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Abstract

An important aspect in autonomous systems is the ability of a system to plan
before acting. This includes both high-level task planning to determine what
sequence of actions to take in order for the system to reach a goal state, as well as
low-level motion planning to detail how to perform the actions required.

While it is sometimes possible to plan hierarchically, i.e., to first compute a
task plan and then compute motion plans for each action in the task plan, there
are also many problem instances where this approach fails to find a feasible plan
as not all task plans lead to motion-planning problems that have feasible solu-
tions. For this reason, it is desirable to solve the two problems jointly rather than
sequentially. Additionally, it is often desirable to find plans that optimize a per-
formance measure, such as the energy used, the length of the path travelled by
the system or the time required. This thesis focuses on the problem of finding
joint task and motion plans that optimize a performance measure.

The first contribution is a method for solving a joint task and motion planning
problem, that can be formulated as a traveling salesman problem with dynamic
obstacles and motion constraints, to resolution optimality. The proposed method
uses a planner comprising two nested graph-search planners. Several different
heuristics are considered and evaluated.

The second contribution is a method for solving a joint task and motion plan-
ning problem, in the form of a rearrangement problem for a tractor-trailer sys-
tem, to resolution optimality. The proposed method combines a task planner
with motion planners, all based on heuristically guided graph search, and uses
branch-and-bound techniques in order to improve the efficiency of the search
algorithm.

The final contribution is a method for improving task and motion plans for
rearrangement problems using optimal control. The proposed method takes
inspiration from finite-horizon optimal control and decomposes the optimiza-
tion problem into several smaller optimization problems rather than solving one
larger optimization problem. Compared to solving the original larger optimiza-
tion problem, it is demonstrated that this can lead to reduced computation time
without any significant decrease in solution quality.
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Populärvetenskaplig sammanfattning

Ett stort forskningsområde under de senaste årtiondena är utvecklingen av au-
tonoma system, system som på egen hand utan mänsklig påverkan kan lösa och
genomföra olika uppdrag. Två viktiga delproblem som behöver lösas för att kun-
na uppnå det är uppgiftsplanering (eng. task planning) och rörelseplanering (eng.
motion planning). Såväl uppgiftsplanering som rörelseplanering handlar om att
beräkna hur ett system ska ta sig från sitt nuvarande tillstånd till ett måltill-
stånd, men på olika abstraktionsnivåer. Uppgiftsplanering görs på en högre ab-
straktionsnivå och kan sägas lösa problemet med vad som ska göras, medan rörel-
seplanering görs på en lägre nivå och kan sägas lösa problemet med hur det ska
göras.

Ett exempel kan vara en robotarm som har i uppgift att stapla ett antal klossar
på varandra. Uppgiftsplanering används då för att bestämma i vilken ordning
klossarna ska lyftas upp och staplas på varandra, medan rörelseplanering anger
hur robotarmen ska flyttas för att greppa en kloss eller för att flytta en kloss från
en position till en annan.

Många problem har aspekter av såväl uppgiftsplanering som rörelseplane-
ring. Ett sätt att lösa sådana problem är att först lösa uppgiftsplaneringsproble-
met och därefter lösa rörelseplaneringsproblem. Det är dock inte säkert att det
resulterar i en lösning till det ursprungliga problemet, eftersom systemet kan
ha rörelsebegränsningar som inte fångas av uppgiftsplaneringen. Det är därför
önskvärt att integrera uppgifts- och rörelseplanering tätare genom att ta hänsyn
till rörelsebegränsningarna i rörelseplaneringsproblemet redan när uppgiftspla-
neringen görs så att de båda delproblemen kan lösas samtidigt i stället för i se-
kvens.

I denna avhandling är målet inte enbart att beräkna en kombinerad uppgifts-
och rörelseplan som tar hänsyn till systemens begränsningar, utan även att op-
timera ett prestandamått. Exempel på sådan optimering kan vara att minimera
energiförbrukning, förflyttad sträcka eller tid.

Det första bidraget är en metod för att lösa en typ av uppgifts- och rörelse-
planering som uppkommer vid planering av borrning i gruvor. Den föreslagna
metoden använder sig av grafsökning och resulterar i lösningar som är optimala
med avseende på ett prestandamått, givet en diskretisering av problemet.

Det andra bidraget är en metod för att gemensamt lösa en typ av uppgifts- och
rörelseplaneringsproblem för en dragbil som ska omarrangera ett antal släp. Den
presenterade metoden ger lösningar som givet en diskretisering av problemet är
optimala med avseende på ett prestandamått.

Det sista bidraget är en metod för att med hjälp av optimal styrning förbättra
en given lösning med avseende på ett prestandamått. I stället för att lösa ett större
optimeringsproblem så presenteras här en lösning till problemet där en serie av
mindre optimeringsproblem löses, vilket kan leda till att tiden det tar att lösa
problemet kraftigt reduceras samtidigt som kvaliteten på de funna lösningarna
bibehålls.
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Background





1
Introduction

This chapter introduces the area of task and motion planning, provides a sum-
mary of the contributions, and presents the outline of the thesis.

1.1 Background and motivation

During the last decades, much research has been performed with the goal of de-
veloping systems that are autonomous, i.e., able to operate without human inter-
vention. This requires several capabilities such as sensing and perception, plan-
ning and reasoning, as well as control. Each such capability leads to different re-
search problems that must be solved in order to achieve the goal of autonomous
systems.

For an autonomous system to be able to carry out a task defined in the form
of an abstract goal, it is necessary that the system is capable of planning what
to do before it acts. This planning needs to be done at several different levels of
abstraction. At a high level of abstraction, task planning is needed to compute a
sequence of actions that when executed will take the system from its current state
to a desired state. At a lower level, motion planning is needed to detail exactly
how the actions should be executed. As an example, a manufacturing robot might
be tasked with manufacturing a product from separate parts. Task planning can
then be used to plan in what order to add different parts, and motion planning
can be used to compute the trajectory that the arm of the robot must take in order
to successfully pick up or move a part or another object.

The areas of task planning and motion planning have been studied separately
for a long time and share some similarities while also having differences. At
their core, both task and motion planning are concerned with finding a sequence
of valid states or configurations of a system that will move the system from its
current state to a given terminal state, together with the actions or control inputs

3



4 1 Introduction

that will cause the system to move between these states [20, 43]. This requires a
description of the system and the world it acts in, as well as how the state of the
system changes as a result of the actions taken.

The largest difference between task planning and motion planning is perhaps
that task planning usually considers a discrete world whereas motion planning
considers a continuous world [43]. This difference affects the methods that can
be used for the different problems. Task planning is often solved using graph
search, guided by some heuristic function, and planners are often deterministic,
i.e., they return the same result for the same problem every time. While there
are some special cases of motion planning for non-holonomic systems that can
be solved analytically without discretization, such as the Dubins car [14] or the
Reeds-Shepp car [56], many motion-planning approaches are based on discretiz-
ing the problem in order to reduce it to a problem that can be solved by graph
search. This discretization can be done in a deterministic way, or by random
sampling of the configuration space.

As many problems contain aspects of both task planning and motion plan-
ning, the interest in integrated task and motion planning has increased in the
last decade [8, 13, 17, 18, 31, 58]. This is motivated by the fact that a hierarchical
solution where a task plan is computed first, and a motion plan is then computed
for each action in the task plan, is not guaranteed to result in a feasible solution
even if one exists to the overall problem. The main focus has been on finding
feasible solutions, which is a difficult problem in itself.

Recently, there has been an increased interest in optimal task and motion
planning [16, 40, 60, 63], where the objective is to find a solution that is not only
feasible but that optimizes some performance measure as well. This is the focus
of this thesis.

1.2 Research questions

This thesis aims to investigate how methods for task planning and motion plan-
ning that are based on graph search can be integrated, and how optimal control
can be utilized in order to compute joint task and motion plans that are not only
feasible but also optimized. In particular, the thesis aims to answer the following
questions:

• How can optimal task and motion planning problems, especially for non-
holonomic systems, be solved efficiently?

• How can methods from optimal control be used to improved the quality of
joint task and motion plans?

1.3 Publications and contributions

The content of this licentiate thesis is based on the following published and un-
published work.
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Paper A: On a Traveling Salesman Problem with Dynamic Obstacles and Inte-
grated Motion Planning

Anja Hellander and Daniel Axehill. On a traveling salesman prob-
lem with dynamic obstacles and integrated motion planning. In 2022
American Control Conference (ACC), pages 4965–4972, Atlanta, June
2022. IEEE.

