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Proteomics reveal biomarkers for diagnosis,
disease activity and long-term disability
outcomes in multiple sclerosis

Julia Åkesson 1,2,8, Sara Hojjati3,8, Sandra Hellberg1,3, Johanna Raffetseder 3,
Mohsen Khademi 4, Robert Rynkowski5, Ingrid Kockum 4, Claudio Altafini 6,
Zelmina Lubovac-Pilav 2, Johan Mellergård 5, Maria C. Jenmalm 3,
Fredrik Piehl 4, Tomas Olsson4,8, Jan Ernerudh 7,8 & Mika Gustafsson 1,8

Sensitive and reliable protein biomarkers are needed to predict disease tra-
jectory and personalize treatment strategies for multiple sclerosis (MS). Here,
we use the highly sensitive proximity-extension assay combined with next-
generation sequencing (Olink Explore) to quantify 1463 proteins in cere-
brospinal fluid (CSF) and plasma from 143 people with early-stage MS and 43
healthy controls. With longitudinally followed discovery and replication
cohorts, we identify CSF proteins that consistently predicted both short- and
long-term disease progression. Lower levels of neurofilament light chain (NfL)
in CSF is superior in predicting the absence of disease activity two years after
sampling (replication AUC=0.77) compared to all other tested proteins.
Importantly, we also identify a combination of 11 CSF proteins (CXCL13, LTA,
FCN2, ICAM3, LY9, SLAMF7, TYMP, CHI3L1, FYB1, TNFRSF1B and NfL) that
predict the severity of disability worsening according to the normalized age-
related MS severity score (replication AUC=0.90). The identification of these
proteins may help elucidate pathogenetic processes and might aid decisions
on treatment strategies for persons with MS.

Achieving personalized multiple sclerosis (MS) treatment strategies
requires more refined data than evaluation of relapse rate, disease
progression, andmeasurements ofmagnetic resonance imaging (MRI)
activity in early disease stages1. The comprehensive investigationofMS
biomarkers, including their validation on a completely new cohort,
remains exceptionally rare. A recent meta-analysis study has shown
that less than 8% of all studies have adopted this stringent methodol-
ogy in order to establish the robustness and generalizability for

modeling MS2. To identify new MS biomarkers, extensive discovery
approaches are required, such as large-scale proteomics3 which has
shownsignificant potential in investigating cerebrospinalfluid (CSF) to
elucidate various aspects of the disease4. The proximity extension
assay (PEA), recently combinedwith next-generation sequencing (PEA-
NGS or Olink Explore), allows for large-scale investigation of almost
1500 proteins in a small volume with high sensitivity and accuracy5–7.
This technology has provided opportunities for identifying protein
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biomarkers5,8–10 that are otherwise difficult to detect due to their low
abundance in body fluids.

MS is a chronic inflammatory and degenerative disease of the
central nervous system (CNS), causing inflammation, demyelination
and neuroaxonal damage11. Early initiation of treatment, particularly
with high-efficacy therapies, has been associated with better clinical
outcomes and candelay neurological disability progression12–15. On the
other hand, unnecessary treatment must be avoided16. Since early
treatment affects long-termdisability outcome, it is likely that disease-
associated pathways leading to demyelination and neuroaxonal
damage are present already at early stages of the disease. This, in turn,
would allow for the discovery of early biomarkers able to predict
subsequent disease progression and to provide optimal treatment
strategies for each person.

Immunological andneurological diseaseprocesses can impact the
composition of circulating body fluids9. As a result, changes in protein
levels in blood and CSF can be used as biomarkers for disease recog-
nition and disease activity10,17–19. Most protein biomarkers of relevance
in MS have been identified in CSF20, while only a few candidates have
been identified in plasma10. Since blood samples are much easier to
collect and can be collected repeatedly as compared to CSF, plasma
makes a more attractive option for biomarker discovery. However,
potential biomarker proteins are generally less abundant in plasma
than in CSF21. Furthermore, it remains unclear how well protein levels
in plasma reflect disease-relevant processes taking place in the CNS,
and in general, plasma and CSF protein levels do not correlate22.

In this study (see overview in Fig. 1), we use the highly sensitive
and specific PEA-NGS technology to measure the expression of 1463

proteins in paired CSF and plasma samples from two well-defined
cohorts of persons with MS (pwMS) in the early stages and healthy
controls (HC). We identify a set of differentially expressedMS-relevant
proteins and test their ability to predict, either individually or in
combination, short-term disease activity and long-term confirmed
disability worsening.

Results
Proteins in CSF were differentially expressed in MS versus HC in
two independent cohorts
Weanalyzedprotein expression levels of 1463proteins in bothCSF and
plasma samples from 143 pwMS in early stages of the disease and 43
HC. The pwMS were divided into a discovery cohort (92 pwMS and 23
HC from Linköping University Hospital) and a replication cohort (51
pwMS and 20HC fromKarolinska University Hospital; Table 1). Plasma
samples from 21 pwMS in the replication cohort had higher expression
of several protein markers known to be affected by sampling and
handling variability23 and were therefore excluded from further ana-
lysis (see Supplementary Fig. 1 and Supplementary Fig. 2). Using linear
model t-test (Limma analysis) we first tested if proteins were differ-
entially expressed between pwMS in a relapse or not, on treatment or
not within 3 months before baseline sampling, or based on disease
duration at baseline sampling. No differentially expressed proteins
(DEPs) between these groups were found (false discovery rate
(FDR) < 0.05; see “Methods”). Therefore, all pwMSwere included in the
following analyses.

Next, we compared the protein expression in CSF between all
pwMS and the HC and found a clear separation by principal

Fig. 1 | Overview of the study. a Prospective longitudinal study of two Swedish
cohorts of persons with MS (pwMS) in the early stages and healthy controls (HC).
b Proteomics profiling of cerebrospinal fluid (CSF) and plasma samples of all pwMS
and HC at baseline. c Clinical examination of pwMS during a follow-up of up to 13
years. d Differential expression analysis, performed with a two-sided linear model

t-test (Limma analysis), to find MS biomarker candidates. e Building machine
learning models for identification of protein MS biomarkers for diagnosis (logistic
regression model), prediction of short-term disease activity (logistic regression
model), and prediction of long-termdisability worsening (linear regressionmodel).
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component analysis (Fig. 2a). A Limma analysis identified 52 DEPs in
the discovery cohort whereof 40 were also nominally differentially
expressed (p <0.05) in the replication cohort (Fig. 2b, c; see Supple-
mentary Data 1; see Supplementary Fig. 3). Furthermore, in the repli-
cation cohort, 25 proteins were independently differentially
expressed, whereof 23 proteins overlapped with the discovery cohort
(Fig. 2c). Interestingly, levels of all the 52 DEPs in the discovery cohort
and the 23 overlapping proteins in the replication cohort were higher
in pwMS compared with controls. To investigate the MS relevance of
the DEPs we performed enrichment analyses using three different sets
of MS genes and proteins. We found highly significant enrichment
(Fig. 2c) for genes from the DisGeNET database24, GWAS genes25, and
known potential MS biomarkers (see Supplementary Table 1). For
example, 65% of the 52 DEPs in the discovery cohort (Fisher’s exact
test, p = 7∗10−8) and 60% of the 25 DEPs in the replication cohort
(p = 0.002) were associated with MS in the DisGeNET database. How-
ever, some previously suggested MS markers (including C1QA, CCL2,
CXCL1, GFAP, HGF, andOPN) had non-significant log2 fold change (FC;
−0.25–0.34) when comparing pwMS to HC (see Supplementary Fig. 4).
In contrast to CSF, protein profiling of plasma did not reveal any sig-
nificant differences inprotein expression after FDR inpwMScompared
with HC (Fig. 2a, b). A few of the DEPs in CSF were also nominally
differentially expressed in plasma, but with no overlap between dis-
covery and replication cohorts (see Supplementary Fig. 5; see Sup-
plementary Data 1). In addition, we found in general low correlation
betweenCSF samples and plasma samples for the 52DEPs in CSF in the
discovery cohort, with the strongest correlations obtained for NfL
(Pearson’s correlation coefficient (PCC) = 0.46) and IL-18 (PCC=0.33)
(see Supplementary Fig. 6).

