8.

Example 3.8: Common Information
Assume the same scenario as in Example 3.7, but where Agent 1 and Agent 2
exchange their local estimates according to Rule 3.6. Assume that the agents have
full knowledge about the cross-covariance at each point so that Algorithm 3.3
can be used. The recursions for R12,k|k−1 and R12,k|k are stated in (3.20). The
recursion for the cross-covariance after fusion, R12,k|k,f , is given by

R12,k|k,f =K1R12,k|k +K2R2,k|k,
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whereK1 = 1−K2 andK2 = R1,k|k−1
R1,k|k+R2,k|k−2R12,k|k

. Let Rk|k,f =
[
R1,k|k,f R12,k|k,f
R12,k|k,f R2,k|k,f

]
be the joint covariance after fusion. Let ρk|l be defined as in (3.21). The cross-
correlation ρk|k,f after fusion is computed as

ρk|k,f =
R12,k|k,f√

R1,k|k,f
√
R2,k|k,f

∈ [−1,1].

The cross-correlations ρk|k−1, ρk|k, and ρk|k,f are plotted in Figure 3.4 as functions
of k for different values of q = σ2

w/σ
2
e . Compared to Example 3.7, ρk|k−1 is now

significantly larger for all q, and ρk|k is slightly larger for all q. As seen in the plot
for ρk|k,f , the correlation is generally high after fusion, due to common information.
For large q, ρk|k,f tends to 1. For small q, ρk|k,f approaches approximately 0.75.
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Figure 3.4. Results of Example 3.8. Compared to Example 3.7 ρk|k−1 is now sig-
nificantly larger for all q = σ2

w/σ
2
e and ρk|k is slightly larger for all q. The cross-

correlation ρk|k,f is large for all q.

3.1.5 Track Fusion Under Correlations
In Example 3.8, the correlations between the estimates were computed explicitly,
which allowed for optimally fused estimates. The reason why this cannot be done
in general DTT problems lies in properties C1–C3 of Section 1.1. For instance,
consider the scenario in Figure 3.5. At time ka, Agent 1 transmits (y1,ka ,R1,ka)
to Agent 2. At a later time kc > ka, Agent 1 receives (y3,kc ,R3,kc) from Agent 3.
Assume that Agent 1 knows that R13,ka = 0. However, to fuse (y1,kc ,R1,kc) and
(y3,kc ,R3,kc) using Algorithm 3.3 requires that R13,kc is known. To compute R13,kc ,
the formulas in (3.19) and (3.24) can be used, but this requires that Agent 1
knows how (y3,kc ,R3,kc) has been obtained. Since Agent 1 only has access to its
local topology, Agent 1 does not know if (y3,kc ,R3,kc) is the result of fusing, e.g.,
(y2,kb ,R2,kb) and (y3,kb ,R3,kb) at an intermediate time kb, where ka < kb < kc. If
such fusion has occurred, then this results in one R13,kc . If such fusion has not
occurred, then a different R′13,kc will be the true cross-covariance. In theory, it is
possible to resolve this by exchanging information related to how (y3,kc ,R3,kc) has
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(y1,ka ,R1,ka )

1 has (y2,kb ,R2,kb )
been transmitted?

2

(y3,kc ,R3,kc )
3

how to compute R13,kc?

Figure 3.5. Tracking correlations in a DSN. At time ka, Agent 1 transmits
(y1,ka ,R1,ka) to Agent 2. At time kc > ka, Agent 1 receives (y3,kc ,R3,kc) from
Agent 2. Since Agent 1 only knows the local network topology, Agent 1 does not
know if (y2,kb ,R2,kb) was transmitted to Agent 3 at an intermediate time kb.

been obtained, e.g., by exchanging all relevant gains. However, such a solution
is not scalable since it would require a huge amount of additional data to be
communicated, if even possible given the communication protocol. For this reason,
it is important to consider techniques that can be used under unknown correlations.

The simplest approach to track fusion under unknown correlations is to assume
that the correlations are zero. Example 2.5 illustrates a scenario where ignoring
nonzero correlations leads to non-conservative results. In Example 3.9, the effect
of neglecting correlations is illustrated in a target tracking context.

Example 3.9: Neglecting Correlations
Consider a dynamic target moving along the trajectory defined in Figure 3.6. The
target follows a straight path, then turns right, followed by an immediate left-
hand turn, and finally another straight segment. Two agents track the target and
communicate their local tracks according to Rule 3.6. The SSM model in (3.1) is
assumed with CAM for the dynamics and a linear measurement equation. KF is
compared to using CI.

The estimated trajectories are shown in Figure 3.6 for 50 MC runs. In each
MC run, the same noise realizations and track initializations are used for KF and
CI. Using KF for track fusion typically results in a clear overshooting of the curves.
The overshooting occurs since KF neglects the correlations due to common process
noise and common information and hence underestimates the true covariance. As
a consequence, the local filters give too little attention to the measurements and
too much attention to the predictions. By instead using CI for track fusion, a
relatively high estimation accuracy can be maintained during the turning phase.

3.2 Evaluation Measures
In this section, several evaluation measures are stated. Most of them are well-
known; one is in particular well-known in DTT; and one is new.

The numerical evaluations in this thesis are based on MC simulations. De-
note by x̂ik the estimate of xk in the ith simulation, where P ik is the associated
covariance.
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target trajectory
target initial position
KF estimates
CI estimates

Figure 3.6. The single-target tracking scenario of Example 3.9. Since KF neglects
correlations between the exchanged estimates, the resulting estimates overshoot the
true target trajectory in the curves. Meanwhile, CI maintains high estimation accu-
racy even during the turning phase.

3.2.1 Cramér-Rao Lower Bound
Assume that the true dynamics and measurements of the state xk are according
to the SSM in (3.1), i.e.,

xk+1 = Fkxk +wk, wk ∼N (0,Qk),
zk = h(xk) + ek, ek ∼N (0,Ck).

The parametric Cramér-Rao lower bound (CRLB, [167]) P 0, of an unbiased esti-
mator of xk, is computed recursively as [61]

P 0
k+1|k = FkPk|kF

T
k +Qk, (3.25a)

P 0
k|k =

(
(P 0
k|k−1)−1 + (H0

k)TC−1
k H0

k

)−1
, (3.25b)

where H0
k = ∂h(x′)

∂x′

∣∣∣
x′=xk

. Often only the position components of P 0 are of interest.

This quantity is denoted P 0
pos and is given by the upper left block of P 0.

3.2.2 Root Mean Squared Error
The root mean squared error (RMSE) evaluated at time k is given by

RMSEk =

√√√√ 1
M

M∑
i=1

(x̃ik)Tx̃ik =
√
tr
(
P̂k

)
, (3.26)

where x̃ik = x̂ik −xk and

P̂k = 1
M

M∑
i=1

x̃ik(x̃ik)T. (3.27)

Given that the mean E(x̃k) = 0 is known, P̂k equals the sampled covariance of the
estimation error x̃k. If x̃k in addition is Gaussian distributed, then P̂k in (3.27)
is the maximum likelihood estimate of E(x̃kx̃T

k) [88].
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3.2.3 Root Mean Trace
The root mean trace (RMT) of the computed covariance is given by

RMTk =

√√√√tr

(
1
M

M∑
i=1

P ik

)
=

√√√√ 1
M

M∑
i=1

tr
(
P ik
)
. (3.28)

3.2.4 Average Normalized Estimation Error Squared
The average normalized estimation error squared (ANEES, [108]) evaluated at
time k is given by

ANEESk = 1
nxM

M∑
i=1

(x̃ik)T(P ik)−1x̃ik. (3.29)

If P ik = Pk for all i, then

ANEESk = 1
nxM

M∑
i=1

tr
(
P−1
k x̃ik(x̃ik)T

)
= 1
nx

tr
(
P−1
k P̂k

)
, (3.30)

where P̂k is defined in (3.27). Approximate confidence intervals for ANEES are
given by [109][(

1− 2
9nxM

− p
√

2
9nxM

)3
,

(
1− 2

9nxM
+ p

√
2

9nxM

)3]
, (3.31)

where p is related to the confidence level. For instance, p = 1.960, p = 2.576,
and p = 3.291 for 95%, 99%, and 99.9% confidence intervals, respectively. The
confidence interval can be used as a tool in filter tuning [16]. Here, it is used to
evaluate if an estimator is conservative. If the computed ANEES is larger than the
upper bound of the confidence interval, then this estimator is not conservative.

3.2.5 Conservativeness Index
Let P̃k = cov(x̃k) be the covariance of x̃k. Let Pk = LkL

T
k ∈ S

nx
++ be the computed

covariance for the estimate x̂k. Then the condition Pk � P̃k is equivalent to
I � L−1

k P̃kL
−T
k . The conservativeness index3 (COIN) is defined as [56]

COINk = λmax
(
L−1
k P̃kL

−T
k

)
. (3.32)

Definition 2.4 implies that (x̂k,Pk) is conservative i.f.f. λmax(L−1
k P̃kL

−T
k ) ≤ 1. If

P̃k in (3.32) is replaced by P̂k given in (3.27), then this last statement is only
approximately true.

3This measure was originally proposed in [56].
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3.3 Decentralized Target Tracking Under the
Diagonal Covariance Approximation

Let yi = x+ vi, such that yi ∈ Rnx and Ri ∈ Snx++. Assume that Agent i wants to
exchange (yi,Ri). Then nx parameters for yi and nx(nx + 1)/2 parameters for Ri
must be transmitted, yielding a total of nx(nx+3)/2 parameters to be transmitted.
One way to reduce the communication load is to only communicate the diagonal
elements of Ri, hence reducing the total number of transmitted parameters to 2nx.

In this section, a DTT problem is studied, where the communication is con-
strained such that the full state estimate yi but only a diagonal representation
of Ri are allowed to be exchanged. The problem is referred to as the diagonal
covariance approximation (DCA) and was first proposed in [54].

3.3.1 The Diagonal Covariance Approximation
Let di,j be the jth diagonal entry of Ri. Let sj ≥ 1 be a real-valued scalar. Then
Di and Ds

i are defined as

Di = diag(di,1, . . . ,di,nx), Ds
i = diag(s1di,1, . . . ,snxdi,nx). (3.33)

Provided next is an example of the implication of the DCA. Thereafter, the specific
problem studied in this section is defined.

Motivating Example

Let Ri =
[4 1

1 1
]
, such that Di = diag(4,1). Since Ri = cov(vi) = E(vivT

i ), (yi,Ri)
is a conservative estimate. However, since

Di−E(vivT
i ) =Di−Ri =

[
0 1
1 0

]
� 0,

the estimate (yi,Di) is not conservative. Consider now s1 = s2 = 2 such that
Ds
i = 2Di. In this case,

Ds
i −E(vivT

i ) =
[

4 −1
−1 1

]
� 0,

and hence (yi,Ds
i ) is a conservative estimate. This example is illustrated in Fig-

ure 3.7.

Problem Formulation

The previous example demonstrates that it is possible to maintain conservativeness
under the DCA provided that the Di−Ri , 0 is handled in some way, e.g., by using
an inflated diagonal approximation Ds

i of Ri. Assume without loss of generality
(w.l.o.g.) that Agent 2 transmits a local estimate to Agent 1 under the DCA. The
goal is for Agent 1 to fuse the received estimate with its local estimate, where
the fused estimate is conservative. How conservativeness is preserved under the
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Ri
Di
Dsi = 2Di

E(Ri) � E(Di)E(Ri)⊆ E(Dsi )

Figure 3.7. Motivating example for the DCA problem. Let (yi,Ri) be the original
local estimate. If Ri is replaced by the diagonal matrix Di, then the resulting
estimate (yi,Di) is not conservative. A conservative estimate (yi,Dsi ) is obtained
by replacing Ri by Dsi = 2Di.

DCA depends on what data is being exchanged. The following two options are
considered:

D1 Agent 2 transmits (y2,Ds
2) to Agent 1, where Ds

2 �R2. In this case, Agent 2
has already preserved conservativeness, and hence, Agent 1 can use the re-
ceived estimate directly without any additional action.

D2 Agent 2 transmits (y2,D2) to Agent 1. In this case, Agent 1 must explicitly
handle that D2 �R2 to ensure conservativeness after track fusion.

If λmax(R2) < ∞, then it is always possible to scale D2 using finite valued
scaling factors s1, . . . ,snx such that Ds

2 � R2. However, since information is the
inverse of covariance, inflating D2 implies information is lost. Hence, it is desirable
to scale D2 sufficiently to ensure that Ds

2 �R2, but no more than that.

3.3.2 Methods for Preserving Conservativeness
Four methods are proposed for preserving conservativeness4. The methods that
use option D1 are:

• Eigenvalue based scaling (DCA-EIG). Agent 2 exchanges (y2,Ds
2), where

Ds
2 = s?D2 and s? is given in Theorem 3.10.

• Optimization based scaling (DCA-OPT). Agent 2 exchanges (y2,Ds
2), where

Ds
2 is according to (3.33) and s1, . . . ,snx are the solutions to (3.36).

• Diagonal-dominance based scaling (DCA-DOM). Agent 2 exchanges (y2,Ds
2),

where Ds
2 is computed according to (3.38).

The method that uses option D1 is:

• Hyperrectangle enclosing (DCA-HYP). Agent 1 receives (y2,D2) and com-
putes a conservative estimate using (3.42).

4In the original paper [54] there are five methods proposed. However, here two of these are
unified into a common method called DCA-HYP.
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Eigenvalue Based Scaling

Assume that the scaling factors are restricted as s1 = · · · = snx = s such that
Ds

2 = sD2 is obtained by uniform scaling of D2. Under this restriction, the optimal
scaling factor s? is given by

minimize
s

s

subject to Ds
2 = sD2 �R2.

(3.34)

The solution to the problem in (3.34) is provided by Theorem 3.10. Essentially,
the theorem states that s? is given by the largest eigenvalue of the correlation
matrix C2 =D

− 1
2

2 R2D
− 1

2
2 .

Theorem 3.10. The solution to the problem in (3.34) is given by

s? = λmax

(
D
− 1

2
2 R2D

− 1
2

2

)
. (3.35)

Proof: By assumption, D2,R2 ∈ Snx++. Let C2 = D
− 1

2
2 R2D

− 1
2

2 = UΣUT, where
UΣUT is the eigendecomposition of C2, cf. (2.11). Since UTIU = UTU = I, the
constraint in (3.34) can hence equivalently be expressed as sI � Σ. Moreover, since
Σ is diagonal, with eigenvalues λi(C2) on its diagonal,

sI � Σ ⇐⇒ s≥ λi(C2),∀i,

which in particular holds for s= λmax(C2). Meanwhile, the constraint is violated
for all s < λmax(C2). Hence, the optimal solution to (3.34) is s? = λmax(C2).

Optimization Based Scaling

A less restrictive solution compared to DCA-EIG is obtained by allowing s1, . . . ,snx
to be different. In this case, an optimal Ds

2 is given by

minimize
s1,...,snx≥1

J(Ds
2)

subject to Ds
2 = diag(s1d2,1, . . . ,snxd2,nx)�R2,

(3.36)

where J is matrix increasing and d2,i = [D2]ii. If J(·) = tr(·), then (3.36) is a
standard semidefinite program (SDP, [29]).

Diagonal-Dominance Based Scaling

A matrix A ∈ Rn×n is diagonally dominant if

|[A]ii| ≥
∑
j,i

|[A]ij |,∀i. (3.37)

If a diagonally dominant matrix A in addition is symmetric with non-negative
diagonal entries, then A ∈ Sn+ [83]. Hence, Ds

2 �R2 is automatically satisfied for

Ds
2 = diag(s1d2,1, . . . ,snxd2,nx), sid2,i =

nx∑
j=1
|[R2]ij |. (3.38)
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Hyperrectangle Enclosing

If Agent 1 receives (y2,D2) from Agent 2, then Agent 1 needs to inflate D2 in order
to be able to reach a conservatively fused result. However, from the point-of-view
of Agent 1, R2 can be any element in the set

A=
{
B ∈ Snx+

∣∣ [B]ii = d2,i
}
, (3.39)

where d2,i = [D2]ii. The set A is interpreted as the union R =
⋃
B∈A E(B). In

essence, R is an axis-aligned hyperrectangle, where the length of the ith side is
2
√

[R2]ii. The hyperrectangle is illustrated in Figure 3.8 for nx = 2 and R2 =
[4 1

1 1
]
.

Before proceeding, a notion of tightness is provided for the current context.
Definition 3.11 (Tight Enclosing of a Hyperrectangle). Let R be a hyperrectangle
centered at the origin. An ellipsoid E(A) tightly encloses R, if all the corners of
R lie on the boundary of E(A).

Agent 1 derives (y2,Dω
2 ) from (y2,D2), where Dω

2 needs to satisfy Dω
2 �R2 in

order to preserve conservativeness. However, since Agent 1 does not know which
element B ∈ A which is equal to R2, Agent 1 must ensure Dω

2 � B,∀B ∈ A to be
sure that Dω

2 �R2. In particular, Agent 1 wants to solve

minimize
s1,...,snx≥1

J(Ds
2)

subject to Ds
2 = diag(s1d2,1, . . . ,snxd2,nx)�B,∀B ∈ A.

(3.40)

The solution to (3.40) is given by the following theorem.
Theorem 3.12. Let A be defined as in (3.39). Then, for Dω

2 defined as in (3.41),
it holds that:

1. Dω
2 �B,∀B ∈ A, and

2. the ellipsoid E(Dω
2 ) tightly encloses the hyperrectangle R=

⋃
B∈A E(B).

Proof: Since D2 ∈ Snx++, it is equivalent to consider Iω = D
− 1

2
2 Dω

2D
− 1

2
2 and B =

{D−
1
2

2 BD
− 1

2
2 |B ∈ A}. By definition, C ∈ B is a correlation matrix, which means

that E(C) is confined to a hypercube S centered at the origin, where each side of S
is of length 2. The corners of S are given by all combinations of s=

[
b1 . . . bnx

]T,
where bi ≡ ±1. A certain point s lies on the boundary of E(Iω) if sT(Iω)−1s = 1
[29]. It is hence sufficient to show that sT(Iω)−1s= 1 simultaneously holds for all
s. If

∑nx
i=1ωi = 1, then since b2i ≡ 1

sT(Iω)−1s=
[
b1ω1 . . . bnxωnx

]  b1...
bnx

=
∑
i=1

b2iωi =
∑
i=1

ωi = 1.

Hence, E(Iω) tightly encloses S, which implies that E(Dω
2 ) tightly encloses R.

From (2.2) it follows that Dω
2 �B,∀B ∈ A.
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Dω2 |ω1=0.2,ω2=0.8
Dω2 |ω1=0.3,ω2=0.7
Dω2 |ω1=0.4,ω2=0.6
Dω2 |ω1=ω2=0.5
B ∈ A
R

Figure 3.8. Illustration of A. The set A can be geometrically interpreted as a
rectangle R =

⋃
B∈A E(B) if nx = 2. The ellipse E(Dω2 ), with Dω2 given according

to (3.41), tightly encloses R as the boundary of E(Dω2 ) intersects all corners of R.

Theorem 3.12 provides a specific parametrization Dω
2 of Ds

2, i.e.,

Dω
2 = diag

(
d2,1
ω1

, . . . ,
d2,nx
ωnx

)
, ωi ∈ (0,1),

∑
i=1

ωi = 1, (3.41)

where d2,i = [D2]ii and ωi = 1/si. Crucial here are the following two properties: (i)
Dω

2 �B,∀B ∈ A; and (ii) E(Dω
2 ) bounds R tightly, in the sense of Definition 3.11.

Several Dω
2 , for different values of ω1 = 1−ω2, are illustrated in Figure 3.8, where

also the tightness concept is demonstrated.
Remark 3.13. A special case of Dω2 defined in (3.41) is when ωi = 1/nx,∀i. In this case,
Dω2 = nxD2. This choice of Dω2 leads to one of the five proposed methods for preserving
conservativeness in [54]. However, this special case is not considered further in this work.

As noted in [54], Dω
2 can be integrated directly into the CI algorithm. The

estimates (y1,R1) and (y2,D2) are fused conservatively using CI as

x̂= P

(
ω1R

−1
1 y1 +

nx∑
i=1

ω2,iH
T
2,i[D−1

2 ]ii[y2]i

)
, (3.42a)

P =
(
ω1R

−1
1 +

nx∑
i=1

ω2,iH
T
2,i[D−1

2 ]iiH2,i

)−1

, (3.42b)

where ω1,ω2,i ∈ [0,1], ω1 +
∑nx

i=1ω2,i = 1, and H2,i =
[
δ1i . . . δnxi

]
.

Remark 3.14. The same technique can be applied to KF, which, for instance, is relevant
if y1 and y2 are uncorrelated and Agent 1 receives (y2,D2) from Agent 2. In that case

x̂= P

(
R−1

1 y1 +
nx∑
i=1

ω2,iH
T
2,i[D

−1
2 ]ii[y2]i

)
, P =

(
R−1

1 +
nx∑
i=1

ω2,iH
T
2,i[D

−1
2 ]iiH2,i

)−1

,

where ω2,i ∈ [0,1] and
∑nx
i=1ω2,i = 1.

3.3.3 Communication Reduction
As pointed out in the beginning of Section 3.3.1, the DCA reduces the number
of transmitted parameters from nfull = nx(nx + 1)/3 to ndca = 2nx. Figure 3.9
illustrates the communication reduction when using the DCA methodology. If,
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Figure 3.9. Communication reduction when using the DCA.

Figure 3.10. Scenario used in the numerical evaluation. The agents are placed at
fixed locations (−2000,1000)m and (5000,0)m. The target is initially located at
(3000,8000)m, represented by the black circle, and moves along the black trajectory.
The ellipses represent the measurement error covariance of each sensor.

e.g., nx is 6, 9, or 15, then the communication is reduced by 56%, 67%, or 78%,
respectively.

3.3.4 Numerical Evaluation
The proposed methods are now evaluated in a DTT scenario.

Simulation Specifications

The scenario is illustrated in Figure 3.10. Two agents track a common target in
d= 2 spatial dimensions. The CAM in (3.6) is assumed for the dynamics, and the
sensors are defined according to the nonlinear model in (3.8). The agents commu-
nicate their local tracks according to Rule 3.6. Relevant simulation parameters
are summarized in Table 3.2.

Each agent uses EKF for state estimation and CI for track fusion. This means
that DCA-EIG, DCA-OPT, and DCA-DOM are combined with (3.14), and that
DCA-HYP is combined with (3.42). The methods are compared to:

• LKF: A local EKF for which no tracks are shared.

• NKF: A naïve DTT system that uses KF for track fusion.
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Table 3.2
Parameters used in the simulations

Parameter Comment

d= 2 spatial dimensionality
nx = 6 state dimensionality
Ts = 1 sampling time [s]
σw = 2 standard deviation of process noise [ms−

5
2 ]

σr = 1000 standard deviation of radial measurement noise [m]
σθ = 1 standard deviation of azimuth measurement noise [◦]

(−2000,1000) Agent 1 location [m]
(5000,0) Agent 2 location [m]

(3000,8000) target initial position [m]
nk = 18 number of time steps

M = 10000 number of MC runs

• CRLB: In the RMSE plots, CRLB is represented by
√
tr(P 0

pos), where P 0
pos

is computed as in Section 3.2.1.

• CI-FULL: Communication of full estimates with CI used for track fusion.

The optimization problems related to DCA-OPT and DCA-HYP are solved using
YALMIP [114] with the MOSEK solver [123]. In all cases J(·) = tr(·).

Evaluation Measures

The RMSE, RMT, and CRLB are used to evaluate estimator performance. Con-
servativeness is evaluated using the ANEES. RMSE and RMT are computed for
the position components of the error and covariance. ANEES is computed for the
full state.

Results

The results for both agents are plotted in Figure 3.11. The RMT and RMSE
are normalized by σr. ANEES, RMT, and RMSE are computed at time instants
where track fusion is performed.

NKF initially performs well w.r.t. RMT and RMSE, but soon the RMSE start
to diverge due to ignoring the cross-correlations and in particular double count-
ing of information. DCA-EIG, DCA-OPT, DCA-DOM, and DCA-HYP perform
similarly. However, for Agent 2 during the first time steps, DCA-HYP performs
significantly better than DCA-EIG, DCA-OPT, and DCA-DOM. An explanation
of this is that while DCA-EIG, DCA-OPT, and DCA-DOM scale D2 before trans-
mission, DCA-HYP essentially postpones the scaling of D2 until after reception.
Hence, e.g., Agent 1 is able to tune the scaling of D2 in such a way that fusion
of (y1,R1) with (y2,D2) is optimized. This is not possible for option D1 since
(y1,R1) is unavailable for Agent 2.

All methods except NKF are conservative w.r.t. ANEES.
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Figure 3.11. Results from the DCA evaluation. RMSE and RMT are computed for
the position components of the error and covariance. ANEES is computed for the
full state. The gray areas represent ANEES 99.9% confidence intervals.

