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Abstract—Underwater surveillance using passive sonar and track-
before-detect technology requires accurate models of the tracked signal
and the background noise. However, in an underwater environment, the
signal channel is time-varying and prior knowledge about the spatial
distribution of the background noise is unavailable. In this paper, an
autoregressive model that captures a time-varying signal level caused by
multi-path propagation is presented. In addition, a multi-source model is
proposed to describe spatially distributed background noise. The models
are used in a Bernoulli filter track-before-detect framework and evaluated
using both simulated and sea trial data. The simulations demonstrate
clear improvements in terms of target loss and improved ability to
discern the target from the noisy background. An evaluation of the track-
before-detect algorithm on the sea trial data indicates a performance gain
when incorporating the proposed models in underwater surveillance and
tracking problems.

Index Terms—Track-before-detect, underwater surveillance, passive
sonar, time-varying signal channel, spatially correlated background noise.

I. INTRODUCTION

Underwater surveillance is of critical importance in defense ap-
plications and for continuous monitoring of infrastructure against
foreign underwater submarines or autonomous vehicles. A recent
example is the attack against the Nord Stream pipelines, where
experts are emphasizing the need for improved surveillance in the
Baltic region. Passive sonar, commonly constructed as an array of
hydrophones, is often used for underwater surveillance. The sonar is
either towed behind a shaper or placed at a fixed location of strategic
interest. By monitoring the underwater environment and potential
targets passively, it is less likely that the presence and location of
the monitoring system are compromised [1, 2].

While the detection capabilities of the passive systems got better,
it is a heads race against the opposing threats making the vehicles
quieter [3]. To combat this, the sonar processing technique must be
improved to enable detection and tracking at lower signal-to-noise
ratio (SNR) conditions. One such technique is the track-before-detect
(TkBD) paradigm of detection and tracking. TkBD has seen success
in radar tracking applications [4–6], but in the case of sonar in
a complex underwater environment several problems remain to be
solved before the technology can reach its full potential. It has been
shown that TkBD can lower the detection threshold by as much as
6 dB [7, 8]. However, such performance improvements require signal
and motion models of high fidelity. Even small model deviations from
the true signal and noise statistics might have a large negative impact
on the detection and tracking performance.

Fig. 1 shows an example of a bearing-time record (BTR), from
a sea trial in the Swedish archipelago where a Saab AUV62 anti-
submarine warfare training system was used. The figure shows
variations in both the target signal strength and the background
noise intensity. TkBD algorithms that incorporate a fluctuating target
signal strength have been developed for optical sensors in [9] and
radar systems in [10]. These papers demonstrate the importance of

Fig. 1. BTR from a passive sonar system. The black line shows the
bearing of an AUV passing by the sonar system. Two phenomena that
make it difficult to detect and track the AUV are apparent in the figure.
There are large variations in the background noise intensity at different
bearings, and the received signal energy from the AUV varies rapidly.

considering the target signal strength fluctuations when designing
TkBD algorithms. However, in the case of TkBD using passive
sonar this aspect has so far not been addressed. In addition, existing
TkBD algorithms, e.g., those found in [11, 12], assume that the
background noise is both temporally and spatially white. Other
approaches circumvent modeling of the background noise through
various tricks. For example, [13] compares the beamforming energy
within a range of bearings close to the target estimate to energies in
neighboring bearings. Another approach, presented in [14], averages
the observed beamforming energies over the history of confirmed
or tentative track bearings. In this case, the underlying idea is that
the received signal energy from the target on average is higher than
any clutter or noise in the background. Common for these methods
is that when applied to a tracking scenario as illustrated in Fig. 1,
they either fail to detect and track the target or generate many false
tracks. The false detections are caused by the methods’ inability to
distinguish the spatially correlated background noise from potential
targets. Furthermore, the SNR of the target signal varies quickly, and
the source signal intermittently becomes indistinguishable from the
background noise, which provides an additional challenge. Therefore,
in this paper, two models describing

• the variations in the received source signal level, and
• the spatial correlations in the background noise,

are presented. The models are integrated into a TkBD framework and
evaluated using both simulated and sea trial data.