In summary, the 52CSF proteins identified in the bigger discovery
cohort represent a set of proteins being dysregulated in early stages of
MS suggesting their importance in MS pathogenesis. The fact that
these proteins were enriched for MS-relevant genes makes them
strong biomarker candidates, and they were therefore used in the
following prediction models.

B-cell activation markers can discriminate between MS and HC
In order to test the diagnostic potential of the 52 DEPs in CSF from the
discovery cohort, we created univariate logistic regression models for
each of the proteins as well as a stepwise selection model (see
“Methods”). To make fair assessments of the predictive power of our
inferredmodelsweallowedno refittingof anymodel parameters in the

replication cohort, thus we expect the replication area under the
receiver operating characteristic curve (AUC) to be a good estimation
of the model test performance. In the model selection, age and sex
were included as possible predictors. The highest AUC was found
when having MZB1 and TNF in the model, which could predict the
presence of disease with AUC=0.99 (p = 2∗10−13) in the discovery
cohort and AUC=0.87 (p = 6∗10−7) in the replication cohort. Not sur-
prisingly, in the univariate logistic regression models, AUC of the dis-
covery cohort was high in all cases, but encouragingly most proteins
also had high replication AUCs (Fig. 3a; see Supplementary Table 2).
The top five proteins for prediction of diagnosis were MZB1, CD79B,
CD27, TNFRSF13B, and IL-12p40 as ordered by AUC in the discovery
cohort (Fig. 3a), where MZB1 had similar performance as the stepwise
selection model containing MZB1 and TNF. These five proteins were
reliably expressed above the limit of detection (LOD) inmore than 95%
of samples frompwMSandHC (see Supplementary Fig. 10). Finally, we
investigated the discriminative power of plasma proteins. We then
used the same logistic regression formulas thatwere trained in theCSF
data of the discovery cohort and applied them to the plasma data of
both cohorts. The levels of two of the derived proteins, FCN2 and IL-
1RA, could discriminate pwMS from HC (AUC=0.71 for FCN2 and
AUC=0.65 for IL-1RA) in the discovery cohort but not in the plasma
data of the replication cohort. Taken together, several CSF proteins
(MZB1, CD79B, CD27, TNFRSF13B, and IL-12p40) showed a strong
ability to discriminate pwMS from HC, whereof the proteins MZB1,
CD79B, CD27, and TNFRSF13B are related to B-cell activation.

NfL is superior in predicting disease activity over 2 years
Next, we aimed to create a robust model for predicting the future
short-term (2-year) disease activity using the NEDA-3 concept. NEDA-3
is a binary variable based on no evidence or evidence of disease
activity, as determined by reported clinical relapses, new or enlarged
MRI brain lesions, orworsening in the ExpandedDisability Status Scale
(EDSS; see “Methods”)26. We found that 39% of pwMS in the discovery
cohort and 10% of pwMS in the replication cohort were classified as
having no evidenceof disease activity (NEDA) during 2 years follow-up,
the remaining pwMS were classified as having evidence of disease
activity (EDA). We then performed a Limma analysis of NEDA versus
EDA groups but found no DEPs in the discovery cohort. Instead, we
based the model on the 52 proteins that were differentially expressed
in pwMS versusHC (in the discovery cohort) since these proteins were
considered highly relevant toMSbasedon the enrichmentofMSgenes

Table 1 | Baseline characteristics of persons with MS (pwMS) and healthy controls (HC)

Discovery cohort Replication cohort p-value*
Discovery
vs. Repli-
cation

MS HC MS HC

Cohort size n 92 23 51 20 NA

Sex** F/M 67/25 18/5 39/12 10/10 0.69

Age** (years) Median (range) 31 (16–64) 32 (22–64) 32 (18–54) 30 (22–47) 0.80

CSF data**

CSF cell count Median (range) 4.7 (0–125) 2.1 (0.3–4.6) 6 (0–32)a 0 (0–2.0)b 0.38

Albumin ratio Median (range) 4.0 (1.5–9.1) 4.9 (2.1–7.0) 4 (2.2–10) 4 (2.7–12) 0.60

IgG index Median (range) 0.8 (0.4–2.7) 0.5 (0.4–0.5) 0.8 (0.4–3.2)c 0.4 (0.3–0.5) 0.52

Oligoclonal CSF IgG bands Yes/No 86/6 0/23 44/2d 0/18d 0.72

CSF cerebrospinal fluid.
an = 46 due to missing data; bn = 19 due to missing data; cn = 48 due to missing data; dmissing data exists.
*Two-sided Fisher’s exact test was used for contingency tables or two-sided Mann–Whitney U test for continuous values.
**Sex was not significantly different between pwMS and HC in the discovery cohort but it was significantly different in the replication cohort (p = 0.04). Age was not significantly different between
pwMSandHC ineither discovery or replication cohort. CSF cell count, IgG index, andoligoclonal CSF IgGbandswere significantly different between pwMSandHC inboth discovery and replication
cohorts (p <0.01).
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(see above). We used a similar approach as for prediction of MS
diagnosis (see above) and trained a logistic regression model for each
of the 52 proteins (Supplementary Table 3) and a stepwise selection
model including the 52 proteins, age, and sex as the input predictors
(Fig. 3b). The best separatingmodelwas based onNfL levels in CSF and
had an AUC=0.75 (p = 9∗10−5) in the discovery cohort and an AUC=
0.77 (p =0.02) in the replication cohort. In addition, IL-1RA, and CCL3
showed predictive power for disease activity, although inferior to NfL,
when considering results from both the discovery and the replication
cohort (Fig. 3b). A stepwise selectionmodel (combination ofNfL, IL-18,
PDCD1, and CD6) showed good discrimination in the discovery cohort
(AUC=0.85) but not as good as NfL alone in the replication cohort
(AUC=0.63). In plasmawe found no proteins to be of significant value
to predict disease activity in either of our cohorts. Age and sex were

not selected as significant predictors in any of themodels. To evaluate
the potential effect of treatment, a treatment duration index covering
duration and drug efficacy (first-line treatment with less effective
drugs versus second-line treatment with more effective drugs) during
the total observation time was calculated (see “Methods”) and added
to the models. Importantly, pwMS with EDA had in general a higher
treatment duration index than pwMS with NEDA (p = 0.02 in the dis-
covery cohort and p =0.04 in the replication cohort, one-sided
Mann–Whitney U test). Adding treatment duration index improved
thepredictive power of thebestperformingmodel containingonlyNfL
(AUC=0.77 in the discovery cohort and AUC=0.82 in the replication
cohort) but showed no significant effect on the other predictive
models. The limited effect of the treatment duration index on the
model performance, could partly be caused by the treatment duration