3.4 Summary
A decentralized single target tracking problem was studied in this chapter as an in-
troduction to DTT under communication constraints. The components, i.e., state
estimation, track fusion, and communication management, of the considered de-
centralized single-target tracking systems have been defined. At the end, the DCA
methodology was proposed as a framework for DTT with reduced data communi-
cation.

Two important aspects related to DTT are addressed in this chapter, and
deserve to be further highlighted:

• Optimal conservative track fusion. Example 3.9 demonstrates the impor-
tance of ensuring conservativeness in a DTT problem to avoid diverging
estimates. At the same time, it is meaningful to develop estimators that are
not too conservative since this leads to unnecessarily large covariances, which,
in the worst case, make the estimates useless. For instance, by examining
the ANEES curves in Figure 3.11, it seems like CI is too conservative for
that application. It is therefore crucial to further develop and formalize the
conservative estimation problem to promote optimality under conservative-
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ness. This is the topic of Chapter 4, but some of the main ideas are already
introduced in this chapter. That is, the tight enclosing of a rectangle, cf.
Definition 3.11, for which the DCA-HYP method provided a solution.

• Efficient communication management. Using the DCA framework, this chap-
ter illustrates that it is possible to reduce communication while maintaining
high estimation quality. In particular, the DCA-HYP method demonstrates
the advantage of taking into account (y1,R1) when communicating a data
reduced version of (y2,R2), e.g., (y2,D2) or (y2,Ds

2). In the case of DCA-
HYP, D2 is not scaled before fusion with (y1,R1), which allows for slightly
improved performance. These ideas are further pursued in Chapter 5.



Appendix

3.A A Mean Squared Error Optimal Fusion Method
Assume that

y1 = x+ v1, R1 = cov(v1), y2 =H2x+ v2, R2 = cov(v2),

with R12 = cov(v1,v2). Let yΨ = Ψ y2 and RΨ = ΨR2ΨT, where Ψ ∈ Rm×n2 ,
m ≤ n2 and rank(Ψ ) = m, such that R1Ψ = cov(v1,Ψ v2) = R12ΨT. The goal is
to compute an estimate x̂ = K col(y1,yΨ ), with KH = I and H = col(I,ΨH2),
that minimizes trace of

P =K

[
R1 R1Ψ
RΨ 1 RΨ

]
KT.

Let K =
[
K1 KΨ

]
such that KH = I =⇒ K1 = I −KΨΨH2. Let R � 0 and

S =H2R1HT
2 +R2−H2R12−R21HT

2 � 0, but assume Ψ is such that Ψ SΨT � 0.
Since K =

[
I −KΨΨH2 KΨ

]
P =R1−R1H

T
2 Ψ

TKT
Ψ −KΨΨH2R1 +KΨΨH2R1H

T
2 Ψ

TKT
Ψ +KΨRΨ 1

−KΨRΨ 1H
T
2 Ψ

TKT
Ψ +R1ΨK

T
Ψ −KΨΨH2R1ΨK

T
Ψ +KΨRΨK

T
Ψ

=R1−KΨ (ΨH2R1−RΨ 1)− (R1H
T
2 Ψ

T−R1Ψ )KT
Ψ

+KΨ (ΨH2R1H
T
2 Ψ

T +RΨ −ΨH2R1Ψ )KT
Ψ −RΨ 1H

T
2 Ψ

T

=R1−KΨA−ATKT
Ψ +KΨBK

T
Ψ ,

where

A= ΨH2R1−RΨ 1 = Ψ (H2R1−R21) ,
B = ΨH2R1H

T
2 Ψ

T +RΨ −ΨH2R1Ψ −RΨ 1H2Ψ
T

= Ψ

(
H2R1H

T
2 +R2−H2R12−R21H

T
2

)
ΨT = Ψ SΨT.

Completing the square yields

P =R1−ATB−1A+ (KΨ −ATB−1)B(KT
Ψ −B

−1A),

48
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which is minimized when KΨ =ATB−1. An MSE optimal estimate is given by

x̂=K1y1 +KΨ yΨ , P =R1−KΨΨ SΨTKT
Ψ ,

K1 = I −KΨΨH2, KΨ = (R1H
T
2 −R12)ΨT(Ψ SΨT)−1,

where S =H2R1HT
2 +R2−H2R12−R21HT

2 .
In the special case of Ψ = I, the estimate is given by

x̂=K1y1 +K2y2, P =R1−K2SK
T
2 ,

where K1 = I −K2H2 and K2 = (R1HT
2 −R12)S−1.





4
Conservative Track Fusion Under

Partially Known Correlations

The previous chapter demonstrates that in DTT correlations are often intractable,
and therefore some blocks of R = cov(y) are unknown. In practice, it is typically
the cross-covariances that are unknown. The conservative linear unbiased estima-
tor (CLUE) is introduced as a framework applicable for estimation under partially
known R. Hence, the CLUE framework is highly relevant for track fusion prob-
lems. In addition, an optimal CLUE is defined. Using robust optimization (RO),
the CLUE framework can be applied to general conservative linear estimation
problems. Moreover, it is shown how several existing fusion methods are special
cases of the optimal CLUE under different assumptions. A numerical evaluation is
provided at the end to validate the theory and methods developed in this chapter.

This chapter is an edited version of [56] © 2022 IEEE.

4.1 Conservative Linear Unbiased Estimation
Let (y,R) be defined as in (2.12). Another, more general, way of saying that parts
of R are unknown, or equivalently, that R is only partially known, is that R ∈ A,
where A ⊆ Sny+ is a set of PSD matrices. For a linear estimator x̂ = Ky with
covariance P , this representation implies that

P � E(x̃x̃T) ⇐⇒ P �KSKT,∀S ∈ A. (4.1)

If x̂ is also unbiased, then the estimator is a CLUE as defined in Definition 4.1.
Definition 4.1 (Conservative Linear Unbiased Estimator). Assume that y =Hx+
v, where R = cov(v). An estimator (x̂,P ) is a conservative linear unbiased esti-
mator (CLUE) if

x̂=Ky, KH = I, P �KSKT,∀S ∈ A. (4.2)

51
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Remark 4.2. The set A contains those S that are permitted given the problem formula-
tion. Such matrices are sometimes referred to as admissible matrices, see, e.g., [130, 171].
Hence, A contains all admissible matrices.

It is assumed that the elements of A have only finite eigenvalues, which means
that R has only finite eigenvalues. A CLUE is characterized by (K,P ). The
concept of modeling a partially known R as R ∈ A is demonstrated in Example 4.3.

Example 4.3: Conservative and Non-Conservative Estimators
Consider x ∈ R2 and A = {Ra,Rb,Rc,Rd,Re} ⊂ S4

++. Let (K,P ) and (Kn,Pn)
be two linear unbiased estimators, where P and Pn are defined by the ellipses in
Figure 4.1. Since E(P ) ⊇ E(KSKT),∀S ∈ A, and hence P � KSKT,∀S ∈ A, it
follows that (K,P ) is a CLUE. Meanwhile, since Pn �KnS(Kn)T does not hold
for all S ∈ A, it is concluded that (Kn,Pn) is not a CLUE.

©
20

22
IE

E
E

KSKT,S ∈ A
P

KnS(Kn)T,S ∈ A
Pn

Figure 4.1. Illustration of a conservative estimator (K,P ) and a non-conservative
estimator (Kn,Pn) given a fixed set A.

4.1.1 Best Conservative Linear Unbiased Estimation
If A = {R}, then the BLUE is an optimal CLUE for any matrix increasing loss
function J . If A is not a singleton, that is no longer true. The best CLUE is
proposed in Definition 4.4 as an optimal CLUE1, and is a generalization of the
BLUE given in Definition 2.2 to arbitrary A.

Definition 4.4 (Best Conservative Linear Unbiased Estimator). Assume that y =
Hx+ v, where cov(v) = R ∈ A ⊂ Sny++. An estimator x̂? = K?y with covariance
P ? is called a best conservative linear unbiased estimator (best CLUE), if (K?,P ?)
is the solution to

minimize
K,P

J(P )

subject to KH = I

P �KSKT,∀S ∈ A,

(4.3)

for a given matrix increasing function J .

A feasible point to the problem in (4.3) is a pair (K,P ) for which the constraints
hold [29], i.e., KH = I and P � KSKT,∀S ∈ A. In this regard, a CLUE is a

1Related formulations of optimal conservative estimators have been proposed in [36, 37, 150].
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feasible point. The set of all feasible points is called the feasible set which equals
the set of all CLUEs.

The BLUE covariance is a minimum element, cf. (2.5), of the feasible set to
the problem in Definition 2.2. This strong property is unfortunately not inher-
ited to the best CLUE case. However, Proposition 4.5 states the slightly weaker
property that, if J is matrix increasing, then P ? of the solution to the problem in
Definition 4.4 is a minimal element of the set of all CLUEs.
Proposition 4.5. Let V ⊆ Sn+ and J be matrix increasing. Then the solution to

minimize
B∈V

J(B), (4.4)

is a minimal element of V.

Proof: The proposition is shown by contradiction. Assume that A solves (4.4). If
A is not a minimal element of V, then by definition there exists another element
B ∈ V such that B � A , B. From (2.4) and (2.6) it follows that J(B) < J(A),
which is a contradiction since then A cannot be a solution to (4.4). Hence, A is a
minimal element of V.

It is known that minimal elements A ∈ V are given by minimizing tr(WA)
with W ∈ Sn++ [29]. Therefore, a natural loss function for the best CLUE problem
would be tr(WA). The reason that a matrix increasing function J is used is that
it also includes, e.g., the determinant, which is a commonly used loss function in
the literature on conservative estimation.
Remark 4.6. In the literature, J is most often given by the trace or the determinant.
Minimizing the trace is related to minimizing the MSE. Minimizing the determinant is
related to minimizing the entropy [135].

4.1.2 Proposed Framework
The CLUE is proposed as a framework for conservative estimation. The backbone
of this framework is provided in Definition 4.4. Properties of the proposed frame-
work are derived in Section 4.2. As shown in Section 4.3, standard optimization
software can be applied to compute a CLUE in general, and in some cases even
guarantee a best CLUE. In Section 4.4, it is shown that several established con-
servative estimators are CLUEs and best CLUEs given specific assumptions on A.
An overview of the best CLUE and its relationship to the BLUE is visualized in
Figure 4.2.

4.2 Problem Properties
The BLUE and best CLUE formulations are similar. However, while a closed-form
solution is available for the BLUE, the additional uncertainty inherent to the best
CLUE makes this problem much more complicated, and no general solution proce-
dure is available. This section highlights differences between the two optimization
problems and derives a simplified optimization problem providing a lower bound
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model: y = Hx+ v,cov(v) = R ∈ A
estimator: x̂ = Ky,KH = I,P � cov(Kv)

exact and unique closed-form solution
K? = P?HTR−1,P? =

(
HTR−1H

)−1

A= {R}

optimal estimator: BLUE

properties special casesgeneral CLUE
using RO

A= {Ra,Rb, . . .}

optimal estimator: best CLUE

Figure 4.2. Overview of the conservative linear unbiased estimation problem. The
special case with A= {R} is illustrated to the left, and the general case is illustrated
to the right. The scope of this chapter is contained in the green box.

Pl of the obtainable covariance of the CLUE. In addition, an upper bound Pu is
provided. It should be noted that Pl and Pu depend on A.

4.2.1 Lower Bound on Best CLUE
The CLUE covariance P ? cannot be smaller than the BLUE covariance given
any S ∈ A. Consequently, it is possible to establish a lower bound for P ? by
finding the smallest covariance that is greater than all BLUE covariances given A.
This approach simplifies the optimization issue compared to finding the optimal
CLUE solution. In analogy to the CRLB, this lower bound can be used as a
guideline for system design, e.g., to trade off between communication bandwidth
and performance. It should be noted that this formulation relaxes the constraints,
and hence there is no guarantee that a gain K achieving this covariance exists
in the general case. A lower bound Pl for P ? is derived below, where subscript l
refers to quantities related to the lower bound. It is shown that J(P ?)≥ J(Pl). If
a CLUE (K,P ) satisfies J(P ) = J(Pl), then this CLUE is also a best CLUE.

Consider the problem

minimize
P

J(P )

subject to P � (HTS−1H)−1,∀S ∈ A.
(4.5)

For a given J a solution Pl to (4.5) is a lower bound2 on P ?.
Theorem 4.7. Let (K?,P ?) and Pl be given by (4.3) and (4.5), respectively. Then
J(P ?)≥ J(Pl).

Proof: By assumption, the same matrix increasing J and the same A are used in
(4.3) and (4.5). Since (K?,P ?) solves (4.3) and as a consequence of the Gauss-
Markov theorem [94], it holds, for each S ∈ A, that

P ? �K?S(K?)T � (HTS−1H)−1,

Hence, P ? satisfies the constraints in (4.5) and therefore J(P ?)≥ J(Pl).
2Section 4.5.1 provides an example in which the lower bound is strict.
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From Theorem 4.7 it follows that if Pl is obtained by a CLUE, then this
estimator is a best CLUE. Next, an estimator with the gain Kl computed from
Pl is derived. In addition, sufficient conditions are provided for when (Kl,Pl) is a
best CLUE. Start by solving for Rl in

Pl = (HTR−1
l H)−1, (4.6)

which has a solution since Pl ∈ Snx++ and since HT is full rank. Let

Kl = (HTR−1
l H)−1HTR−1

l , (4.7)

which yields an unbiased estimator since KlH = I. For (Kl,Pl) to be a CLUE, it
must hold that Pl �KlSK

T
l ,∀S ∈ A. As it follows from (4.7) that KlRlK

T
l = Pl

with Rl according to (4.6), a sufficient condition for (Kl,Pl) to be a CLUE is that
Rl � S,∀S ∈ A since then

Pl =KlRlK
T
l �KlSK

T
l ,∀S ∈ A.

The results above are summarized in the following theorem.
Theorem 4.8. Assume that Pl solves (4.5) and that Kl is according to (4.7) with
Rl implicitly given in (4.6). If Rl � S,∀S ∈ A, then (Kl,Pl) is a best CLUE.

As will be seen in Section 4.5.1, it is possible to not satisfy Rl � S,∀S ∈ A
while still satisfying Pl �KlSK

T
l ,∀S ∈ A.

4.2.2 Upper Bound on Best CLUE
Assume B such that B � S,∀S ∈ A is given. Then, it is possible to construct a
CLUE as (K,P ) with P = KBKT for any K subject to KH = I. In particular,
a CLUE can be derived by first finding a B � S,∀S ∈ A, and then compute
the BLUE w.r.t. this B. Finding a smallest covariance larger than all possible
R ∈ A is a simpler problem than the best CLUE problem. However, approaching
the problem in this way restricts the feasible set, and therefore a CLUE, but not
necessarily a best CLUE, is obtained. Nevertheless, it is sometimes useful to bound
A tightly using B, see, e.g., [10, 54, 65, 75, 146] and Section 4.4.4. In such cases
the closed-form expression of (4.9) below can be used to compute a CLUE. Next,
an upper bound Pu on P ? of (4.3) is derived. Subscript u is used for quantities
related to the upper bound.

Introduce the set
B = {B ∈ Sny+ |B � S,∀S ∈ A}, (4.8)

which contains all matrices B that are larger than all elements S ∈ A. A CLUE
(Ku,Pu) is then given by

Ku = (HTB−1H)−1HTB−1, Pu = (HTB−1H)−1, (4.9)

where B ∈ B and KuH = I. By a similar reasoning that leads up to Theorem 4.8,
(Ku,Pu) according to (4.9) is a CLUE for any B ∈ B.

A minimal bound is defined in Definition 4.9. It is also referred to as a tight
bound and can be interpreted as a generalization of Definition 3.11.
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case 1: Pu � P? � Pl case 2: Pu = P? � Pl

case 3: Pu � P? = Pl case 4: Pu = P? = Pl

Pu

P?

Pl

Figure 4.3. Four cases related to the mutual ordering of Pu, P ?, and Pl.

Definition 4.9 (Minimal Bound). Assume that B � S,∀S ∈ A. Then, B is a
minimal bound on A if there exists no A �B such that B �A and A� S,∀S ∈ A.

In general (4.9) is too conservative to be a best CLUE, even if B is a minimal
bound3 on A. These results are summarized in the next theorem.

Theorem 4.10. Let (K?,P ?) be given by (4.3) and let (Ku,Pu) be given by (4.9),
where B ∈ B with B as in (4.8). Then J(Pu)≥ J(P ?).

4.2.3 Comments
If the approach in Section 4.2.1 yields a CLUE, then (Kl,Pl) is also a best CLUE.
If not, then (Kl,Pl) is a too optimistic estimator. On the other hand, the estimator
(Ku,Pu) given by (4.9) is generally too pessimistic to be a best CLUE. If the lower
and upper bounds coincide, then, as a consequence of Theorem 4.8, a best CLUE
is obtained. Four possible cases related to the mutual ordering of Pu, P ?, and Pl
are illustrated in Figure 4.3.

4.3 General Conservative Linear Unbiased
Estimation

In this section, it is shown how RO [23] can be used to solve general CLUE prob-
lems4. First, it is shown that the CLUE problem fits into the robust semidefinite
programming optimization framework [66]. Tractability5 and optimality are then
discussed. Finally, an implementation of conservative estimation using RO in
YALMIP [114] is provided.

4.3.1 Robust Semidefinite Optimization
This chapter deals with optimization problems with semidefinite constraints. Hence,
the focus is on a class of problems called semidefinite programs (SDP). Let ∆ ∈ D
be an uncertain optimization parameter only known to reside in an uncertainty

3An example of this is provided in Section 4.5.1.
4Other estimation problems where RO is used are studied in, e.g., [23, 41].
5Tractability in the sense that a solution can be found within a reasonable amount of time.
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set D ⊂ Rp. In RO, none of the constraints are allowed to be violated for any
value ∆ ∈ D [22]. A generic SDP with an inequality constraint uncertainty can be
stated as [66]

minimize
z

f(z)

subject to F(z,∆)� 0,∆ ∈ D,
(4.10)

for a loss function f . In (4.10), z is an optimization variable, and F(z,∆) is a
matrix-valued function that depends on z and ∆. The constraint in (4.10) is a
linear matrix inequality (LMI) for a certain fixed ∆.

The best CLUE problem stated in Definition 4.4 is aligned with the formulation
in (4.10). To see this, replace z by (K,P ), D by A, ∆ by S, and f(z) by J(P ).
Then rewrite the matrix inequality of (4.3) using Schur complement [67] as

F(K,P,S) =
[
P KS

SKT S

]
� 0. (4.11)

Since (4.11) is equivalent to P � 0∧P −KSKT � 0, the problem in Definition 4.4
has been retrieved.

4.3.2 Tractability And Optimality
There are a few cases where the computed solution to the problem in (4.10), with
D = A, is tractable and optimal in the sense that a minimal element is found
when the RO problem is solved [21]. If A is a finite set, then tractability follows
trivially since the uncertainty is replaced by a finite set of LMIs. The problem is
also tractable if A is the convex hull [29] of a finite set. See Example 4.11 for an
example of this.

Example 4.11: Convex Hull of a Finite Set
The convex hull of a set V is another set which contains all convex combinations of
the elements of V [29]. For example, consider a set of covariances V = {A,B} ⊂ S2

+
where A=

[ 4 −2
−2 1

]
and B =

[4 2
2 1
]
. The convex hull of V is

{θA+ (1− θ)B |θ ∈ [0,1]}=
{[

4(θ+1−θ) −2θ+2(1−θ)
−2θ+2(1−θ) θ+1−θ

]∣∣∣θ ∈ [0,1]
}

=
{[

4 2−4θ
2−4θ 1

]∣∣∣θ ∈ [0,1]
}

=
{[4 c

c 1
]∣∣c ∈ [−2,2]

}
.

In cases where the unknown cross-covariance is not a scalar, it is generally not
possible to express A as the convex hull of a finite set. Hence, for general uncer-
tainty sets A, there are only a few constructive results on robust counterparts for
the problem in (4.10). The case treated here, where both the RO problem and the
uncertainty set are defined by semidefinite constraints, is largely untreated in the
literature. Not only are exact solutions absent in contrast to the simple example
above, but also general, tractable, conservative approximations are missing.



58 4 Conservative Track Fusion Under Partially Known Correlations

4.3.3 Robust Estimation Using YALMIP

YALMIP is a Matlab® toolbox developed to model and solve optimization prob-
lems [114], and it has the ability to derive RO problems [115]. The strategies in
[115] focus on cases where exact robust counterparts can be derived which rules out
problems according to the model in (4.10). However, theory has recently been de-
veloped and added to the YALMIP toolbox to support problems according to (4.10),
i.e., uncertainty structures involving arbitrary intersections of conic-representable
sets. These additions6 are described in the forthcoming [113].

The key feature for us is realized by a function called uncertain(), which
enables the uncertainty imposed by R ∈ A to be handled. A CLUE problem
solved using RO in YALMIP is illustrated in Example 4.12.

Example 4.12: Robust Estimation Using YALMIP
Consider the task of computing a conservative estimate x̂=Ky and P where tr(P )
is minimized. Let y = [y1

y2 ] =
[
H1
H2

]
x+v where x ∈ R2,H1 =H2 = I, R1 = diag(1,4)

and R2 = diag(4,1). Assume R12 is completely unknown and that R � 0. The
problem is translated into Matlab® syntax using YALMIP below.

H = [eye (2);eye (2) ];
R1 = diag ([1 4]); R2 = diag ([4 1]);
K = sdpvar(2 ,4); P = sdpvar(2); R12 = sdpvar(2,2,’full ’); % declare SDP

variables
R = [R1 R12;R12 ’ R2 ];
F = [uncertain(R12),K*H== eye (2) ,[P K*R;R*K’ R]>=0,R >=0]; % constraints
J = trace (P); % loss function
optimize(F,J) % solve problem

YALMIP functions are highlighted in orange. The result is K =
[0.8 0 0.2 0

0 0.2 0 0.8
]
and

P = 1.6I. In this case, YALMIP in fact finds a best CLUE which turns out to be
equivalent to a solution computed using CI. However, in general the solution is
approximative and the only guarantee is that the solution is a CLUE.

4.4 Special Conservative Linear Unbiased Estimation
In this section, it is shown that CI, ICI, and LE are best CLUEs under different
assumptions on A. In addition, several other methods are stated. Common to
many methods is that the diagonal blocks of R are known while the off-diagonal
blocks, e.g., R12, are unknown. What differs between the methods is the assump-
tion on the off-diagonal blocks. For instance, it could be that R12 is diagonal or
that λmax(R12RT

12) < a, where a > 0. The benefit of exploiting any correlation
structure is illustrated in Example 4.13.

6This functionality is integrated into YALMIP, but the associated documentation is unpublished.
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Example 4.13: Exploiting Correlation Structure
Assume R =

[4 c
c 1
]
, where c is unknown. If it is only known that R � 0, then c ∈

[−2,2], and hence R could be represented by any ellipse enclosed in the rectangle
of Figure 4.4. A minimal bound on A is in this case given by B. On the other
hand, if it is known that c ∈ [−1

2 ,
1
2 ], then it is possible to find an even smaller

minimal bound B′. The figure also visualizes A = {
[4 c
c 1
]
|c ∈ [−2,2]} and A′ =

{
[4 c
c 1
]
|c ∈ [−1

2 ,
1
2 ]} ⊂ A.

©
20

22
IE

E
E

B

A

B′

A′

Figure 4.4. Example of utilizing correlation structure. Left: B is a minimal bound
on A. Right: A smaller minimal bound, B′ ≺B, is possible for A′ ⊂A.

It is assumed in the following that (yi,Ri) are available, where i = 1,2, . . . ,N ,
and that Rij , with i � j, are unknown. It should be emphasized that CI, ICI,
and LE give different solutions to a problem since they are related to different
assumptions on A. Among CI, ICI, and LE, LE makes the most restrictive
assumptions on A while CI makes the least restrictive assumptions on A. Thereby,
LE in general is less conservative than ICI, while ICI in general is less conservative
than CI.

4.4.1 Covariance Intersection
CI is presented in Section 3.1.2. The method is originally based on completely
unknown cross-correlations for which the only condition on the cross-correlation
is that R� 0, and therefore

A=
{[

S1 S12
S21 S2

]
∈ Sny+

∣∣∣∣S1 =R1,S2 =R2

}
. (4.12)

Let y = col(y1, . . . ,yN ), H = col(H1, . . . ,HN ), and B = diag
(
R1
ω1
, . . . , RNωN

)
. CI in

information form is given by

P−1 =HTB−1H =
N∑
i=1

ωiH
T
i R
−1
i Hi, P−1x̂=HTB−1y =

N∑
i=1

ωiH
T
i R
−1
i yi,

(4.13)

where ωi ∈ [0,1] and
∑N
i=1ωi = 1. The parameters ω1, . . . ,ωN are found by mini-

mizing J(P ). The CI gain K is given by

K =
[
K1 . . . KN

]
= P

[
ω1HT

1R
−1
1 . . . ωNH

T
NR
−1
N

]
. (4.14)
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Properties

CI is a linear unbiased estimation method [52]. Since CI also is conservative given
completely unknown correlations [90], CI is a CLUE as long as all (yi,Ri) to be
fused are conservative.