Fig. 2. Simplified illustration of the considered target tracking scenario,
where the problem is to detect and track a potential target moving in the
proximity of a hydrophone array in a noisy environment. The spatially
correlated noise is modeled as a sum of point sources at different bearings.

II. TRACK-BEFORE-DETECT USING PASSIVE SONAR

Consider a single target Bernoulli filter TKBD algorithm like that
presented in [11]. Two key components of the TkBD algorithm are
the state evaluation Markov model and the measurement likelihood
function. The Markov model ϕ(Xk|Xk−1) describes the time dynam-
ics of a state Xk, while the likelihood function φ(zk|Xk) describes
the probability of receiving measurements zk given a certain state
Xk.

A. Single-Target State Estimation Filter

At any time k the target is either present or absent. If the target is
present, then its state at time k is xk. This is incorporated into the
TkBD algorithm using a random finite set (RFS) framework [15]. In
particular, the probability density function (PDF) of the target RFS
Xk is modeled as a Bernoulli RFS

p(Xk) =

{
1− qk, if Xk = ∅,
qks(xk), if Xk = {xk},

(1)

where qk is the target existence probability and s(xk) is the PDF of
xk, all at timestep k. The posterior distribution of Xk given all the
measurements up to time k can be recursively calculated using

p(Xk|z1:k) =
φ(zk|Xk)p(Xk|Xk−1)∫

φ(zk|Xk)p(Xk|z1:k−1) δXk
, (2a)

p(Xk+1|z1:k) =
∫
ϕ(Xk+1|Xk)p(Xk|z1:k) δXk, (2b)

where p(Xk|z1:k) and p(Xk+1|z1:k) are the posterior and predicted
PDFs, respectively, and

z1:k ≜ {z1, z2, . . . , zk} (3)

are all the measurements leading up to time step k. To implement the
recursions, accurate specification of the Markov model and likelihood
function is required, as the accuracy of the calculated posterior
distribution will depend directly on them.

B. Likelihood Function

Consider a scenario where a single M -element array is used to
detect and track the bearing ψk of the target. The N sound samples
recorded during time slot k by the m:th hydrophone is in [11]
modeled as

yk,m =W ∗Λm(ψk)Wvk + ek,m. (4)

Here, W is the unitary discrete Fourier transform matrix, vk is
signal emitted from the target, and ek,m is noise. Moreover, Λm(ψk)
describes the phase shift of the signal vk in hydrophone m due to
the propagation delay of the signal as it arrives from angle ψk. If
the target sound and measurement noise are assumed to be normally
distributed as vk ∼ N (0, σ2

vkIN ) and ek,m ∼ N (0, σ2
eIN ), then the

likelihood for the observation

zk =
[
yTk,1 . . . yTk,m

]T
, (5)

becomes

φ(zk|Xk) =

{
N (zk; 0, R1), if Xk = ∅,
N (zk; 0, R2(xk)), if Xk = {xk}.

(6)

Here, the covariance matrices are

R1 = INMσ
2
e , (7a)

R2(xk) = (IM ⊗W ∗)(INMσ
2
e + σ2

vkU
∗(ψk)U(ψk))

× (IM ⊗W ), (7b)

where
U(ψk) =

[
Λ∗

1(ψk) . . . Λ∗
M (ψk)

]
. (8)

Note that R2(xk) depends on σ2
vk , which must be estimated.