Paper A investigates a task and motion planning problem where the task plan-
ning part consists of determining in which order to visit a set of determined posi-
tions, and where the chosen order affects the constraints for the motion planning
subproblems. Paper A proposes a planner consisting of two nested graph-search
planners. Several different heuristics for the planner are proposed and investi-
gated.

Paper B: On Integrated Optimal Task and Motion Planning for a Tractor-Trailer
Rearrangement Problem

Anja Hellander, Kristoffer Bergman, and Daniel Axehill. On inte-
grated optimal task and motion planning for a tractor-trailer rear-
rangement problem. In 62nd IEEE Conference on Decision and Con-
trol (CDC), Singapore, December 2023. IEEE.

Paper B proposes a combined task and motion planner for a rearrangement prob-
lem for a tractor and a set of trailers. The proposed planner combines a task
planner and a motion planner that are both based on heuristically guided graph
search. The planner is shown to be resolution complete and resolution optimal,
i.e., given the discretization used by the planner it is complete and optimal. The
proposed planner further uses the heuristic functions in order to maintain upper
and lower bounds that are used in order to prune the search, which is shown
to increase the efficiency of the algorithm without sacrificing neither resolution
completeness nor resolution optimality.

Paper C: Improved Task and Motion Planning for Rearrangement Problems
using Optimal Control

Anja Hellander, Kristoffer Bergman, and Daniel Axehill. Improved
task and motion planning for rearrangement problems using optimal
control. To be submitted .

Paper C proposes a method for improving task and motion plans for rearrange-
ment problems by formulating and solving optimal control problems. Building
on ideas from finite-horizon optimal control and block coordinate descent, Paper
C proposes a method where instead of solving the original optimization problem,
several smaller optimization problems are posed and solved. It is shown that,
compared to solving the original problem, this can lead to reduced computation
time while resulting in solutions of similar quality.



6 1 Introduction

In all the contributions listed in this section, the author of this thesis has per-
formed the main part of the research, including theoretical derivations, numeri-
cal experiments, evaluations, and writing. The co-authors have contributed with
research ideas, technical discussions and by improving the manuscripts.

1.4 Thesis outline

The thesis is divided into two parts. The first part presents the relevant back-
ground and consists of Chapters 1–6. Chapter 1 gives a background to the re-
search problem and presents the contributions of the thesis. Chapter 2 gives an
introduction to graph-search techniques. Chapter 3 provides a theoretical back-
ground to task planning. Chapter 4 presents background on motion planning,
particularly approaches that are based on graph search. Chapter 5 gives an intro-
duction to the field of joint task and motion planning. Chapter 6 concludes the
first part of the thesis and presents some ideas for future work. The second part
of the thesis contains edited versions of the publications listed under Section 1.3.



2
Graph search

This chapter gives a background on graph search and the problem of finding the
shortest path between two nodes in a graph. The main focus is on heuristically
guided search and A* in particular.

2.1 Preliminaries

Before defining the shortest path problem, some definitions are required:

Definition 2.1. A directed graph G is a pair (V , E) consisting of a set of vertices
V and a set of edges E. An edge is an ordered pair of distinct vertices, i.e., E ⊂
{(v1, v2)|v1, v2 ∈ V and v1 , v2}.

Definition 2.2. On a directed graph (V , E), v1 ∈ V is a predecessor of v2 ∈ V and
v2 is a successor of v1 if (v1, v2) ∈ E.

Definition 2.3. A weighted directed graph is a directed graph (V , E) together
with a weight function w : E 7→ R.

Definition 2.4. A path of length N − 1 is a sequence P = (v1, v2, . . . , vN ) of n
vertices such that (vi , vi+1) ∈ E for i = 1, 2, . . . N − 1.

Given a weighted directed graph G = (V , E) with weight function w, the short-
est path problem from vstart ∈ V to vgoal ∈ V can be formulated as the optimiza-
tion problem

7
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(b) Breadth-first search.

Figure 2.1: Examples of depth-first and breadth-first search. The initial node
is shown with a red border, and the final node with a purple border. Nodes
are numbered according to the order in which they are examined, and the
resulting path is shown in green.

minimize
N,{v}Ni=1

N−1∑
i=1

w((vi , vi+1))

subject to v1 = vstart

vN = vgoal

(vi , vi+1) ∈ E i = 1, . . . , N − 1.

(2.1)

A general graph-search algorithm maintains a list of nodes (vertices) to ex-
plore, called the frontier or the open list. In each iteration, a node is chosen from
the frontier for exploration and its unexplored successors are added to the fron-
tier. During the search, the algorithm maintains the previous node for each node.
The search continues until the goal node has been reached and the resulting path
is then extracted by starting at the goal node and moving to the previous node
until the initial node is reached.

Different graph-search algorithms differ mainly in how the next node to ex-
plore is chosen from the frontier. Depth-first and breadth-first search sort the
nodes in the frontier based on the order in which they were added to the frontier.
Depth-first search chooses the node that was added last for expansion, i.e., the
frontier is a stack, whereas breadth-first search chooses the node that was added
first, i.e., the frontier is a queue. An illustration of depth-first and breadth-first
search is shown in Figure 2.1. In the special case where all edges have the same
(positive) weight, breadth-first search finds the shortest path, otherwise neither
breadth-first nor depth-first search is guaranteed to find the shortest path. To
find the shortest path, it is therefore necessary to continue the search even after
a solution has been found in order to enumerate all possible solutions and keep
track of the shortest solution that has currently been found.

To find the shortest path on a graph with positive weights, Dijkstra’s algo-
rithm [11] can be used. Pseudocode for the algorithm is shown in Algorithm 1.
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Algorithm 1 Dijkstra’s algorithm

1: g(nstart) = 0
2: Q.insert(nstart, g(nstart))
3: while not Q.empty() do
4: n = Q.pop()
5: if n = ngoal then
6: return ExtractPath(ngoal)
7: end if
8: for n′ ∈ succ(n) do
9: if no previous(n′) or g(n′) > g(n) + w((n, n′)) then

10: previous(n′) = n
11: g(n′) = g(n) + w((n, n′))
12: Q.insert(n′ , g(n′))
13: end if
14: end for
15: end while
16: return FAILURE

For each node n, Dijkstra’s algorithm keeps track of the cost-to-come g(n), i.e., the
cost of a path from the initial node. This cost is updated during the search when-
ever a new path with a lower cost is found. The frontier, denoted Q in Algorithm
1, is sorted based on cost-to-come, with the node with the lowest cost-to-come
chosen for exploration in every iteration. For this reason, the function for insert-
ing a node n to the frontier has an additional argument for the priority g(n) of
the node. Unlike breadth-first or depth-first where the first path that is found
and returned is in general not the shortest, Dijkstra’s algorithm is guaranteed to
find a shortest path. Dijkstra’s algorithm can also be run without any particular
goal node. In that case the shortest path from the initial node to any other node
in the graph will be computed.

2.2 Heuristically guided search

Heuristically guided search algorithms use a heuristically evaluated function to
sort the nodes in the frontier. Greedy best-first search uses a heuristic function
that estimates the cost of a path from the current node to the goal node in order to
sort the frontier. One of the most common heuristically guided search algorithm
is A*.

2.2.1 A*

A*, first described in [23], is one of the most used graph-search algorithms due to
its efficiency. Pseudocode for the algorithm is shown in Algorithm 2. The frontier
is sorted based on f (n) = g(n) + h(n) where g(n) is the cost-to-come and h(n) is
a non-negative heuristic function that estimates the cost-to-go, i.e., the cost of a
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Algorithm 2 The A* algorithm

1: g(nstart) = 0
2: f (nstart) = g(nstart) + h(nstart)
3: Q.insert(nstart, f (nstart))
4: while not Q.empty() do
5: n = Q.pop()
6: if n = ngoal then
7: return ExtractPath(ngoal)
8: end if
9: for n′ ∈ succ(n) do

10: if no previous(n′) or g(n′) > g(n) + w((n, n′)) then
11: previous(n′) = n
12: g(n′) = g(n) + w((n, n′))
13: f (n′) = g(n′) + h(n′)
14: Q.insert(n′ , f (n′))
15: end if
16: end for
17: end while
18: return FAILURE

shortest path from n to the goal. The heuristic function should be chosen so as to
be admissible and consistent, both of which are defined below.

Definition 2.5. A heuristic function h(n) is admissible if h(n) ≤ h∗(n) for all n,
where h∗(n) is the true cost-to-go.