Regarding optimality, let N = 2 and H1 = H2 = I. In this case, only one
parameter ω is required since it is possible to define ω1 = ω and ω2 = 1−ω. Let the
optimal value of ω given J(P ) be denoted by ω?. Moreover, let an arbitrary CLUE
be given by (K ′,P ′). In [150] it is shown that, if ω? is obtained by minimizing
J(P ) w.r.t. ω with P given in (4.13), then for (K?,P ?) given by

K? =
[
ω?P ?R−1

1 (1−ω?)P ?R−1
2
]
, P ? =

(
ω?R−1

1 + (1−ω?)R−1
2
)−1

, (4.15)

it holds that
P ′ � P ? =⇒ P ′ = P ?.

This means P ? is a minimal element of the feasible set. Hence, an estimator
(K?,P ?) given according to (4.15) constitutes a best CLUE, provided that N = 2
and R12 is completely unknown.

4.4.2 Inverse Covariance Intersection
ICI is derived in [130] for the case where N = 2 and H1 = H2 = I. ICI is less
conservative than CI, and is based on the assumption that R12 is due to common
information7. Let Γ−1 ∈ Snx++ denote common information included in both R−1

1
and R−1

2 , and γ̂ to denote the corresponding estimate such that Γ = cov(γ̂). The
common information structure for two estimates is defined as

R−1
1 = (Re1)−1 + Γ−1, R−1

1 y1 = (Re1)−1ye1 + Γ−1γ̂, (4.16a)
R−1

2 = (Re2)−1 + Γ−1, R−1
2 y2 = (Re2)−1ye2 + Γ−1γ̂, (4.16b)

where (Rei )−1 and yei are the exclusive information and the exclusive estimate
contained in the ith estimate, respectively. The notion exclusive here means that
cov(ye1,ye2) = cov(ye1, γ̂) = cov(ye2, γ̂) = 0. With y1 and y2 according to (4.16), the
cross-covariance is given by [130]

R12 =R1Γ
−1R2. (4.17)

From (4.16) it follows that R−1
1 ,R−1

2 � Γ−1. The set A is now given by

A=
{[

S1 S12
S21 S2

]
∈ Sny+

∣∣S1 =R1,S2 =R2,S12 = S1Γ
−1S2,S

−1
1 ,S−1

2 � Γ−1
}
. (4.18)

An estimate is computed using ICI according to

P−1 =R−1
1 +R−1

2 − (ωR1 + (1−ω)R2)−1 , (4.19a)

P−1x̂=
(
R−1

1 −ω (ωR1 + (1−ω)R2)−1
)
y1

+
(
R−1

2 − (1−ω)(ωR1 + (1−ω)R2)−1
)
y2, (4.19b)

7Correlations due to common information are described in Section 3.1.4.
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where ω ∈ [0,1] is found by minimization of J(P ). The gain is given by K =[
K1 K2

]
, where

K1 = P
(
R−1

1 −ω (ωR1 + (1−ω)R2)−1
)
, (4.20a)

K2 = P
(
R−1

2 − (1−ω)(ωR1 + (1−ω)R2)−1
)
, (4.20b)

with P according to (4.19).

Generalization

A generalization of ICI is proposed in [52] for N = 2, but where H1 and H2 are
not necessarily equal to I. Here, a modification of that algorithm is proposed.
Before proceeding, some mathematical details need to be addressed. Let (γ̂,Γ )
correspond to a shared estimate as in (4.16), but assume Γ = cov(γ̂) is infinite
in p < n2 components. Infinite variance is equivalent to zero information. Hence,
the issue of infinite variance is conveniently handled by the information form. The
information Iγ of (γ̂,Γ ) is given by

Iγ = V DVT, D = diag(d1, . . . ,dnx−p,0, . . . ,0) ∈ Snx+ , (4.21)

where di > 0 and V =
[
v1 . . . vnx

]
is an orthogonal matrix. In this sense, the

components with infinite variance correspond to the directions vnx−p+1, . . . ,vnx .
Let Φ = col(vT

1 , . . . ,v
T
nx−p) such that Iγ = ΦT(ΦΓΦT)−1Φ, where ΦΓΦT is finite

and invertible by construction. It follows that

IγΓ Iγ = ΦT(ΦΓΦT)−1ΦΓΦT(ΦΓΦT)−1Φ = ΦT(ΦΓΦT)−1Φ = Iγ . (4.22)

The proposed generalized ICI is stated in Algorithm 4.14 and is valid forH1 = I
and arbitrary H2 ∈ Rn2×nx satisfying rank(H2) = n2. Assume that y1 = x+ v1,
y2 = H2x + v2, and γ̂ = x + vγ . Let ỹei = yei −Hix and γ̃ = γ̂ − x. Define
= Rei = cov(ỹei ) and Γ = cov(γ̃). Allow for the exclusive information Iei and the
common information Iγ to be singular, but still assume R1 ∈ Snx++ and R2 ∈ Sn2

++.
In this case Γ might be infinite in some directions. The common information
decomposition is now defined as

R−1
1 = Ie1 + Iγ , R−1

1 y1 = Ie1ye1 + Iγ γ̂, (4.23a)
R−1

2 = Ie2 +H2IγHT
2 , R−1

2 y2 = Ie2ye2 +H2Iγ γ̂, (4.23b)

where cov(ye1,ye2) = cov(ye1, γ̂) = 0 and cov(ye2, γ̂) = 0. The cross-covariance is
given by

R12 = E
(

(R1 (Ie1ye1 + Iγ γ̂)−x)(R2 (Ie2ye2 +H2Iγ γ̂)−H2x)T
)

=R1E
(

(Ie1 ỹe1 + Iγ γ̃)(Ie2 ỹe2 +H2Iγ γ̃)T
)
R2 =R1Iγ E(γ̃γ̃T)IγHT

2R2

=R1IγΓ IγHT
2R2 =R1IγHT

2R2, (4.24)
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Algorithm 4.14: Inverse Covariance Intersection
Input: Estimates (y1,R1) and (y2,R2), and H2

The estimates are fused according to:

P−1 =R−1
1 +HT

2R
−1
2 H2−ωHT

2 Γ
−1
1 H2− (1−ω)HT

2H2Γ
−1
2 HT

2H2, (4.25a)

P−1x̂=
(
R−1

1 −ωHT
2 Γ
−1
1 H2

)
y1 +

(
HT

2R
−1
2 − (1−ω)HT

2H2Γ
−1
2 HT

2
)
y2, (4.25b)

where Γ1 = ωH2R1H
T
2 + (1−ω)R2 and Γ2 = ωR1 + (1−ω)HT

2R2H2.
Output: (x̂,P )

where Γ = E(γ̃γ̃T) and (4.22) were used.
In [9], ICI is generalized for fusion of N > 2 estimates. In [129], it is shown that

ICI produces conservative results even in the case of the correlated information
structure. This structure is a generalization of the common information structure.
It is also shown that ICI can handle common process noise under certain assump-
tions. The correlated information structure is also considered in [52] and is in
particular assumed in the derivation of the generalization of ICI in [52]. However,
since this structure is difficult to motivate in practice, it is not considered further
in this scope.

Properties

In the following, it is assumed that ω ∈ (0,1). If ω ∈ {0,1}, then there is no actual
fusion performed, and conservativeness hence follows directly. An alternative for-
mulation of Algorithm 4.14 is provided in Lemma 4.15. Theorem 4.16 states that
ICI is a CLUE given that HT

2R
−1
2 H2 � Iγ and that the decomposition in (4.23)

holds. Loosely speaking, the assumption HT
2R
−1
2 H2 � Iγ restricts the common

information to be confined to a subspace common to both (y1,R1) and (y2,R2).

Lemma 4.15. An estimate (x̂,P ) computed as in Algorithm 4.14 is equivalent to
x̂= PHTB−1y and P = (HTB−1H)−1, with y = col(y1,y2), H = col(I,H2), and

B =
[
R1 + ω

1−ωR1HT
2R
−1
2 H2R1 0

0 R2 + 1−ω
ω R2H2R

−1
1 HT

2R2

]
. (4.26)

Proof: Using Woodbury’s matrix identity [181](
R1 + ω

1−ωR1H
T
2R
−1
2 H2R1

)−1

=R−1
1 −R

−1
1 R1H

T
2

(
H2R1R

−1
1 R1H

T
2 + 1−ω

ω
R2

)−1
H2R1R

−1
1

=R−1
1 −ωH

T
2

(
ωH2R1H

T
2 + (1−ω)R2

)−1
H2 =R−1

1 −ωH
T
2 Γ
−1
1 H2,
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where Γ1 = ωH2R1HT
2 + (1−ω)R2. Similarly(

R1 + 1−ω
ω

R2H2R
−1
1 HT

2R2

)−1
=R−1

2 − (1−ω)HT
2H2Γ

−1
2 HT

2H2,

where Γ2 = ωR1 + (1−ω)HT
2R2H2. Hence

P−1 =HTB−1H =R−1
1 +HT

2R2H2−ωHT
2 Γ
−1
1 H2− (1−ω)HT

2H2Γ
−1
2 HT

2H2,

P−1x̂=HTB−1y

=
(
R−1

1 y1−ωHT
2 Γ
−1
1 H2

)
y1 +

(
HT

2R
−1
2 − (1−ω)HT

2H2Γ
−1
2 HT

2

)
y2,

which is equivalent to the output of Algorithm 4.14.

Theorem 4.16. Assume that (4.23) holds and that HT
2R
−1
2 H2 � Iγ . Then ICI

defined in Algorithm 4.14 is a CLUE.

Proof: Let B be given by (4.26). Lemma 4.15 states that the ICI gain is given
by K = (HTB−1H)−1HTB−1. Since KH = I, ICI is a linear unbiased estimator.
To see that ICI also is conservative given (4.23), consider B defined according to
(4.26). By assumption R−1

1 � Iγ and HT
2R
−1
2 H2 � Iγ . Hence, with R=

[
R1 R12
R21 R2

]
,

µ= 1−ω
ω , and R12 according to (4.24), the difference B−R satisfies[

1
µR1HT

2R
−1
2 H2R1 −R1IγHT

2R2
−R2H2IγR1 µR2H2R

−1
1 HT

2R2

]
�
[ 1

µR1IγR1 −R1IγHT
2R2

−R2H2IγR1 µR2H2IγHT
2R2

]
Let a = col(a1,a2), where a1 ∈ Rnx and a2 ∈ Rn2 . By definition B −R � 0 i.f.f.
aT(B −R)a ≥ 0 for all a [67]. Define b = col(b1, b2), where b1 =

√
1/µR1a1 and

b2 =−√µHT
2R2a2. Then, since

[
Iγ Iγ
Iγ Iγ

]
is PSD, it holds, for all a, that

aT (B−R)a≥ bT
[
Iγ Iγ
Iγ Iγ

]
b≥ 0.

Hence B � S,∀S ∈ A, where A is according to (4.18), and it follows that ICI is a
CLUE under the given assumptions8.

Concerning optimality, assume that (4.16) holds such that A is according to
(4.18). In [130] it is shown that if (K ′,P ′) is an arbitrary CLUE and P ? is com-
puted according to (4.19), then

P ′ � P ? =⇒ P ′ = P ?.

Hence, ICI is a best CLUE given that N = 2 and A is according to (4.18).

8This proof is inspired by the proof of a similar result in [129].
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4.4.3 Largest Ellipsoid Method
The LE method first appeared in [24], but now goes by several names. In [73] it is
called safe fusion, the authors of [159, 160] suggest the name ellipsoidal intersection,
and in [188] it is referred to as internal ellipsoid approximation. It should be
noted that there are minor differences in how the estimate is computed. The LE
algorithm used here, and the generalization thereof, are based on [73].

In the derivations of LE, no explicit assumptions on A are made. Below, the
componentwise aligned correlations structure is proposed. Componentwise aligned
correlations are satisfied if there exists a joint transformation TJ = diag(T,T ) such
that

TJRT
T
J =

[
I D′12
D′12 D′2

]
, (4.27)

where D′2 and D′12 are diagonal. The condition in (4.27) is equivalent to

A=
{[

S1 S12
S21 S2

]
∈ Sny+

∣∣∣∣∣S1 =R1,S2 =R2

∃T,TS1T
T = I ∧ [TS2T

T]ij = [TS12T
T]ij = 0, i , j

}
.

(4.28)
In [52], a generalized version of the LE method is proposed for the case when

H1 = I while H2 is arbitrary. This version is defined in Algorithm 4.17. In contrast
to the original version, cf. [73], it is given in information form to avoid singularities.
If H2 = I, then the LE method computes an estimate (x̂,P ) as

x̂= T−1x̂′, P = T−1P ′T−T, (4.29a)

where T = T2T1,

R1 = U1Σ1U
T
1 , T1 = Σ

− 1
2

1 UT
1 , (4.30a)

T1R2T
T
1 = U2Σ2U

T
2 , T2 = UT

2 , (4.30b)
y′1 = Ty1, D′1 = TR1T

T = I, (4.30c)
y′2 = Ty2, D′2 = TR2T

T, (4.30d)

and (
[x̂′]i, [P ′]ii

)
=
{

([y′1]i,1) , if 1≤ [D′2]ii,
([y′2]i, [D′2]ii) , if 1> [D′2]ii.

(4.31)

Properties

Consider the quantities in (4.29)–(4.31). The resulting gain of LE is given by

K =
[
K1 K2

]
= T−1 [K ′1 K ′2

]
T, (4.32)

where K ′1 and K ′2 are the gains in the transformed domain, i.e., after transfor-
mation using T . The matrix K ′1 is diagonal, where [K ′1]ii = 1 if [D′2]ii ≥ 1 and
otherwise zero, and K ′2 = I −K ′1 [52]. Since by assumption H =

[
I I

]T,
KH = T

[
K ′1 I −K ′1

]
T−1

[
I
I

]
= TK ′1T

−1 +TIT−1−TK ′1T−1 = I. (4.33)
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Algorithm 4.17: The Largest Ellipsoid Method
Input: Estimates (y1,R1), (y2,R2), and H2

The estimates are fused according to:
1. Transform to the information domain

ι1 =R−1
1 y1, I1 =R−1

1 , ι2 =HT
2R
−1
2 y2, I2 =HT

2R
−1
2 H2.

2. Factorize I1 = U1Σ1U
T
1 and let T1 = Σ

− 1
2

1 UT
1 . Factorize T1I2TT

1 = U2Σ2U
T
2 and

let T2 = UT
2 . Transform using T = T2T1 according to

ι′1 = Tι1, I′1 = TI1TT = I, ι′2 = Tι2, I′2 = TI2TT.

3. For each i= 1, . . . ,nx, compute

(
[ι′]i, [I

′]ii
)

=
{(

[ι′1]i,1
)
, if 1≥ [I′2]ii,(

[ι′2]i, [I′2]ii
)
, if 1< [I′2]ii.

Output: x̂= PT−1ι′ and P = (T−1I′T−T)−1

By construction, the LE method defined in (4.29) is a linear unbiased estimator.
Theorem 4.18 states that LE is a best CLUE given that A is according to (4.28).
Theorem 4.18. Assume that y1 = x+v1 and y2 = x+v2, where R1 = cov(v1) and
R2 = cov(v2). If A is according to (4.28), then the LE method given in (4.29) is
a best CLUE.

Proof: By assumption TJRTT
J =

[
I D′12
D′12 D′2

]
, where D′2 and D′12 are diagonal. The

ith component of the first estimate is only correlated with the ith component of
the other estimate. Hence, only pairwise correlated scalars need to be considered.
It is then possible to use CI for the merging of scalars correlated to an unknown
degree. If P ′ is the covariance in the transformed domain, then

[P ′]ii = ω[I]ii + (1−ω)[D′2]ii = ω+ (1−ω)[D′2]ii,

which, as a property of CI, is conservative for all ω ∈ [0,1]. Minimizing [P ′]ii w.r.t.
ω is equivalent to [P ′]ii = min(1, [D′2]ii) , which in particular is the LE solution.
Hence, since LE also is a linear unbiased estimator, it is a best CLUE given that
A is according to (4.28).

In [160] it is shown that P given by (4.29) can be computed as

P−1 =R−1
1 +R−1

2 − Γ−1, (4.34)

where Γ−1 is the interpreted as the maximum possible common information con-
tained in R−1

1 and R−1
2 . Moreover, as pointed out in [128], the LE method in

(4.29) is equivalent to the BSC fuser9, with R12 = T−1D′12T
−T, where T is the

9The BSC fuser is described in Section 3.1.2.
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transformation matrix defined in (4.30) and the diagonal matrix D′12 is computed
as

[D′12]ii = min
(
1, [D′2]ii

)
, (4.35)

with D′2 according to (4.30).

4.4.4 Other Related Methods
CI is the most well-known conservative estimation algorithm and is the parent of
many other similar methods [53]. Two of the most popular derivates of CI are ICI
and LE. Yet, it should be pointed out that other alternatives exist. Some of these
alternatives are briefly summarized in this section based on the work in [53]. Many
of the methods described below are based on the derivation of an upper bound B
on S such that B � S,∀S ∈ A. If such a bound B exists, then a CLUE is easily
constructed using the methodology discussed in Section 4.2.2.

This thesis only considers linear track fusion methods. For a survey on nonlin-
ear fusion methods, the paper [53] is suggested.

Federated Kalman Filter

The federated Kalman filter (FKF) was proposed before CI [32, 33], but can
be interpreted as a special case of CI tailored to handle correlations induced by
common process noise. This is accomplished by a reinitialization step, where the
ith local estimate (yi,k|k,Ri,k|k) is reinitialized at each k from a central estimate
(x̂k|k,Pk|k). This is followed by process noise covariance inflation. Assume the
SSM in Section 3.1.1. The FKF reinitializes the ith local estimates as

yi,k|k = x̂k|k, Ri,k|k = 1
βi
Pk|k, (4.36)

and then inflates the process noise covariance according to

yi,k+1|k = Fkyi,k|k, Ri,k+1|k = FkRi,k|kF
T
k + 1

βi
Qk, (4.37)

where βi > 0 and
∑N
i=1βi = 1. By doing this, the FKF creates an upper bound on

cov(vk+1|k). However, by construction, the FKF is in general not able to handle
correlations due to common information.

Split Covariance Intersection

In split CI [93], it is assumed that each of the local estimates can be split into an
independent part and a dependent part. For N = 2, this splitting is characterized
by

y1 = ye1 + yd1 , R1 =Re1 +Rd1, y2 = ye2 + yd2 , R2 =Re2 +Rd2, (4.38)

where superscript e is used for the independent part and superscript d is used for
the dependent part10. It is assumed that cov(yei ,ydi ) = 0 for i= 1,2, cov(ye1,ye2) =
10This additive splitting is related to, but should not be confused with, the decomposition in

(4.16) where the estimates are additive in the information domain.
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0, and cov(yd1 ,yd2) = Rd12. Such a decomposition can be exploited, e.g., when it
comes to the fusion of two estimates directly after local measurement updates
[126].

Split CI implicitly assumes that the R12 is bounded as a consequence of
(Rd12)T(Rd1)−1(Rd12)�Rd2 [53]. If (4.38) holds, then

R=
[
Re1 +Rd1 Rd12
(Rd12)T Re2 +Rd2

]
�
[
Re1 0
0 Re2

]
+
[ 1
ωR

d
1 0

0 1
1−ωR

d
2

]
=B, (4.39)

with ω ∈ (0,1), where the last term is identical to the upper bound used in CI.
Split CI has been applied in many practical problems, see, e.g., [89, 91, 104, 105]
and [42, 111] for more recent studies.

Partitioned Covariance Intersection

Let N = 2 and assume that the two local estimates are partitioned as

y1 =
[
ya1
yb1

]
, R1 =

[
Raa1 Rab1
Rba1 Rbb1

]
, y2 =

[
yc2
yd2

]
, R2 =

[
Rcc2 Rcd2
Rdc2 Rdd2

]
, (4.40)

where Rij` = cov(yi`,y
j
` ). Say now that Rbd12 = cov(yb1,yd2) is unknown. Then an

upper bound B on R is given by [138]

R=


Raa1 Rab1 Rac12 Rad12
Rba1 Rbb1 Rbc12 Rbd12
Rca12 Rcb12 Rcc2 Rcd2
Rda12 Rdb12 Rdc2 Rdd2

�

Raa1 Rab1 Rac12 Rad12
Rba1

1
ωR

bb
1 Rbc12 0

Rca12 Rcb12 Rcc2 Rcd2
Rda12 0 Rdc2

1
1−ωR

dd
2

=B, (4.41)

where ω ∈ (0,1). This structure is exploited in the partitioned CI (PCI, [138]).
In [8] it shown that the bound in (4.41) is overly conservative. The same paper
proposes a tight bound B for the considered partitioning.

Factorized Covariance Intersection

In the factorized CI (FCI, [1, 2]) a structure closely related to (4.41) is exploited.
Assume that N = 2 and that the two local estimates are partitioned as in (4.40),
but with c= a and d= b. In particular, FCI is based on the assumption that after
some joint transformation TJ = diag(T,T ) the covariance is given by

TJRT
T
J =R′ =


Raa

′
1 0 Raa

′
12 0

0 Rbb
′

1 0 Rbb
′

12
Raa

′
21 0 Raa

′
2 0

0 Rbb
′

21 0 Rbb
′

2

 . (4.42)

Assume now that all off-diagonal blocks of R′ in (4.42) are unknown. An upper
bound is in this case given by [2]

R′ � diag
(

1
ωa
Raa

′
1 ,

1
ωb
Rbb
′

1 ,
1

1−ωaR
aa′
2 ,

1
1−ωb

Rbb
′

2

)
=B′ = TJBT

T
J , (4.43)

where ωa,ωb ∈ (0,1) are optimized separately.
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Bounded Correlation-Coefficient

Split CI, PCI, and FCI are all based on bounding the admissible set A with B
by exploiting some additional structure in R. Once a bound is found, a CLUE
can be easily constructed using the methodology discussed in Section 4.2.2. The
particular bounds for split CI, PCI, and FCI are all derived using the CI framework,
which involves tuning of the ω parameters.

Other work that considers bounded correlations is found in [75, 146] for N = 2.
These papers independently derive bounds on R when R12 is on the form

(R12−G)TR−1
1 (R12−G)� ρ2

maxR2, (4.44)

where ρmax ∈ (0,1] can be interpreted as a scalar correlation coefficient11. For a
particular choice of G and ρmax, the constraint in (4.44) implies that

A=
{[

S1 S12
S21 S2

]
∈ Sny+

∣∣∣∣∣ S1 =R1,S2 =R2

(S12−G)TS−1
1 (S12−G)� ρ2

maxS2

}
. (4.45)

An upper bound B � S,∀S ∈ A is in this case given by

B =
[
(1 +αρmax)R1 G

GT (1 + ρmax
α )R2

]
, (4.46)

where α= 1
ω − 1 and ω ∈ (0,1). If G= 0, then B in (4.46) is a minimal bound on

A of (4.45) [75].
Bounded correlations are utilized in a Bayesian framework in [47]. In another

recent paper [81], tight correlation bounds are derived using matrix decomposition
techniques [10]. Specific bounds, including limiting cases, are studied in [10].

4.5 Theory and Method Evaluation
CI, ICI, and LE are now compared to each other and to the general CLUE approach
based on RO. In Section 4.5.1, the methods are compared on several simple fusion
examples adapted from [56]. In Section 4.5.2, a DTT scenario is considered where
the aforementioned methods are used for track fusion.

4.5.1 Simple Fusion Examples
In this section, five fusion examples E1–E5 are solved. The covariances P ci, P ici,
and P le corresponding to CI, ICI, and LE, respectively, the lower bound Pl, and
the upper bound Pu are computed wherever applicable. Each example is also
solved using the RO approach, where the resulting covariance is denoted by P ro.
In examples E1–E4 it is assumed that Hi = I ∈ R2×2 for i = 1, . . . ,N and H =
col(H1, . . . ,HN ). In all cases J(P ) = tr(P ).

11The setting with ρmax = 0 is not of interest in this context since then R12 ≡ 0.
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Figure 4.5. Summary of E2. If it is possible to exploit more structure in the problem,
then it is possible to compute a CLUE having a smaller covariance. The hashed
areas in the left part illustrate (HTS−1H)−1,∀S ∈ A.

E1: A Is A Finite Set

Assume that N = 2 and R =
[
R1 R12
R21 R2

]
, where R1 =

[1 0
0 4
]
and R2 =

[4 0
0 1
]
, and

where R12 ∈ R2×2 can either be I or −I. Then A = {Ra,Rb} ∈ S4
++, where

Ra =
[
R1 I
I R2

]
and Rb =

[
R1 −I
−I R2

]
.