Fig. 2 |Differential expressionanalysis ofpersonswithMS (pwMS) comparedto
healthy controls (HC) in cerebrospinal fluid (CSF) and plasma. a Principal
component (PC) analysis of all proteins measured in the CSF samples (left) and
plasma samples (right). b Volcano plots showing differentially expressed proteins
(DEPs) in CSF (left) and plasma (right). The top upregulated proteins, which over-
lapped in discovery cohort and replication cohort, are marked with protein names
in the plots. The differential expression analysis was performed using a two-sided
linearmodel t-test (Limma analysis). cDEPs (false discovery rate < 0.05) in the CSF,
in either the discovery cohort or the replication cohort. The first two columns show

the log2 fold change (FC) of theDEPs in each cohort. Most proteins are upregulated
(red) and 23 proteins overlap in discovery and replication cohorts. In the three
columns to the right, it is markedwhich proteins are in three different list of known
MS-associated genes and proteins (DisGeNET database, GWAS genes, and MS
biomarkers) with the odds ratio of the enrichment shown on the top (two-sided
Fisher’s exact test). The DEPs were significantly enriched for MS-associated genes
from DisGeNet (discovery: p = 7∗10−8, replication: p = 0.002), GWAS (discovery:
p = 1∗10−7, replication: p = 2∗10−4), and knownMSbiomarkers (discovery: p = 1∗10−12,
replication: p = 2∗10−6).
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index positively correlating with the expression of 34 of the 52 DEPs in
the discovery cohort, although only the expression of one of these
proteins (CCL3) were also significantly correlating with treatment
duration index in the replication cohort (see Supplementary Fig. 7).
Collectively, our findings demonstrate NfL to be the superior protein
for predicting disease activity over 2 years. In addition, NfL is a very
reliable marker which is expressed above the LOD in all samples
from pwMS.

To facilitate the use of NfL on its own in future studies, we cal-
culated the optimal prediction cut-off in the NfL model, and corre-
sponding NPX level, which resulted in the maximum accuracy (see
“Methods”). We found that the optimal prediction cut-off was a
probability of 0.45 (accuracy = 0.71), which corresponded to an NPX
level of 1.14. Using the same NPX threshold in the replication cohort
resulted in an accuracy of 0.62. To translate NPX to pg/ml, we used a
fraction of our data (n = 38) from which the NfL levels were known
based on previous measurement by Simoa27–29. The NPX and pg/ml
measurements were highly correlated (Spearman’s Correlation Coef-
ficient (SCC) = 0.97), and the NPX threshold of 1.14 corresponded to
737 pg/ml (see “Methods”).

A combination of 11 proteins accurately predicts disability
worsening
Whereas the NEDA-3 concept reflects the short-term disease activity
mainly by detecting relapses and MRI activity, the long-term disability
progression ismore relevant from the perspective of a personwithMS
since it directly affects the quality of life30. The EDSS is the most used
measure of disability status, but to adjust for age, the age-related MS
score (ARMSS) was created31. To further adjust for length of observa-
tion time and allow for using data from different lengths of follow-up
time, we used the recently described normalizedARMSS (nARMSS; see
“Methods”). To obtain an nARMSS score, a person had to have had at
least twodocumentedEDSS scores over a periodof at least 3 years. The
resulting cohorts used for predictions consisted of 71 pwMS in the
discovery cohort and 33 pwMS in the replication cohort. In Fig. 4, each
person’s EDSS scores for each follow-up year and the resulting
nARMSS score are shown and described in further detail in Supple-
mentary Fig. 8. The nARMSS scores can obtain a value between −5 and
+5, where a score of 0 represents the average disability worsening of
pwMS based on historical cohorts (n = 25,558)31. Both the discovery
and replication cohorts showed an overrepresentation of pwMSwith a

Fig. 3 | Performance of the top cerebrospinalfluid (CSF) proteins for predicting
diagnosis and disease activity over 2 years. Predictive power, assessed by area
under the curve (AUC), of themost significant CSF proteins in the discovery cohort
in differentiating between a persons with MS (pwMS; n = 92 samples in the dis-
covery and n = 51 samples in the replication cohort) and healthy controls (HC;
n = 23 samples in the discovery and n = 20 samples in the replication cohort) and
b pwMS showing evidence of disease activity after 2 years (n = 48 samples in dis-
covery and n = 45 samples in replication cohort) and pwMS not showing evidence
of disease activity after 2 years (n = 30 samples in discovery and n = 5 samples in
replication cohort). A logistic regression model was used to assess the predictive
power of both individual proteins (the top 5 proteins in the discovery cohort are

shown) and a combination of proteins, selectedwith a stepwisemethod, trainedon
the discovery cohort and independently validated on the replication cohort. The
significance of the AUC scores were assessed with a two-sided Mann–Whitney U
test. The p-values for the AUC scores of the diagnosismodels in the order (stepwise
model, NfL, CD79B, CD27, TNFRSF13B, IL-12p40) were (2∗10−13, 4∗10−13, 1∗10−12,
3∗10−12, 6∗10−12, 6∗10−11) for the discovery cohort and (6∗10−7, 4∗10−7, 2∗10−5, 10∗10−7,
1∗10−7, 2∗10−8) for the replication cohort. The p-values for the AUC scores of the
disease activity models in the order (stepwise model, NfL, IL-1RA, FASLG, CCL3,
CD6)were (1∗10−8, 9∗10−5, 0.002, 0.003,0.004,0.004) for thediscovery cohort and
(0.19, 0.02, 0.02, 0.14, 0.03, 0.41) for the replication cohort.
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less severe disability worsening, with 50% of the pwMS having a score
below −3.0 in the discovery cohort and below −2.0 in the replication
cohort (see Supplementary Fig. 9). The nARMSS scores had a sig-
nificantly stronger correlation with the last ARMSS score (age adjusted
EDSS) compared to the first ARMSS score, used for calculating
nARMSS, for both the discovery cohort (SCC=0.89 compared to
SCC =0.71, p =0.003) and the replication cohort (SCC=0.92 com-
pared to SCC =0.79, p =0.03). We first tested if short-term disease
activity (based on 2-year NEDA-3) was associated with nARMSS but
found no significant difference in nARMSS when comparing EDA
(n = 43)withNEDA (n = 27;medianswere−2.90 and−3.36, respectively,
two-sided Mann–Whitney U-test p = 0.15). Then we also tested and
found that age at baseline and subsequent treatment (treatment
duration index) were correlating with nARMSS with an SCC =0.38
(p = 0.001) and an SCC=0.28 (p = 0.02), respectively, which led us to
further include them as possible covariates in our models in down-
stream analysis.