C. Markov Model

The Markov model for xk is considered here. For additional details
about the Markov model for the RFS state Xk, which includes the
target existence probability qk, the reader is referred to [15]. Let ψk

and ωk = ψ̇k denote the bearing and bearing rate of the target at
time k, respectively. Moreover, let

ηk = 10 log10

(
σ2
vk

σ2
e

)
, (9)

be the SNR at time k. Next, define the target state as

xk =
[
ψk ωk ηk:k−L

]T
, (10)

where ηk:k−L =
[
ηk ηk−1 . . . ηk−L

]
and L ≥ 0. The Markov

model is then given by

ϕ(xk+1|xk) = N (xk+1;Fkxk, Qk), (11)

where

Fk =

[
F

(1)
k 0

0 F
(2)
k

]
, Qk =

[
Q

(1)
k 0

0 Q
(2)
k

]
. (12)

The matrices F (1)
k and Q(1)

k correspond to a constant velocity model
for the bearing. The dynamics of ηk are described by F (2)

k and Q(2)
k ,

which will be discussed next. In the baseline algorithm [11] L = 0,
F

(2)
k = 1, Q(2)

k = σ2
ηk and hence the SNR is modeled as a random

walk
ηk+1 = ηk + εk, (13)

where εk ∼ N (0, σ2
ηk ).



III. MODELING A TIME-VARYING SIGNAL-TO-NOISE RATIO

If the received source signal energy fluctuates rapidly, the random
walk model for the SNR used in [11] will typically result in poor
target tracking capabilities. Assuming the fluctuations to be somewhat
periodical, a better model for the SNR may be an autoregressive (AR)
model. In that case F (2)

k and Q(2)
k are given by

F
(2)
k =

[
βk 0 0
IL 0

]
, Q

(2)
k = diag(σ2

ηk , 0, . . . , 0). (14)

Here βk =
[
β1,k . . . βp,k

]
and σ2

ηk denote the AR parameters
and process noise variance, respectively, and p is the AR model order.

The AR parameters and process noise are typically unknown and
time-varying. However, assuming them to be slowly varying they may
be estimated from historical data in an outer-loop separated from the
TkBD algorithm. Here it is suggested that the AR parameters in βk
are estimated using a sliding window approach. Assume that ηk:k−L

is available, where L determines the length of the sliding window.
From this it is possible to use the Yule-Walker equations where the
AR model is used to construct a linear system of equations that relates
βk and ηk:k−L [16]. An estimate β̂k of βk is then computed using
the least squares method. Note, L must be chosen large enough for
the considered linear system of equations to be solvable.

IV. SPATIAL CORRELATION MODELING THROUGH POINT

SOURCES

From Fig. 1 it is clear that the background noise is not spatially
white as assumed in the likelihood presented in (4). This will cause
the TkBD algorithm to produce frequent false detections as it cannot
distinguish between true signal sources and spatially distributed noise
sources. To overcome this problem a noise model consisting of a sum
of point noise sources located in the far field is proposed. See Fig. 2
for a conceptual illustration of the proposed noise model.

Recall that ym,k is the signal observed in hydrophone m, and that
(4) provides a model of ym,k given that there is one sound source
located at bearing ψk. In the case that there are several spatially
distributed sources of noise present, a natural extension to the model
is

yk,m =W ∗Λm(ψk)Wvk +

L∑
l=1

W ∗Λm(ψl)Wϵl,k + ek,m. (15)

Here, ψl is the bearing to noise source l from which the noise signal
ϵl,k originates. Moreover, it is assumed that the noise signal from
each of the sources are mutually independent and distributed as ϵl,k ∼
N (0, σ2

l IN ).
With the additional noise terms, the covariance matrix of zk

becomes

Ri(xk) = (IM ⊗W ∗)Bi(ψk) (IM ⊗W ) , i = 1, 2, (16)

where

Bi(ψk) = σ2
vU(ψk)U(ψk)

∗δ(i− 2)

+

L∑
l=1

σ2
l U(ψl)U(ψl)∗ + INMσ

2
e .

(17)

The proposed likelihood function is then given by replacing Ri in
(6) with (16).

TABLE I
DESCRIPTION OF THE MODELS USED

Name Description

Benchmark The method used in [11]. Assumes that the noise is
temporally and spatially white and that the source
signal strength varies slowly.