The BLUE for R=Ra is given by

Ka =
(
HT(Ra)−1H

)−1
HT(Ra)−1 =

[
1 0 0 0
0 0 0 1

]
, (4.47)

which yields KaR
aKT

a = KaR
bKT

a = I. From KRaKT �KaR
aKT

a ,∀K subject to
KH = I and P ? �KaR

bKT
a it follows that a best CLUE is given by K? =Ka and

P ? = I.
Since (HT(Rb)−1H)−1 = 0.43I ≺ (HT(Ra)−1H)−1 we have Pl = I. Using the

minimal bound R̄ = diag(R1 + I,R2 + I) = diag(2,5,5,2) a strictly upper bound
Pu = 1.43I can be computed. RO yields P ro = I, which is guaranteed to be
optimal since A is finite.

E2: A Is An Infinite Set

Assume that N = 2 and R =
[
R1 R12
R21 R2

]
, with R1 and R2 defined as in E1. As-

sume that R12 is unknown and that A is now an infinite set. A best CLUE
depends on A. This problem is solved for three different assumptions on A: a)
completely unknown cross-correlations; b) common information; and c) compo-
nentwise aligned correlations. Since R1 and R2 are fixed, CI, ICI, and LE yield
P ci = 1.60I, P ici = 1.18I, and P le = I, respectively, in all sub-cases below. E2 is
summarized in Figure 4.5.

E2a) In this case, A is given by (4.12). Consider the two elements, Ra =[
R1 G

GT R2

]
∈ A and Rb =

[
R1 −G
−GT R2

]
∈ A where G =

[ 0 0.999
3.999 0

]
. Solving (4.5),

but substituting A with A′ = {Ra,Rb}, yields approximately 1.60I. Since A′ ⊂A,
it is concluded that Pl � 1.60I.
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Figure 4.6. Summary of E3. Since Pci � Pro � Pl, CI is not a best CLUE when
N > 2.

The matrix B = 2diag(R1,R2) satisfies B � S,∀S ∈ A. This is true since
B−R =

[
R1 −R12
−R21 R2

]
� 0 as a consequence of the assumption R � 0. Using (4.9)

yields Pu = 1.60I, which is equivalent to the solution of (4.5). Using Theorem 4.8
it is concluded that a best CLUE is given by (4.9) with B = 2diag(R1,R2).

E2b) In this case, A is given by (4.18). Solving the problem using YALMIP yields
P ro = 1.18I which is equivalent to the best CLUE solution P ? = P ici = 1.18I
computed using ICI.

E2c) In this case, A is given by (4.28). Ka according to (4.47) yields KaSK
T
a =

I,∀S ∈ A. Hence, K? =Ka and P ? = I constitute a best CLUE, where P ? = P le

since LE is a best CLUE in case of componentwise aligned correlations.
The matrix Rl =

[
R1 I
I R2

]
does not satisfy Rl � S,∀S ∈ A, e.g., for C =

diag(R1,R2) ∈ A the difference Rl −C is indefinite. However, the matrix B =
2diag(R1,R2) satisfies B � S,∀S ∈ A and is also a minimal bound on A. This B
yields

(
HTB−1H

)−1 = 1.60I � P ?.

E3: Fusion of Three Estimates

Let N = 3 and assume

R1 =
[
16 0
0 1

]
, R2 =

[
4.75 6.50
6.50 12.25

]
, R3 =

[
4.75 −6.50
−6.50 12.25

]
.

Assume that the off-diagonal blocks of R are completely unknown.
CI yields P ci = 1.88I. In this case, YALMIP gives us P ro = 1.76I ≺ P ci. Hence,

CI is not a best CLUE under completely unknown cross-correlations if N > 2. Also,
Pl = 1.31I is computed as the smallest ellipse that contains the intersection of the
ellipses of R1, R2, and R3. However, it is not possible to draw any conclusions
about whether this Pl is a strictly lower bound on a best CLUE or not. The
example is illustrated in Figure 4.6.
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Figure 4.7. Summary of E4. In this example Pl is a strictly lower bound on P ?.

E4: Lower Bound Is Strict

This example illustrates a case where P ? � Pl,P ? � Pl. Assume that N = 2 and
R=

[
R1 R12
RT

12 R2

]
, where R1 =

[5 1
1 1
]
and R2 =

[ 1 −1
−1 5

]
, and R12 ∈ R2×2 can either be[ 1 0.5

0.5 1
]
or
[−1 0.5

0.5 −1
]
, which corresponds to Ra and Rb of A= {Ra,Rb}, respectively.

In this case, Pl =
[0.40 0.45

0.45 0.93
]
and P ro = P ? =

[0.56 0.40
0.40 0.95

]
. The results are visual-

ized in Figure 4.7, where also K?Ra(K?)T and K?Rb(K?)T are plotted, with K?

being the best CLUE gain. The reason for having P ? � Pl,P ? � Pl is that there
exists no K such that

P �KRaKT ∧ P �KRbKT ∧ P ′ � (HT(Ra)−1H)−1 ∧ P ′ � (HT(Rb)−1H)−1,

and J(P ) = J(P ′) hold simultaneously.

E5: Bounded Correlation-Coefficient

Assume that N = 2 and that the eigenvalues of R12 are constrained. Let nx = 2
and

H1 =
[

1√
2

1√
2

]
, R1 = 1, H2 =

 1√
2

−1√
2

1 0
0 1

 , R2 =

4 0 0
0 4 0
0 0 4

 .
In this case, RT

12 ∈ R3 is assumed to be constrained by RT
12R

−1
1 R12 ≤ ρ2

maxR2, or
equivalently, ‖L−1

2 RT
12/
√
R1‖ ≤ ρmax, with R2 = L2LT

2 and ρmax ≥ 0. To have R�
0, it is required that ρmax ≤ 1. The quantity P ro is computed for different values
of ρmax ∈ [0,1]. Also, P ci and Pkf = (HT

1R
−1
1 H1 +HT

2R
−1
2 H2)−1 are computed,

where Pkf is equivalent to the covariance of the BLUE given ‖R12‖ = 0. In
Figure 4.8, the traces of P ro, P ci, and Pkf are plotted. As ρmax increases from 0
to 1, tr(P ro) increases from tr(Pkf) to tr(P ci).

Discussion

The results for E1–E4 are summarized in Table 4.1. It can be seen that each of
CI, ICI, and LE yields the same answer for E1 and E2 since R1 and R2 are fixed
throughout these cases. In E1 and E2, the YALMIP solution is equivalent to a best
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Figure 4.8. Results for E5, where ‖R12‖ ≤ ρmax.

Table 4.1
Summary of fusion examples © 2022 IEEE

Pu Pl Pci P ici P le Pro P?

E1 1.43I I 1.60I 1.18I I I I

E2a 1.60I 1.60I 1.60I 1.18I I 1.60I 1.60I
E2b - - 1.60I 1.18I I 1.18I 1.18I
E2c 1.60I I 1.60I 1.18I I I I

E3 1.88I 1.31I 1.88I - - 1.76I -
E4 -

[
0.40 0.45
0.45 0.93

]
- - -

[
0.56 0.40
0.40 0.95

] [
0.56 0.40
0.40 0.95

]
black = CLUE, not best CLUE; green = best CLUE; blue = lower bound; red = not CLUE;
yellow = CLUE, might be best CLUE. Quantities not computed are marked ”-”

CLUE. The benefits of utilizing any extra structure encoded in A have also been
demonstrated.

E3 is a counterexample of CI being a best CLUE under completely unknown
cross-correlations when N > 2. It cannot be concluded if P ro is equivalent to P ?
since P ? � Pl is possible even if P ro = P ?, cf. Theorem 4.7. The upper bound is
strict in this case.

In E5, neither H1 nor H2 is identity, and RT
12R

−1
1 R12 ≤ ρ2

maxR2. As ρmax is
varied from zero to its maximum value, tr(P ro) increases from that of the BLUE
given R12 = 0 to that of CI. This result is quite specific but nevertheless verifies
the generality of the RO based method.

The examples also demonstrate the generality of the CLUE framework and, in
particular, the usability of A: (i) it can be used to select an estimation method,
e.g., ICI if (4.18) holds; (ii) it is the basis for deriving and solving general problems
using RO; and (iii) it is used to compute lower and upper bounds on a best CLUE.

4.5.2 Decentralized Target Tracking Using CLUE

The purpose of the following DTT scenario is to evaluate some of the linear track
fusion methods described in this chapter in a more realistic and dynamic context.
The methods are evaluated based on MC simulations. For exactness, linear mea-
surement models are assumed so that the SSM and the track fusion models are all
linear.
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Figure 4.9. A decentralized single-target tracking scenario. The target is initially
located in the black circle. Three agents (colored numbered circles) estimate the
target and exchange local estimates. Two cases of communication network connec-
tivity are considered: (i) reduced connectivity; and (ii) full connectivity. Gray lines
represent target trajectories in different MC runs.

Simulation Specifications

A DTT scenario with N = 3 agents and one dynamic target in d = 2 spatial
dimensions is now considered. The scenario is illustrated in Figure 4.9. The SSM
in (3.1) is assumed with x ∈ R4 corresponding to a CVM. In each MC simulation,
the target initial state x0 is sampled from N (0,P0), where P0 is predetermined.
The target then evolves according to the CVM in (3.5), i.e.,

xk+1 = Fkxk +wk, wk ∼N (0,Qk), (4.48)

for a predetermined Qk. As a consequence, the trajectory is unique in each MC
simulation. The measurement model of the ith agent is given by (3.7) with

hi(xk) =
[
1 0 0 0
0 1 0 0

]
xk, ei,k ∼N (0,Ci), (4.49)

where ei,k is the measurement noise at time k and Ci ∈ S2
++ the measurement

noise covariance of Agent i. A linear KF is used for state estimation, and linear
unbiased estimation methods are used for track fusion. The Qk used for sampling
the target trajectory is the same Qk used in all local filters. It is assumed that
H1 =H2 =H3 = I. Since the initial state, the process noise, and the measurement
are all Gaussian distributed, the ith local estimate at time k is on the form

yi,k = xk + vi,k, vi,k ∼N (0,Ri,k). (4.50)

Hence, in this case, the estimation error x̃k is a zero-mean Gaussian distributed
random variable. Relevant simulation parameters are summarized in Table 4.2.

The communication scheme of Rule 3.6 is assumed. The communication topol-
ogy is according to the two cases illustrated in Figure 4.9:

• Reduced connectivity. Agent 1 only communicates to Agent 2, Agent 2 only
communicates to Agent 3, and Agent 3 only communicates to Agent 1.
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Table 4.2
Parameters used in the simulations

Parameter Comment

d= 2 spatial dimensionality
nx = 4 state dimensionality
Ts = 1 sampling time [s]
σw = 2 standard deviation of process noise [ms−

3
2 ]

C1 =
[

100 0
0 25

]
measurement noise covariance of Agent 1 [m2]

C2 =
[

44 32
32 81

]
measurement noise covariance of Agent 2 [m2]

C3 =
[ 44 −32
−32 81

]
measurement noise covariance of Agent 3 [m2]

nk = 15 number of time steps
M = 10000 number of MC runs

• Full connectivity. Each agent communicates to the other two agents.

The following methods are compared

• NKF: The naïve Kalman fuser as defined in (3.12) with H2 = I.

• CI: Covariance intersection as defined in (3.14) with H2 = I.

• ICI: Inverse covariance intersection as defined in (4.19).

• LE: The largest ellipsoid method as defined in (4.29).

• RO: The general CLUE approach using robust optimization as described in
Section 4.3. RO assumes A is according to (4.45) with ρmax = 0.5.

The loss function J(P ) = tr(P ) is used.

Evaluation Measures

Let (x̂ik,P ik) be the estimate at time k of the ith MC simulation using some track
fusion method. By construction, P ik = Pk for all i. Hence, ANEES can be com-
puted using (3.30) to evaluate estimator conservativeness. In addition, the COIN
defined in (3.32) is used. If P̃k = E(x̃kx̃T

k) is used, cf. (3.32), then COIN provides
a strict measure of conservativeness. This is in contrast to ANEES, i.e., while
an estimator can provide ANEES at or below 1 and still not be conservative, an
estimator is conservative i.f.f. COIN is at or below 1. However, in this evaluation,
P̃k is substituted for the sample covariance P̂k given in (3.27). As a consequence,
this strictness is only asymptotically true.

The RMSE and RMT defined in (3.26) and (3.28), respectively, are used for
performance evaluation. RMT is more relevant than RMSE from a user perspective
since this measure is something that is available to the end user in real-time. RMSE
requires the ground truth to be known.
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Figure 4.10. Results from the case with reduced connectivity. The gray area in the
ANEES plot represents an ANEES 99.9% confidence interval.

Results

Figure 4.10 shows the results for the reduced connectivity case12. COIN, ANEES,
RMT, and RMSE are computed at time points where track fusion is performed.

CI and ICI are conservative, as verified by the COIN. LE provides ANEES at
1, but the COIN is strictly larger than 1, hence LE is too optimistic. Also, RO
provides slightly too optimistic estimates. NKF underestimates the uncertainty
severely. It is notable that the spread in RMT among the methods is significantly
larger than the spread in RMSE, which is quite small. All methods provide approx-
imately the same RMSE, while the RMT differs significantly. Intuitively, RMT is
the smallest for NKF and the largest for CI.

In the full connectivity case, see Figure 4.11, the exchanged information is
utilized more. This is also indicated by the COIN and ANEES, as NKF diverges
more quickly due to increased double counting of information. For the same reason,
KF yields the highest RMSE over all k. CI and ICI are still conservative, while
LE and RO still provide slightly too optimistic results.

4.6 Summary
The focus of this chapter has been the track fusion component of a DTT system.
The CLUE was introduced as a framework for robust estimation under a partially
known correlation structure. An optimal CLUE denoted best CLUE was proposed.
Lower and upper bounds of the best CLUE have been derived. It was shown
that a general CLUE can be implemented using RO which means that standard
optimization software can be used in general linear estimation problems where
12The estimation results are only visualized for Agent 3, but the results for the other two

agents are similar.
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Figure 4.11. Results from the case with full connectivity. The gray area in the
ANEES plot represents an ANEES 99.9% confidence interval.

there is uncertainty in the correlation structure. Moreover, it was demonstrated
how many existing estimation methods fit into the CLUE framework. In particular,
CI, ICI, and LE were shown to be special cases of a best CLUE.

The theory and methods were evaluated using several simple fusion examples
and finally in a more realistic DTT context. In the DTT scenario it was demon-
strated how different methods can be evaluated when designing the track fusion
component in a DTT system. It should be stressed that a method is not automat-
ically useless just because COIN is above 1. For instance, it might be relevant to
use LE since it provides sufficiently reliable estimate w.r.t. the given DTT system
criteria. Ultimately, it is up to the system engineers to compromise between dif-
ferent aspects, e.g., performance and conservativeness, to come up with a system
design that is acceptable for the end user.



5
Dimension-Reduction for Efficient

Communication Management

In Section 3.3, it was assumed that only the diagonal entries of a local covariance
Ri are allowed to be communicated. This led to several DCA methods for pre-
serving conservativeness. In this chapter, another strategy is proposed for efficient
communication management. The approach is denoted dimension-reduction and
basically transforms local estimates to a lower-dimensional subspace. Then the
dimension-reduced (DR) estimates are communicated. The problem is formalized
in Section 5.1, where also communication aspects are discussed. In Section 5.2,
the DR estimates are derived using principal component analysis (PCA). In Sec-
tion 5.3, several methods are developed for fusion optimal DR estimates. Fusion
optimal DR estimates requires that the agent that is about to exchange the DR
estimates have access to the estimate covariance of the receiving agent. In practice,
this is an unreasonable assumption. A resolution to this problem is proposed in
Section 5.4. In Section 5.5, a methodology for maintaining track-to-track associa-
tion quality is proposed in a multitarget context with DR estimates.

The contents of this chapter are based on [55, 57, 59, 60] and [58] © 2023 IEEE.

5.1 Reducing Dimensionality of Exchanged Tracks

First, the DR problem is defined. Then, track fusion methods for fusing a lo-
cal track with a received DR track are stated based on adapted versions of the
Bar-Shalom Campo (BSC) fuser, the Kalman fuser (KF), covariance intersection
(CI), inverse covariance intersection (ICI), and the largest ellipsoid (LE) method.
Communication aspects are discussed at the end.

77
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5.1.1 Dimension-Reduced Estimates
Assume (y1,R1) and (y2,R2) are according to

y1 = x+ v1, R1 = cov(v1), y2 =H2x+ v2, R2 = cov(v2), (5.1)

with R1 ∈ Snx++, R2 ∈ Sn2
++, and R12 = cov(v1,v2). Assume w.l.o.g. that Agent 2

transmits its local estimate to Agent 1. If Agent 2 transmits (y2,R2) to Agent 1,
then, as discussed in Section 3.3.1, n2(n2 + 3)/2 parameters must be exchanged.
To reduce the communication load, Agent 2 can instead exchange (yΨ ,RΨ ) defined
as

yΨ = Ψ y2, RΨ = ΨR2Ψ
T, (5.2)

where Ψ ∈ Rm×n2 , m < n2, and rank(Ψ ) = m. The cross-covariance R1Ψ =
cov(v1,Ψ v2) = R12ΨT. The operation in (5.2) is essentially a linear transforma-
tion of (y2,R2) from a n2-dimensional space to a m-dimensional subspace. This
transformation requires that also Ψ is exchanged. However, by coding (yΨ ,RΨ ,Ψ )
as described Section 5.1.4, the number of exchanged parameters can be reduced
to (2mn2−m2 + 3m)/2.

5.1.2 Fusing Dimension-Reduced Estimates
Once (yΨ ,RΨ ,Ψ ) is received, (y1,R2) and (yΨ ,RΨ ) can be fused by basically
any fusion method applicable for estimates given according to (5.1). The general
adaptions that need to be made are to replace y2 by yΨ , R2 by RΨ , and H2 by
ΨH2. How Agent 1 computes (x̂,P ) by fusing (y1,R1) and (yΨ ,RΨ ) is described
for BSC, KF, CI, ICI, and LE. It is assumed that H2 ∈ Rn2×nx and Ψ ∈ Rm×n2

are known. Moreover, it is assumed that rank(H2) = min(n2,nx), rank(Ψ ) = m,
and R1,R2 � 0. In all cases below, except LE, x̂ is given as

x̂=K1y1 +KΨ yΨ = (I −KΨΨH2)y1 +KΨ yΨ , (5.3)

where K1 = I−KΨΨH2 is a consequence of [K1 KΨ ]
[

I
ΨH2

]
= I. This means that

(x̂,P ) is fully specified by (KΨ ,P ).

Bar-Shalom Campo Fusion

An explicit derivation of the DR version of BSC is provided in Section 3.A. The
estimate (x̂,P ) is specified by

KΨ = (R1H
T
2 −R12)ΨTS−1

Ψ
, P =R1−KΨ SΨK

T
Ψ , (5.4)

where SΨ = ΨH2R1HT
2 Ψ

T +RΨ −ΨH2R1Ψ −RT
1ΨH

T
2 Ψ

T. If R =
[
R1 R12
R21 R2

]
� 0,

then SΨ � 0. If R =
[
R1 R12
R21 R2

]
� 0, then SΨ � 0 might be singular. In this case,

the pseudoinverse S+
Ψ

can be used instead of S−1
Ψ

to compute KΨ in (5.4). Note,
to apply (5.4), R1Ψ must be known.
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Kalman Fusion

The DR version of the KF is recovered by setting R12 = 0 in (5.4). In this case
the estimate is specified by

KΨ =R1H
T
2 Ψ

TS−1
Ψ
, P =R1−KΨ SΨK

T
Ψ , (5.5)

where SΨ = ΨH2R1HT
2 Ψ

T +RΨ .

Covariance Intersection

Consider CI defined in Algorithm 3.5 with N = 2 and H1 = I. Assume y2, R2, and
H2 are replaced by yΨ , RΨ , and ΨH2, respectively. It is then possible to define

KΨ = (1−ω)PHT
2 Ψ

TR−1
Ψ
, P = (ωR−1

1 + (1−ω)HT
2 Ψ

TR−1
Ψ

ΨH2)−1, (5.6)

where ω ∈ (0,1].

Inverse Covariance Intersection

Consider ICI defined in Algorithm 4.14. Assume y2, R2, and H2 are replaced by
yΨ , RΨ , and ΨH2, respectively. It is then possible to define

KΨ =HT
2 Ψ

TR−1
Ψ

ΨH2− (1−ω)HT
2 Ψ

TΨH2Γ
−1
Ψ
HT

2 Ψ
T, (5.7a)

P =R−1
1 +HT

2 Ψ
TR−1

Ψ
ΨH2

−ωHT
2 Ψ

TΓ−1
1 ΨH2− (1−ω)HT

2 Ψ
TΨH2Γ

−1
Ψ
HT

2 Ψ
T, (5.7b)

where Γ1 = ωΨH2R1HT
2 Ψ

T + (1−ω)RΨ , ΓΨ = ωR1 + (1−ω)HT
2 Ψ

TRΨΨH2, and
ω ∈ (0,1].

The Largest Ellipsoid Method

The LE method can also be specified by (KΨ ,P ). However, in this case it is more
convenient to directly adapt Algorithm 4.17. If y2, R2, and H2 are replaced by yΨ ,
RΨ , and ΨH2, respectively, then Algorithm 4.17 computes (x̂,P ) according to

x̂= PT−1ι, P = (T−1IT−T)−1, (5.8)

where T = T2T1,

ι1 =R−1
1 y1, I1 =R−1

1 ,

ιΨ =HT
2 Ψ

TR−1
Ψ
yΨ , IΨ =HT

2 Ψ
TR−1

Ψ
ΨH2,

I1 = U1Σ1U
T
1 , T1 = Σ

− 1
2

1 UT
1 ,

T1IΨ TT
1 = UΨΣΨU

T
Ψ , T2 = UT

Ψ ,

ι′1 = Tι1, I ′1 = TI1T
T = I,

ι′Ψ = TιΨ , I ′Ψ = TIΨ TT,
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and

([ι]i, [I]ii) =
{

([ι′1]i, [I ′1]ii), if 1≥ [I ′Ψ ]ii,
([ι′Ψ ]i, [I ′Ψ ]ii), if 1< [I ′Ψ ]ii,

(5.10)

for each i= 1, . . . ,nx.

5.1.3 Change of Basis
To be able to utilize the communication resource as efficient as possible it is im-
portant that RΨ is diagonal. Otherwise, the efficient message coding described in
the subsequent section is not valid. Luckily, since RΨ ∈ Sm++ for any feasible Ψ ,
it is always possible to transform RΨ by a simple rotation such that the result
is diagonal. In particular, let UΣUT be the eigendecomposition of RΨ , where Σ

is diagonal and U is orthogonal. Then UTRΨU = UTUΣUTU = Σ, where it was
used that for orthogonal matrices UTU = I.

Transforming Ψ by T is equivalent to a change of basis. To see that a change
of basis does not affect the fusion result, i.e., (x̂,P ) computed using any of the
methods in Section 5.1.2, let Θ = TΨ where TTT = I. Consider BSC, KF, CI,
ICI, and LE defined in Section 5.1.2. By construction, SΨ = Ψ SΨT, where
S = H2R1HT

2 + R2 −H2R12 − R21HT
2 in case of BSC and S = H2R1HT

2 + R2
in case of KF. The terms involving Ψ are hence all on the form ΨT(ΨCΨT)−1yΨ ,
ΨT(ΨCΨT)−1Ψ , or ΨTΨ , where C is either S or R2. By assumption

ΨT(ΨCΨT)−1yΨ = ΨTTTT (ΨCΨT)−1TTTΨ y2

= ΨTTT(T−TΨCΨTT−1)−1TΨ y2

= ΘT(ΘCΘT)−1Θy2, (5.11)

and similarly ΨT(ΨCΨT)−1Ψ = ΘT(ΘCΘT)−1Θ. Moreover, ΨTΨ = ΨTTTTΨT =
ΘTΘ. Hence, the fusion result when using the methods defined in Section 5.1.2 is
invariant to a transformation Θ = TΨ , where T is such that TTT = I.