Definition 2.6. A heuristic function h(n) is consistent if for all nodes n and all
successors m of n it holds that h(n) ≤ h(m) + w((n, m)).

If h is admissible, the path returned by A* has optimal cost. If h is consistent,
A* explores each node no more than once, and the f -values of the explored nodes
are monotonically non-decreasing. Consistency implies admissibility, however,
the reverse does not hold as it is possible to construct heuristic functions that are
admissible but not consistent. Examples of some heuristic functions with varying
properties are shown in Figure 2.2.

It can be noted that with the choice h(n) = 0 (which is trivially admissible and
consistent) A* reduces to Dijkstra’s algorithm. If a perfect heuristic, i.e., h(n) =
h∗(n) is used, then A* expands only the nodes along an optimal path.

It is also possible to inflate the heuristic function with a factor ϵ > 1, i.e., to
sort the frontier based on f (n) = g(n) + ϵh(n). This sacrifices optimality as the
resulting heuristic is no longer admissible but may speed up the search. The
level of suboptimality of the resulting solution is upper bounded by the factor
ϵ, i.e., the resulting cost is at most ϵ times the optimal cost [52]. This has given
rise to anytime A* methods, that repeatedly run A* with an inflated heuristic,
gradually decreasing the inflation. This quickly finds a (suboptimal) solution,
and then gradually improves the solution. The idea is that the algorithm should
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(a) Admissible and consistent heuris-
tic. (The perfect heuristic as h(n) =
h∗(n) for all nodes n.)
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(b) Neither admissible nor consistent
heuristic. The heuristic value of the
blue node is higher than the true cost-
to-go.
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(c) Admissible but not consistent
heuristic. For all nodes n it holds that
h(n) ≤ h∗(n), but the heuristic value
of the orange node is higher than the
sum of the heuristic value of the blue
node and the cost of the edge from the
orange to the blue node.

Figure 2.2: Some examples of heuristics with varying properties. The goal
node is shown in green, and all edges have weight 1.
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be able to return a feasible solution even if it is aborted prematurely. Anytime
repairing A* (ARA*) [46] is one such algorithm where results from previous runs
with higher ϵ are reused rather than restarting the search from scratch for each
inflation constant.

2.2.2 LPA*

Lifelong Planning A* (LPA*) [39] is an extension of A* that can be used to repeat-
edly solve shortest path problems between the same pair of nodes when the under-
lying graph changes between subsequent calls to the algorithm. It maintains two
estimates of the cost-to-come, g(n) and rhs(n). The estimate g(n) is a direct equiv-
alent of the cost-to-come from the A* algorithm and remains unchanged between
searches. The second estimate, rhs(n) is based on the g-values of the predecessors
of a node, rhs(n) = minm∈predecessors(n) g(m) + w((m, n)). A node n is said to be lo-
cally consistent if g(n) = rhs(n), otherwise locally inconsistent. If g(n) > rhs(n)
it is said to be overconsistent, and if g(n) < rhs(n) it is underconsistent. The
frontier consists of the nodes that are locally inconsistent, sorted based on the
(2-dimensional) key function k(n) = [min(g(n), rhs(n)) + h(n),min(g(n), rhs(n))].

Pseudocode for the algorithm is shown in Algorithm 3, Algorithm 4, and Al-
gorithm 5. The frontier is denoted with Q, and it is assumed to have methods
insert(node, key) for inserting a node with a given key, remove(node) for remov-
ing a node from the frontier, and pop(node) for removing and returning the node
with the lowest key in the frontier. The backbone of the algorithm is the sub-
routine ComputeShortestPath, which is called to compute the new shortest path
when there have been changes in the edge costs. The subroutine repeatedly se-
lects the node in the frontier with the lowest key value for examination, until the
goal node is locally consistent and no node in the frontier has a lower key value
than the goal node. A shortest path can then be traced back from the goal node
by for each node n moving to the predecessor n′ that minimizes g(n′) + w((n′ , n)).

Whenever a node n is chosen for expansion, the two estimates for the cost-to-
come are compared. If g(n) > rhs(n), then n is made to be locally consistent by
setting g(n) = rhs(n) and the rhs and key values of its successors are updated. If
instead g(n) < rhs(n), then g(n) is updated as g(n) = ∞ and the rhs and key values
of its successors as well as n itself are updated. If rhs(n) = ∞ as well, the node has
become locally consistent. Otherwise, it is still locally inconsistent and is added
to the frontier again, this time with a higher key value.

Under the condition that the heuristic used is admissible and consistent, LPA*
is guaranteed to find a shortest path. Each node n will then be visited at most
twice, at most once when it is underconsistent and at most once when it is over-
consistent [39].

In the worst-case scenario where there are large changes to the graph, LPA* is
not more efficient than A* search from scratch and may even be less efficient [39].
However, in cases where changes to the graph are small, LPA* can increase the
efficiency compared to running an A* search from scratch.
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Algorithm 3 The main loop of the LPA* algorithm

1: procedure Main
2: Initialize()
3: while true do
4: ComputeShortestPath()
5: Wait for changes in edge costs
6: for all edges (n, n′) with changed cost do
7: Update w((n, n′))
8: UpdateNode(n′)
9: end for

10: end while
11: end procedure

Algorithm 4 The ComputeShortestPath procedure

1: procedure ComputeShortestPath
2: while Q.TopKey()< CalculateKey(ngoal) or rhs(ngoal) , g(ngoal) do
3: n = Q.pop()
4: if g(n) > rhs(n) then
5: g(n) = rhs(n)
6: for n′ ∈ succ(n) do
7: UpdateNode(n′)
8: end for
9: else

10: g(n) = ∞
11: for n′ ∈ succ(n) ∪ {n} do
12: UpdateNode(n′)
13: end for
14: end if
15: end while
16: end procedure

2.3 Branch and bound

Branch and bound (B&B) is a method, or a family of related methods, for solving
optimization problems [42, 45]. It is often used in particular for optimization
problems with discrete or combinatorial aspects. The algorithm finds the opti-
mal solution by searching in a tree where each node n corresponds to a set of
candidate solutions Xn. The root node corresponds to the entire set of feasible
solutions, and for each node n and set of successor nodes succ(n) it holds that
∪m∈succ(n)Xm = Xn and Xm ∩ Xm′ = ∅ for all m,m′ ∈ succ(n) such that m , m′ .

A general version of a B&B algorithm is shown in Algorithm 6. An upper
bound J̄ on the optimal value and the corresponding feasible solution x̄ for which
the upper bound is obtained is maintained by the algorithm. For each node n that
is visited, a relaxed optimization problem is solved with optimal objective func-
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Algorithm 5 Procedures used by the LPA* algorithm

1: procedure CalculateKey(n)
2: return [min(g(n), rhs(n)) + h(n); min(g(n), rhs(n))]
3: end procedure
4: procedure Initialize
5: Q = ∅
6: for n ∈ V do
7: rhs(n) = g(n) = ∞
8: end for
9: rhs(nstart) = 0

10: Q.insert(nstart, CalculateKey(nstart))
11: end procedure
12: procedure UpdateNode(n)
13: if n , nstart then
14: rhs(n) = minn′∈pred(n)(g(n′) + w((n′ , n)))
15: end if
16: if n ∈ Q then
17: Q.remove(n)
18: end if
19: if g(n) , rhs(n) then
20: Q.insert(n, CalculateKey(n))
21: end if
22: end procedure

Algorithm 6 A general B&B algorithm

1: J̄ = ∞
2: x̄ = ∅
3: Q.insert(n0)
4: while not Q.empty() do
5: n = Q.pop()
6: J, x = solveRelaxation(n)
7: if feasibleCandidate(x) and J < J̄ then
8: J̄ = J
9: x̄ = x

10: end if
11: if feasibleCandidate(x) or J = ∞ or J ≥ J̄ then
12: continue
13: end if
14: for n′ ∈ succ(n) do
15: Q.insert(n′)
16: end for
17: end while
18: return J̄ , x̄



2.3 Branch and bound 15

tion value J together with the solution x for which the optimal relaxed solution is
obtained. The solution x is not necessarily feasible for the original optimization
problem, but the obtained value J gives a lower bound on the optimal value for
the set of candidate solutions that the node n corresponds to. If x is a feasible
solution to the original problem, there is no need to examine the successors of
the node, and the upper bound and corresponding solution can be updated if it
is better than the best previously known solution.