SN-RW Spatial noise random walk SNR. Assumes the noise
to be spatially correlated and the source signal
strength to vary slowly.

SN-AR Spatial noise AR SNR dynamics. Assumes the noise
to be spatially correlated and the source signal
strength to fluctuate rapidly.

A. Estimation of Source Strength

To use the likelihood in (6) with the spatial noise covariance matrix
in (16) one must first have a description of the spatial noise. If the
bearings {ψl}Ll=1 are known, the parameters θ = {σ2

e , σ
2
1 , . . . σ

2
L}

must be specified. These parameters can be estimated using a
sequence of data where no target is present. Let R1(θ) be a
parametrization of R1 in terms of the unknown parameters θ. Given
a set of measurements z1:K where it is known that there is no target
contribution to the signal, θ can be estimated as

θ̂ = argmin
θ

∥∥∥∥∥R1(θ)−
1

K

K∑
k=1

zkz
T
k

∥∥∥∥∥
2

F

. (18)

Additionally, let θ̂(zk) denote the estimate given a single measure-
ment zk in (18).

V. EVALUATION

To better understand the impact of both the spatial noise model
and the SNR variation model, combinations of the two models are
evaluated on a simulated and a real-world dataset and compared to the
suggested method in [11]. These combinations are listed in Table I.
Of extra interest is the tendency of the trackers to confuse the noisy
environment for a target and the loss of tracks as the SNR temporarily
becomes worse. These challenges are present in the real-world dataset
and hence are also introduced in the simulations.

To summarize, it is shown on the simulated dataset that including
information about the spatial noise improves the tracker’s robustness
against false alarms. Moreover, usage of the SNR variation model
results in less drastic drops in the estimated target existence proba-
bility q̂k. The results on the real-world dataset show indications of
similar nature.

A. Spatial Source Strength Estimation

Fig. 3a shows a BTR for a sequence of 750 timesteps (187 s)
where the target was not present. The bearings of the L = 180
spatial sources used to model the spatially correlated noise cover the
half circle in front of the array, i.e., one source for every degree. An
estimate of the spatial source strength, given that a source is placed
at every bearing ψ and the sequence of measurements z1, . . . , z750
is shown in Fig. 3b. Additionally, the single measurement estimates
θ̂(zk) are shown as a gray histogram in the same figure, together
with its 90 % percentile denoted by θ̂90.
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(a) BTR of the data segment that is used to estimate the noise model
parameters.
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(b) Estimated variances of the signals emitted by the spatial sources. The
histogram shows the estimated variance θ̂(zk) for each of the 750 batches.
The blue solid line shows the estimated variance θ̂ with respect to all batches,
as in (18). Finally, the green dashed line shows the 90 % quantile with respect
to the θ̂(zk) estimates.

Fig. 3. The estimated spatial noise model and its dataset.

B. Simulation

The methods are tested in a target tracking case that mimics
the data seen in Fig. 1. That is, the hydrophone array used in the
simulation uses the same relative positions as in the real dataset.
Moreover, the spatial noise source powers θ used in the simulation
are estimated from the real dataset, that is θ̂ from (18) shown in
Fig. 3b.

The bearing of the target changes according to a constant velocity
model, and the ground truth SNR η changes as

ηk = 10 log10 sin
2(ω0Tk)− 5 [dB], (19)

where T = 0.25 s and ω0 = 2π · 0.2 rad/s. This corresponds
to a signal that is amplitude-modulated with a sinusoid function.
To rigorously test the trackers, the simulated dataset starts with a
sequence of 80 steps (20 s) without a target. The target is then
introduced and is present for 20 s, followed by another 80 steps
without a target. This generates the BTR as seen in Fig. 4a. The
estimated bearings ψ̂k for which q̂k > 0.9 according to the different
methods for a single run can be seen in Fig. 4b. Finally, the average
q̂k of 100 Monte Carlo (MC) runs is shown in Fig. 4c.