Let rowspan(A) denote the row span of A. A more general result is stated
in Proposition 5.1 from which (5.11) and ΨTR−1

Ψ
Ψ = ΘT(ΘR2ΘT)−1Θ follow

immediately. This result is applicable for BSC, KF, CI, and LE, and will, in
particular, be used in Section 5.3 when deriving fusion optimal Ψ .
Proposition 5.1. Let S ∈ Sn++ and A,B ∈ Rm×n, where m ≤ n. If rowspan(A) =
rowspan(B), then

AT(ASAT)−1A=BT(BSBT)−1B. (5.12)

Proof: Since rowspan(A) = rowspan(B) there exists an invertible matrix T such
that B = TA. Hence

AT(ASAT)−1A=ATTTT−T(ASAT)−1T−1TA=ATTT(TASATTT)−1TA

=BT(BSBT)−1B.
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5.1.4 Message Coding
Let yΨ ∈ Rm and assume that RΨ ∈ Sm++ is diagonal. Suppose now that Agent 2 is
transmitting (yΨ ,RΨ ) to Agent 1 who fuses (yΨ ,RΨ ) with its local estimate. To be
able to use (yΨ ,RΨ ) Agent 1 also requires Ψ , but to simply transmit (yΨ ,RΨ ,Ψ )
is costly. Instead, it is more efficient to transmit (yΨ ,Φ), where

Φ =

φ1
...
φm

=

 r1ψ1
...

rmψm

=RΨΨ , (5.13)

with ri = [RΨ ]ii, and where φi and ψi represent the ith row of Φ and Ψ , respec-
tively. When Agent 1 receives (yΨ ,Φ), RΨ and Ψ are computed as

RΨ = diag(‖φ1‖, . . . ,‖φm‖) , Ψ =R−1
Ψ

Φ. (5.14)

The number of exchanged parameters can be further reduced by exploiting
the fact that ψiψT

j = δij , and hence φiφT
j = 0 if i , j. For Φ ∈ Rm×n2 the agent

needs to transmit m components of φ1, but only m− i+ 1 components of φi. The
components not transmitted are given by utilizing φiφT

j = 0 for i , j sequentially.
For example, assume m = 3 and let φi,j = [φi]j . Assume that Agent 1 does not
have access to φ2,1, φ3,1 and φ3,2. The missing components are given by first
solving for φ2,1 in φ1φT

2 = 0, which is equivalent to solving A2φ2,1 = b2, where

A2 = φ1,1, b2 =−
n2∑
j=2

φ1,jφ2,j .

Then φ3,1 and φ3,2 are computed by solving A3

[
φ3,1
φ3,2

]
= b3, where

A3 =
[
φ1,1 φ1,2
φ2,1 φ2,2

]
, b3 =−

[∑n2
j=3φ1,jφ3,j∑n2
j=3φ2,jφ3,j

]
.

This sequential approach generalizes to arbitrary i. Let superscripts Mi and Ki,
e.g., aMi and aKi , denote a vector that contains the components of a vector, e.g., a,
corresponding to the missing and available components of φi, respectively. In par-
ticular, the union and intersection of the components of φKii and φMi

i correspond
to φi and the empty set, respectively. For arbitrary i ∈ {2, . . . ,n2}, the missing
components φMi

i are computed by solving

Ai(φMi
i )T = bi, Ai =

φ
Mi
1
...

φMi
i−1

 , bi =−

φ
Ki
1 (φKii )T

...

φKii−1(φKii )T

 . (5.15)

Let ΦK denote the parts of Φ that are actually transmitted using the proposed
message encoding, i.e.,

ΦK =
[
φ1 φK2

2 . . . φKmm

]
. (5.16)
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Care must be taken to ensure that det(Ai) , 0, since otherwise the system of
equations in (5.15) is not solvable. The condition det(Ai) , 0 has to be checked
by the transmitting agent. This means that it is not possible by default to always
skip transmitting the first components of φi since this could potentially imply that
det(Ai) = 0. Hence, alongside the transmission of the information contained in
φi, i.e., φKii , the agent must also transmit information about which components
are not transmitted, i.e., which elements of φi are included in φMi

i . This requires
the transmission of a few extra parameters. For example, if m= 3, then 1 + 2 = 3
extra parameters must be transmitted that indicate which components of φ1 and
φ2 are not transmitted. For general m, a number of

nex =
m∑
i=1

(i− 1) = m(m− 1)
2 , (5.17)

extra parameters must be included in the message. However, as described below,
to enumerate the excluded components of the φi, where i= 1, . . . ,m, only requires
a few extra bits which is negligible compared to the remaining parameters to be
exchanged.

In summary, the transmitted message is given by (yΨ ,ΦK ,J ), where J is an
nex-dimensional vector containing the indices of the missing components of φi,
where i= 1, . . . ,m.1

5.1.5 Communication Reduction
The total number of components required to be transmitted when exchanging
(yΨ ,ΦK) is given by

ndr =m+ n2(n2 + 1)
2 − (n2−m)(n2−m+ 1)

2 = 2mn2−m2 + 3m
2 , (5.18)

where m is due to yΨ and the remains are due to Φ. The ratio between ndr and
the total number of components nfull = n2(n2 + 3)/2 of a full estimate (y2,R2) is

ndr
nfull

= 2mn2−m2 + 3m
n2(n2 + 3) = m

n2

(
2− m+ 3

n2 + 3

)
. (5.19)

The communication reduction as a function of n2 when using DR is illustrated in
Figure 5.1 for different values of m. For example, if n2 = 9, then the communica-
tion savings are approximately 81% for m= 1 and 50% for m= 3. If n2 = 15, then
the communication savings are approximately 88% for m = 1 and 67% for m = 3.
As a comparison, ndca = 2n2 is included. If m= 2, then ndr = 2n2 +1 = ndca+12.

To continue the discussion about the nex extra parameters to be exchanged,
assume that the size of each parameter in (yΨ ,ΦK) is 32 bits. Moreover, assume
that the size of each parameter in J is 4 bits, which is valid for n2 ≤ 16. Then

1Matlab® code for message coding is available at https://github.com/robinforsling/dtt.
2Hence, when comparing the performance of the two communication reduction techniques, it

is reasonable to compare DCA with DR in the case of m= 2.
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Figure 5.1. Illustration of the communication reduction as a function of n2 when
using DR for different values of m. DCA is used as a comparison.

(yΨ,ΦK) and J consist of 32ndr bits and 4nex bits, respectively. In Table 5.1, the
ratio

4nex
32ndr

= m− 1
8(2n2−m+ 3) , (5.20)

is illustrated for a number of values ofm and n2. The amount of extra bits required
to transmit J is marginal in this configuration. The conclusion is that the bit size
of (yΨ,ΦK) and the bit size of (yΨ,ΦK ,J ) are approximately equal.

Table 5.1
Percentage of extra bits required for J

m n2
nex
8ndr

2 4 1.39%
2 6 0.96%
3 6 2.08%

m n2
nex
8ndr

3 9 1.39%
5 9 3.12%
7 9 5.36%

m n2
nex
8ndr

3 12 1.04%
6 12 2.98%
9 15 4.17%

5.2 Dimension-Reduction Using Principal
Component Analysis

The methods described in Section 5.1.2 are valid for any Ψ ∈ Rm×n2 with m≤ n2.
However, it is not specified how Ψ is computed. Popular methods for DR in
general are PCA [137] and the closely related Karhunen-Loève transform [12, 175]
which both utilize the eigendecomposition. It should be pointed out that there are
many other closely related approaches for DR, and these concepts are sometimes
used interchangeably, e.g., low-rank strategies [43, 82, 85, 154]. In this section,
PCA is deployed for DR. The fusion methods in Section 5.1.2 are evaluated in a
DTT scenario where DR estimates are exchanged and Ψ derived using PCA.
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Algorithm 5.2: The Principal Component Optimization Method
Input: R2 ∈ Sn2

++ and m≤ n2

1. Let R2 =
∑n2
i=1λiuiu

T
i , where λ1 ≥ ·· · ≥ λn2 and uT

i uj = δij .

2. Define Ψ = col(uT
n2−m+1, . . . ,u

T
n2).

Output: Ψ

5.2.1 The Principal Component Optimization Method
Assume Ψ ∈ Rm×n2 , where rank(Ψ ) = m and m < n2 is arbitrary but fixed.
An intuitive approach to select Ψ is by minimizing some loss function J(RΨ ) =
J(ΨR2ΨT). Let J(RΨ ) = tr(RΨ ) which means that the MSE of RΨ is to be min-
imized. To avoid that Ψ becomes infinitesimal small, some additional constraints
on Ψ are required. Consider the quantity ΨTR−1

Ψ
Ψ . In Proposition 5.1, it is

shown that this quantity is invariant under an invertible transformation T of Ψ .
Since Ψ is full row rank there exists an invertible matrix T such that Θ = TΨ ,
rowspan(Ψ ) = rowspan(Θ), and ΘΘT = I [67]. Therefore, assume w.l.o.g. that
ΨΨT = I and hence that Ψ is computed as the solution to

minimize
Ψ

tr(ΨR2Ψ
T)

subject to ΨΨT = I.
(5.21)

The problem in (5.21) is a PCA problem [79] and the solution is given by the eigen-
vectors corresponding to the m largest eigenvalues of R−1

2 [13]. These eigenvectors
are principal components of R−1

2 .
The principal component optimization (PCO) method is defined in Algorithm 5.2

and is based on the optimization formulation in (5.21). With Ψ computed as in
Algorithm 5.2, ΨΨT = I and RΨ = ΨR2ΨT = diag(λn2−m+1, . . . ,λn2), where
λi = λi(R2). Hence, no additional change of basis is required to use the message
coding described in Section 5.1.4. An example of PCO is provided in Example 5.3.

Example 5.3: The Principal Component Optimization Method
Let nx = n2 = 2 and H2 = I. Assume that R1 = diag(σ2,1), R2 = diag(1,σ2), and
R12 = 0. Under the assumption σ ≥ 1, Algorithm 5.2 yields Ψ =

[
1 0

]
. Since

R12 = 0, KF can be used. Let P and Pfull be given by

P =
(
R−1

1 +ΨT(ΨR2Ψ
T)−1Ψ

)−1
, Pfull =

(
R−1

1 +R−1
2
)−1

,

which correspond to the DR case and the case where the full estimate is exchanged,
respectively. By construction

tr(P ) = 2σ2 + 1
σ2 + 1 , tr(Pfull) = 2σ2

σ2 + 1 ,
tr(P )

tr(Pfull)
= 1 + 1

2σ2 .

The ratio tr(P )/ tr(Pfull) is plotted for different values of σ in Figure 5.2. As σ
increases tr(P )/ tr(Pfull)→ 1. Hence, there is essentially no performance loss in
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Figure 5.2. Results of Example 5.3. As σ increases, tr(P )/ tr(Pfull) tends to 1.

this case when exchanging a DR estimate with Ψ derived using the PCO method
compared to exchanging the full estimate.

5.2.2 Numerical Evaluation
The PCO method is now demonstrated using a DTT scenario identical to that
used in Section 4.5.2 with the reduced network connectivity.

Simulation Specifications

The decentralized single-target tracking scenario is depicted in Figure 5.3. Assume
exactly the same process and measurement models as in Section 4.5.2. The target
is sampled in an identical way. Relevant simulation parameters are summarized
in Table 5.2. The communication scheme of Rule 3.6 is assumed, and the commu-
nication topology is according to Figure 5.3. The PCO method in Algorithm 5.2
is used to derive the DR estimates.

The following methods are compared:

• NKF: The naïve Kalman fuser as defined in (5.5) with H2 = I.

1

2

3

Figure 5.3. Decentralized single-target tracking scenario. The target is initially
located at the black circle. Three agents (colored numbered circles) estimate the
target and exchange local estimates. Gray lines represent target trajectories in
different MC runs.
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Table 5.2
Parameters used in the simulations

Parameter Comment

m= 2 dimensionality of the DR estimate yΨ
d= 2 spatial dimensionality
nx = 4 state dimensionality
Ts = 1 sampling time [s]
σw = 2 standard deviation of process noise [ms−

3
2 ]

C1 =
[

100 0
0 25

]
measurement noise covariance of Agent 1 [m2]

C2 =
[

44 32
32 81

]
measurement noise covariance of Agent 2 [m2]

C3 =
[ 44 −32
−32 81

]
measurement noise covariance of Agent 3 [m2]

nk = 15 number of time steps
M = 10000 number of MC runs

• CI: Covariance intersection as defined in (5.6) with H2 = I.

• ICI: Inverse covariance intersection as defined in (5.7) with H2 = I.

• LE: The largest ellipsoid method as defined in (5.8) with H2 = I.

Evaluation Measures

COIN, ANEES, RMT, and RMSE defined in Section 3.2 are used for evaluation.
These metrics are computed in the same way as in Section 4.5.2. In addition,
the applicability of the PCO method is evaluated by computing the RMT ratio
(RMTR) and the RMSE ratio (RMSER) defined as:

RMTR = RMT using dimension-reduced estimates
RMT using full estimates , (5.22a)

RMSER = RMSE using dimension-reduced estimates
RMSE using full estimates . (5.22b)

By construction, RMTR is larger than or equal to 1.

Results

Figure 5.4 illustrates the results for Agent 3 only3. COIN, ANEES, RMT, RMSE,
RMTR, and RMSER are computed at time instants where track fusion is per-
formed.

CI is the only method that is conservative w.r.t. both COIN and ANEES. Both
ICI and LE are however conservative w.r.t. ANEES. NKF is never conservative.
From the RMTR plot, it is seen that NKF exhibits the largest performance loss
w.r.t. RMT when exchanging DR estimates compared to full estimates. Mean-
while, in terms of RMSE, CI shows the largest performance loss when exchanging
DR estimates compared to full estimates. The spread in RMT is smaller than the
spread in RMSE. CI yields the largest RMSE and RMT.

3The estimation results for the other two agents are similar.
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Figure 5.4. Results from the PCO method evaluation. The gray area in the ANEES
plot represents an ANEES 99.9% confidence interval.

5.3 Dimension-Reduction for Optimal Track Fusion
The PCO method of the previous section provides no guarantees of optimality
w.r.t. fusion performance. In fact, there are situations where PCO produces the
worst possible DR estimate w.r.t. the MSE of the fused result. In this section, a
framework is proposed for deriving fusion optimal DR estimates.

5.3.1 Motivating Example
The PCO method derives Ψ from the eigenvectors corresponding to the smallest
eigenvalues λ(R2). To illustrate that this approach is in general optimal from a
track fusion perspective, consider

R1 =
[
3.2 1.2
1.2 1.8

]
, R2 =

[
4 0
0 1

]
, Ψ =

[
cosα sinα

]
, (5.23)

where α ∈ [0,180]◦, H2 = I, and R12 = 0. For a certain Ψ, KF in (5.5) provides
optimal fusion of (y1,R2) and (yΨ,RΨ). Let P (α) = (R−1

1 +ΨT(ΨR2ΨT)−1Ψ)−1

with Ψ(α) defined in (5.23). Figure 5.5 illustrates tr(P ) for α ∈ [0,180]◦. Trace
of R1 and Pfull = (R−1

1 +R−1
2 )−1 are also included. The value α? refers to the

minimizer of tr(P ), and α = 90◦ corresponds to Ψ computed by PCO. The ratio
between the maximum max(tr(P )) and minimum value min(tr(P )) of tr(P ) is
approximately 1.73.
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©
20

22
IE

E
E

tr(R1)
max(tr(P ))

tr(P |α=90◦ )
tr(P |α=α? )

tr(Pfull)

α? 90◦
α

Figure 5.5. Example of when the PCO method does not yield optimal fusion perfor-
mance. The value α = 90◦ corresponds to Ψ computed by the PCO method. The
optimal α w.r.t. tr(P ) is given by α?.

5.3.2 The Generalized Eigenvalue Optimization Method
The previous example illustrates that the PCO method in general does not com-
pute the optimal Ψ w.r.t. the track fusion performance in Agent 1. In this section,
the objective is to derive Ψ such that optimal track fusion performance is obtained.
The fusion optimal Ψ depends on which method is used for fusion. The derived
methodology is based upon the BSC fuser defined in (5.4). From this, methods
tailored to KF, CI, and LE are derived for computing Ψ.
Remark 5.4. No method tailored to ICI is derived due to the complicated expressions of
ICI defined in (5.7).

Consider P given in (5.4), i.e.,

P =R1−KΨΨSΨTKT
Ψ, (5.24)

where

KΨ = (R1H
T
2 −R12)ΨT(ΨSΨT)−1, S =H2R1H

T
2 +R2−H2R12−RT

12H
T
2 .

In this context an optimal Ψ ∈ Rm×n2 , denoted Ψ?, solves the problem

minimize
Ψ

tr(P ), (5.25)

where P is according to (5.24). The formulation in (5.25) means that Ψ? is MSE
optimal. Similar formulations are considered in, e.g., [187, 190]. The solution to
(5.25) is now derived.

Assume S � 0. The degenerate case where S � 0 might be singular is discussed
later on. Let ∆ =R1HT

2 −R12 such that P in (5.24) is given by

P =R1−∆ΨT(ΨSΨT)−1Ψ∆T. (5.26)

Since R1 is constant, minimization of tr(P ) is equivalent to

maximize
Ψ

tr
(
∆ΨT(ΨSΨT)−1Ψ∆T

)
. (5.27)
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Using the cyclic property of trace, this problem is equivalently expressed as

maximize
Ψ

tr
(

(Ψ SΨT)−1ΨQΨT
)
, (5.28)

where Q = ∆T∆. Since S ∈ Sn2
++ and rank(Ψ ) = m, it follows that Ψ SΨT ∈ Sm++.

This implies that there exists an invertible matrix T such that TΨ SΨTTT = I.
Hence, w.l.o.g. it can be assumed that Ψ SΨT = I. Moreover, S ∈ Sn2

++ implies
that S = LLT, where L is invertible. Define Φ = ΨL. Then the following problem
is equivalent to (5.28)

maximize
Φ

tr(ΦAΦT)

subject to ΦΦT = I,
(5.29)

where A = L−1QL−T ∈ Sm+ . The solution to (5.29) is given by the eigenvectors
corresponding to the largest eigenvalues of A [13]. By transforming back using
Φ = ΨL, the solution to the original problem in (5.28) is obtained. The solution
includes a GEVP and is summarized in the following theorem.

Theorem 5.5. Assume Q ∈ Sn2
+ and S ∈ Sn2

++. Let Ψ ∈ Rm×n2 , where m≤ n2 and
rank(Ψ ) =m. The solution to

maximize
Ψ

tr
(

(Ψ SΨT)−1ΨTQΨT
)
, (5.30)

is given by Ψ ? = col(uT
1 , . . . ,u

T
m), where ui is a generalized eigenvector associated

with λi(Q,S), and λ1 ≥ ·· · ≥ λn2 .

Change of Basis

Consider Φ = col(uT
1 , . . . ,u

T
m), where u1, . . . ,um are derived as in Theorem 5.5. The

rows of Φ ∈ Rm×n2 span an m-dimensional subspace V = rowspan(Ψ ?)⊆ Rn2 . In
this sense Ψ ? is a transformation

Φ : Rn2 →V. (5.31)

For any two solutions ui and uj to Qu = λSu, it is true that uT
i Suj = 0 while

in general uT
i uj , 0, for i , j [136]. Hence, Φ is not an orthogonal basis for

V. Proposition 5.1 ensures that if T is invertible, then (Ψ ?)T(Ψ ?R2(Ψ ?)T)−1Ψ ?

does not change if Ψ ? is substituted for TΨ ?. Moreover, since rowspan(Ψ ?) =
rowspan(TΨ ?) [67], this can be exploited to derive Ψ ? such that Ψ ?R2(Ψ ?)T is
diagonal4.

A Gram-Schmidt procedure can be expressed as ΩT = ΦTT , where Ω has or-
thonormal rows and T is invertible [67]. Thereby, Proposition 5.1 applies. Let
ΩR2Ω = UΣUT be an eigendecomposition, where Σ ∈ Sm++ is diagonal. By
construction UTΩR2ΩTU is diagonal. Hence, with Ψ ? = UTΩ, the covariance

4Ensuring that Ψ ?R2(Ψ ?)T is diagonal is important from a communication perspective as
described in Section 5.1.4.
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Gram-Schmidt axis-aligned

RΦ

ΦTR−1
Φ

Φ

RΩ

ΩTR−1
Ω

Ω

RΨ

(Ψ ?)TR−1
Ψ

Ψ ?

Figure 5.6. Change of basis. The information ΨT(ΨR2Ψ
T)−1Ψ is invariant to

change of basis. The quantities ΦTR−1
Φ

ΦT, ΩTR−1
Ω

ΩT, and (Ψ ?)TR−1
Ψ

Ψ ? are pro-
jected onto V using Ψ ?.

Algorithm 5.7: The Generalized Eigenvalue Optimization Method
Input: R1 ∈ Snx++, R2 ∈ S

n2
++, R12 ∈ Rnx×n2 , H2 ∈ Rn2×nx , and m

1. Let Q= (R1H
T
2 −R12)T(R1H

T
2 −R12) and S =H2R1H

T
2 +R2−H2R12−R21H

T
2 .

2. Compute λ1, . . . ,λn2 and u1, . . . ,un2 by solving Qu= λSu.

3. Define Φ = col(uT
1 , . . . ,u

T
m), and compute Ω = col(vT1 , . . . ,v

T
m) such that vTi vj =

δij and rowspan(Ω) = rowspan(Φ).

4. Compute ΩR2Ω
T = UΣUT and let Ψ ? = UTΩ.

Output: Ψ ?

RΨ = Ψ ?R2(Ψ ?)T is diagonal. If Ψ ? = UTΩ, then since UT is orthogonal and Ω

has orthonormal rows

Ψ ?(Ψ ?)T = UTΩΩTU = UTIU = I,

i.e., Ψ ? has orthonormal rows. The change of basis procedure is illustrated in
Figure 5.6, where RΨ = Ψ ?R2(Ψ ?)T, RΦ = ΦR2ΦT, and RΩ = ΩR2ΩT.

Proposed Framework

The proposed generalized eigenvalue optimization (GEVO) methodology for de-
riving Ψ ? is given in Algorithm 5.7. It is a direct application of Theorem 5.5
followed by the previously discussed change of basis procedure. Step 4 ensures
that Ψ ?R2(Ψ ?)T is diagonal. Examples 5.8 illustrates the GEVO method.

Remark 5.6. The derivation of the GEVO method demonstrate that, by transforming
the original problem, an EVP can equivalently be solved for derivation of Ψ ?. However,
the GEVP formulation is kept for numerical considerations [136]. The proposed GEVP
can, e.g., be solved by the stable QZ algorithm [122].
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Example 5.8: The Generalized Eigenvalue Optimization Method
Assume that nx = n2 = 2, H2 = I, m = 1, and R12 = 0. Let R1 and R2
be defined according to their ellipses in Figure 5.7. Solving Qu = λSu, where
Q = R2

1 and S = R1 +R2, yields two solutions λmin and λmax with associated
generalized eigenvectors umin and umax, respectively. The quantity of interest is
V = rowspan(uT

max).

R1
R2
umax
umin

V

Q
S

Figure 5.7. Example of the GEVO method. Since m = 1, Ψ ? = uT
max. The vector

umax spans the one-dimensional subspace V. Principal components of R1 and R2
are illustrated by dashed lines.

Singular Case

If S � 0 is singular, then Ψ SΨT might be singular. If so, the inverse in (5.26) is
replaced by a pseudoinverse such that

P =R1−∆ΨT(Ψ SΨT)+Ψ∆T, (5.32)

where ∆ = R1HT
2 −R12. Assume that 1 ≤ m ≤ rank(S) = r. Let S = V DVT,

where D = diag(D1,0), D1 ∈ Sr++, and 0 is an (n2− r)× (n2− r) matrix of zeros,
such that

S+ = V D+VT = V diag(D−1
1 ,0)VT. (5.33)

The case m> r does not make sense since this does not improve P in (5.32) for the
same reason that m> n2 does not make sense if S ∈ Sn2

++. This is stated formally
in Proposition 5.95. Let ΦT = D

1
2VTΨT. If m ≤ r and rank(Ψ ) = m, then it

is still possible to impose the constraint Ψ SΨT = I such that ΦΦT = I. Hence,
Algorithm 5.7 is valid even if S is singular given that m≤ r and rank(Ψ ) =m.

Proposition 5.9. Assume rank(S) = rank(Ψ1) = r, where S ∈ Sn2
+ and Ψ1 ∈ Rr×n2 .

Let Ψ1SΨT
1 ∈ Sr++. If Ψ = col(Ψ1,Ψ2), where Ψ2 ∈ Rr×n2 , then

ΨT(Ψ SΨT)Ψ = ΨT
1 (Ψ1SΨ

T
1 )Ψ1. (5.34)

Proof: Let Ψ2 = col(Ψa,Ψb), where Ψa and Ψb lie in column space and in the null
space of S, respectively. Hence, Ψa = AΨ1 and ΨbS = 0. Assume w.l.o.g. that

5This fact is also discussed in [187]. However, in that paper the corresponding proof is omitted.
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Ψ1SΨT
1 = I. In this case

Ψ SΨT =

I AT 0
A AAT 0
0 0 0

=BBT,

where B =
[
I AT 0

]T. By construction, B is full column rank which implies
that B+ = (BTB)−1BT, where BTB = I +ATA. Moreover, (BBT)+ = (BT)+B+

[71]. Hence

ΨT(Ψ SΨT)+Ψ = ΨT(BBT)+Ψ = ΨTB(BTB)−1(BTB)−1BTΨ

=
[
ΨT

1 ΨT
1 A

T ΨT
b

]IA
0

(I +ATA)−2 [I AT 0
] Ψ1
AΨ1
Ψb


= ΨT

1 (I +ATA)(I +ATA)−2(I +ATA)Ψ1

= ΨT
1 Ψ1 = ΨT

1 (Ψ1SΨ
T
1 )−1Ψ1.

Remark 5.10. If m≤ r, then it might still be that ΨQΨT = 0 for all feasible Ψ since Q
might be singular. In this degenerated case, fusion of (y1,R1) with (yΨ ,RΨ ) yields no
improvement compared to using (y1,R1) alone.