The upper and lower bounds can be used to prune the search space. If J ≥ J̄ ,
the node can be pruned (cut), i.e., the node is not further explored, and its succes-
sors are not generated. If a node cannot be pruned, its successors are generated
by dividing the corresponding solution set into disjoint sets and adding their cor-
responding nodes to the frontier. An example of how this can be used to solve an
integer programming optimization problem is shown in Example 2.7.

Example 2.7: Branch and bound
Consider the optimization problem

minimize
x

− 3x1 − 2x2

subject to x1 + 2x2 ≤ 7

4x1 + 2x2 ≤ 15

x1, x2 ∈ N.

(2.2)

The resulting search tree when applying the B&B algorithm to this problem is
shown in Figure 2.3. In each node, the constraints x1, x2 ∈ N are relaxed and the
resulting optimization problem is solved. The relaxed problems for n2 and n4
lack feasible solutions, and the nodes can therefore be pruned. The solution to the
relaxed problem for n5 is a feasible solution to (2.2), so the global upper bound
J̄ and best solution x̄ can be updated and the node pruned. For n6, the relaxed
solution is such that J ≥ J̄ and the node can be pruned. As there are no nodes left
to examine, the algorithm then terminates and returns J̄ = −11, x̄ = [3, 1].

There are many similarities between B&B and graph-search algorithms such
as A*. In [49], a generalization of B&B is presented that encompasses both B&B
and A* as special cases. Ideas from B&B can be used in other graph search meth-
ods such as depth-first search as well by using a heuristic function to give a lower
bound on the optimal value instead of solving a relaxation of an optimization
problem. This can speed up the search compared to having to do an explicit
enumeration of possible solutions.
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3
Task planning

This chapter introduces the topic of task planning. The classical representation
of a task-planning problem is presented, as well as the optimal task-planning
problem which can be solved using graph-search techniques. Different domain-
independent heuristic functions that can be used to guide a graph search are
presented.

3.1 Preliminaries

Task planning, as defined in this thesis, is the problem of finding a feasible plan
in the form of a sequence of actions that transform a discrete system from an
initial state to a goal state. For an introduction to task planning, see [20, 21].

Task planning problems are commonly modelled using state transition sys-
tems, which are defined as follows [20]:

Definition 3.1. A state transition system is a tuple Σ = (S, A, E, γ) where:

• S is a finite (or recursively enumerable) set of states,

• A is a finite (or recursively enumerable) set of actions,

• E is a finite (or recursively enumerable) set of events,

• γ : S ×A×E 7→ 2S is a state transition function, where 2S denotes the power
set of S.

Some common assumptions that are often used in classical task planning [20],
and that will be used in this thesis as well are:

• S is finite.

17
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• Σ is fully observable, i.e., complete knowledge about the state of the system
is assumed.

• Σ is deterministic. For each state s ∈ S and each action-event pair (a, e) ∈
A × E, γ(s, a, e) is either the empty set (if the action is not applicable in the
state) or it is a singleton set (if the action is applicable).

• Σ is static, i.e., E = ∅. The system will remain in the same state until an
action is applied as there are no internal dynamics.

• The goal used as input to the planner is a set of goal states Sg with one or
more elements.

• A solution plan to a planning problem is a linearly ordered finite sequence
of actions a0, . . . , ak .

• Actions and events have no duration and all state transitions happen instan-
taneously.

• Planning is done offline, and any changes in Σ that may occur during the
planning are not considered by the planner.

Since Σ is assumed to be deterministic and static, it is possible to simplify
the notation for the state transition function and write γ(s, a) = s′ rather than
γ(s, a) = {s′}.

A task planning problem can be defined as a tuple (Σ, sinit, Sg ), where Σ is
a state transition system, sinit ∈ S is the initial state, and Sg ⊆ S is a subset of
goal states. A solution plan is an action sequence a0, . . . , aN−1 that gives rise to a
sequence of states s0, . . . , sN such that s0 = sinit, sN ∈ Sg , and γ(sk , ak) = sk+1 for
all k = 0, 1, . . . , N − 1.

3.2 Representation of states and actions

Task planning problems often use logic to represent the state space and the ac-
tion space. The most common logic representation is a so-called STRIPS-like rep-
resentation [20], that uses a simplified version of first-order logic. This is done
by using a first-order language L consisting of finitely many predicate symbols
and finitely many constant symbols. The constant symbols, called instances in
[43], represent the objects that exist in the world and are of relevance to the plan-
ning. These objects could be, e.g., robots, cars, cranes, blocks, or locations. A
predicate is a binary-valued function used to indicate properties or relations be-
tween objects. Predicates can be applied to one or more terms, i.e., variables or
constants, or to none. An example could be at(robot, place), where the predicate
at is applied to the variables robot and place, and can be used to indicate that the
robot robot is at the location place. Another example could be a predicate snow-
ing that does not require any terms, and can be used to indicate if it is snowing
or not. To separate between variables and constants, this thesis will use names
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in italics such as robot and block to refer to variables, and names without ital-
ics such as robot1 and blockA to refer to constants. Some useful definitions are
provided below:

Definition 3.2. An atom is a predicate applied to the correct number of terms.
An atom that contains no variables, i.e., only constants, is said to be a ground
atom or a fact.

Definition 3.3. A literal is an atom (positive literal) or the negation of an atom
(negative literal).

As an example, at(robot, place) is an atom, and at(robot1, place2) is a ground
atom. Both are examples of positive literals, and their negations ¬at(robot, place)
and ¬at(robot1, place2) are negative literals.

A state is represented as a set of ground atoms of L. Often the closed-world
assumption is used, so that only positive literals are included and any atom that is
not explicitly included is assumed to not hold in that state. A set of goal states Sg
can therefore be represented by a set of ground atoms g as Sg = {s ∈ S |g ⊆ s}. This
representation will be used later in this chapter, and the task planning problem
is then represented as (Σ, sinit, g), where g represents such a set of states. An
example of predicates and states for a world where a robot moves blocks around
is shown in Example 3.4.

Example 3.4: States
Consider a world, with three blocks (blockA, blockB and blockC), a table, and a

robot manipulator that can pick up and place the blocks on top of each other or
on the table. To describe the state, the following predicates can be defined:

• on(obj1, obj2 ), which indicates that the object obj1 is on top of the object
obj2,

• clear(block ), which indicates that there is no object on top of the block
block,

• holding(block ), which indicates that the robot is holding the block block,

• empty_hand, which indicates that the robot is currently not holding any
block.

An illustration of possible initial and goal states is shown in Figure 3.1 to-
gether with the predicates that describe them.

Actions are specified through the use of operators. In addition to its name, an
operator is specified by the following three components:

• The variables it operates on. One example could be an operator move(robot,
place1, place2 ) that operates on the three variables robot, place1, and place2.

• The preconditions pre(o) of the operator, i.e., a set of literals that must
hold in order for the operator to apply. For the move operator this could
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be at(robot, place1 ). The preconditions can be divided into pre+(o) and
pre−(o), the positive and negative preconditions, respectively. Positive pre-
conditions are positive literals, and negative preconditions are negative lit-
erals.

• The effects of the operator eff(o), that describe the changes to the state when
the operator is applied. The effects can be divided into eff+(o) and eff−(o),
the positive and negative effects, respectively.

An action is a ground instance of an operator. An action a is applicable in a
state s if pre+(a) ⊆ s and pre−(a)∩ s = ∅, and the result when the action is applied
is γ(s, a) = (s − eff−(a)) ∪ eff+(a). In Example 3.5, examples of operators for the
world in Example 3.4 is shown.

Example 3.5: Operators
Consider the same world as in Example 3.4. To move the blocks around, four op-
erators pickup(block ), putdown(block ), unstack(block1, block2 ) and stack(block1,
block2 ) can be defined according to:

pickup(block ) - pick up block from the table
Precondition: clear(block ), on(block, table), empty_hand
Effect: ¬on(block, table), ¬clear(block ), ¬empty_hand, holding(block )

putdown(block ) - put down block on the table
Precondition: holding(block )
Effect: ¬holding(block ), on(block, table), clear(block ), empty_hand

unstack(block1, block2 ) - pick up block1 from block2
Precondition: clear(block1 ), on(block1, block2 ), empty_hand
Effect: ¬on(block1, block2 ), ¬clear(block1 ), ¬empty_hand, holding(block1 ),

clear(block2 )

stack(block1, block2 ) - put down block1 on block2
Precondition: holding(block ), clear(block2 )
Effect: ¬holding(block1 ), on(block1, block2 ), clear(block1 ), ¬clear(block2 ),

empty_hand

A plan that solves the planning problem with initial and goal states as in Fig-
ure 3.1 is π = unstack(blockB, blockA), stack(blockA, blockC), pickup(blockA),
stack(blockA, blockB).

