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Abstract

Localization is a fundamental part of achieving fully autonomous vehicles. A
localization system needs to constantly provide accurate information about the
position of the vehicle and failure could lead to catastrophic consequences. Global
navigation satellite systems (GNSS) can supply accurate positional measurements
but are susceptible to disturbances and outages in environments such as indoors,
in tunnels, or nearby tall buildings. A common method called simultaneous local-
ization and mapping (SLAM) creates a spatial map and simultaneously determines
the position of a robot or vehicle. Utilizing different sensors for localization can
increase the accuracy and robustness of such a system if used correctly. This the-
sis uses a graph-based version of SLAM called graph SLAM which stores previous
measurements in a factor graph, making it possible to adjust the trajectory and
map as new information is gained. The best position state estimation is gained by
optimizing the graph representing the log-likelihood of the data. To treat GNSS
outliers in a graph SLAM system, robust optimization techniques can be used,
and this thesis investigates two techniques called realizing, reversing, recovering
(RRR), and dynamic covariance scaling (DCS). High-end GNSS and Lidar sensors
are used to gather a data set on a suburban public road. Information about the
position and orientation of the vehicle are inferred from the data set using graph
SLAM together with robust techniques in three different scenarios. The scenarios
contain disturbances called multipathing, Gaussian disturbances, and outages. A
parameter study examines the free parameters @ in DCS and the p-value in the
RRR method. The localization performance varies less when changing the free
parameter in RRR than DCS. The localization performance from RRR is consistent
for most values of p. DCS shows greater variation in the localization performance
for different values of @. In the tested cases, results conclude that @ should be
set to 2.5 for the most consistent localization across all states. RRR performed
best with a p-value set to 0.85. A lower value led to too many discarded mea-
surements which decreased performance. DCS outperforms RRR across the tested
scenarios but further testing is needed to determine whether RRR is better suited
for handling larger errors.
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Sammanfattning

Lokalisering dr en fundamental del i att uppna sjalvkorande fordon. Lokalise-
ringssytemets uppgift ar att kontinuerligt forse exakt information om fordonets
position och vid fel kan detta leda till katastrofala foljder. Global navigation sa-
tellite systems (GNSS) anvénds ofta i ett lokaliseringssystem for att uppnd exakta
positionsmatningar men i vissa miljoer sa som parkeringshus, tunnlar eller stor-
stdder kan storningar uppsta. Genom att forlita sig pa fler typer av sensorer kan
lokaliseringen bli mer noggrann och robust mot stornignar. En vanlig metod som
kan skatta ett fordons position och samtidigt skapa en karta 6ver omgivningen
ar simultaneous localization and mapping (SLAM). I detta examensarbete anviands
graph SLAM, en version an SLAM som utnyttjar en faktorgraf for att represen-
tera matviarden och sedan estimera position av fordonet. Robusta metoder kan
anvandas inom SLAM for hantering av felaktiga matningar i ett grafbaserat SLAM
natverk, och har undersoks tva metoder, realizing, reversing, recovering (RRR) och
dynamic covariance scaling (DCS). Data fran GNSS och Lidarsensorer av hog kva-
litet samlades in pa en offentlig védg i stadsmiljo. I tre olika scenarion berdknas
testfordonets position och orientering med graph SLAM tillsammans med de tva
robusta metoderna som undersoks. Scenarion utgor fall med olika typer av stor-
ningar som agerar pa GNSS matningarna. Storningarna ar av typerna multipath,
Gaussiskt brus, samt avbrott. DCS presterar battre jamfort med RRR under de tes-
ter som utforts. En parameterstudie har utforts som undersoker parametern @ i
DCS och p i RRR. Ndr @ varieras i DCS ger det en storre skillnad pa resultatet dn
ndr p varieras i RRR. Detta indikerar att det ar lattare att hantera och anvinda
RRR optimalt. Trots att DCS presterar battre an RRR i de testade fallen, kravs vida-
re undersokning for att besluta om RRR hanterar stora fel battre an DCS. De basta
installningarna visades vara 2,5 for @ i DCS och storre an 0,85 for p i RRR.