Choosing the Parameter m

The parameter m is essentially a design choice and might be the consequence of a
communication constraint. As stated previously, there is no benefit of using m>
rank(S) = r, where r ≤ n2. In some cases, it is desirable to choose m adaptively.
By construction

tr
(
∆ΨT(Ψ SΨT)−1Ψ∆T

)
= tr

(
(Ψ SΨT)−1ΨQΨT

)
=

m∑
i=1

λi, (5.35)

where Ψ = Ψ ? = col(uT
1 , . . . ,u

T
m), (λi,ui) is given by Qu= λSu, and λ1 ≥ ·· · ≥ λn2 .

Consider now Ψ = Ψ ? as a function of m. By defining `0 = tr(R1) and

`m = tr(P ) = tr(R1)− tr
(

(Ψ SΨT)−1ΨQΨT
)

= `0−
m∑
i=1

λi, (5.36)

for m ∈ {1,2, . . . , r}, it is possible to relate m directly to the fusion gain with `m.
For instance, m can be chosen adaptively to be the smallest integer m such that

`0− `m
`0− `r

=
∑m
i=1λi∑r
i=1λi

≥ τ, (5.37)

for some threshold τ ∈ [0,1].
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Algorithm 5.11: GEVO-KF
Input: R1 ∈ Snx++, R2 ∈ Sn2

++, R12 ∈ Rnx×n2 , H2 ∈ Rn2×nx , and m

1. Let Q=H2R
2
1H

T
2 and S =H2R1H

T
2 +R2.

2. Compute λ1, . . . ,λn2 and u1, . . . ,un2 by solving Qu= λSu.

3. Define Φ = col(uT
1 , . . . ,u

T
m), and compute Ω = col(vT1 , . . . ,v

T
m) such that vTi vj =

δij and rowspan(Ω) = rowspan(Φ).

4. Compute ΩR2Ω
T = UΣUT and let Ψ ? = UTΩ.

Output: Ψ ?

5.3.3 GEVO for Kalman Fusion
The GEVO method for KF is automatically retrieved by setting R12 =RT

21 = 0 in
Algorithm 5.7, such that

Q=H2R
2
1H

T
2 , S =H2R1H

T
2 +R2.

For convenience and to be consistent with the other methods, the KF case is
provided in Algorithm 5.11. KF assumes zero cross-correlations and is therefore
applicable when some kind of decorrelation procedure is utilized. One example is
the GIMF [169].

5.3.4 GEVO for Covariance Intersection
For fusion using CI, the GEVO method does not apply directly. The reason is the
dependency on ω. In [57], an iterative algorithm based on alternating minimization
(AM, [20]) is proposed. First, it is noted that CI only differs from KF through the
ω parameter. The basic idea is to alternate between keeping ω and Φ fixed. A
generalization for m ≥ 1 of the original algorithm proposed in [57] is provided in
Algorithm 5.12. The loss function value Jk is defined in (5.38).

The parameter ε in Algorithm 5.12 is a design parameter chosen as a compro-
mise between computational speed and exactness of the solution given by the final
iterate. Here, ω0 = 1/2 is used.

Convergence Analysis

The AM method in Algorithm 5.12 alternates between solving two different kinds
of optimization problems. Each separate problem is well-posed, and a global mini-
mum is obtained. The solution to the problem in step 1 is given by the generalized
eigenvalues associated with the largest generalized eigenvalues of a GEVP. Step 2
involves solving a convex optimization problem [135] for which any local minimum
is also a global minimum [29]. This does, however, not imply that the final itera-
tion of Algorithm 5.12 is a global minimizer. Below, it is shown that the iterations
of Algorithm 5.12 converge to a stationary point.
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Algorithm 5.12: GEVO-CI
Input: ω0, R1 ∈ Snx++, R2 ∈ Sn2

++, H2 ∈ Rn2×nx , m, k = 0, and ε
1. Let k ← k + 1. Compute λ1, . . . ,λn2 and u1, . . . ,up by solving Qu = λSu,

where Q = H2R
2
1H

T
2 /ω

2
k−1 and S = H2R1H

T
2 /ωk−1 + R2/(1 − ωk−1). Let

Φk = col(uT
1 , . . . ,u

T
m), where ui is a generalized eigenvector associated with λi.

2. Let RΦ = ΦkR2Φ
T
k . Compute ωk by solving

minimize
ω

tr

((
ωR−1

1 + (1−ω)HT
2 Φ

T
kR
−1
Φ

ΦkH2
)−1

)
.

3. Let Jk be according to (5.39). If (Jk−1 − Jk)/Jk > ε, then go back to step 1.
Otherwise continue to step 4.

4. Define Φ = col(uT
1 , . . . ,u

T
m), and compute Ω = col(vT1 , . . . ,v

T
m) such that vTi vj =

δij and rowspan(Ω) = rowspan(Φ).

5. Compute ΩR2Ω
T = UΣUT and let Ψ = UTΩ.

Output: Ψ

Let J(ω,Φ) = tr(P ) with P according to (5.6), i.e.,

J(ω,Φ) = tr
((

ωR−1
1 + (1−ω)HT

2 Φ
T(ΦR2Φ

T)−1ΦH2
)−1

)
. (5.38)

Define

Jk− 1
2

= J(ωk−1,Φk), Jk = J(ωk,Φk). (5.39)

Consider a sequence of nk iterations and hence 2nk subiterations. Each iteration
and subiteration have the same feasible set. Since in each subiteration a minimum
is obtained it is concluded that

J 1
2
≥ J1 ≥ ·· · ≥ JN− 1

2
≥ JN ,

which is a nonincreasing sequence {Jk}. Denote by {(ω,Φ)k} the sequence of
points generating {Jk}. Since P ∈ Snx++, there exists a lower bound Jlow > 0 such
that J(ω,Φ) ≥ Jlow,∀(ω,Φ). Hence, the monotonic convergence theorem [25] is
applicable, which states that

lim
k→∞

Jk = J(ω̄, Φ̄), (5.40)

where (ω̄, Φ̄) is the limit point. In the limit Jk− 1
2
− Jk+ 1

2
→ 0 and Jk − Jk+1→ 0.

Since J(ω,Φ) is differentiable w.r.t. ω and Φ on its domain, this implies that

∂

∂ω
J(ω,Φ)

∣∣∣∣
ω=ω̄

= 0, ∂

∂Φ
J(ω,Φ)

∣∣∣∣
Φ=Φ̄

= 0, (5.41)

and hence (ω̄, Φ̄) is a stationary point. The convergence results are summarized in
Theorem 5.13. It should be emphasized that from Theorem 5.13 alone, it cannot
be concluded if (ω̄, Φ̄) is a local minimizer, global minimizer or a saddle point.
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Figure 5.8. Results of the numerical convergence rate analysis, where nx ∈ {6,9}
and ε ∈ {0.1%,0.01%}. The plots show the relative frequency of the number of
iterations until the criterion (Jk−1− Jk)/Jk ≤ ε in Algorithm 5.12 is met.

Theorem 5.13. Let {(ω,Φ)k} be a sequence of points generated by Algorithm 5.12
and let J(ω,Φ) be given by (5.38). Then {(ω,Φ)k} converges to a stationary point
(ω̄,Φ̄) of J(ω,Φ).

The convergence rate is evaluated numerically. In each simulation, R1,R2 ∈
Snx++ are i.i.d. according to R1,R2 ∼ W(I,nx), where W(I,nx) is the Wishart
distribution of nx degrees of freedoms [180]. If in a certain sample R2 �R1, then
R1 is resampled until R2 � R1. This resampling is done because R2 � R1 would
trivially yield ω = 1 in Algorithm 5.12 for all feasible Ψ.

The evaluation is performed with nx ∈ {6,9} and ε ∈ {0.1%,0.01%}. In each
case, and for each m, 1 000 000 MC simulations are conducted. The evaluation
measure is the number of iterations until (Jk−1−Jk)/Jk ≤ ε. The results are shown
in Figure 5.8. The statistics are summarized in Table 5.3, where typ, mean, and std
refer to the typical value, the mean, and the standard deviation, respectively. The
GEVO-CI algorithm converges very fast in general, e.g., for nx = 9 and ε= 0.01%
with m= 3 the mean number of iterations is approximately 4.056± 0.634 and the
typical value is 4. An interesting feature is that the convergence rate is improved
by increasing m. The number of iterations increases as nx increases and as ε
decreases.

Table 5.3
Convergence rate analysis

m

1
2
3
4

nx = 6, ε = 0.1%

typ mean std

3 3.995 1.311
3 3.421 0.645
3 2.836 0.549
2 2.260 0.449

nx = 6, ε = 0.01%

typ mean std

4 4.795 2.099
4 4.035 0.961
3 3.298 0.691
3 2.687 0.554

nx = 9, ε = 0.1%

typ mean std

4 4.156 1.241
4 3.744 0.663
3 3.376 0.513
3 3.062 0.313

nx = 9, ε = 0.01%

typ mean std

4 5.108 2.059
4 4.487 0.914
4 4.056 0.634
4 3.582 0.568
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Algorithm 5.14: GEVO-LE
Input: R1 ∈ Snx++, R2 ∈ Sn2

++, H2 ∈ Rn2×nx , and m
1. Transform into the information domain

I1 =R−1
1 , I2 =HT

2R
−1
2 H2.

2. Factorize I1 = U1Σ1U
T
1 and let T1 = Σ

− 1
2

1 UT
1 . Factorize T1I2TT

1 = U2Σ2U
T
2 and

let T2 = UT
2 . Transform using T = T2T1 according to

I′1 = TI1TT = I, I′2 = TI2TT.

3. Let D be diagonal. For each i= 1, . . . ,nx compute

[D]ii = min
(
1, [I′2]ii

)
.

4. Let Iγ = T−1DT−T and R12 = R1IγHT
2R2. Compute Ψ using Algorithm 5.7

with inputs R1, R2, R12, H2, and m.
Output: Ψ

5.3.5 GEVO for the Largest Ellipsoid Method
To be able to use the GEVO framework with the LE method, some adaptations
are required. As discussed in Section 4.4.3, the LE method makes an implicit
assumption about R12 if H2 = I. Based on this and the results in (4.24), R12 is
now derived for arbitrary H2. Let ỹi = yi−E(yi), ỹei = yei −E(yei ), and γ̃ = γ̂−E(γ̂)
as before. Assume the common information decomposition in (4.23), i.e.,

R−1
1 = Ie1 + Iγ , R−1

1 y1 = Ie1ye1 + Iγ γ̂,
R−1

2 = Ie2 +H2IγHT
2 , R−1

2 y2 = Ie2ye2 +H2Iγ γ̂.

The key step is to compute the common information Iγ assumed implicitly in the
LE method in Algoirthm 4.17. This corresponds to step 1 to 3 in Algorithm 5.14.
Then (4.24) gives R12 according to

R12 =R1IγHT
2R2.

When R12 has been obtained, Algorithm 5.7 is applicable. The GEVO method
for LE is provided in Algorithm 5.14. If rank(H2) = nx, then both I1 and I2 in
Algorithm 5.14 are full rank. Hence, also Iγ is full rank, i.e., I−1

γ = Γ .
In Section 4.4.3, it was noted that if H2 = I, then LE corresponds to a par-

ticular R12. As a consequence, Ψ computed by Algorithm 5.7 is guaranteed to
be optimal. That is, Ψ computed by Algorithm 5.14 is optimal w.r.t. tr(P ), if
H2 = I and P is computed using (5.8). The LE method is a best CLUE when the
following conditions hold: (i) H2 = I; and (ii) R12 is according to the componen-
twise aligned structure described in Section 4.4.3. This means that Ψ computed
by Algorithm 5.14 implies an optimal conservatively fused estimate if (i) and (ii)
hold simultaneously.
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5.3.6 Theoretical Comparison of GEVO and PCO
The GEVO method in Algorithm 5.7 computes Ψ ?, which is optimal w.r.t. tr(P ).
In certain cases, Ψ ? is equal to Ψpco computed by the PCO method in Algo-
rithm 5.2, but in general, Ψpco , Ψ ?. This has actually already been demonstrated,
cf. the motivating example of Section 5.3.1. Example 5.15 illustrates a case when
Ψpco = Ψ ? and a case when Ψpco is as far as possible from Ψ ?.

Example 5.15: Relationship Between GEVO and PCO
Assume that n2 = nx = 2, H2 = I, and R12 = 0. Let R2 = diag(4,1) and R1
be defined either as: (i) R1 = diag(1,4); or (ii) R2 = diag(4,1). Let Ψgevo be
computed using Algorithm 5.11 and Ψpco be computed using Algorithm 5.2. Let
umin and umax be the eigenvectors associated with the minimum and maximum
eigenvalues λmin(R2) and λmax(R2), respectively. In case (i)

Ψgevo =
[
0 1

]
= uT

min, Ψpco =
[
0 1

]
= uT

min,

such that Ψpco = Ψgevo. In case (ii)

Ψgevo =
[
1 0

]
= uT

max, Ψpco =
[
0 1

]
= uT

min,

such that ΨgevoΨT
pco = 0. That is, PCO yields Ψpco = uT

min, but to minimize tr(P )
the uT

max should be used. As demonstrated below, in case (ii), PCO yields the
worst possible choice of Ψ w.r.t. to tr(P ).

The observation made in Example 5.15 is a special case of a more general result.
Assume that R12 = 0, such that (y1,R1) and (yΨ ,RΨ ) are fused optimally using
(5.5). Let H2R1HT

2 ∈ S
n2
+ and R2 ∈ Sn2

++ be given by

H2R1H
T
2 = V ΣVT, Σ = diag(µ1, . . . ,µn2), (5.42a)
R2 = VΠVT, Π = diag(π1, . . . ,πn2), (5.42b)

where V =
[
v1 . . . vn2

]
is an orthogonal matrix, µ1 ≥ ·· · ≥ µn2 are the eigenval-

ues of H2R1HT
2 , and π1 ≥ ·· · ≥ πn2 are the eigenvalues of R2. That is, H2R1HT

2
and R2 share eigenvectors, and their eigenvalues are ordered correspondingly. In
this case

Q= (H2R1H
T
2 )2 = V Σ2VT, S =H2R1H

T
2 +R2 = V (Σ+Π)VT.

Since S ∈ Sn2
++, the GEVP Qu= λSu solved in GEVO can be expressed as

S−1Qu= V (Σ+Π)−1VTV Σ2V = VΛVTu= λu, (5.43)

where Λ = diag(λ1, . . . ,λn2) and λi = µ2
i /(µi + πi). The assumed ordering of µi

and πi implies that
1

µ1 +π1
≤ ·· · ≤ 1

µn2 +πn2
,
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and hence λ1 ≥ ·· · ≥ λn2 . Since R12 = 0, Algorithm 5.11 is applicable, where the
output Ψ ? minimizes tr(P ) with P given in (5.5). In this case Ψ ? = col(vT

1 , . . . ,v
T
m).

Meanwhile, using Algorithm 5.2 yields Ψpco = col(vT
n2−m+1, . . . ,v

T
n2). However,

by inspection of Algorithm 5.11 it can be seen that this Ψpco in fact minimizes
tr((Ψ SΨT)−1ΨQΨT) and hence maximizes tr(P ) among all feasible Ψ ∈ Rm×n2 .
Under the given assumptions, it is concluded that PCO provides the worst possible
Ψ if the goal is to minimize tr(P )6. These results are summarized in Theorem 5.16.

Theorem 5.16. Assume that R12 = 0, and that H2R1HT
2 ∈ S

n2
+ and R2 ∈ Sn2

++
are given according to (5.42), where µ1 ≥ ·· · ≥ µn2 and π1 ≥ ·· · ≥ πn2 . Let
Ψ ∈ Rm×n2 and P be given according to (5.5). Then, Ψpco computed by the PCO
method in Algorithm 5.2 solves

maximize
Ψ

tr(P )

subject to ΨΨT = I.
(5.44)

In practice, it is not likely to have exactly the conditions assumed in Theo-
rem 5.16. One relevant question is what can be expected when the conditions hold
approximately. Consider A and B =A+∆. From matrix perturbation theory it is
known that if the eigenvalues of A are distinct, then for small ∆ such that A≈B,
the eigenvalues and eigenvectors A and B are approximately equal [164]. This can
be utilized as follows. Assume

H2R1H
T
2 = V ΣVT +∆, R2 = VΠVT−∆,

where V , Σ, and Π are defined as in (5.42). Then

Q= V ΣVT +∆V ΣVT +V ΣVT∆+∆2, S = V (Σ+Π)VT.

The matrix Λ of the EVP defined in (5.43) is now given by

Λ = Λ0 +V (Σ+Π)−1VT∆V ΣVT +V (Σ+Π)−1ΣVT∆+∆2,

where Λ0 = V (Σ + Π)−1Σ2VT. Assume that ∆ is such that Λ ≈ Λ0 and R2 ≈
VΠVT. If, in addition, the eigenvalues of each of Λ0 and VΠVT are distinct, then
the following apply: (i) PCO with R2 yields approximately the same solution as
PCO with V ΣVT; and (ii) GEVO with Λ yields approximately the same solution
as GEVO with Λ0. If so, Theorem 5.16 is expected to be approximately true.

In the previous reasoning, it is not stated what a small ∆ quantitatively means.
However, the main point here is in the qualitative sense. That is, if (5.42) holds
approximately, then PCO likely is a bad choice for DR.

5.3.7 Parametrized Fusion Example
The GEVO method is now evaluated in a simple fusion example.

6PCO maximizes the MSE in this case.
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Simulation Specifications

Assume that N = 2, nx = n2 = 6, and H2 = I. The problem is to fuse (y1,R1) and
(yΨ ,RΨ ). The scenario is parametrized in ρ ∈ [0,1] according to

R−1
1 = (1− ρ)A−1 + ρΓ−1, A−1 = diag(64,32,16,8,4,2) ,

R−1
2 = (1− ρ)B−1 + ρΓ−1, B−1 = diag(5,8,13,21,34,55) ,

with

Γ−1 =


16 4 4 0 −2 0
4 20 8 −8 −4 −4
4 8 30 0 −4 −4
0 −8 0 50 0 0
−2 −4 −4 0 10 0
0 −4 −4 0 0 20

 .
The quantity ρΓ−1 is interpreted as common information. By construction, R12 =
ρR1Γ−1R2. The parameter ρ is varied in the interval [0,1], and (x̂,P ) is computed
for each ρ and for each of the considered methods. As ρ increases, y1 and y2
become more correlated, eventually becoming fully correlated at ρ= 1.

The following methods are compared:

• KF: The Kalman fuser as defined in (5.5), where Ψ is derived using Algo-
rithm 5.11.

• CI: Covariance intersection as defined in (5.6), where Ψ is derived using
Algorithm 5.12.

• LE: The largest ellipsoid method as defined in (5.8), where Ψ is derived
using Algorithm 5.14.

As pointed out earlier, applying KF in a DSN requires some sort of decorrelation
mechanism. Otherwise, the independence assumed in KF is violated. In the next
comparison, KF is based on two different assumptions: (i) y2 is decorrelated by the
removal of common information such that R−1

2 = (1−ρ)B−1. This case is denoted
decorrelated KF (dKF). (ii) y1 and y2 are uncorrelated. This case is denoted
NKF. Table 5.4 provides a summary of how different quantities are computed in
the simulations.

Table 5.4
Computation of simulated quantities

Method R−1
2 R12 Ψ P

dKF (1− ρ)B−1 0 Algorithm 5.11 (5.5)
CI (1− ρ)B−1 + ρΓ−1 ρR1Γ−1R2 Algorithm 5.12 (5.6)
LE (1− ρ)B−1 + ρΓ−1 ρR1Γ−1R2 Algorithm 5.14 (5.8)
NKF (1− ρ)B−1 + ρΓ−1 ρR1Γ−1R2 Algorithm 5.11 (5.5)
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Figure 5.9. Results from the parametrized fusion example. Solid, dashed, and dotted
lines refer to m= 1, m= 2, and m= 3, respectively.

Evaluation Measures

COIN and ANEES are used for evaluation. In addition, RMTR-GTB is used,
which is defined as follows. Assume a fixedm and let P be the covariance computed
by a certain method defined above. Let P bsc be the covariance computed using
(5.4) with Ψ derived using Algorithm 5.7 where R12 is known. Then

RMTR-GTB =
√
tr(P )√

tr(P bsc)
. (5.45)

Results

The results are visualized in Figure 5.9. Solid, dashed, and dotted lines refer to
m= 1, m= 2, and m= 3, respectively.

dKF is able to achieve RMTR-GTB slightly below 1. This is possible because
dKF, using the ideal decorrelation step, exploits more structure in the problem
compared to what is possible using the MSE optimal estimator in (5.4). dKF is
conservative w.r.t. both COIN and ANEES. On the other hand, NKF provides
RMTR-GTB ≤ 1 but at the cost of not being conservative for ρ > 0. NKF hence
utilizes more information than is actually available. This effect becomes more
prominent for large m and ρ.

The performance of CI increases as ρ increases, but for small ρ, the performance
is relatively poor. The reason for this is that since CI is conservative for all possible
R12, CI implicitly assumes strong correlations, but small ρmeans weak correlations.
COIN is typically larger for large m in the case of CI.
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The LE method provides relatively good performance for all ρ. LE is conserva-
tive w.r.t. ANEES but not w.r.t. COIN, for which it provides values marginally
larger than 1.

5.3.8 Numerical Evaluation
The GEVO method is evaluated using a DTT scenario identical to the one used
in Section 5.2.2 to evaluate the PCO method. GEVO is also compared to PCO.

Simulation Specifications

The scenario is depicted in Figure 5.3 and the simulation parameters are sum-
marized in Table 5.2. The communication scheme of Rule 3.6 is assumed. It is
assumed H2 = I and m= 2.

The following methods are compared:

• NKF: The naïve Kalman fuser as defined in (5.5), where Ψ is derived using
Algorithm 5.11.

• CI: Covariance intersection as defined in (5.6), where Ψ is derived using
Algorithm 5.12.

• LE: The largest ellipsoid method as defined in (5.8), where Ψ is derived
using Algorithm 5.14.

Evaluation Measures

COIN, ANEES, RMT, and RMSE defined in Section 3.2 are used for evaluation. In
addition, RMTR and RMSER defined in Section 5.2.2 are used. By construction,
RMTR is larger than or equal to 1.

Results

Figure 5.10 illustrates the results for Agent 3 only7. COIN, ANEES, RMT, RMSE,
RMTR, and RMSER are computed at time instants where track fusion is per-
formed. As a comparison, the results from the PCO method evaluation have been
included for RMT and RMSE. The PCO curves are given by the dashed lines and
use the same color coding as the corresponding GEVO curves, e.g., the red dashed
lines refer to NKF with Ψ derived using the PCO method.

CI is the only method that is conservative w.r.t. both COIN and ANEES. LE is
conservative w.r.t. ANEES. NKF is never conservative. As indicated by the RMT
and RMSE plots, LE and KF achieves significantly better performance when using
GEVO instead of PCO. CI achieves significantly improved RMSE, but only slightly
improved RMT in the GEVO case. For LE, the performance loss of transmitting
(yΨ ,RΨ ) instead of (y2,R2) is zero in this case with Ψ computed using GEVO-LE.
This can be explained by the binary behavior suggested by LE, cf. Algorithm 4.17,
where each component of the fused estimate is taken exclusively from either of the

7The estimation results for the other two agents are similar.
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Figure 5.10. Results from the GEVO method evaluation. The dashed curves in the
RMT and RMSE plots illustrate the corresponding results from the PCO method
evaluation. The gray area in the ANEES plot represents an ANEES 99.9% confi-
dence interval.

two estimates that are fused. In this case, it is useless to increase m since the
additional information in (yΨ,RΨ) cannot be utilized by LE.

An interesting observation is that RMSER is smaller than 1 for NKF. The rea-
son is that when full estimates are exchanged, the double counting of information
by the naïve KF method makes the RMSE diverge. This effect is reduced when
the GEVO derived DR estimates are exchanged instead of full estimates.

5.4 Dimension-Reduction Using Local Information
Only

The GEVO framework for computation ofΨ requires that Agent 2 has access to R1.
This might be possible under restrictive assumptions in certain well-specified static
sensor networks. However, for general DSNs, this is an unrealistic assumption.
Consider the scenario in Figure 5.11. Assume R12 = 0 and that Agent 2 is about
to communicate a DR estimate (yΨ,RΨ) derived using GEVO-KF to Agent 1.
Since Agent 2 does not have access to R1, Agent 2 wants to replace R1 by some
reasonable covariance matrix that is locally computable and at the same time
yields a sufficiently good approximation of the optimal Ψ? produced by GEVO-
KF knowing R1. Let P (Ψ) be the covariance computed by fusing (y1,R1) and
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Figure 5.11. Left: A DTT scenario where Agent 2 transmits (yΨ,RΨ) to Agent 1.
To compute Ψ? using GEVO, Agent 2 must have access to R1 which is unavailable.
The objective is to replace R1 and derive a reasonable approximation Ψ′ of Ψ?.
Right: Since tr(P (Ψ′)) � tr(P (Ψ?)), Ψ′ is a good substitution for Ψ?.