3.3 Optimal task planning

Consider a state transition system Σ = (S, A, γ) with a cost function c : S × A 7→
[0,∞) that assigns a non-negative cost to each instance of applying an action in a
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A
B

C

(a) Example of an initial state:
{on(blockA, table), on(blockB,
blockA), on(blockC, table),
clear(blockB), clear(blockC),
empty_hand}.

A
B
C

(b) Example of a goal state:
{on(blockA, blockB), on(blockB,
blockC), on(blockC, table),
clear(blockA), empty_hand}.

Figure 3.1: Examples of initial and goal state for the world in Example 3.4.

state. Given an initial state sinit ∈ S and a subset of goal states Sg ⊆ S, the optimal
task planning problem can be formulated as the following optimization problem:

minimize
{ak }N−1

k=0 ,N

N−1∑
k=0

c(sk , ak)

subject to s0 = sinit, sN ∈ Sg
sk+1 = γ(sk , ak), k = 0, . . . , N − 1

sk ∈ S, k = 0, . . . , N

ak ∈ A, k = 0, . . . , N − 1.

(3.1)

The problem in (3.1) can be solved by posing the problem as a graph-search prob-
lem on a graph where each vertex corresponds to a state, and edges correspond
to actions. The problem can then be solved using, e.g., the graph-search tech-
niques described in Chapter 2. Domain-independent optimal planners often use
A* with an admissible heuristic.

3.4 Domain-independent heuristics

An important part for a search problem is the heuristic that is used to guide the
search. While good heuristics can be dependent on the domain, i.e., the task plan-
ning problem, there has also been a lot of work on domain-independent heuris-
tics that work well on many different task planning problems. Such heuristics
are often based on solving a relaxed planning problem where some constraints
are relaxed. This could be constraints that restrict, e.g., what a state, action or
plan is, what actions are applicable, or what effects are produced when applying
an action [21]. Doing so will result in a relaxed planning problem, such that any
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solution to the original problem is a solution to the relaxed planning problem
as well. This guarantees that the cost of an optimal solution to the relaxed plan-
ning problem is a lower bound on the cost of an optimal solution to the original
planning problem.

3.4.1 The max-cost and the additive cost heuristics

One early example of a domain-independent heuristic is the max-cost heuristic
hmax(s), which is the cost of an optimal solution to a relaxed planning problem
where a goal in the form of a set of literals (could be either a goal state or the
preconditions of an action) is achieved as long as one of its literals (the one that is
most expensive to achieve) is achieved. For a planning problem (Σ, sinit, g), where
g is a set of literals, the max-cost heuristic is defined as [5, 21]

hmax(s) = ∆max(s, g) = max
gk∈g

∆max(s, gk)

∆max(s, gk) =

0 if gk ∈ s
min{∆max(s, a)|a ∈ A and gk ∈ eff(a)} otherwise

∆max(s, a) = c(a) + ∆max(s,pre(a))

(3.2)

where pre(a) denotes the preconditions and eff(a) the effects of an action a. This
is an admissible heuristic, but in practice, better results have been achieved us-
ing the related additive cost heuristic hadd(s), which is inadmissible [21]. This
heuristic is defined as

hadd(s) = ∆add(s, sg ) =
∑
gk∈sg

∆add(s, gk)

∆add(s, gk) =

0 if gk ∈ s
min{∆add(s, a)|a ∈ A and gk ∈ eff(a)} otherwise

∆add(s, a) = c(a) + ∆add(s,pre(a)).

(3.3)

3.4.2 Delete-relaxation heuristics

Another way to relax a planning problem is through delete-relaxation. In a delete-
relaxation, actions can never remove atoms from a state, only add new ones. Un-
der the assumption that preconditions and goals can only be positive, which is
common in classical planning, this corresponds to removing the negative effects
of an action so that actions only have positive effects. An admissible heuristic
could be h+(s), where h+(s) denotes the cost of an optimal solution plan to the
delete-relaxed problem. While finding a feasible solution to the delete-relaxed
problem is easier than finding a feasible solution to the original problem, it is still
NP-hard to find an optimal solution. Instead, the Fast-Forward planner [28, 29]
uses the inadmissible Fast-Forward heuristic hFF(s) which computes an approxi-
mation to the optimal relaxed solution. The Fast-Forward heuristic is described
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Algorithm 7 The Fast-Forward heuristic hFF(s)

1: ŝ0 = s;A0 = ∅
2: k = 0
3: while g ⊈ ŝk do
4: k = k + 1
5: Ak = {a|pre(a) ⊆ ŝk−1}
6: ŝk = ŝk−1 ∪

⋃
a∈Ak

eff+(a)
7: if ŝk = ŝk+1 then
8: return∞
9: end if

10: end while
11: ĝk = g
12: h = 0
13: while k > 0 do
14: choose a minimal set âk ⊆ Ak such that ĝk ⊆ ŝk−1 ∪

⋃
a∈âk eff+(a)

15: ĝk−1 = {gi ∈ ĝk |gi <
⋃

a∈âk eff+(a)} ∪
⋃

a∈âk pre(a)
16: h = h +

∑
a∈âk cost(a)

17: end while
18: return h

in Algorithm 7. Starting from the current state s it constructs a sequence of re-
laxed states ŝk and sets of actions Ak , with ŝ0 = s and A0 = ∅. The next set of
actions Ak+1 is constructed as all (relaxed) actions that are applicable in the re-
laxed state ŝk (line 5), and the next relaxed state ŝk+1 is then constructed as the
union of ŝk and the (positive) effects of the actions in Ak+1 (line 6). Once a re-
laxed state has been reached that contains the set of goal literals g, a relaxed plan
is extracted in the form a subset of each set of actions (lines 14–15). The total cost
of these actions is taken as the heuristic value. As there is no guarantee that the
selection of which actions to include is optimal, the heuristic is inadmissible.

3.4.3 Landmark heuristics

The idea behind landmark heuristics is to find and exploit so-called landmarks.
A landmark for a given planning problem is a fact (or a disjunction of facts) that
must hold in some state along every plan that solves the problem [30]. There
are also action landmarks: an action is an action landmark if it is included in
every plan that solves the planning problem [34, 64]. Finding landmarks is typi-
cally PSPACE-complete [55], but for many cases there exist efficient methods for
finding and ordering landmarks [30, 37, 57].

Once landmarks have been extracted and ordered they can be used to con-
struct heuristics. The LAMA planner [57] uses an inadmissible pseudo-heuristic
that estimates the distance to the goal by counting the number of landmarks
that are yet to be achieved. The estimate depends both on the current state
s and the path taken from sinit to s. Building upon this, an admissible (still
path-dependent) heuristic is constructed in [34] and used in the optimal plan-
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ner BJOLP [12].

3.4.4 Pattern databases

Pattern database heuristics [7, 15] are based on relaxations. The underlying idea
is to relax the planning problem by using an abstraction to transform the plan-
ning problem P = (Σ, s0, g) to another planning problem P ′ = (Σ′ , s′0, g

′) that is
smaller and simpler to solve. For a given pattern p, which is a selection of ground
facts, the abstracted problem is created by ignoring all facts that are not in the
pattern. A state s is abstracted to s′ = s ∩ p, and an action a is abstracted to an
action a′ with preconditions pre(a′) = pre(a) ∩p and effects eff(a′) = eff(a) ∩p. If
π = (a1, . . . , an) is a solution to P , then π′ = (a′1, . . . , a

′
n) is a solution to P ′ , so the

cost of an optimal solution to P ′ is an admissible heuristic for P . The heuristic
values are computed by solving the abstracted planning problem for all possible
abstract states in advance and storing the resulting values in a so-called pattern
database which acts as a lookup table.

As pattern databases require solving a planning problem to optimality for
each possible abstract state, it is necessary to keep the number of possible states
low, which limits the informativeness of the heuristic [27]. One possibility to
alleviate this is to use independent patterns and use an additive heuristic that is
the sum of several such heuristic functions [35], or to consider a generalization
of pattern databases called merge-and-shrink [27] which consider a larger class
of abstractions.
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Motion planning

This chapter gives an introduction to the topic of motion planning, with a particu-
lar focus on path planning for nonlinear and nonholonomic systems. The optimal
path-planning problem is defined, and sampling-based motion-planning meth-
ods in general are presented, with lattice-based motion planning being described
in more detail.