To create a predictive model of nARMSS, we first performed a
Limma analysis of the 1463 proteins based on the nARMSS score,
but no DEPs were identified. Therefore, we again started from the
52 DEPs in CSF of pwMS compared to HC in the discovery cohort
(see above), age, and sex. The predictive model of nARMSS was per-
formed with a stepwise linear regression model using the CSF protein
data. This resulted in a significant model including eleven proteins
(CXCL13, LTA, FCN2, ICAM3, LY9, SLAMF7, TYMP, CHI3L1, FYB1,
TNFRSF1B, NfL) and age as predictors (see Supplementary Table 4).
We also evaluated the effect of treatment, by adding treatment dura-
tion index to the model, but it did not improve the performance of
the model. The model consisted of both proteins with positive and
negative coefficients, even though all proteins were upregulated in
MS compared to HC. Next, when comparing the predicted nARMSS
with the true nARMSS we found strong and significant correlations
in both the discovery (SCC=0.69, p = 3∗10−11) and the replication
cohort (SCC =0.74, p = 9∗10−7; Fig. 5a). To also consider both the cor-
relation and accuracy of the prediction, we used Lin’s concordance
correlation coefficient (CCC) as an additional performance metric,
which resulted in a CCC of 0.72 (p = 2∗10−12) in the discovery cohort
and a CCC of 0.51 (p =0.002) in the replication cohort. As a
comparison, we also evaluated the performance of models only
including age and each of the 11 proteins and found that the combined
model outperformed each of the individual models (see Supplemen-
tary Table 4).

To further evaluate the performance of the model, we assessed
the ability to predict groups of pwMSwith similar disability worsening.
We made three different divisions using three different nARMSS
thresholds, selected using the discovery cohort: nARMSS < −4 (corre-
sponding to 20% of pwMS with the best prognosis), nARMSS < −3
(corresponding to 50% of the pwMS, i.e., a median split), and
nARMSS > −1 (corresponding to 20% of the pwMS with the worst
prognosis). For each of these thresholds, the model successfully
identified the selected pwMS group both in the discovery and the
replication cohort. For each respective threshold the AUC for the
discovery cohort was 0.85 (p = 2∗10−5), 0.76 (p = 7∗10−5), and 0.92
(p = 6∗10−7) with an accuracy of 0.85, 0.66, and 0.85 and the AUC for
the replication cohort was 0.90 (p =0.03), 0.88 (p = 4∗10−4), and 0.90
(p = 6∗10−5) with an accuracy of 0.88, 0.85, and0.82 (Fig. 5b). Lastly, we
confirmed that the 11 identified proteinswere reliably expressed above
the LOD in more than 60% of samples from pwMS whereof eight
proteins were expressed inmore than 75% of samples frompwMS (See
Supplementary Fig. 10). The performance of models with the three
proteins (SLAMF7, TYMP, FYB1) removedwhich did not fulfill themore
stringent threshold of 75% can be seen in Supplementary Table 5.

We continued by investigating the potential of the model to
predict nARMSS from plasma samples. Interestingly, the model was
enriched (p = 0.03) for proteins whose expression in CSF correlated
with the expression in plasma (p < 0.05 in the discovery cohort). Of the
52 DEPs in CSF, seven proteins had correlating expressions in CSF and
plasma, whereof four were selected in the model: NfL (SCC=0.45),
CXCL13 (SCC=0.30), CHI3L1 (SCC=0.27), and FCN2 (SCC=0.25; see
Supplementary Table 4). We hypothesized that the correlating pro-
teins could be used topredict nARMSS fromplasma samples by using a
model trained on CSF samples. Again, performing a stepwise linear
regression model, only selecting among the four correlating proteins
and age, we reduced the model to three terms: intercept (coefficient
(c) = −0.707), age (c = −0.068) and NfL (c = 0.369). The model could
predict nARMSS from plasma samples with an SCC of 0.40 (p = 5∗10−4)
and a CCC of 0.28 (p =0.02) in the discovery cohort (n = 71), and an
SCC of 0.60 (p = 0.04) and a CCC of 0.14 (p =0.66) in the replication
cohort (n = 12, Fig. 5c). Evaluating the model based on the three
nARMSS thresholds (nARMSS < −4, nARMSS <–3, nARMSS > −1) resul-
ted in discovery AUC of 0.78 (p = 4∗10−4), 0.59 (p = 0.09), and 0.74
(p = 0.003), with an accuracy of 0.77, 0.56, and 0.82 and replication
AUC of 1.0 (p =0.08), 0.70 (p = 0.19), and 0.78 (p =0.07) with an
accuracy of 1.0, 0.58, and 0.50 (Fig. 5d). It should be noted that only 12

Fig. 4 | Overview of the Expanded Disability Status Scale (EDSS) scores during
yearly follow-up for personswithMS (pwMS).Thedisability worsening scores for
pwMS, who had at least two EDSS scores over a period of more than 3 years. Each
column corresponds to one person. The top heatmap shows the EDSS scores for
each follow-up year (0–13 years), followed by the age of each person. White cells
indicate that no EDSS score was available for that year. Thereafter follows the
normalized age-relatedMS score (nARMSS), calculated from a person’s EDSS score

and age. In the rowunderneath the nARMSSscore it ismarked if a person’s nARMSS
score is below the thresholds nARMSS< −4 or nARMSS < −3, or above the threshold
nARMSS > −1. White cells indicate that the nARMSS score is not covered by any of
these three thresholds. The last two rows show the predicted nARMSS score
obtained from the suggested cerebrospinal fluid (CSF) model combining 11 pro-
teins (first row) and if the predicted nARMSS score is covered by any of the three
thresholds mentioned above (second row).
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pwMS in the replication cohort had both usable plasma samples and
fulfilled the requirements for obtaining an nARMSS score.

Network analysis provides functional context for DEPs and
reveals additional biomarker candidates
To provide a functional context of the discovered MS proteins we
made anMSnetworkusing STRINGversion 11.532. The 11 proteins in the
nARMSS model and the 23 DEPs that overlapped in the discovery and
the replication cohort, representing a set of core proteins in MS, were
connected by adding at most one intermediate protein. The proteins,
except ADA2, formed a closely connected network consisting of 40
proteins, including 11 intermediate proteins (Fig. 6a, Supplementary
Fig. 11a). Among the intermediate (added) proteins there were five
proteins that were not included in the proteomics profiling; the che-
mokine receptors CCR1 and CCR5, the receptor ITGAL expressed on
leukocytes, the adapter protein LCP2 associated with the T-cell
receptor, and the multifunctional adapter protein SDCBP. The result-
ing MS network had 13.5 times as many interactions than is expected
(p < 1∗10−16) using the STRING protein–protein interaction network,
indicating shared biological functionality32. Gene Ontology enrich-
ment analysis showed that the MS network was highly enriched for
proteins involved in cytokine-mediated signaling (n = 11, p = 7∗10−7),
T-cell activation (n = 14, p = 3∗10−9) and B-cell activation (n = 6,
p = 6∗10−4), exocytosis (n = 4, p =0.03) and endocytosis, in particular
phagocytosis (n = 4, p =0.01), cell adhesion including regulation of
cell-cell adhesion and cell-cell adhesion via plasma-membrane adhe-
sion molecules (n = 11, p = 0.02), apoptotic processes including posi-
tive regulation of apoptotic process (n = 9, p = 6∗10−5) and negative
regulation of leukocyte apoptotic process (n = 2, p = 3∗10−2), myelina-
tion including regulation of myelination (n = 2, p = 0.02). Some

proteins in the network were not annotated by Gene Ontology and
were therefore manually categorized based on the literature (Fig. 6b;
see references in Supplementary Table 6). In addition, we performed a
KEGG pathway enrichment analysis and found enrichment for path-
ways such as cytokine-cytokine receptor interaction (p = 2∗10−14) and
cell adhesion molecules (p = 9∗10−4; see Supplementary Fig. 11b).
Lastly, we investigated the MS enrichment of the 11 intermediate
proteins and found high enrichment of MS genes from both DisGeNET
(odds ratio = 29.1, p = 6∗10−8) and GWAS (odds ratio = 14.2, p = 0.002),
with 8 of the intermediate proteins associated to MS in the DisGeNET
database24.