(yΨ,RΨ). The objective is for Agent 2 to derive Ψ′ such that

tr
(
P (Ψ′)

)
� tr(P (Ψ?)) .

One such approximation is Ψ′, see the r.h.s. of Figure 5.11.
The proposed solution is given by the common information estimate (CIE).

CIE is an estimate that can be computed locally for each agent and captures the
information being shared in the sensor network. As such, CIE can be interpreted
as a digital twin [62] of the network information.

5.4.1 The Common Information Estimate
CIE is computed locally using all information that has either been received or
transmitted by the agent. For instance, if Agent 2 transmits (yΨ,RΨ) to Agent 1
for fusion, then (yΨ,RΨ) is also fused with the CIE computed in Agent 2. The
basic ideas originate from [55], where a similar approach is made based on fusing
a similar estimate exclusively with received or transmitted information8.

The SSM in (3.1) is assumed. State estimation is done using the EKF in
Algorithm 3.1. The track fusion methods considered in this section are KF, CI,
and LE, but other methods are also applicable. In this section, it is assumed for
simplicity that N = 2. However, as a consequence of its modular construction,
CIE can be used for arbitrary N .

Revisiting the Common Information Decomposition

Assume H2 = I such that R1,R2 ∈ Snx++. Recall the common information decom-
position defined in (4.16), i.e.,

R−1
1 = (Re1)−1 + Γ−1, R−1

1 y1 = (Re1)−1ye1 + Γ−1γ̂, (5.46a)
R−1

2 = (Re2)−1 + Γ−1, R−1
2 y2 = (Re2)−1ye2 + Γ−1γ̂, (5.46b)

8These two special cases are not studied further in this scope.
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where the estimate (γ̂,Γ ) is common to both local estimates. The basic idea used in
the CIE methodology is to keep approximate track of (γ̂,Γ ). Similar to Section 4.4,
Iei = (Rei )−1 is allowed to be singular.

In general, locally filtered estimates cannot be decomposed perfectly according
to (5.46). However, this is not an issue for two main reasons: (i) In decentralized
estimation sharing of information is the dominating source of cross-correlations
between estimates and hence there is in general a large portion of common infor-
mation shared between the local estimates. (ii) The purpose of the CIE is to be
used as a substitute for R1 to derive Ψ and therefore it is not essential that the
underlying structure assumed in (5.46) is completely satisfied.

To illustrate the usage of CIE, assume that (5.46) holds, Γ−1 is known, and
that Ie1 = 0 and (Re2)−1 ∈ Snx++. An estimate (ye2,Re2) is recovered by subtracting
(γ̂,Γ ) from (y2,R2). The result is two uncorrelated estimates (γ̂,Γ ) and (ye2,Re2) for
which GEVO-KF can be applied by replacing R1 and R2 by Γ and Re2, respectively.
After Ψ ? has been derived using Algorithm 5.11 it is possible to compute

yΨ = Ψ ?ye2, RΨ = Ψ ?Re2(Ψ ?)T,

which are then transmitted from Agent 2 to Agent 1.
In general, 0 , Ie1 ∈ S

nx
+ . Assume that Agent 2 knows Γ but not Ie1 . To

investigate the effect of assuming Ie1 = 0 when in fact Ie1 , 0, assume w.l.o.g. that
Γ−1 = I and Ie1 = D where D = diag(d1, . . . ,dnx) is diagonal with di ≥ 0. Let
(ye2,Re2) be given as above. By construction, Q = Γ 2 = I and S = Re2. The true
values Q0 and S0 are now interpreted as perturbations of Q and S, i.e.,

Q0 =
(
(Γ−1 + Ie1)−1)2 = (I +D)−2, S0 =

(
Γ−1 + Ie1

)−1 +Re2 = (I +D)−1 +Re2.

For small D these matrices can be approximated as

Q0 = (I + 2D+D2)−1 ≈ (I + 2D)−1 = I − (I + 2D)−12D ≈ I − 2D,
S0 =Re2 + I − (I +D)−1D ≈Re2 + I −D.

Hence, consider the following perturbations

Q0 =Q+ δQ, δQ=−2D, S0 = S+ δS, δS =−D.

Assume that (λ0
i ,u

0
i ) solves Q0u0 = λ0S0u0 and that (λi,ui) solves Qu = λSu.

Using the results of [164] it is implied that, if λ0
1, . . . ,λ

0
n are distinct, then for small

D, (λi,ui) is a reasonable approximation of (λ0
i ,u

0
i ). This essentially means that

for small D it can be expected that the performance degradation is small when
using Ψ = col(uT

1 , . . . ,u
T
m) instead of Ψ ? = col((u0

1)T, . . . ,(u0
m)T).

Defining the Common Information Estimate

CIE is denoted by (γ̂,Γ ) and is filtered in an EKF setting analogously to the local
estimate. The local estimate is for now denoted by (x̂,P ) instead of (y2,R2). These
estimates are computed as follows:
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Figure 5.12. Schematics of the CIE methodology. Subscript 0 refers to initial val-
ues. Sensor information is used only in the measurement update (MU) of the local
estimate. The fuse blocks are realized by one of the methods in Section 5.1.2. The
GEVO block is realized by one of the methods in Section 5.3.2.

Table 5.5
GEVO input mapping

Method R1 R2 RΨ

GEVO-KF Γ (P−1− Γ−1)−1 Ψ (P−1− Γ−1)−1ΨT

GEVO-CI Γ P ΨPΨT

GEVO-LE Γ P ΨPΨT

• (x̂,P ) is predicted at each time step and filtered with local measurements
(z,C), and fused with datalink estimates (ydl,Rdl) received from other agents.

• (γ̂,Γ ) is predicted at each time step, fused with (i) datalink estimates (ydl,Rdl)
received from others, and (ii) locally computed DR estimates (yΨ ,RΨ ) trans-
mitted to other agents.

The same process model is assumed for both (x̂,P ) and (γ̂,Γ ). The process noise
covariance Q acts as a forgetting factor that ages previously exchanged information
[55]. The larger Q is, the faster previously exchanged information is forgotten.

Schematics of the CIE is provided in Figure 5.12, where only the computation of
covariances is illustrated. It is suggested that (γ̂,Γ ) is initialized at the same time
as (x̂,P ) using γ̂0 = x̂0 while Γ0 � P0 is chosen sufficiently large to be consistent
with the fact that initially Γ−1 is negligible. Initialization of (x̂,P ) is done by any
standard procedure from target tracking [27].

Using The Common Information Estimate With GEVO

Utilizing (γ̂,Γ ) in GEVO-CI and GEVO-LE is straighforward: R1 is replaced by
Γ and R2 by P . Then GEVO-CI or GEVO-LE is used. To be able to apply
GEVO-KF, (x̂,P ) and (γ̂,Γ ) must first be decorrelated. This is accomplished
by subtracting (γ̂,Γ ) from (x̂,P ), an operation similar to the one that GIMF. In
particular, R1 is replaced by Γ and R2 by (P−1 − Γ−1)−1, and then GEVO-KF
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is run. Table 5.5 summarizes the mapping between the quantities used in this
section and the input variables of the different GEVO algorithms.

Decorrelation Procedure Analysis

To ensure that KF does not double count information when fusing a received
estimate (yΨ ,RΨ ) with the local estimate, it must be shown that subtracting (γ̂,Γ )
from (x̂,P ) fully decorrelates the local estimate and the CIE. For the following
analysis it is assumed that P−1

k|l � Γ−1
k|l . The latter is ensured if P−1

0 � Γ−1
0 and

only the operations described below are used. Let x̃k|l = x̂k|l−xk, γ̃k|l = γ̂k|l−xk,
and δ̃k|l = δ̂k|l−xk. What needs to be show is that

E(δ̃k|lγ̃T
k|l) = 0, (5.47)

for all k ≥ l, l ≥ 0, where

δ̂k|l = ∆k|l

(
P−1
k|l x̂k|l− Γ−1

k|l γ̂k|l

)
, ∆k|l =

(
P−1
k|l − Γ−1

k|l

)−1
. (5.48)

The definition of the CIE, including the filtering scheme in Figure 5.12, es-
sentially involves four types of operations: (i) initialization; (ii) prediction; (iii)
measurement updates; and (iv) track fusion. Next, the condition in (5.47) is shown
using the following argument based on the principle of induction: If E(δ̃k|lγ̃T

k|l) = 0
is true both before and after any of the operations (i)–(iv), then E(δ̃k|lγ̃T

k|l) = 0
holds for all k ≥ l, l ≥ 0 given that only the operations (i)–(iv) according to above
are used.

Start with (i), where it can be seen that γ̂0 = x̂0 and P0 = E(x̃0x̃T
0 ) yield

E(x̃0γ̂T
0 ) = E(x̃0x̃T

0 ) = P0. This corresponds to

x̂0 = P0
(
(P e0 )−1x̂e0 + Γ−1

0 γ̂0
)
, P0 =

(
(P e0 )−1 + Γ−1

0
)−1

,

where E(x̃e0γ̃T
0 ) = 0, (P e0 )−1 is exclusive information, and Γ0 � P0 by assumption.

As a consequence E(δ̃0γ̃T
0 ) = 0.

For the prediction step (ii), assume w.l.o.g. that

x̂k|k = Pk|k

(
(P ek|k)−1x̂ek|k + Γ−1

k|k γ̂k|k

)
, Pk|k =

(
(P ek|k)−1 + Γ−1

k|k

)−1
, (5.49)

where E(x̃ek|kγ̂
T
k|k) = 0 such that E(x̃k|kγ̃T

k|k) = Pk|k. The SSM in (3.1) implies

γ̃k+1|k = γ̂k+1|k −xk+1 = Fkγ̂k|k − (Fkxk +wk) = Fkγ̃k|k −wk,

and similarly x̃k+1|k = Fkx̃k|k−wk. Since E(x̃k|kwT
k ) = E(γ̃k|kwT

k ) = 0 it holds that

E(x̃k+1|kγ̃
T
k+1|k) = E

(
(Fkx̃k|k −wk)(Fkγ̃k|k −wk)T

)
= FkPk|kF

T
k +Qk = Pk+1|k.
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Moreover, since E(x̃k|kwT
k ) = E(γ̃k|kwT

k ) = 0

E(δ̃k+1|kγ̃k+1|k)

= E
(
∆k+1|k

(
P−1
k+1|kx̃k+1|k − Γ−1

k+1|kγ̃k+1|k

)
γ̃T
k+1|k

)
= E

(
∆k+1|k

(
P−1
k+1|k(Fkx̃k|k −wk)Γ−1

k+1|k(Fkγ̃k|k −wk)
)

(Fkγ̃k|k −wk)T
)
,

such that

E(δ̃k+1|kγ̃k+1|k) = ∆k+1|k

(
P−1
k+1|k(FkPk|kFT

k +Qk)Γ−1
k+1|k(FkΓk|kFT

k +Qk)
)

= ∆k+1|k

(
P−1
k+1|kPk+1|k − Γ−1

k+1|kΓk+1|k

)
= 0.

This means that δ̂k+1|k and γ̂k+1|k are fully uncorrelated.
For the measurement update (iii) and the fusion step (iv), let superscript f

denote the result after a measurement update or a fusion update. By assump-
tion, both (iii) and (iv) only involve merging of uncorrelated information, these
operations are given as

(P f
k|k)−1x̂f

k|k = P−1
k|l x̂k|l +A−1â, (P f

k|k)−1 = P−1
k|l +A−1,

and

(Γ f
k|k)−1γ̂f

k|k = Γ−1
k|l γ̂k|l +B−1b̂, (Γ f

k|k)−1 = Γ−1
k|l +B−1,

where P−1
k|l x̂k|l = (P ek|l)

−1x̂ek|l + Γ−1
k|l γ̂k|l and P

−1
k|l = (P ek|l)

−1 + Γ−1
k|l . Hence the com-

mon information decomposition is preserved directly and all correlations are re-
moved by the decorrelation step. For instance, in (iii), A−1 � 0 and B−1 = 0.
Since E(ã(γ̃f

k|k)T) = 0 it follows that

E(δ̃f
k|k(γ̃f

k|k)T) = E
(
∆
f
k|l

(
(P ek|l)

−1x̂ek|l +A−1ã
)

(γ̃f
k|k)T

)
= 0.

where δ̃f
k|k = δ̂f

k|k−xk, and (δ̂f
k|k,∆

f
k|k) is defined analogous to (δ̂k|k,∆k|k) in (5.48).

Theorem 5.17 summarizes the decorrelation analysis.

Theorem 5.17. Assume (x̂k|l,Pk|l) and (γ̂k|l,Γk|l) are initialized and computed ac-
cording to Figure 5.12. Let (δ̂k|l,∆k|l) be computed according to (5.48). Let
δ̃k|l = δ̂k|l−xk and γ̃k|l = γ̂k|l−xk. Then

E(δ̃k|lγ̃T
k|l) = 0,

for all k ≥ l, l ≥ 0.
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Figure 5.13. One example of convergence of the CIE. Two agents estimate the
position of a target using sensor measurements and exchanged DR estimates. The
ellipses for R1, the local estimate at Agent 1, and Γ, the CIE covariance at Agent 2,
are plotted for different k. For this case, Γ approaches R1 relatively fast.

Convergence Example

The applicability of the CIE is related to how well Γ approximates R1. Next,
convergence properties of Γ are illustrated using a simple example. Let x ∈ R2 be
stationary. Two agents estimate x using sensors that measure both components
of x with constant measurement covariances. Since x is stationary, Fk = I and
Qk = 0. The example is simulated for time points k = 1,2, . . . ,7. At odd k,
Agent 1 transmits a DR estimate to Agent 2, and at even k, Agent 2 transmits
a DR estimate to Agent 1. KF is used for fusion, and GEVO-KF is used for
computing Ψ. The resulting ellipses for R1 and Γ for different k are illustrated in
Figure 5.13. In this case, Γ converges to approximately R1 relatively fast.

Summary

To circumvent the issue of not having access to R1, the CIE (γ̂,Γ) has been pro-
posed. The benefits of (γ̂,Γ) are twofold: (i) it replaces (y1,R1) such that it
becomes possible to compute Ψ in a decentralized context; and (ii) it can be
used along with a decorrelation procedure for GEVO-KF and KF to be applied
without double counting of information. Theorem 5.17 states that (yΨ,RΨ) com-
puted in this way and transmitted to another Agent i, is uncorrelated with (γ̂,Γ).
This means that (yΨ,RΨ) is uncorrelated with previously transmitted information
which is crucial for using KF to fuse (y1,R2) with (yΨ,RΨ). However, since (γ̂,Γ)
is not equivalent to (y1,R1), the computed Ψ is in general suboptimal.

5.4.2 Numerical Evaluation
The GEVO framework with CIE is now evaluated in a DTT scenario. The scenario
is identical to the one used in the DCA evaluation in Section 3.3.4.

Simulation Specifications

The scenario is illustrated in Figure 5.14. Two agents track a common target in
d = 2 spatial dimensions. The CAM in (3.6) is assumed for the dynamics, and



5.4 Dimension-Reduction Using Local Information Only 109

Figure 5.14. Scenario used in the numerical evaluation. The agents are placed at
fixed locations (−2000,1000)m and (5000,0)m. The target is initially located at
(3000,8000)m, represented by the black circle, and moves along the black trajectory.
The ellipse represent the measurement error covariance of each sensor.

Table 5.6
Parameters used in the simulations

Parameter Comment

d= 2 spatial dimensionality
nx = 6 state dimensionality
Ts = 1 sampling time [s]
σw = 2 standard deviation of process noise [ms−

5
2 ]

σr = 1000 standard deviation of radial measurement noise [m]
σθ = 1 standard deviation of azimuth measurement noise [◦]

(−2000,1000) Agent 1 location [m]
(5000,0) Agent 2 location [m]

(3000,8000) target initial position [m]
nk = 18 number of time steps

M = 10000 number of MC runs

the sensors are defined according to the nonlinear model in (3.8). The agents
communicate their local tracks according to the scheme in Rule 3.6. Relevant
simulation parameters are summarized in Table 5.6.

CIE is evaluated in combination with the following methods:

• dKF: The Kalman fuser as defined in (5.5), where Ψ is derived using Al-
gorithm 5.11. The decorrelation step described in Section 5.4.1 is used to
decorrelate exchanged estimates.

• CI: Covariance intersection as defined in (5.6), where Ψ is derived using
Algorithm 5.12.

• LE: The largest ellipsoid method as defined in (5.8), where Ψ is derived
using Algorithm 5.14.

These methods are compared to:

• LKF: A local EKF for which no tracks are shared.

• CRLB: In the RMSE plots, CRLB is represented by
√
tr(P 0

pos), where P 0
pos

is computed as in Section 3.2.1.
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• DCA-EIG: The eigenvalue based scaling method proposed in Section 3.3.2,
where CI is used for track fusion.

Evaluation Measures

RMSE, RMT, and ANEES are used for evaluation. In addition, a variant of
RMTR is used to compare the relative performance of using GEVO with CIE to
using GEVO with globally available knowledge9. Consider a certain agent and
method. Let P ik(Γ ) denote the covariance computed in the ith MC run at time
k using CIE. Likewise, let P ik(Rj) denote the covariance computed in the ith MC
run at time k using global knowledge about Rj . The RMTR-LTG is defined as

RMTR-LTGk =

√
1
M

∑M
i=1 tr(P ik(Γ ))√

1
M

∑M
i=1 tr(P ik(Rj))

. (5.50)

RMSE, RMT, and RMTR-LTG are computed for the position components of the
error and covariance. ANEES is computed for the full state.

Results

The results for Agent 1 are shown in Figure 5.1510. RMT and RMSE are normal-
ized by σr.

The RMTR-LTG plot indicates that the relative performance is close to 1 in all
cases, and in particular in the case of dKF. Hence, the performance degradation
when using CIE is small. In fact, for LE and m= 1, the performance w.r.t. RMT
is slightly improved when using CIE. However, this is not a general result. LE and
dKF approach the CRLB in terms of both the RMT and the RMSE. CI performs
worse than dKF and LE, but better than DCA-EIG for all m.

CI and DCA-EIG are conservative w.r.t. ANEES. LE and dKF are slightly too
optimistic. The latter is a consequence of the fact that the decorrelation procedure
described in Section 5.4.1 cannot fully cope with common process noise.
Remark 5.18. In Section 5.3.5 it is stated that Ψ computed by GEVO-LE is optimal if
R1 it known. Hence, the RMTR-LTG plot seems like a counterexample to this statement.
However, Ψ computed by GEVO-LE is optimal w.r.t. tr(P ) for the full state, but the
RMTR-LTG plot only visualizes the position components.

5.5 Dimension-Reduction for Association Quality
Figure 5.16 illustrates a multitarget tracking scenario. Agent 2 communicates
DR versions of its local tracks to Agent 1. Before Agent 1 can fuse the received
DR estimates, Agent 1 needs to associate them with its local tracks. So far, the
track-to-track association has been neglected. However, reducing dimensionality

9Globally available knowledge in the sense that, in each time step, Agent 2 has access to R1
and Agent 1 has access to R2.
10The results for Agent 2 are similar.
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Figure 5.15. Results from the CIE evaluation. RMSE, RMT, and RMTR-LTG
are computed for the position components of the error and covariance. ANEES is
computed for the full state. The gray area represents an ANEES 99.9% confidence
interval.

might have a severe negative effect on the association quality. In Section 5.3, the
communication management is designed for enhanced track fusion performance. In
this section, the problem is to design the communication management to promote
track-to-track association quality.

5.5.1 Problem Model
Assume that N = 2 and that there are nt targets. Targets and estimates are
distinguished by subscript (i), e.g., the state of the ith target is x(i) ∈ Rnx .

Multitarget Estimation Model

Let

y1(i) = x(i) + v1(i), v1(i) ∼N (0,R1(i)), (5.51a)
y2(i) = x(i) + v2(i), v2(i) ∼N (0,R2(i)), (5.51b)

be the local estimates of x(i) in Agent 1 and Agent 2, respectively. For instance,
y1(i) is the state estimate and R1(i) the corresponding covariance of the ith target
in Agent 1. All cross-covariances R12(i) = E(v1(i)v

T
2(i)) are assumed to be zero11.

11It is assumed that estimates have been decorrelated before they are communicated. For
instance, by using the techniques in [169] or Section 5.4.1.



112 5 Dimension-Reduction for Efficient Communication Management

1DR tracks2

local tracks
of agent 2

communication
management

track-to-track
association track fusion

Figure 5.16. Top: Multitarget tracking scenario, where Agent 2 communicates DR
tracks to Agent 1. Bottom: Before the track fusion step, the received DR tracks
must be associated with the local tracks.

The ith DR estimate is given by

yΨ(i) = Ψ(i)y2(i), RΨ(i) = Ψ(i)R2(i)Ψ
T
(i), (5.52)

where Ψ(i) ∈ Rm×nx with m< nx and rank(Ψ(i)) =m.
The sets of local tracks of Agent 1 and Agent 2 are, respectively, given by

Y1 =
{

(y1(1),R1(1)), . . . ,(y1(nt),R1(nt))
}
, (5.53a)

Y2 =
{

(y2(1),R2(1)), . . . ,(y2(nt),R2(nt))
}
. (5.53b)

Agent 1 and Agent 2 track exactly the same targets and hence have the same
number of tracks. Moreover, it is assumed that the elements of Y1 and Y2 are
labeled according to x(1), . . . ,x(nt), e.g., (y1(i),R1(i)) and (y2(i),R2(i)) are estimates
of the same target x(i). This might sound a bit counterintuitive w.r.t. the normal
association problem. However, the assumption is not a restriction in this case
since here the actual correct association result is known, as described later12, and
the task is to compute Ψ(1), . . . ,Ψ(nt). Let

YΨ =
{

(yΨ(1),RΨ(1)), . . . ,(yΨ(nt),RΨ(nt))
}
. (5.54)

Since R12(i) = 0, (y1(i),R1(i)) and (yΨ(i),RΨ(i)) are optimally fused using KF,
which in this case yields

x̂(i) = P(i)

(
R−1

1(i)y1(i) +ΨT
(i)R

−1
Ψ(i)yΨ(i)

)
, P(i) =

(
R−1

1(i) +ΨT
(i)R

−1
Ψ(i)Ψ(i)

)−1
.

(5.55a)

12In short, the correct association result can be assumed to be known in the proposed solution
since there Agent 2 approximates Y1 by Y2, where Y2 of course is fully known to Agent 2.
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Association Model

The association problem is formulated as a linear assignment problem [30]. In case
of full estimates, the assignment matrix is

Mfull =


d2

(11) . . . d2
(1nt)

...
. . .

...
d2

(nt1) . . . d2
(ntnt)

 , (5.56)

where d2
(ij) is a Mahalanobis distance (MD) given by

d2
(ij) = ȳT

(ij)S
−1
(ij)ȳ(ij), ȳ(ij) = y1(i)− y2(j), S(ij) =R1(i) +R2(j). (5.57)

Similarly, the DR assignment matrixMdr is defined as

Mdr =


r2

(11) . . . r2
(1nt)

...
. . .

...
r2

(nt1) . . . r2
(ntnt)

 , (5.58)

where r2
(ij) is an MD given by

r2
(ij) = (Ψ(j)y1(i)− yΨ (j))T

(
Ψ(j)R1(i)Ψ

T
(j) +RΨ (j)

)−1
(Ψ(j)y1(i)− yΨ (j))

= ȳT
(ij)Ψ

T
(j)

(
Ψ(j)S(ij)Ψ

T
(j)

)−1
Ψ(j)ȳ(ij). (5.59)

Agent 1 receives estimates from Agent 2 and solves the association problem
using global nearest neighbor (GNN) association. Let Pnt be the set of all nt×nt
permutation matrices, i.e.,

Pnt =
{
Π ∈ Rnt×nt

∣∣∣ [Π]ij ∈ {0,1},ΠΠT = I
}
. (5.60)

A permutation matrix Π ∈ Pnt assigns exactly one estimate in Y1 to each of the
estimates in YΨ . The optimal Π for a certain assignment matrixM is computed
using [30]

minimize
Π

tr(ΠM)

subject to Π ∈ Pnt .
(5.61)

Note, in this formulation correct assignment is given by Π0 = I.

Motivating Example

As an example of how Ψ(i) affects the association performance, consider the sce-
nario in Figure 5.17a, where nt = 2, nx = 2, and m = 1. Each agent has a local
estimate of each of the two targets as defined in Figure 5.17a, where R1(1) =R1(2)
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Figure 5.17. Two agents estimating two targets. The scenario is illustrated in (a).
Projections of the state estimates along Ψ evaluated at α = 0◦ and α = 90◦ are
illustrated in (a). The fusion loss function tr(P(i)) and the assignment loss function
tr(ΠMdr) are shown in (b).

and R2(1) = R2(2). Assume Ψ(1) = Ψ(2) = Ψ =
[
cosα sinα

]
, where α is an angle.