4.1 Preliminaries

Motion planning is the problem of finding a feasible path or trajectory for a sys-
tem from an initial state to a terminal state in an environment that may contain
obstacles. It is often desirable that the path or trajectory, in addition to being fea-
sible, should minimize some performance measure such as path length, time or
energy consumption. The problem of finding such a path or trajectory is referred
to as optimal motion planning.

Motion planning can refer to either path planning or trajectory planning. A
path describes the geometric motion in space and is represented as x(s), s ∈ [0, sg ]
where s is the path parameter representing progression along the path. A trajec-
tory x(s(t)) is a time-parametrized path, i.e., a path with a velocity profile. A
common method for trajectory planning is to first solve a path-planning problem
and then solve a velocity-planning problem [43]. In the remainder of this chap-
ter, focus therefore lies on path planning, although the definitions and methods
mentioned can be used for trajectory planning as well.

The difficulty of motion planning depends on the properties of the system.
In many cases, it is not possible to solve a motion-planning problem analytically
and numerical methods are used instead [43]. There are, however, some excep-
tions, such as finding the shortest path in an obstacle-free environment for a
Dubins car [14] or a Reeds-Shepp car [56]. It is also more challenging for non-
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holonomic systems than for holonomic systems [51], and more challenging for
systems that are not differentially flat, i.e., systems where there is no output such
that all states and inputs can be described using the output and a finite number
of its derivatives [3]. This chapter focuses on methods for nonholomic systems
that are not necessarily differentially flat. An overview of such methods can be
found in [43, 51].

4.2 Problem formulation

Consider a continuous-time (nonlinear) system in the form

ẋ(s) = f(x(s),u(s), q(s)), x(0) = xinit (4.1)

where the parameter s denotes the length of the path travelled by the system,
x(s) ∈ Rn denotes the system state, u(s) ∈ Rm denotes the control input of the
system, q(s) is the mode of the system, and xinit is the initial state of the system
at path length s = 0. Some systems have only a single mode, while other systems
may have several different modes, such as, e.g., forward and reverse motion. The
system mode is subject to the constraint

q ∈ Q (4.2)

where Q is the set of possible system modes. The state and control input of the
system are subject to the constraints

x ∈ X ⊆ Rn, u ∈ U ⊆ Rm (4.3)

where X and U describe the physical constraints on the state and input, respec-
tively. In addition to the physical constraints, there are additional constraints
arising from obstacles in the environment. Denote the region occupied by obsta-
cles with Xobst. The free space is then defined as Xfree = X\Xobst.

The optimal path-planning problem can be defined as the problem of finding
a feasible path (x( · ),u( · ), q( · )) from an initial state xinit ∈ Xfree to a terminal state
xterm ∈ Xfree such that a performance measure J is minimized. This can be posed
as the following continuous-time optimal control problem (ocp):

minimize
x( · ),u( · ),q( · ),Sf

J =

Sf∫
0

l(x(s),u(s), q(s)) ds

subject to x(0) = xinit, x(Sf ) = xterm

ẋ(s) = f(x(s),u(s), q(s)), s ∈ [0, Sf ]

x(s) ∈ Xfree, s ∈ [0, Sf ]

u(s) ∈ U , s ∈ [0, Sf ]

q(s) ∈ Q, s ∈ [0, Sf ],

(4.4)

where l(x,u, q) > 0 is a performance measure. With the choice l(x,u, q) = 1 the
resulting problem is that of finding a shortest path.
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Algorithm 8 Single-query sampling-based motion planning.

1: Initialization: Let G = (V , E) be a directed graph where E is empty and V
contains at least xinit and possibly xterm.

2: Vertex selection: select a vertex x ∈ V for expansion.
3: Extension: Select a configuration xnew ∈ Xfree and attempt to compute a feasi-

ble and collision-free path e from x to xnew. If this fails, return to Step 2.
4: Insertion: If xnew < V , insert xnew in V . Insert e in E.
5: Solution check: Determine if a solution is found, and mark it as a candidate

solution.
6: Termination check: If a termination condition is satisfied, return the solution

with the lowest cost or return failure if there is no candidate solution. Other-
wise, return to Step 2.

4.3 Sampling-based motion planning

A commonly used group of motion planning methods is sampling-based motion
planning. The main idea of these methods is to sample the free configuration
space and incrementally construct a directed graph G = (V , E) where the vertices
correspond to configurations in the free configuration space, and the edges corre-
spond to feasible and collision-free motions between configurations.

Sampling-based motion planning methods can be either single-query, where
motion planning is performed for only one pair of initial and terminal state
(xinit, xterm) for each obstacle set, or multiple-query where motion planning is
performed multiple times with varying (xinit, xterm) for each obstacle set.

A general single-query sampling-based motion-planning algorithm is given in
Algorithm 8. The key points to determine are how to select a vertex for expansion
(line 2), how to select a configuration to extend to, as well as how to compute a
feasible and collision-free path from the vertex to the configuration (line 3).

The vertex selection can be done either deterministically or randomly. Strate-
gies based on random sampling often draw a random sample xrand ∈ Xfree and
select the nearest vertex. This is the strategy used by the Rapidly-exploring Ran-
dom Tree (rrt) algorithm [44], that many sampling-based motion-planning algo-
rithms are based on.

The extension step can be done in several different ways. One approach is to
choose xnew first (possibly based on xrand if applicable) and compute a feasible
and collision-free path from x to xnew which is a motion-planning problem in
itself, though easier to solve since the distance between x and xnew is typically
small. Often, a path that is feasible with respect to the motion constraints is
computed first and then checked to see if it is collision-free. Such a path can be
found by solving an ocp numerically, or in some special cases analytically [43].
It is also possible to ignore the motion constraints and choose the path to be a
straight line, in which case the solution path will be a sequence of waypoints.
A separate smoothing step is then added after a path has been found where the
straight lines are smoothed into feasible curves. Another approach to the exten-
sion step is to use a closed-loop controller to steer the system from x towards the
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Algorithm 9 A general algorithm for roadmap construction.

1: Let G = (V , E) be a directed graph where E is empty and V consists of n
sampled points in Xfree

2: for v ∈ V do
3: for n ∈ neighbours(v) do
4: Attempt to compute a feasible and collision-free path e from v to n. If

this fails, continue.
5: Insert e in E.
6: end for
7: end for

next state, either until it is sufficiently close to the desired state, or for a given
amount of time after which xnew is taken as the resulting state [41]. This does not
allow for connecting states exactly, but can be computationally less demanding
than solving an ocp in every step.

An extension to rrt is rrt* [32], which has asymptotic optimality guarantees.
In rrt* a rewiring step is added, where vertices within a neighborhood of the
newly-added vertex xnew are considered and edges can be rewired between this
set of vertices and xnew if this results in a lower total cost of the path from xinit. It
is possible to use rrt* while considering motion constraints [33]. However, as the
rewiring step requires finding a path that connects states exactly, it is necessary
to solve an ocp rather than using closed-loop steering, which is computationally
demanding.

For multi-query planning it is common to divide the motion planning into
two phases: an offline preprocessing phase in which the graph G is constructed,
and an online query phase in which a path between the given (xinit, xterm) is com-
puted. Many such methods are based on the probabilistic roadmap (prm) method
introduced in [36]. A general algorithm for constructing the so-called roadmap
G is shown in Algorithm 9. To construct the roadmap, it is necessary to be able
to sample points in Xfree. A function neighbours(v) that returns a set of neigh-
bour vertices is also required. As in the single-query case, it is also necessary to
be able to compute feasible and collision-free paths between the sampled points.
The same methods that are used in the single-query case can be used here as well.

In the query phase, the initial and terminal states xinit and xterm are added as
vertices to the graph, and connected to the other vertices by following line 3–6 in
Algorithm 9 for v = xinit, xterm. After that, graph search methods such as those
described in Chapter 2 can be used to find a path from xinit to xterm in G.

4.4 Lattice-based motion planning

Lattice-based motion planning can be seen as a special case of sampling-based
motion planning where deterministic sampling is used [51]. The underlying idea
is to transform the optimal motion-planning problem in (4.4) to a discrete graph-
search problem. This is done by constructing a lattice structure consisting of a
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1
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Figure 4.1: An illustration of the steps performed to construct the state-
lattice. (1) Discretize the search space, (2) select which states to connect, (3)
solve the ocps to connect the states.

discrete set of states together with a discrete set of motion segments that detail
allowed motions between the states in the lattice. Such a lattice can be generated
using either a control-sampling approach or a state-lattice approach [3]. This
thesis will consider only the state-lattice approach in which the state-space is dis-
cretized and states in the discretized state-space are connected by solving ocps.