Acknowledgments

We would like to express our gratitude to the people involved with our work on
this thesis. Thank you, Bianca, Samuel, and Jimmy for offering your guidance
and help throughout all stages of the thesis process, and for providing innovative
ideas for us to expand upon. Your technical knowledge and expertise have also
been key to the completion of this thesis.

Also, we would like to thank our university supervisor Joel Nilsson for his engag-
ing discussions and excellent proofreading. And a thanks to our examiner Gustaf
Hendeby for valuable input and contributions towards improving our thesis.

Finally, we would like to thank our family and friends for their encouragement
and support during our academic studies.

Linkoping, 2023
Jesper Sundstrom and Alfred Astrom

vii






Contents

Notation xi
1 Introduction 1
1.1 Background .. ...... ... ... ... 1
1.2 Thesis Aim and Research Questions . . . . . ... ... ....... 3
1.3 Scientific Approach . . . ... ... ... .. . o o L 3
1.4 ThesisScope . . . . . ... . . .. 3
1.5 Contributions . . .. ... .. ... ... ... 0 0o L 4
1.6 Divisionof Labor . . ... .. ... ... ... . ... . ... 4
1.7 ThesisOutline . . . . ... ... ... ... . . o L. 5

2 Theory 7
2.1 Simultaneous Localization and Mapping . . . . .. ... ... ... 7
2.2 FactorGraphs . .. ... ... . ... .. .. ... .. .. . ..., 10

2.3 Graph-based SLAM . . .. .. ... ... 12
2.3.1 Optimization on a Manifold . . .. ... ... ........ 13

2.3.2 Nonlinear Graph Optimization Using Least-squares . ... 15

2.4 Robust optimization techniques . . . . . ... ... ... ... ... 17
2.4.1 Dynamic Covariance Scaling . . . . ... ........... 18

2.4.2 Realizing, Reversing, Recovering . . .. ... ... ... .. 19

2.5 Mathematical Operationson 3D Poses . . . .. .. ... ...... 22
2.5.1 Composition betweentwoposes. . . . . ... ... ..... 23

2.5.2 Inverseofapose. ... ... ... ... ... .. ... ... 23

26 Lidar . ... ... ... 24
2.7 Scanmatching . . ... ... .. ... . o o oo 24
2.8 GNSS . ..o 25
29 IMU . ..o 26

3 Method 27
3.1 Experimental Setup . . ... ... ... ... ... .. ... ... 27
3.1.1 Vehiclesetup. .. ... ... ... ... .. ... . 27

3.1.2 Software . .. ... ... .. ... 28

3.2 Lidar Odometry Estimation . .. ... ................ 29



Contents

3.2.1 Point cloud pre-processing . . . . ... ...
3.2.2 ScanMatching . . . ... ... ... oL
3.3 GNSS . . ..
3.4 Formulation of Optimization Problem
3.4.1 Relative Pose Constraints . . . . .. ... ..
3.4.2 Position Constraints. . . . . ... ......
3.5 Modeling of GNSS Disturbances . . . ... ... ..
3.5.1 Gaussian Disturbance. . . ... .. ... ..
3.5.2 Multipath Disturbance . . . . ... ... ..
4 Experiments
4.1 Evaluation .. .....................
411 GroundTruth .. ...............
4.1.2 ScaledResults . ... .............
4.2 DCS Free Parameter® . . .. ... .........
43 RRRPValue . ........ ... ... .....
4.4 Multipath Scenario . . ... ... ... .......
4.5 Modeled Scenarios. . . . . ... ... .. ... ..
4.5.1 Gaussian Disturbance. . ... ... .. ...
4.5.2 Multipath Disturbance . . . . ... ... ..
5 Discussion
51 Results . ... ... ... .. ... ... .. .....
5.1.1 Parameter Sensitivity . . . . ... ... ...
5.1.2 Localization . .. ... ... .........
51.3 Ground Truth ... ..............
5.1.4 Lidar Odometry . . . ... ..........
5.1.5 Mapaquality .. ... .. ... ........
52 Method ... ... ... ... ... ... .. . ... .
6 Conclusions and further work
6.1 Conclusions . ... .. ................
6.2 FurtherWork. . ... .................