It can be seen in Fig. 4b that the benchmark filter occasionally
confuses spatial noise for the target, resulting in a bearing estimate
that is very different from the ground truth. By including a description
of the spatial noise properties, as has been done in the SN-RW filter,
this is no longer seen. However, the filter still loses the track as the
SNR momentarily drops. The detection probability for the duration
of the target’s existence is also improved after inclusion of the spatial
noise model, as seen in Fig. 4c.

The SN-AR filter is less susceptible to target loss, but it comes at
the cost of more time steps before it realizes that the target is absent.
This is also reflected in the mean q̂k in Fig. 4c, showing a low-pass-
filter-like effect on q̂k, which also explains the improvement to the
track loss. For the duration of the target presence, the SN-AR filter
outputs the highest estimated probability of existence.

C. At Sea Trial

The methods were also evaluated using a real-world dataset.
The dataset was collected in the Stockholm archipelago, where a
55-element hydrophone array sampled data while a Saab AU64
submarine warfare training system moved in the proximity of the
array, acting as the target. The hydrophone positions were estimated
using signals of opportunity and SLAM as described in [17].

Since there is a target present during the whole examined sequence,
the filters are compared to human performance. Experts at the
Swedish Defence Research Agency (FOI) were asked to indicate the
presence and bearing of a target in a set of shuffled BTR sequences,
each of 36 s length.

All filters used the same spatial noise power model, with the power
estimates θ̂90, except for the benchmark filter. Using a spatial noise
model that assumes more power in each of the spatial noise sources,
compared to θ̂, makes the filters more robust against temporary
changes in the background noise.

The results from the evaluation with the sea trial dataset bear
similarities with the results from the simulation, see Fig. 5b. The
benchmark filter tends to mistake spatial noise source variations for
a target. The filter is also approximately 10 s slower at initiating the
tracking, compared to its spatial noise-aware counterparts. Compared
between SN-RW and SN-AR, the SN-AR filter estimates a track as
a continuous track, while the SN-RW filter occasionally loose-track
of the target. SN-AR filter is also seemingly able to follow the target
for a longer duration, closer to the track that the experts labeled.
There is a tendency among the filters to output the extreme values,
that is, either q̂k = 0 or q̂k = 1, as seen in Fig. 5c. The benchmark
filter shows a more erratic estimate, something that is also observed
in the SN-RW filter but to a lesser extent. The SN-AR filter shows a
smoother output, with a slower drop in estimated existence probability
compared to other methods.

VI. CONCLUSIONS AND FUTURE WORK

To summarize, this paper presented a multi-source noise model
to describe the spatially correlated background noise and an adaptive
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−100 −50
0

20

40

60

80

100

Bearing [deg]

Ti
m

e
[s

]

Sea trial BTR

−10

−5

0

R
el

at
iv

e
E

ne
rg

y
[d

B
]

(a) BTR of a part of the real dataset.
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Fig. 5. Real-world dataset and results.



autoregressive model to handle the SNR fluctuations originating from
the changes in the underwater channel. This was integrated into a
TkBD algorithm, and was evaluated with a simulated and a real-
world dataset. It has been shown, on the simulated dataset, that the
multi-source model lessens the probability that the filter mistakes
the background noise for the target, and that the inclusion of the
autoregressive SNR model improves the filter in terms of track loss.
Similar results have been observed on the real-world dataset.

Some challenges remain to be solved. While the spatial correlations
in the background noise are accounted for in the current measurement
model, the temporal ones remain. The background noise is not static
in its nature, explained by short-term phenomena such as breaking
waves on the surface. Hence, future research may focus on modeling
this process by considering two classes of targets, one of which is the
moving target, the other of which is a temporary stationary target with
a short life span. This may be done by utilizing an RFS framework for
modeling multiple targets. Additionally, the filters have been observed
to be overly confident in the spatial noise model, hence the need to
use the estimates θ̂90. A Bayesian modeling approach, where θ is
instead assumed to be random and is estimated a posteriori, may
solve this issue.
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