4.4.1 Constructing the state-lattice

The state-lattice construction is illustrated in Figure 4.1 and is performed offline
in three steps [54]:

1. Discretization of the state space to obtain the discrete search space Xd .

2. Selection of which discrete states to connect.

3. Computation of the motion primitive set by solving the ocps defined by the
previous step.

In the first step, the state space is discretized to obtain Xd , which requires
selecting the fidelity of the state space that should be used.
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The second step is to select which pairs of states in Xd that should be con-
nected. If the system is able to operate in different modes, the choice of which
mode q ∈ Q to operate in can also be included in this step. If the system is posi-
tion invariant, as is the case for many systems, it is sufficient to compute motion
primitives from states that are positioned in the origin as these motion primitives
can then be translated [54]. If the system is orientation invariant, the number of
motion primitives that must be computed can be further reduced by mirroring
and/or rotating motion primitives from a few initial headings [53].

In the last step, the motion primitive set P is constructed by computing the
motion primitives that are required in order to connect the pairs of states that
were chosen in the second step. This can be done using numerical optimal control
[3, 47, 54]. A motion primitive m ∈ P is in this thesis defined as

m = (xm(s),um(s), qm) ∈ X × U × Q, s ∈ [0, Sm], (4.5)

and represents a feasible path from an initial state xm(0) = xstart ∈ Xd to a ter-
minal state xm(Sm) = xfinal ∈ Xd , the control inputs um(s) required to move the
system along the path, and the mode qm of the system during the motion. The
mode qm is assumed to have been chosen during the second step. For each com-
bination of (xstart, xfinal, qm) as determined by the second step, the corresponding
motion primitive is computed by solving the ocp

minimize
x( · ),u( · ),Sf

J =

Sf∫
0

l(x(s),u(s), qm) ds

subject to x(0) = xstart, x(Sf ) = xfinal

ẋ(s) = f(x(s),u(s), qm), s ∈ [0, Sf ]

x(s) ∈ X , s ∈ [0, Sf ]

u(s) ∈ U , s ∈ [0, Sf ]

(4.6)

where l(x,u, q) is a cost function. A common choice for the cost function is

l(x(s),u(s), q) = 1 + ||x(s)||2Q(q) + ||u(s)||2R(q) (4.7)

where the weight matrices Q(q) ∈ Rn×n and R(q) ∈ Rm×m are used to give a trade-
off between path length and other measures such as the smoothness of the motion
[3, 47]. The weight matrices can have different values for different system modes,
as in [4] where different values of Q(q) are used for forward and reverse motion
for a tractor-trailer in order to avoid large joint angles when reversing. An exam-
ple of a resulting set of motion primitives for a car-like vehicle is shown in Figure
4.2.

4.4.2 Planning

After the state-lattice has been constructed offline, it can be used to simplify the
motion-planning problem (4.4). Let the state transition function fm(x, m) define
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Figure 4.2: Example of a set of motion primitives for a car-like vehicle. Each
colour corresponds to a different initial heading of the vehicle.

the resulting state when the motion primitive m is applied starting from the state
x. The path-planning problem can now be reduced to

minimize
{mk }Nk=1,N

N∑

k=1

Lm(mk)

subject to x1 = xinit, xN+1 = xterm

xk+1 = fm(xk , mk), k = 1, . . . , N

mk ∈ P , k = 1, . . . , N

τ(xk , mk, s) ∈ Xfree, k = 1, . . . , N, s ∈ [0, Smk
]

(4.8)

where τ(xk , mk, s) represents the path parametrized by s that is obtained when
the motion primitive mk is applied starting from the state xk , and

Lm(m) =

Sm∫

0

l(xm(s),um(s), qm) ds. (4.9)

The resulting problem in (4.8) can be solved using graph-search methods de-
scribed in Chapter 2, such as A*.

One possible choice of heuristic is to use a heuristic lookup table (hlut) [38].
The hlut is a pre-computed table of heuristic values. Typically, the optimal cost-



32 4 Motion planning

10 15 20 25 30 35 40 45 50

x [m]

-30

-25

-20

-15

-10

-5

0

5

10

y 
[m

]
Example of improving the solution from a lattice-based planner
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Figure 4.3: Example of a path for a car-like vehicle computed by a lattice-
based motion planner, and the resulting improved path. Black shapes denote
obstacles.

to-go value in free space is used as the heuristic value. This can be computed by
solving the motion-planning problem for each combination of xinit, xterm ∈ Xd .
To reduce the number of motion-planning problems to solve, a length ρ is often
chosen and only motion-planning problems with xinit positioned at the origin
and xterm ∈ Xd , such that xterm is within a square centred at the origin with side
length ρ are computed. By using a motion planner based on Dijkstra’s rather
than A*, it is possible to compute many heuristic values at once, increasing the
efficiency of the computation.

4.5 Improvement using optimal control

The solutions computed by lattice-based motion-planning algorithms as described
in Section 4.4 often suffer from discretization artefacts [1, 50]. It is therefore of-
ten desirable to smooth the solution in order to obtain smooth and continuously
differentiable paths [3].

In [4], a method for using numerical optimal control to improve upon a so-
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lution that has been computed by a lattice-based motion planner is presented.
Unlike traditional smoothing, which aims only to produce smooth paths, this im-
provement method also improves the path with respect to the objective function
value. Given a solution in the form of a sequence of motion primitives {mk}Mk=1,
the system mode sequence {qk}Mk=1 is fixed. This results in the ocp:

minimize
{xk( · ),uk( · ),Sk }Mk=1

Jimp =
M∑
k=1

Sk∫
0

l(x(s),u(s), qk) ds

subject to x1(0) = xinit, xM (SM ) = xterm

xk(0) = xk−1(Sk−1) k = 2, . . . , M

ẋk(s) = f(xk(s),uk(s), qk), s ∈ [0, Sk]

xk(s) ∈ Xfree, s ∈ [0, Sk]

uk(s) ∈ U , s ∈ [0, Sk].

(4.10)

This problem can be solved using numerical optimal control. For an overview of
numerical optimal control methods, see [3, 10]. Nonlinear programming (nlp)
solvers such as IPOPT [62] or WORHP [6] can be used to solve the problem to
local optimality. Such solvers typically need to be warm-started with a good ini-
tial solution, where a good solution means good both with respect to feasibility
and objective function value [2]. According to the method in [4], the solver is
warm-started with the solution obtained from the lattice-based motion planner,
which is guaranteed to be feasible. The improvement step is also tightly inte-
grated with the lattice-based motion planner as the same cost function is used
both for the primitive generation and the improvement step. An example of a
path for a car-like vehicle generated by a lattice-based motion planner together
with the resulting path after an improvement step are shown in Figure 4.3.
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Task and motion planning

This chapter introduces the integrated task and motion planning (tamp) problem
and gives a brief presentation of the methods that have been proposed in the
literature.

5.1 Problem formulation

The field of integrated task and motion planning extends the fields of task plan-
ning and motion planning as described in Chapter 3 and Chapter 4, respectively.
For an overview, see [19].

Task and motion planning is an extension of task planning that considers geo-
metric and kinematic constraints as well. In task planning, all action parameters
are discrete, but in task and motion planning the action parameters are allowed
to be continuous as well. This also means that in addition to the preconditions
and effects, actions may also include additional constraints on the continuous
parameters [19]. As an example, consider a move action, which in a discrete task-
planning problem might be defined as move(robot, location1, location2 ), where
location1 and location2 are discrete variables. In a tamp problem the move ac-
tion might instead be move(robot, x1, x2, τ) where x1, x2 are continuous param-
eters for the state of the robot, and τ is a continuous parameter for the path or
trajectory to take between x1 and x2. Constraints on the continuous parameters
could be that the path or trajectory τ is feasible and collision-free.

The input to a tamp problem is a state transition system Σ = (S ,A, γ) to-
gether with a continuous-time model of the system as in (4.1), the initial discrete
and continuous states of the system (sinit, xinit) and the set of discrete and con-
tinuous goal states Sg , Xg . A solution plan is a sequence of actions a0, . . . , aN−1
with corresponding action parameters θ0, . . . , θN−1 such that s0 = sinit, x0 = xinit,
γ(sk , xk , ak , θk) = (sk+1, xk+1) for all k = 0, . . . , N − 1 and sN ∈ Sg , xN ∈ Xg . Clearly,
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Algorithm 10 A general sequencing first algorithm.