Bibliography



Notation

ACRONYMS AND ABBREVIATIONS

Abbreviation

Definition

SLAM
GNSS
Lidar
Radar
SC
DCS
IMU
INS
FoV
ToF
RMSE
SRMSE
PCL
UTM

Simultaneous Localization And Mapping
Global Navigation Satellite System
Light Detection and Ranging
Radio Detection and Ranging
Switch Constraint

Dynamic Scaling Covariance
Internal Measurement Unit
Inertial Navigation System

Field of View

Time of Flight

Root Mean Square Error

Scaled Root Mean Square Error
Point Cloud Library

Universal Transverse Mercator

xi






Introduction

This introductory chapter gives a brief background of the localization problem
for automated vehicles. Followed by the aim, research questions, scientific ap-
proach, scope, and contributions for this thesis.

1.1 Background

As automated vehicles make their way into the transportation sector the require-
ments for safety are very high. Many systems depend upon accurate information
of the vehicle position, or localization, for example, perception, path planning,
and motion control. Erroneous localization propagates to these systems impair-
ing performance and causing safety risks. It is also of high importance that the
vehicle is aware of its surroundings in order to navigate the world. Simultaneous
localization and mapping (SLAM) is a method that localizes the vehicle and at the
same time creates a spatial map using measurements from the surroundings.

In conditions such as indoors, in cities with tall buildings, or in tunnels, global
navigation satellite systems (GNSS) can fail to consistently provide the needed local-
ization accuracy. In the worst case, reception is lost and GNSS cannot provide any
information at all. GNSS signals can bounce on nearby structures before being
registered by the receiving sensor, which means the signal has traveled further,
giving an incorrect range to the satellite. This effect is called multipath, adding a
bias to the position measurement.

The unreliability of GNSS in these conditions necessitates other localization meth-
ods of the vehicle, especially in more complex and urban environments. Light
Detection and Ranging (Lidar) sensors scan the environment and measures the
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range from the sensor to visible objects in the surrounding. The result is a high-
resolution 3D scan in the form of a point cloud which can be used for odometry
estimation through scan matching. Lidar odometry is a promising complement to
GNSS in the search for robust localization since it can provide accurate motion es-
timation based on the environment. Furthermore, lidar is already a widely used
sensor for autonomous vehicles for perception and object detection. The draw-
back of lidar odometry is the accumulation of small estimation errors leading to
drift over time if no adjustments are made.

Variations of SLAM exist, with classic probabilistic methods utilizing Kalman
filters and particle filters for determining the most likely solution. One SLAM
method that has gained increased popularity in the last two decades is graph
SLAM which models the problem as a factor graph that is solved using nonlinear
least squares methods [1]. Studies have been conducted regarding methods on
how to handle outliers in graph SLAM. A method for handling incorrect loop clo-
sure detections which is when a previously visited location is detected, called
Switchable Constraints (SC) adds an additional variable for disabling measure-
ments [2]. Agarwal et al. [3] introduces a method called Dynamic Covariance
Scaling (DCS) which scales the covariance of measurements that creates large er-
rors in the solution. Another approach for loop closures called Realizing, Revers-
ing, Recovering (RRR) uses a consistency-based verification step to determine if a
measurement is correct or faulty [4]. Other papers apply the same methods to
GNSs measurements where tightly coupled GNSS pseudorange measurements are
turned on or off by adding or removing them in the factor graph [5, 6].