Based on this parametrization, it is possible to defineMdr as a function of α. Let

L0 = tr(ΠMdr)
∣∣
Π=Π0 = r2

(11) + r2
(22), Le = tr(ΠMdr)

∣∣∣∣Π=
[0 1

1 0
] = r2

(12) + r2
(21),

be the cost corresponding to correct and incorrect assignments, respectively. By
construction, L0, Le, and tr(P(1)) = tr(P(2)) are functions of α.

The fusion and association performance w.r.t. α is evaluated by computing L0,
Le, and tr(P(i)) for each α ∈ [0◦,180◦]. The results are shown in Figure 5.17b. The
fusion optimal Ψ corresponds to α? = 90◦. However, this Ψ lies in the interval
where L0 > Le, which would imply incorrect assignment. To have correct assign-
ment in the dimension-reduced case while maintaining good fusion performance,
the selected Ψ should be such that it minimizes tr(P(i)) subject to L0 < Le.

Problem Formalization

Assume the targets x(1), . . . ,x(nt) are sufficiently separated such that solving the
assignment problem in (5.61) withM =Mfull yields Π0. Moreover, assume that
Agent 2 has no knowledge about Y1. The problem is for Agent 2 to compute
ΨT

(1), . . . ,Ψ
T
(nt) ∈ Rnx such that when Agent 1 solves (5.61) with M =Mdr, the

solution Π is as close as possible to Π0. In other words, since it in general is
not possible to obtain the correct association in the dimension-reduced case, it
is desirable to compute Ψ(1), . . . ,Ψ(nt) in such a way that the association is not
degraded too much. The focus is on the case m= 1. However, some of the results
are given for arbitrary m≥ 1.
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Remark 5.19. The considered problem is not the common association problem of DTT,
where received tracks are associated with local tracks and the correct assignment Π0 is
unknown. Here, the correct assignment is known by construction, and hence, there is
the freedom of definingMfull andMdr such that Π0 = I.

5.5.2 Problem Analysis
Properties of the considered association problem are examined. Sufficient con-
ditions for correct assignment are given. An example is used to show that the
problem is further complicated by inherent randomness. Statistical properties of
the problem are derived at the end to be used in the subsequent section.

A Sufficient Condition for Correct Assignment

Consider now an oracle’s perspective. The motivating example of Section 5.5.1
illustrates an important property of the problem. That is, for Ψ(j) , 0 and ȳ(ij) , 0

Ψ(j) ⊥ ȳT
(ij) ⇐⇒ Ψ(j)ȳ(ij) = 0,

where ȳ(ij) = y1(i)− y2(j). From this it can be inferred that for the association it
is desirable to have

Ψ(j)ȳ(jj) = 0 ∧ i , j =⇒ Ψ(j)ȳ(ij) , 0, (5.62)

since in this case r2
(jj) = 0 and r2

(ij) > 0 if i , j. A sufficient condition for correct
assignment is hence that (5.62) holds for all j as this would imply tr(Mdr) = 0.
However, by assumption Agent 2 has no knowledge about Y1 and hence without
further knowledge Agent 2 cannot compute Ψ(j) such that (5.62) is satisfied.

Problem Properties

In the example of the previous section the fusion optimal Ψ gave incorrect as-
sociation. Luckily, it is not generally the case that the fusion optimal Ψ yields
incorrect assignments. Unfortunately, it is impossible to say something general
about tradeoffs between fusion and association performance. The main reasons
for this are described below.

Consider ΨT
(j) ∈ R

nx , and let Q(j) = R2
1(j) ∈ S

nx
++ and S(jj) = R1(j) +R2(j) ∈

Snx++. In the fusion case the optimal Ψ(j) solves [57]

maximize
Ψ(j)

Ψ(j)Q(j)Ψ
T
(j)

Ψ(j)S(jj)Ψ
T
(j)
. (5.63)

Hence the fusion optimal Ψ(j) for a certain target x(j) can be solved isolated from
the other targets. This is not true in the association problem where optimal Ψ(j)
for a certain target x(j) depends on all estimates in both Y1 and Y2 throughMdr.

A slightly less restrictive sufficient condition for correct assignment, cf. (5.62),
is that for each j

r2
(jj) < r2

(ij), ∀i , j. (5.64)
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Ψ
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Figure 5.18. Two noise realizations of the same scenario. In realization 1 correct
assignment is obtained while in realization 2 incorrect assignment is obtained.

If this condition holds, then nearest neighbor [27] association yields the same
results as GNN association. The condition in (5.64) can also be expressed as

Ψ(j)ȳ(jj)ȳ
T
(jj)Ψ

T
(j)

Ψ(j)S(jj)Ψ
T
(j)

<
Ψ(j)ȳ(ij)ȳ

T
(ij)Ψ

T
(j)

Ψ(j)S(ij)Ψ
T
(j)

, ∀i � j, (5.65)

where each fraction is structurally similar to the fraction in (5.63). However, a
complication compared to the fusion case is that r2

(ij) is a realization of a random
variable

r2
(ij) = ȳT

(ij)Ψ
T
(j)

(
Ψ(j)S(ij)Ψ

T
(j)

)−1
Ψ(j)ȳ(ij),

where ȳ(ij) = y1(i)−y2(j). Hence, assuming that Agent 2 has access to R1(i) and
a good estimate of x(i), the fusion optimal Ψ(i) could be computed while it would
still be difficult to predict r2

(ij) due to randomness. Figure 5.18 shows two possible
realizations of each of the random variables

y1(1) = x(1) +v1(1), y2(1) = x(1) +v2(1),

y1(2) = x(2) +v1(2), y2(2) = x(2) +v2(2),

where v1(1),v1(2) ∼ N (0,R1) and v2(1),v2(2) ∼ N (0,R2). Since the covariances
are the same in each case and since by assumption R1(1) = R1(2) = R1 and
R2(1) = R2(2) = R2 the fusion optimal Ψ(j) satisfy Ψ(1) = Ψ(2) = Ψ in both cases.
ComputingMdr(Ψ) in realization 1 and realization 2 yields

M1 =
[
0.05 1.01
0.31 0.05

]
, M2 =

[
0.11 0.01
0.01 0.11

]
,

respectively. In realization 1 correct assignment Π0 is obtained while in realiza-
tion 2 the incorrect combination is chosen. The example illustrates that, due to the
inherent randomness, it is in general impossible to decide if a fusion optimal Ψ(j)
will imply correct or incorrect assignment without knowing the actual realization.

Statistical Properties

Assume m≥ 1. By construction

Ψ(j)ȳ(ij) ∼N
(
Ψ(j)x̄(ij),Ψ(j)S(ij)Ψ

T
(j)

)
,
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where x̄(ij) = x(i)−x(j). Hence [144]

r2
(ij) ∼

{
χ2
m, if i= j,

χ2
m,ν , if i , j,

(5.66)

where χ2
m is the central chi-squared distribution with m degrees of freedom, and

χ2
m,ν is the noncentral chi-squared distribution, where ν is the noncentrality pa-

rameter. The expectation value and the variance are given by [144]

E(r2
(ij)) =m+ ν(ij), var(r2

(ij)) = 2m+ 4ν(ij), (5.67)

with ν(ij) = x̄T
(ij)Ψ

T
(j)

(
Ψ(j)S(ij)Ψ

T
(j)

)−1
Ψ(j)x̄(ij). One conclusion is that as ν(ij)

increases the relative effect of randomness decreases since E(r2
(ij)) scales as ν(ij)

while
√
var(r2

(ij)) only scales as √ν(ij). This result is important and is used in the
solution proposed in the next section.

5.5.3 Preserving Correct Assignment With Dimension-Reduced
Estimates

In this section a method for preserving high association quality is suggested. Based
on the analysis of Section 5.5.2, an optimization formulation is provided for com-
putation of Ψ(j). This leads to the proposed descent based optimization strategy,
where a key ingredient is the adaptive step size.

Approximated Assignment Matrix

The proposed solution is based on the analysis of the previous section. In partic-
ular, r2

(ij) is estimated using E(r2
(ij)) in (5.67). To compute r2

(ij) Agent 2 must
have access to both (y1(i),R1(i)) and (y2(j),R2(j)), but (y1(i),R1(i)) is unknown to
Agent 2. A substitute to (y1(i),R1(i)) that is locally available is (y2(i),R2(i)). Let

r̂2
(ij) = ŷT

(ij)Ψ
T
(j)

(
Ψ(j)Ŝ(ij)Ψ

T
(j)

)−1
Ψ(j)ŷ(ij), (5.68)

where ŷ(ij) = y2(i)− y2(j) and Ŝ(ij) =R2(i) +R2(j) such that ŷ(ij) ∼N (x̄(ij), Ŝ(ij)).
This is consistent with r2

(ij) in the sense that

E(r̂2
(ij)) =

m, if i= j,

m+ x̄T
(ij)Ψ

T
(j)

(
Ψ(j)Ŝ(ij)Ψ

T
(j)

)−1
Ψ(j)x̄(ij), if i , j.

which is identical to (5.67) except that S(ij) is replaced by Ŝ(ij). Let the approxi-
mated assignment matrix be defined as

M̂dr =


r̂2

(11) . . . r̂2
(1nt)

...
. . .

...
r̂2

(nt) . . . r̂2
(ntnt)

 . (5.69)
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Proposed Solution

Since only an approximation M̂dr of Mdr is accessible, Ψ(j) is computed based
on the sufficient condition in Section 5.5.2, cf. (5.64). This condition is utilized
because it is desirable to have some margin when choosing Ψ(j), to avoid that r2

(ij)
is zero or very small if i , j. Moreover, if Ψ(j) satisfies this sufficient condition there
is no need to take into account the other Ψ(i), i , j when computing Ψ(j)—correct
assignment is obtained regardlessly.

Consider now a certain j and Ψ(j). Let

fi(z) =
zTŷ(ij)z

zTŜ(ij)z
, Ŷ(ij) = ŷ(ij)ŷ

T
(ij), (5.70)

be defined for all i , j. To maximize all fi(z) simultaneously is in general impos-
sible since this is a multiobjective optimization problem. However, it is possible
to consider a worst-case approach and maximize the smallest fi(z). This implies
a maximin formulation where Ψ(j) is computed using

maximize
Ψ(j)

(
min
i,j

fi(ΨT
(j))
)
. (5.71)

The problem in (5.71) is a nonconvex problem involving optimization over a finite
set of quadratic form ratios. The problem is difficult to solve in general and
therefore the following optimization strategy is proposed.

Optimization Strategy

For each individual fi(z), the z that maximizes fi(z) is known to be given by the
eigenvector u that corresponds to the maximum eigenvalue λ of

Ŷ(ij)u= λŜ(ij)u. (5.72)

As Ŷ(ij) ∈ Sn+ and rank(Ŷ(ij)) = 1 this eigenvalue problem has only one strictly
positive eigenvalue λ for which the corresponding eigenvector is denoted by ui.
Since ui in general differ for different i, it is not possible to maximize all fi(z)
simultaneously. However, for a certain z the values of all fi(z) are known, and
hence it is possible to compute

i∗ = argmin
i,j

fi(z). (5.73)

To increase fi∗ it is suggested that

z← z+αui∗ , (5.74)

where α resembles the step size to traverse along ui∗ . Using a too large |α| there
is a risk that fi for some other i , i∗ is severely decreased. Too small |α| means
slow convergence. Consider now Proposition 5.20.
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Proposition 5.20. Let u,z ∈ Rn, Y,S ∈ Rn×n, and f(z) = (zTY z)/(zTSz), where
z , 0 and rank(S) = n. Then a first-order approximation of f(z + αu), for any
scalar α, is given by

f(z+αu)≈ f(z) + 2αu
T(Y − f(z)S)z

zTSz
. (5.75)

Proof: From [139]

∂f(z)
∂z

=−2SzzTY z

(zTSz)2 + 2Y z
zTSz

=−2f(z)Sz
zTSz

+ 2Y z
zTSz

= 2(Y − f(z)S)
zTSz

z.

A first-order approximation of f(z+αu) is given by

f(z+αu)≈ f(z) + αuT ∂f(z′)
∂z′

∣∣∣∣
z′=z

= f(z) + 2αu
T(Y − f(z)S)z

zTSz
.

Proposition 5.20 states that a first-order approximation of fi evaluated at z in
the direction of αui∗ is given by

fi(z+αui∗)≈ fi(z) + 2α
uT
i∗(Ŷ(ij)− fi(z)Ŝ(ij))z

zTŜ(ij)z
. (5.76)

Proceed by solving

fi(z) + 2α
uT
i∗(Ŷ(ij)− fi(z)Ŝ(ij))z

zTŜ(ij)z
= fi∗(z) + 2α

uT
i∗(Ŷi∗j − fi(z)Ŝi∗j)z

zTŜi∗jz
, (5.77)

for each i , j, i∗. This yields nt− 2 solutions for α, where some might be negative
and other positive. Since the task is to increase fi∗ while not decreasing the other
fi too much, α is chosen such that |α| is the smallest among all those that satisfy

α
uT
i∗(Ŷi∗j − fi(z)Ŝi∗j)z

zTŜi∗jz
> 0. (5.78)

This last condition is introduced to ensure that the correct sign is chosen for α.
The operations in (5.73)–(5.78) are performed iteratively until some termina-

tion criterion is met. The optimization algorithm is summarized in Algorithm 5.21.

Example

As an example of the proposed optimization strategy, consider a scenario with
nt = 3 and nx = 4. Assume j = 3. The following two loss functions need to be
examined

f1(z) =
zTŶ(13)z

zTŜ(13)z
, f2(z) =

zTŶ(23)z

zTŜ(23)z
.
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Algorithm 5.21: Association Quality Based Dimension-Reduction
Input: Y2, j, αmin, and αmax

1. For each i , j: Let Ŷ(ij) = ŷ(ij)ŷ
T
(ij), Ŝ(ij) = R2(i) + R2(j) and fi(z) =

(zTŶ(ij)z)/(zTŜ(ij)z). Let ui be the eigenvector corresponding to the maxi-
mum eigenvalue λi of Ŷ(ij)u = λŜ(ij)u. Let k = 0 and z0 ← z0/‖z0‖, where
z0 =

∑N
i=1,i,j

1
λi
ui.

2. Let k← k+ 1. Compute

i∗ = argmin
i,j

fi(zk−1).

3. For each i , j: Define

f̂i(zk−1 +αui∗) = fi(zk−1) + 2α
uT
i∗(Ŷ(ij)− fi(zk−1)Ŝ(ij))zk−1

zTk−1Ŝ(ij)zk−1
.

4. For each i , j, i∗: Solve for α in f̂i = f̂i∗ . Store the different α in a vector a.
5. If

α
uT
i∗(Ŷi∗j − fi(zk−1)Ŝi∗j)zk−1

zTk−1Ŝi∗jzk−1
> 0,

then let αk be given by the minimum positive element of a. Otherwise, let
αk be given by the maximum negative element of a. If |αk| < αmin, then let
αk← sign(αk)αmin. If |αk|> αmax, then let αk← sign(αk)αmax.

6. Let zk← zk/‖zk‖, where zk = zk−1 +αkui∗ .

7. Terminate with Ψ(j) = zTk if a predefined stopping criterion is met. Otherwise,
go back to step 2.

Output: Ψ(j)

The multiobjective problem of maximizing f1 and f2 simultaneously is not solvable,
and therefore Algorithm 5.21 is used. The original Algorithm 5.21 uses an adaptive
step size |α| ∈ [αmin,αmax]. This is compared to the same algorithm with: (i) a
small fixed step size α= αmin; and (ii) a large fixed step size α= αmax.

The optimization results for the three cases, which all use the same initial
vector z0, are shown in Fig. 5.19 for kmax = 25 iterations. In Figure 5.19a, f1 is
plotted against f2. The yellow dots resemble f1 and f2 at randomly sampled z.
Figure 5.19b visualizes

fmin = min (f1,f2) ,

for each iteration, k = 1,2, . . . ,kmax. In this case, the adaptive step size provides
the best results. The small step size gives slow convergence, while the large step
oscillates as it becomes inaccurate due to the large step size. It cannot be concluded
if Algorithm 5.21 has reached a global maximum or a stationary point.
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Figure 5.19. Example of the proposed optimization strategy with nt = 3 and nx = 4.
Algorithm 5.21 is compared to the same algorithm but with fixed step size. The
black circle marks the common initial value z0. The squares mark the final point of
each case. Yellow dots resemble f1 and f2 evaluated at randomly generated z.

Comments

In essence, the proposed optimization strategy in Algorithm 5.21 is an iterative
descent based optimization method, where the descent directions are chosen from
a finite set of predefined directions. Steps 4–6 correspond to a backtracking line
search where the step size α is selected. Algorithm 5.21 takes αmin > 0 as an input
to avoid getting stuck at local minima, and αmax > αmin such that the linear
approximation given by (5.76) does not become too poor. The stopping criterion
used here is k > kmax, i.e., the algorithm terminates after kmax iterations.

It should be emphasized that there are no guarantees that Algorithm 5.21
converges to a global maximum w.r.t. the problem in (5.71). In fact, simulations
verify that, in general, only local maxima are reached.

5.5.4 Numerical Evaluation
Algorithm 5.21 is now evaluated using a numerical example. The association
performance when computing Ψ(j) using Algorithm 5.21 is compared to the case
when Ψ(j) is computed using Algorithm 5.11.

Simulation Specification

A target tracking scenario with nt = 10 targets is assumed. It is assumed that the
dimensionality nx = 6, which here is interpreted as a CAM. For each target x(i),
a pair of covariances R1(i) and R2(i) are defined, which are held fixed throughout
the simulations. An MC approach is used, where in each MC run state estimates
y1(i) and y2(i) are sampled using R1(i) and R2(i), respectively, and the model in
(5.51). A scaling factor c is used to scale the two spatial uncertainty components.
Hence, for larger c, the association problem becomes more difficult to solve. The
assumed target tracking scenario is depicted in Figure 5.20 with c= 1.
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R1(i)
R2(i)

Figure 5.20. Scenario used in the evaluation. The targets are represented by black
dots. The ellipse around a target illustrates the uncertainty of the corresponding
estimate in the two spatial dimensions.

The association performance is evaluated using the probability of incorrect
assignment (PIA). This quantity is computed for a certain c as the mean over all
MC runs of the number of incorrect assignments divided by nt. It is computed for
the following cases:

• (Y1,Y2): The full estimate configuration, where Agent 1 receives Y2 from
Agent 2.

• (Y1,YΨ) + Ψ(j) using Algorithm 5.11: A dimension-reduced configuration,
where Agent 1 receives YΨ from Agent 2 and Ψ(j) is computed using Algo-
rithm 5.11. In this case it is assumed that Agent 2 has access to Y1 such
that fusion optimal Ψ(j) can be computed.

• (Y1,YΨ) + Ψ(j) using Algorithm 5.21: A dimension-reduced configuration,
where Agent 1 receives YΨ from Agent 2 and Ψ(j) is computed using the
proposed optimization strategy in Algorithm 5.21.

The standard deviation of PIA is also computed.

Results

The simulation results are visualized in Figure 5.21, where PIA is plotted against
c. For each value of c, M = 1000 MC runs are evaluated. PIA is computed in
the same realizations of Y1 and Y2 for each of the cases described previously. The
shaded areas in the plot resemble 1-σ confidence intervals.

Perfect association is maintained in the full estimate case for all values of c.
The approach that utilizes Algorithm 5.21 clearly outperforms the approach that
computes Ψ(j) for optimal fusion performance.

5.6 Summary
This chapter has examined the problem of designing efficient communication man-
agement based on reducing the dimensionality of exchanged tracks. The PCO
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Figure 5.21. Results of the numerical evaluation. The incorrect assignment rate
PIA is computed as a sample mean for each of the three cases for different values of
c ∈ [0.1,5.0]. The shaded areas illustrate the standard deviation of PIA.

method, which utilizes a PCA, was developed to be used for deriving DR esti-
mates. From a track fusion perspective, however, the PCO method yields poor
performance in many cases. The GEVO framework was developed to overcome the
limitations of the PCO method. It was shown that the GEVO method computes
DR estimates, which are MSE optimal w.r.t. fusion performance in cases of BSC,
KF, and LE.

The GEVO framework requires globally available knowledge about local co-
variances to work optimally. This, in general, unrealistic assumption was relaxed
by the CIE. The CIE framework was designed to keep approximate track of infor-
mation shared among the agents within the DSN. It was demonstrated that the
GEVO method with the CIE does not degrade the performance too much while
only using local information.

Finally, the track-to-track association problem was formalized in a DR context.
The goal was to design the communication management to preserve association
quality when exchanging DR estimates. To this end, an optimization algorithm
was developed. However, it needs to be addressed that this novel problem was just
recently formalized and that the proposed solution is only a first step to handle
the issue of track-to-track association in a DR context.





6
Final Remarks

The decentralized target tracking (DTT) problem was addressed. This DTT prob-
lem involved network-centric operations with multiple heterogenous agents. Two
components of a DTT system were in particular studied:

• Track fusion. Agents exchange local track estimates with other agents. The
track estimates are generally correlated, which must be handled. This thesis
has focused on conservative track fusion techniques. Several methods and
adaptations to established methods have been proposed.

• Communication management. In certain DTT problems, e.g., battery-driven
and other low-power networks, there are communication constraints that re-
strict the amount of track data being exchanged. Communication reduction
is also crucial in low-signature operations. This thesis has addressed both
cases, and different data reduction methodologies have been proposed.

The contributions involved both theoretical and practical developments. All theory
and method evaluations were based on numerical experiments.

Summary

The conservative linear unbiased estimator (CLUE) was introduced as a framework
for robust track fusion under partially known correlations. A best CLUE was
proposed for optimal conservative track fusion. A key contribution was the robust
optimization (RO) based technique applicable to general CLUE problems. Inverse
covariance intersection (ICI) and the largest ellipsoid (LE) method were adapted
for more general models. Several properties related to the CLUE framework and
the proposed methods were derived.

Two approaches to reduced communication were examined. At first, the diag-
onal covariance approximation (DCA) was introduced, and several methods were
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developed for preserving conservativeness. The second approach was to exchange
dimension-reduced (DR) estimates. Theory and methods were developed to this
end, with the main results being the generalized eigenvalue optimization (GEVO)
framework. Optimality guarantees were provided for some of the GEVO meth-
ods. In addition, the thesis proposed the common information estimate (CIE) as
a resolution to the issue of having access to local information only. At last, an
optimization algorithm was developed for computing DR estimates for association
quality.

Conclusions

Track fusion and communication management correspond to subproblems P1 and
P2 of Section 1.3, respectively.

Concerning P1, most of the contributions are found in the CLUE framework.
The CLUE framework is provided as a toolbox for system engineers to design, an-
alyze, and build fusion subsystems for target tracking applications. For instance,
the lower and upper bounds can be used as guidelines in the system design, and
the RO based methodology can be used as a reference when tailoring fusion algo-
rithms for specific applications. The CLUE framework was developed with both
conservativeness and tracking performance in mind. In the end, these are the
criteria that a system engineer must compromise between when designing a track
fusion component.

The DCA and DR approaches are dedicated to P2. The DCA methodology
supplies, e.g., system engineers with theory to handle certain communication con-
straints robustly. The DCA methodology is generic in the sense that it focuses on
the preservation of conservativeness and therefore can be used with many different
track fusion methods. The primary strength of the DR framework, and in partic-
ular GEVO, lies in its foundation in mathematical optimization, which allows for
optimal communication reduction. By adding the CIE to the DR framework, it is
possible to efficiently reduce the communicated data in any DTT problems. This
enables a flexible and modular system design while taking a finite bandwidth into
account.

Future Outlook

A key aspect of the CLUE framework is optimality under conservativeness. For
instance, covariance intersection (CI) is a best CLUE given that the correlations
are completely unknown. However, when there is only partial knowledge available
about the correlations, CI is overly conservative. In the numerical DTT examples
simulated in this thesis, it can be seen that CI is often overly conservative in
dynamic target tracking problems. At the same time, other methods such as ICI
and LE are not strictly conservative in the same examples. A future topic to study
is how to exploit structure even more in these examples so that improved tracking
performance can be obtained while at the same time guaranteeing conservative
estimates. It would be interesting to see how stochastic optimization can be used
in a similar way to how RO is used for general CLUE problems.
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With larger sensor networks and advances in sensor technology and data-driven
methods, it follows that more data is processed and shared. Hence, there is a need
to utilize and communicate data more efficiently. The DCA and DR frameworks
considered in this thesis are two relevant techniques that can be further exploited
and tailored to particular problems. The GEVO framework is tailored to spe-
cific linear track fusion methods but could, e.g., be adapted to machine learning
algorithms and nonlinear track fusion problems. The considered data reduction
techniques can be developed to work more adaptively. For instance, to integrate
decision logic for when and with whom to communicate. Moreover, it would be
interesting to extend the GEVO framework to incorporate the estimation perfor-
mance within a future time horizon time step instead of the instantaneous track
fusion performance only.
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