1: Compute plan skeleton.
2: Attempt to find a valid parameter configuration. If fail, return to Step 1.
3: Return plan

this a more challenging problem than the task-planning problem as it requires
finding feasible values of the continuous action parameters as well, requiring the
solution of motion-planning problems.

5.2 TAMP approaches

Many different approaches to tamp have been proposed. For a more thorough
overview of existing methods, see [19, 22]. In general, methods can be grouped
into one of three classes of methods depending on how they combine the search
for an action sequence with the search for valid parameter configurations: se-
quencing first, satisfaction first or interleaved [19].

Sequencing first

One approach is to use sequencing first. A general algorithm for this group of
methods is shown in Algorithm 10. First, a so-called plan skeleton is computed,
which is an action sequence where the continuous parameters are free variables.
These free variables are constrained, both by constraints that are part of each ac-
tion, as well as by additional constraints that are required for the plan skeleton
to achieve the desired goal. Once a plan skeleton is computed, the algorithm at-
tempts to find a valid parameter configuration. If no such configuration exists,
the algorithm computes a new plan skeleton. To make sure that the new plan
skeleton is different from previously computed plan skeletons it is necessary to be
able to backtrack or update the task-planning problem as done in [58]. Other se-
quencing first approaches include the task-motion kit [9] and PDDLStream [18].

Satisfaction first

The second approach is satisfaction first. A general algorithm for such methods
is shown in Algorithm 11. Algorithms that use this strategy first sample param-
eter values that satisfy constraints, and then attempt to find an action sequence
using those sampled values that solves the problem. If no such action value is
found, new parameter values are sampled. This approach can be more efficient
than sequencing first if sampling is efficient, action sequencing can be performed
without much overhead, and/or sampled values are unlikely to satisfy critical
constraints [19]. An example of one such algorithm is FFRob [17].



5.3 Optimal task and motion planning 37

Algorithm 11 A general satisfaction first algorithm.

1: Sample new values that satisfy constraints.
2: Attempt to find an action sequence using the sampled parameter values. If

fail, return to Step 1.
3: Return plan

Interleaved

The last group of algorithms interleaves the search for an action sequence with
the search for valid parameter configurations. This can be done in various ways.

One approach is to sample some variable values, e.g., robot configurations and
object poses, and leave others, e.g., paths and trajectories, as free variables during
the search for an action sequence [19]. Examples of this include the semantic
attachments approach [13].

Another approach is that in [59], where a sampling-based motion-planning
algorithm is used to plan in a space that includes both the geometric and the
symbolic, i.e., continuous and discrete, states of the system.

5.3 Optimal task and motion planning

Most of the proposed tamp methods consider only the problem of finding a fea-
sible plan, which is a difficult problem in itself, but there have also been some re-
search effort directed toward optimal task and motion planning, where the goal
is to find a plan that minimizes some performance measure such as path length,
or time duration.

One of the first works to consider the optimal task and motion planning prob-
lem was [63], where the problem is formulated as a three-level optimization prob-
lem. The top-level problem is formulated as a travelling salesman problem, and
the lower-level planners are used to iteratively refine and improve plans, passing
the resulting costs upward.

The work in [61] considers a generalization of the tamp problem called logic-
geometric programming, where the goal is to optimize a cost function over the fi-
nal geometric state, such as placing an object as high as possible over the ground.

In [60] an almost-surely asymptotically optimal planner is presented. The
proposed planner integrates a symbolic planner based on Satisfiability Modulo
Theories with sampling-based motion planning.
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Concluding remarks

This chapter concludes the first part of this thesis. Here, the main contributions
of the publications in Part II are summarized, and possible directions for future
research are discussed.

6.1 Summary of contributions

In Paper A, a task and motion-planning problem with applications to open-pit
mine drilling has been investigated. The problem consists of determining the
order in which to drill holes at given locations, as well as finding feasible paths
for the drill rig that do not pass over drilled holes. The problem is formulated as
a variation of the travelling salesman problem that includes dynamic obstacles.
A planner consisting of two nested graph-search planners has been proposed to
solve the problem, where the top-level planner solves the ordering problem, and
the low-level planner solves motion planning problems. Several different heuris-
tics, admissible as well as inadmissible, have been proposed and successfully eval-
uated.

In Paper B, a rearrangement problem in which a tractor is tasked with re-
arranging a set of trailers has been investigated. A combined task and motion
planner has been proposed that combines an LPA*-based task planner with a
lattice-based motion planner to iteratively compute and update action costs. Both
planners are based on A* search with an admissible heuristic, and the resulting
planner has been shown to be resolution complete as well as resolution optimal.
The proposed planner also uses ideas from branch and bound, and maintains
upper and lower bounds on motion plan costs that are used to prune the search,
which has been shown in the paper to increase the efficiency of the search without
sacrificing optimality.

In Paper C, a method for improving task and motion plans for rearrangement
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problems in which a manipulator rearranges moveable objects was proposed.
The method takes as input a feasible solution, which can be computed using a
method such as the one from Paper B, and improves the plan by formulating
and solving optimal control problems. Two different approaches were proposed
and investigated: one that formulates and solves one larger ocp, and one that
decomposes the optimal control problem into a sequence of smaller ocps and
optimizes parts of the solution at a time. The second approach was shown to
maintain a feasible solution to the full problem at all times and that the quality
of the solution is non-decreasing. Numerical experiments were conducted that
indicate that this second approach can reduce the computation time compared to
the first approach while still resulting in solutions of similar quality.

6.2 Future work

There are several possible interesting directions for future research. Some of
these are presented here.

Domain independency

The planner that was proposed in Paper B is somewhat tailored to the rearrange-
ment problem for tractor-trailers. It is fairly straightforward to apply it to other
rearrangement problems, provided that the motion planner that is used has the
same properties as the motion planner that was used, i.e., it is resolution com-
plete and resolution optimal, and an underestimate of the cost of the plan can be
extracted at all times. One possible direction of future research could therefore
be to adapt the planner so that it can be used for other domains as well. This
could include adding the possibility to solve problems specified using Planning
Domain Definition Language (pddl) [48], which would make it necessary to ex-
tend pddl so as to be able to specify motion models and other constraints needed
to define tamp problems.

Heuristics

An interesting line of research is to investigate what heuristics, whether problem
specific or domain independent, can be used to guide a search for a joint task and
motion plan. Several domain-independent heuristics for task planning have been
proposed in literature, and are presented in Section 3.4. However, many suffer
from drawbacks such as not being admissible or being difficult to compute. They
also assume that the cost of an action is known in advance and typically also that
the cost depends only on the action and not on other aspects. This does not al-
ways hold for the task and motion planning setting, where the cost of a motion
plan depends on the environment which depends on previous actions, and com-
puting the costs of all actions might be intractable. In Paper B a problem-specific
heuristic is used that uses the heuristic function used by the motion planner. It
would be interesting to generalize this in order to find heuristics, preferably do-
main independent, that work well in a tamp setting.
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Mixed-integer nonlinear programming (MINLP)

Task and motion planning shows some similarities to mixed-integer nonlinear
programming (minlp) as it contains both discrete aspects (what actions to take
and in which order), and continuous aspects (what continuous path to take). In
[40] the tamp problem is formulated as a mixed-integer linear programming
(milp) problem and solved using B&B techniques. However, this requires lin-
ear motion dynamics which is not always realistic. A possible line of research is
therefore to explore how tamp can be formulated and solved as an minlp prob-
lem, both when solved from scratch as in Paper B, or when optimizing a plan that
has already been found as in Paper C. Future work could also investigate if heuris-
tics that have been successful for solving minlp problems can also be applied to
tamp problems.

Improving efficiency

While the approach in Paper C that is inspired by finite-horizon optimal control
reduces the computation time required compared to the first proposed method,
there is still room for improvement. In Paper C, two different methods for han-
dling collision-avoidance constraints for movable objects were investigated: rep-
resenting obstacles with circles, and finding safety envelopes in the form of con-
vex polygons. While the safety envelopes could improve the computation time,
they reduced the performance due to being too conservative. Alternative meth-
ods could be investigated in order to find a method that speeds up the solution
time without sacrificing performance. It could also be of interest to investigate
if there are other ways to pose the optimization problem or other solvers to use
that could make the methods in Paper C more efficient.
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