Other papers have sought to compare and evaluate robust methods in the con-
text of loop closures and graph SLAM. Loop closure is an artificial measurement
based on place recognition along a traveled path in graph SLAM. Siinderhauf and
Protzel [7] compares three different approaches for robust graph SLAM which is
SC, max-mixtures (MM), and RRR for loop closure measurements. The conclu-
sion was that none of the methods worked perfectly for every scenario and that
more research on robust methods in factor graphs is necessary. Another compar-
ative study Latif et al. [8] further explores robust methods for graph SLAM and
includes the method DCS. It concludes that an important aspect of the robust
methods is how outliers are treated. MM and RRR make a binary decision by re-
moving measurements deemed as outliers based on statistical tests, while DCS
and SC continuously scales the weight of measurement in the final solution. They
argue that in the context of loop closures, the binary methods are better fitted if
the results from the graph SLAM are to be used for navigation.

RRR and DCS have been shown in previous studies as well performing and pop-
ular for reducing the effects of outliers. In this thesis RRR and DCS are studied
when applied to GNSS measurements in a graph SLAM system. The methods were
chosen as representatives of robust techniques using either binary or non-binary
decision-making.
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1.2 Thesis Aim and Research Questions

This thesis seeks to compare the methods RRR and DCS when applied on dis-
turbed GNSS measurements when combined with lidar measurements in a multi-
ple lidar sensor setup.

The questions that this thesis aims to answer are:

1. How can GNSS be combined with lidar to provide robust localization in the
presence of GNSS disturbances?

2. How does the localization performance of robust techniques in graph SLAM
compare in the presence of disturbances?

3. Are binary or non-binary robust techniques more suitable for GNSS mea-
surements in a graph SLAM system?

1.3 Scientific Approach

An open source graph SLAM framework is used in order to estimate the posi-
tion of a vehicle traveling on a public road in a suburban setting. The vehicle is
equipped with several sensors such as lidar, radar, and GNSS receivers and has
a dedicated navigation system. The collected data is used in three scenarios in
which GNSS struggles to provide accurate localization. The first scenario consists
of a section from the data set where multipath disturbances affects one receiver
in the altitudinal direction. The other two scenarios consist of a different sec-
tion of the data set with artificially added disturbances and an outage in order
to compare the resilience of robust optimization techniques with different noise
characteristics. The two different disturbances are multipath in the longitudinal
and lateral directions and Gaussian noise. These disturbances are added before
and after the outage to simulate entering and exiting a tunnel.

A performance baseline is established with the graph SLAM framework for all
scenarios, and the robust optimization techniques are evaluated in relation to the
baseline. The already existing internal navigation system is used as ground truth.

The performance of the robust methods RRR and DCS are assessed on the localiza-
tion performance when applied in the back end of the graph SLAM system. The
evaluated parameters are the position and orientation of the test vehicle.

1.4 Thesis Scope

The goal is to investigate robust optimization techniques using graph SLAM in
a realistic setting. A complete graph SLAM system is used in order to examine
the performance and robust methods that are applied in the optimization part of
graph SLAM.
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The two methods chosen for comparison in this thesis are RRR and DCS. Although
there are many more methods and approaches to this problem they are disre-
garded due to time limitations.

Mapping will be disregarded as an evaluation parameter. A map exists in the
shape of point cloud data but due to the lack of ground truth data, this is pur-
posely excluded in this investigation.

The front end which is responsible for data processing and scan matching is kept
constant while investigating the different robust optimization methods. A better
performing front end would improve the overall localization performance but
how the front end performance impacts localization is left outside the scope of
this report.

1.5 Contributions

The contribution of this thesis is how lidar odometry can be used in conjunction
with GNSS in the case of unreliable GNSS measurements. It adds to the literature
on robust optimization methodology by providing an evaluation using a com-
plete system using real world data collected on a public road.