Discussion
Early prediction of prognosis in MS is a key factor for optimizing
therapeutic management and benefit-risk balance. Here we took
advantage of a newly developed highly sensitive and robust PEA
technique to perform data-driven testing of 1463 proteins in CSF and
plasma of 186 individuals to find accurate signatures for short- and
long-term prognosis in early MS. In CSF, but not in plasma, we
observed a clear separation between early MS and HC by identifying a
signature containing 52 DEPs that were enriched for MS-relevant pro-
teins based on previous GWAS and biomarker studies. When testing
these early upstreamCSF proteins independently and in combinations
for prognostic ability, a set of 11 proteins in CSFwere able to accurately
predict long-term disability as measured by nARMSS and based on an
average of 6 years follow-up in both a discovery and a replication
cohort. In plasma, only NfL was able to predict nARMSSwithmoderate
accuracy. For prediction of short-term disease activity based on 2-year
NEDA-3, only CSF levels of NfL showed a high accuracy in both cohorts.
Of note, we consistently used the same pwMS cohorts from two

Fig. 5 | Performance of the top models for predicting long-term disability
worsening using cerebrospinal fluid (CSF) and plasma proteins. a CSF: The
predicted normalized age-related MS scores (nARMSS) were significantly corre-
lating with the true nARMSS for both discovery and replication cohorts, assessed
with Spearman’s correlation coefficient (SCC; discovery: p = 3∗10−11, replication:
p = 9∗10−7) and Lin’s concordance correlation coefficient (CCC; discovery:
p = 2∗10−12, replication: p =0.002). b CSF: Receiver operating characteristic (ROC)
curves and area under the curve (AUC) scores for each of the three different
nARMSS thresholds. The p-values for the AUC scores in the order (nARMSS> −1,
nARMSS < −3, nARMSS< −4) were (2∗10−5, 7∗105, 6∗10−7) for the discovery cohort

and (0.03, 4∗10−4, 6∗10−5) for the replication cohort. c Plasma: Reducing the CSF
model to NfL and age resulted in a model that could predict nARMSS from plasma
samples. The predicted nARMSS significantly correlated with the true nARMSS for
both the discovery cohort (SCC: p = 5∗10−4, CCC: p =0.02) and replication cohort
(SCC:p =0.04, CCC:p =0.66).d Plasma:ROCcurves andAUCscores for eachof the
three different nARMSS thresholds. The p-values for the AUC scores in the order
(nARMSS> −1, nARMSS< −3, nARMSS< −4) were (4∗10−4, 0.09, 0.003) for the dis-
covery cohort and (0.08, 0.19, 0.07) for the replication cohort. The significance of
the SCCs and CCCswas assessedwith t-statistics (two-sided) and the significance of
the AUC scores were assessed with a one-sided Mann–Whitney U test.
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different sites and allowed no retraining of any prediction model
parameters in the replication cohort, thus increasing the general-
izability and ability for successful replication of models also in other
cohorts. Collectively, our study reveals several proteins relevant in MS
pathogenesis as well as demonstrates a set of proteins important for
prediction of disability outcome. In addition, NfL was confirmed as a
robust marker of short-term disease activity.

A major finding of the present study was the ability to predict
long-termdisability, as basedon EDSSduring anaverage follow-upof 6
years. To ensure that EDSS scores were comparable across studies, we
utilized nARMSS, a score that not only takes into account disease
duration and age31,33, but also allows for the incorporation of EDSS data
from various time points and follow-up periods. This feature enables
the comparison of disability progression and outcomes across cohorts
with varying levels of data density34. Although nARMSS is intended to
account for age, we observed an overcorrection for age, and conse-
quently, we found age to be an important factor to include in our
nARMSS model. It is increasingly recognized that disability over time
may occur independent of relapse-associated inflammatory activity35.
This notion is also supported by our finding of no significant correla-
tion between EDA and nARMSS. Hence, it is of crucial importance to
study disability development by itself and to find markers for pre-
dicting disability progression unrelated to overt inflammation.

Previous studies on prediction of disability (based on EDSS) are
limited by a short follow-up time36, few included parameters, such as
CSF lymphocyte count37 and clinical measures36, or using expression
levels of a limited number of proteins38–40. Sufficient follow-up time is
necessary since it usually requires several years for pwMS to display
changes in their disability scores41. Although some studies have sug-
gested NfL as a potential biomarker for disability prediction38,40, they
lacked a replication group. Importantly, in our study including a
replication cohort, the suggested model could identify both pwMS
with a low and high chance of developing a high nARMSS score, thus

providing a promising predictive tool for identifying clinical course at
different ends of the heterogeneous disease spectrum of MS. Since
early treatment has proven long-term benefits regarding disability
outcome despite a seemingly mild disease initially15,42,43, a biomarker
signaling an increased risk of long-term disability progression detect-
able in early disease stages would strengthen a prompt high-efficacy
treatment at first diagnosis of MS. Thus, if further confirmed, our
identified set of proteins would be of value as biomarkers in indivi-
dualized treatment protocols to avoid both over- and under-treatment
in termsofdrug efficacy, which is highly relevantwith respect to riskof
side-effects as well as costs.

Several of the suggested proteins in our model for predicting
nARMSS have been validated in previous studies for their clinical
relevance in MS. Some of these proteins such as CXCL1344–46, LTA46,
SLAMF747, CHI3L144, and NfL45 are well-established as valuablemarkers
for prognostic assessment and treatment response48while theproteins
TNFRSF1B, FCN2, ICAM3, LY9, TYMP47, and FYB1 are less represented
in the literature. NfL level in CSF is an established marker of ongoing
neuroaxonal damage in MS, with emerging data supporting its use-
fulness also in the blood compartment. Furthermore, levels of NfL in
both CSF and plasma/serum are also shown to decrease with disease
modifying treatments49–51 and CSF-NfL is able to predict short-term
disease activity manifested by contrast-enhancing lesions, relapses, or
both27,45,46,52–54. Despite covering 1463 proteins in our present study,
CSF-NfL stood out as themajor biomarker for prediction of short-term
disease activity. Since brain-derivedNfL can leak out to the circulation,
it can be measured in plasma with highly sensitive methods, revealing
fairly good correlations between CSF and plasma28,55. Thus, plasma or
serum NfL has been suggested as an easy-accessible emerging bio-
marker, although not yet proven19,28,50,56–60. However, in our study, we
found no reliable biomarker candidates in plasma regarding short-
term disease activity. Interestingly, however, we found that CSF-NfL
levels alone could not predict long-term disability worsening as

Fig. 6 | Identified MS proteins share functional context. a An MS network was
formed by connecting the proteins in the normalized age-related MS score
(nARMSS) model (black star) and the differentially expressed proteins (DEPs) that
overlapped in the discovery and the replication cohort (yellow star). The proteins
were connected using STRING (combined interaction score > 0.4) with one inter-
mediate protein allowed to be added to connect proteins. The proteins are color-
coded on the log2 fold change (FC), comparing persons with MS with healthy

controls. Thewhite colored proteins were not included in the proteomics profiling.
IL-12p35 was notmeasured in the proteomics profiling but is included as a DEP as it
together with IL-12p40 represents IL-12p70. The linewidth of the interactions is
related to the combined interaction score of each interaction in STRING.b Proteins
in the MS network divided into functional categories. The proteins were categor-
ized into groups with shared functionality based on Gene Ontology enrichment
analyses (red), and the literature (black).
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measured by nARMSS. At the same time, we found NfL in plasma to be
a marker for disability worsening (nARMSS), although a combination
of CSF proteins including NfL showed a substantially higher accuracy.
NfL in plasma showing stronger predictive power than CSF-NfL is
surprising but is corroborating a recent finding that serum NfL has
stronger correlation with MS severity outcomes than CSF-NfL61.

It is difficult to draw any conclusions on the effect of treatment on
disease activity or disability progression based on our study due to its
observational nature which means that the assignment of treatments
to patients was not randomized but based on clinical judgement. Our
inclusion of the treatment duration index as a feature in the models
was not aimed at establishing a direct causal relationship between
treatment and outcomes but rather to offer a comprehensive repre-
sentation of the individuals’ clinical profiles. The decision whether the
treatment duration index remains in themodel or not is determinedby
themachine learningprocess, which relies on the correlations between
features. The significant correlations between treatment duration
index and several proteins in our nARMSS model might explain why
treatment duration index did not improve the final model. Achieving a
good performance on both the discovery and replication cohort,
despite none of the selected proteins significantly correlating with
treatment duration index in both cohorts, suggests that these proteins
have strong predictive power for MS progression.

This is the first study in MS utilizing the sensitive PEA technology
combined with next-generation mass sequencing (PEA-NGS), which
allows for simultaneous detection of nearly 1500 proteins. The PEA-
NGS is developed from PEA-qPCR, which is limited to smaller panels of
targeted proteins, and the two methods have shown excellent corre-
lations in targeted panels (n = 384 proteins)5. We recently showed
promising results of using PEA-qPCR for robust detection of a 92-
protein inflammation-panel in CSF and plasma of MS and controls10.
We here confirm that IL-12p40, IL-12p70, CXCL9, CD5, MMP9, and NfL
again showed diagnostic power for differentiating pwMS and HC. The
top proteins (MZB1, CD79B, CD27, and TNFRSF13B) in our study with
the ability to discriminate MS from HC are all expressed in B cells and
have been associated with several chronic autoimmune diseases,
including MS62,63. While our study does not address the question of
whether these proteins can differentiate MS from other neurological
diseases (ONDs), it does shed light on the significance of B cell acti-
vation in MS pathology. This is in line with another study on CSF
biomarker-based diagnostic tools in which other proteins related to
expansion and activation of B cell/plasma cell lineages were shown to
effectively distinguish MS from ONDs64. Whether the proteins identi-
fied in our study will prove useful for differentiating MS from ONDs
remains to be settled.

By analyzing the networkof core proteins, basedon thepredictive
proteins and theDEPs in both the discovery and the replication cohort,
we found most MS proteins to be functioning in a densely connected
network. The proteins in the network were mostly associated with the
immune response, with proteins supporting that both T cells and B
cells are central in the pathogenetic process ofMS65, for example, the B
cell chemoattractant CXCL13, and the Th1 cell chemoattractant
CXCL9. Furthermore, CD27 and CD70 play a role in a costimulatory
process that allows B cells to maintain activation of pathogenic
T cells66. Moreover, the network shows the importance ofMZB1, which
may be involved in MS pathology through activating autoproliferative
CD4+ T cells and pathogenic B cells in CSF and is thought to potentially
trigger B cell response against Epstein–Barr virus (EBV) proteins67.
Among the intermediate proteins, we identified a group of proteins
that were not included in our initial protein panels (CCR1, CCR5,
ITGAL, LCP2, SDCBP), whereof the proteins ITGAL, LCP2, and SDCBP
canbedetected in blood bymass spectrometry68.We propose all these
proteins mentioned as potential MS biomarkers to be validated in
future studies.

Our study comes with limitations. In addition to pwMS, a group of
people with ONDs would be highly relevant to see if any of these
biomarkers can distinguish between MS and ONDs. Such a group, or
groups with ONDs, were not included in the present study since our
focus was to predict disease course rather than diagnosis of MS. The
long follow-up period of up to 13 years is a strength of the study, but
not all pwMS had this long follow-up time. To address this limitation,
we utilized nARMSS scores, which account for varying follow-up
durations. However, the accuracy of the nARMSS score evidently
improves with longer follow-up periods and frequent EDSS assess-
ments. Since we had long follow-up times in our study, many pwMS
were taking different medications throughout the observation time.
This is a challenge for including the treatment as a covariate when
building the models. Hence, we recognize that the treatment duration
index that we used in our study is an attempt to simplify a more
complex effect and may not reflect the full picture.

In conclusion, we identified several promising protein biomarkers
which could be used to predict short-term activity and long-term dis-
ease progression in newly diagnosed MS. This is useful for aiding
personalized treatment strategies, to both reduce costs and side
effects of current treatments.

Methods
Study design and sample handling
People with clinically isolated syndrome (CIS) or RRMS were enrolled
in a prospective longitudinal cohort study from two sites. CSF and
plasma samples were taken from 92 people with CIS or RRMS at the
Department of Neurology, Linköping University Hospital, Sweden and
51 people with CIS or RRMS at the Karolinska University Hospital,
Sweden. Everyone fulfilled the revised McDonald criteria from 2010
and 201769,70 for CIS or MS. Peripheral blood and CSF were sampled
from everyone at baseline. pwMS underwent clinical neurological
examination including EDSS, and MRI at baseline and at several time
points afterward as follow-up. During the study, pwMS received
immunomodulatory treatment according to Swedish national and
local clinical praxis. Age-matched HC were recruited from healthy
blood donors (23 at the Linköping University Hospital and 20 at the
Karolinska University Hospital). HC from Linköping University Hospi-
tal were also sex-matched. HC had no past or current neurological and
autoimmune disease, and their clinical neurological examinations
were normal as were routine findings in CSF. Peripheral blood and CSF
were sampled from all HC. No medication, except oral contraceptive
pills, was allowed in HC. Sex of pwMS and HC were determined based
on information provided in Swedish official medical records. Demo-
graphic data and clinical data are presented in Table 1 and Table 2,
respectively. Clinical data for each person with MS is available in
SupplementaryData 2. If therewas a significant differencebetween the
two cohort for the characteristics presented in Tables 1 and 2 was
assessed using two-sided Fisher’s exact test (fisher_exact from the
python package SciPy v 1.9.1) for contingency tables or two-sided
Mann–Whitney U test (mannwhitneyu from the python package SciPy)
for continues values.

Plasma and CSF samples were collected from all pwMS and HC at
both sites. For the discovery cohort (Linköping University Hospital):
Blood was collected in EDTA tubes (BD Vacutainer®, Beckton Dick-
inson, Franklin Lakes, NJ, US) and centrifuged at 1500 × g for 10min in
room temperature (RT) within 2 h from sampling. The plasma was
aliquoted and stored at −70 °C. The CSF was kept cold after sampling
and processed within one hour by centrifugation 300× g for 10min in
RT to pellet and remove cells. The supernatant was aliquoted and
immediately frozen and stored at −70 °C. For the replication cohort
(Karolinska University Hospital): Blood was collected in EDTA tubes
(BD Vacutainer®, Beckton Dickinson) and centrifuged at 1700 × g for
15min in RT. The CSF was centrifuged at 350 × g for 12min in RT. Both
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plasma and CSF samples were prepared within 2 h of sampling, and all
were stored at−80 °C immediately after handling. All included samples
were thawed on ice and transferred to 96-well plates for further ana-
lysis at the SciLifeLab Biomarker facility. The samples from each site
and cohort were randomly distributed on the plates to minimize
potential batch effects between sites and sample groups.

Proteomics profiling and data pre-processing
The concentrations of 1463 proteins was measured using the Olink
Explore platform which uses PEA technology. The proteins were pre-
selected from fourOlink panels: Explore 384Cardiometabolic, Explore
384 Inflammation, Explore 384 Neurology, and Explore 384 Oncology.
In the Olink Explore platform, massive parallel sequencing is used
instead of qPCR in the previous target panels6. The protein con-
centrations are given as Olink’s relative protein quantification unit on
log2 scale: Normalized Protein Expression (NPX). The NPX values were
intensity normalized by Olink7. The plasma samples from one pwMS
subcohort (n = 21) in the replication cohort had significantly higher
protein concentrations than the remaining plasma samples. We sus-
pected that the difference could be caused by sampling handling
variability and attempted to correct for the difference in protein
concentration using the approach described by23. However, the
attempted correction was not satisfying, and the 21 plasma samples
were therefore removed from further analysis. The CSF data from
these 21 individuals did not differ from other CSF samples and were
therefore used. The data was further pre-processed by removing
proteins with NPX below the LOD in more than 75% of the samples,
resulting in 1009 proteins in the CSF samples and 1367 proteins in the

plasma samples. For the remaining proteins with NPX values below the
LOD in some samples, the reported NPX values were kept in the data
unchanged. In addition, we confirmed that removing proteins below
the LOD, based on all samples, did not exclude any valuable protein
markers with an unbalanced distribution of values below the LOD in
the different groups (pwMS and HC; see supplementary Fig. 12). The
mean expression was used for proteins that had been measured in
several panels. Before using the data for developing predictivemodels,
we checked for batch effect using singular value decomposition ana-
lysis (see Supplementary Fig. 13). Although no prominent batch effects
were noted, the data was corrected in two steps. First, the protein
levels were corrected so that the controls in the discovery cohort and
the replication cohort had the same mean and standard deviation.
Second, we applied the batch correction method ComBat using the
function runCombat from the R-package ChAMP (v2.21.1)71.

Differential expression analysis
Differential expression analysis was performed using the R-package
Limma (v3.52.4)72. A linear model was fitted to the data before
empirical Bayes moderated t-statistics were calculated and multiple
testing correction (Benjamin-Hochberg) was performed. The thresh-
old FDR <0.05 was used to determine if a protein was differentially
expressed. For all analysis, except for disease duration at baseline
sampling and nARMSS, the comparison was made between two
groups. For disease duration and nARMSS, the comparison was made
on the continuous values with age included as covariate for the linear
model fitting. In the differential expression analysis log2FC values for
all proteins were also obtained.

Table 2 | Clinical data of persons with MS

Discovery cohort Replication cohort p-value∗
Cohort size n 92 51 NA

Diagnosed with RRMS at baseline n 30 30 0.003

Diagnosed with CIS at baseline n 62 21 0.003

Disease duration before baseline (months) Median (range) 4 (0–136) 4 (0–128) 0.61

Relapse within one month before baseline Yes/No 18/74 11/40a 0.83

No. of relapses within 2 years before baseline Median (range) 1 (0–3) 1 (1–5) 0.12

No. of T2 lesions at baseline MRI 0 10 1 0.12

1–9 66 24 0.004

10–20 3 11 8∗10−4

>20 13 15 0.04

No. of MRI Gd+ lesions at baseline Median (range) 0 (0–10) 0 b (0–5) 0.29

EDSS at baseline Median (range) 1 (0–4.5) 1.5 (0–3.5) 0.002

Treatment within 3 months before baseline Yes/No 5/87 0/51 0.16

Type NZB (n = 2), RTX (n = 2), DMF (n = 1) NA NA

Steroid treatment within 3 months before baseline Yes/No 9/83 2/49 0.33

Observation time after baseline (years) Median (range) 5.4 (0–12.6) 3.1 (0.5–11.5) 0.61

Observation time >3 years n 71 33 0.59

Treatment duration index (TDI) Median (range) 0.47 (0–1.69) 0.97a (0–1.85) 7∗10−8

No. with TDI < 50% n 66 20 3∗10−4

No. with TDI 50–90% n 24 29 3∗10−4

No. with TDI > 90% n 2 1 1.0

NEDA over 2 years Yes/No 30/48 5/45 5∗10−4

EDA caused by MRI n 27 38 0.23

EDA caused by EDSS n 7 0 0.01

EDA caused by Relapse n 14 7 0.14

CSF cerebrospinal fluid, RRMS relapsing remitting multiple sclerosis, CIS clinically isolated syndrome, EDSS Expanded Disability Status Scale, DMF Dimethyl Fumarate, EDA evidence of disease
activity, Gd+ Gadolinium enhanced, NEDA no evidence of disease activity, NZB Natalizumab, RTX Rituximab.
aMissing data exists; bn = 39 due to missing data.
∗Two-sided Fisher’s exact test was used for contingency tables or two-sided Mann–Whitney U test for continuous values. Bold p-values are below 0.05.
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Enrichment analysis of MS-associated proteins
Enrichment of MS-associated proteins was assessed using two-sided
Fisher’s exact test (fisher_exact) from the python package SciPy
(v1.9.1)73. Three different lists of MS-associated proteins were used:

(1) DisGeNET: Genes associated to MS (C0026769; n = 1800
genes) were downloaded from the DisGeNET database v7.024.

(2) GWAS: MS SNPs from GWAS (p < 1∗10−6) were obtained from
ref. 25 and mapped to the closest gene (n = 573 genes).

(3) MS biomarkers: a list of known MS biomarkers (n = 19 bio-
markers) was compiled (references in Supplementary Table 1). Only
proteins measured in the proteomics profiling were considered for
inclusion among the known MS biomarkers.

NEDA-3 concept
NEDA-3 is an established way of evaluating the absence of disease
activity in MS26 based on three notions; (1) no clinical relapses; (2) no
progression in the EDSS; or (3) no new lesions or enlarged lesions
showed by MRI, resulting in a binary outcome of showing EDA or
showingNEDA. The assessment is regularly performedby a neurologist.
A progression in EDSS scorewas determinedbasedon: EDSS increase of
1.5 if baseline EDSS =0, EDSS increase of 1 if baseline EDSS≥ 1, and EDSS
increase of 0.5 if baseline EDSS > 5. In our study the outcome of NEDA-3
assessment for each person during 2 years follow-up (±6 months) from
the sampling time was used in the logistic regression modeling.

Treatments and treatment duration index
MS treatments were categorized into twomain groups: first-line or less
effective treatments such as interferon beta-1a, copaxone, human nor-
mal immunoglobulin (IVIg), dimethyl fumarate, teriflunomide, Solu-
Medrol, laquinimod and second-line or more effective treatments such
as rituximab, natalizumab, fingolimod, cladribine, siponimod, daclizu-
mab, Hematopoietic stem cell transplantation, ofatumumab, ocrelizu-
mab, mitoxantrone (references used to categorize these treatments
into two groups can be found in Supplementary Table 7). Since the
efficacy and duration of treatment affect the long-term disability out-
come, we calculated the proportion of the observation time during
which the pwMS were on second-line treatments (including the period
before the study was initiated) and included that as a variable in our
regressionmodels for predicting nARMSS. In the regressionmodels for
predicting NEDA-3 during 2 years follow-up, we only included the
treatment period of up to 2 years after the baseline sampling. Correla-
tions between treatment duration index and protein expression were
assessed using SCC (spearmanr from the python package SciPy). If
treatment duration index was related to disease activity or disability
worsening was assessed using two-sided Mann–Whitney U test (man-
nwhitneyu from the python package SciPy) and SCC, respectively.

Logistic regression models
To build the logistic regression models predicting binary outcomes,
i.e., pwMS versus HC, and NEDA versus EDA, we started from the 52
proteins that had shown to be differentially expressed between pwMS
and HC in the discovery cohort. In addition, age of the pwMS at
baseline and sex were included as possible features. Feature selection
was performed using the functions glm and step from the R-package
stats (v3.6.2)74. Forward selection, selecting features resulting in the
maximum Akaike information criterion, was followed by backward
selection, removing features until the coefficients of all features were
significant (p <0.05). The obtained predictions were compared with
the actual values, using the score AUC, to assess the performance of
the model. AUC and associated p-values were calculated using the
function roc.area from the R-package verification (v1.42)75.

Prediction cut-off and accuracy for logistic regression models
The logistic regression model is utilized to predict the probability of a
binary outcome for each individual observation. To classify these

predictions, a cut-off value is established. The optimal cut-off, atwhich
the model’s accuracy is highest, was determined by utilizing the R
package cutpointr (v1.1.2)76. Accuracy is calculated as the ratio of
correctly classified observations (true positives and true negatives) to
the total number of observations. When using a single protein as a
predictor, each prediction corresponds to a specific level of that pro-
tein. Therefore, the protein level at the optimal cut-off is also reported.

Transforming the NPX value to pg/ml
The levels of NfL in pwMS (n = 38) were measured using an additional
proteomics assay, Simoa, and were reported in units of pg/ml28. The
results of thesemeasurementswere found to be highly correlatedwith
the NPX values obtained using Olink Explore (SCC =0.97, p = 2∗10−16),
suggesting that a linear regression model could be used (intercept =
−7.745, coefficient = 0.965) to transform the NPX values to pg/ml.

nARMSS definition
For each person we calculated an nARMSS score according to the
procedure described by Manouchehrinia et al.31. nARMSS is a score
which quantifies the overall disability worsening of a person, normal-
ized to the person’s age and follow-up time. pwMS with less than two
EDSS scores or two or more EDSS scores over a shorter period than 3
years were excluded. First, the EDSS scores were transformed to
ARMSS scores using the global ARMSSmatrix (n = 25,558) from ref. 31.
Second, the nARMSS scores were calculated according to the formula:

nARMSS=
1

ðagen � age1Þ
Z agen

age1

ARMSSage � ½ðagen � age1Þ�5�
 !

ð1Þ

The integral was calculated using the trapezoid method from the
pythonpackage SciPy. ThenARMSS scores are normalized to the range
[−5, 5], where a score of 0 represents the average disability worsening
of pwMS based on historical MS cohorts presented in the global
ARMSSmatrix. The nARMSS scores were correlated to the first ARMSS
scores and last ARMSS scores using SCC. If there was a significant
difference between the SCCs was assessed using z-test on Fisher’s
transformed correlation coefficients and p-values were obtained using
a one-sided permutation test.

Linear regression model for nARMSS prediction
A linear regressionmodel to predict nARMSS from thebaseline protein
expression values was trained using the function LinearRegression
from the python package scikit-learn (v1.1.2)73. Feature selection was
performed in three steps:

(1) Selecting the 52 proteins that were differentially expressed in
pwMS compared to HC. In addition, the age of the pwMS at baseline
and sex were included as possible features.

(2) Forward selection. Features were added one at a time,
according towhich feature resulted in the greatest increase in R2 score,
using R2 scores obtained from leave-one-out cross validation. Features
were added until a maximum R2 score was reached. R2 scores were
calculated using the function r2_score from the python package
scikit-learn.

(3) Backward selection. Features were removed one at a time until
the coefficients of all features were significant (p < 0.05). After
removing a feature, coefficients were recalculated. Coefficients and
corresponding p-values were calculated using the function OLS from
the python package statsmodels (v0.13.2)77.

The performance of the selected model was assessed using SCC
(spearmanr from the python package SciPy) andCCCbetween the true
nARMSS score and the predicted values. The significance of CCC was
calculated using t-statistics. In addition, the performance of themodel
to predict groups of pwMS with similar nARMSS scores were assessed
using AUC and accuracy. The pwMS were divided into two groups
using three different thresholds: nARMSS < −4, nARMSS < −3, and
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nARMSS > −1. Before being used to calculate AUC scores, the predicted
nARMSS scores in the range [−5, 5] were scaled to the range [0, 1]. For
the thresholds nARMSS < −4 and nARMSS < −3 we used 1 − prediction
when calculating AUC scores. AUC scores were calculated using the
function roc_auc_area from the python package scikit-learn. The sig-
nificance of the AUC scores was assessed using one-sided
Mann–Whitney U test (mannwhitneyu from the python pack-
age SciPy).

Network analysis and enrichment analysis
The proteins were connected using STRING version 11.532. We used
interactions with a minimum combined interaction score of 0.4
(medium confidence, all interaction sources). One intermediate pro-
tein was allowed to connect proteins by setting the parameter 1st shell
to max 10 interactors. This connected all proteins except FCN2 and
ADA2. FCN2 was connected to the network with intermediate protein
PTX3 (combined interaction score>0.4). Tounderstand the functional
context of the proteins we first performed Gene Ontology enrichment
analysis and a KEGG pathway enrichment analysis using the R-package
clusterProfiler (v4.4.4)78. Significant functional terms (p <0.05) that
were similar in terms of their main function were put under the same
generic category to better understand the functions of the proteins as
a network. Proteins that could not be annotated in this way were
chosen for different functional categories based on their functions
described in the literature (references in Supplementary Table 6).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The proteomics data generated in this study have been deposited in
the DiVA (Digitala Vetenskapliga Arkivet) portal under identifier
https://doi.org/10.48360/jcps-gw6779. The proteomics data is available
under restricted access due to data privacy regulations aimed at pro-
tecting sensitive personal information, access can be obtained by
contacting mika.gustafsson@liu.se. Please note that access will be
granted after an evaluation of accordancewith Swedish legislation.We
anticipate that the data will become available within 2 weeks after
requested access. Publicly available datasets used in this study: MS-
associatedgenes (C0026769) fromDisGeNet version 7.0 (https://www.
disgenet.org/)24, MS SNPs from GWAS25, global ARMSS matrix31, and
human protein–protein interactions fromSTRING version 11.5 (https://
string-db.org/)32. The authors declare that all other data supporting the
findings of this study are available within the paper and its supple-
mentary information files. Source data are provided with this paper.

Code availability
The code used for data analysis is available in Zenodo with the iden-
tifier https://doi.org/10.5281/zenodo.837058980.
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