The thesis contributes knowledge about how robust methods perform in a larger
system utilizing several different sensors, such as the four lidar setup and a dual
GNSS receiver. A contribution is also made by comparing robust methods when
using GNSS measurements added as position observations, which is less common
then the pseduorange observation approach for the graph SLAM context.

1.6 Division of Labor

Throughout the thesis work, both authors have contributed important work to an-
swer the research questions. The work has been divided between the two authors
in the following way.

Astrom mainly focused on the implementation of the Realising, Reversing, Re-
covering algorithm and the lidar odometry estimation together with point cloud
deskewing. In addition, he also did the modeling of the tunnel scenario.

Sundstrom mainly focused on Dynamic Covariance Scaling and the implementa-
tion to incorporate GNSS measurements into the SLAM framework. Further the
evaluation of the methods performance in the scenario with multipath GNSS mea-
surements.

There was a large amount of work needed to get a properly functioning graph
SLAM framework running together with the data set used, this was done through
collaboration from both authors.
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1.7 Thesis Outline

In Chapter 2 the theory and concepts relevant for understanding the methods
employed are presented. First, the general theory for simultaneous localization
and mapping is explained and is followed by how the problem is formulated
using factor graphs. The theory of robust optimization techniques is explained
and is then followed by some theory about sensors.

Chapter 3 describes the experimental setup used for collecting measurements
and then how the measurements are used to generate constraints that are used in
the optimization problem formulation. This section also describes modeling of
GNsS disturbances which are used for evaluation.

The experiments are presented in Chapter 4, first the evaluation metrics are in-
troduced. The experiments are conducted with three scenarios, one scenario with
disturbances found in the GNSS measurements and two scenarios with modeled
GNsS disturbances. A parameter sweep for the two evaluated methods is con-
ducted followed by experiments in each scenario where the state estimation is
compared to a ground truth INS system.

Chapter 5 discusses the results from the experiments in Chapter 4. The discus-
sion covers parameter sensitivity, localization performance and the method used.
Conclusions from the thesis are presented Chapter 6 along with suggestions for
further work.






Theory

This chapter presents the SLAM problem and the theory used for evaluating ro-
bust methods within graph SLAM. The first section introduces and formulates the
SLAM problem. It is followed by a description of factor graphs and how graph
SLAM utilizes factor graphs to solve the SLAM problem. The theory used for op-
timizing the graph in order to retrieve the best state estimation in 3D is also pre-
sented. The robust techniques applied in this paper are described in Section 2.4.

2.1 Simultaneous Localization and Mapping

In order to navigate in an unknown environment, an autonomous vehicle needs
to determine its own position and generate a map of the local environment. The
vehicle obtains information about its movement and the surrounding world through
sensor measurements. The presented problem is called simultaneous localization
and mapping (SLAM) and this section presents the basic probabilistic definition of
the SLAM problem.

The basic SLAM components are pose x;, odometry u;, measurement z;, and map
m. Location x; consists of both position and orientation which for the 2D case is
position (x, y) and yaw 6.

Map m represents the local environment and a common way to express the map
is through landmarks mj. Landmarks are distinguishable features of particular
interest in the surrounding environment. An example could be trees in a park
or lighthouses at sea. Depending on the sensors used, what is considered land-
marks can vary. If a high-resolution camera or lidar is used, a landmark can be a
corner of a building or lamp post. A SLAM system can also disregard landmarks
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completely, and create a map from raw measurements.

The odometry u; is the change in position and orientation between each time
step i. Odometry u; could be derived in several ways, such as from the control
signal, and wheel encoders or any other sensor able to estimate positional change.
If a wheel encoder is used, u; is calculated based on the steering angle and the
number of wheel turns. The last building block, measurement z;, carries relative
information about the state vector x;, map m or both [1].

In a noise-free system, odometry would be enough to decide the complete tra-
jectory, and measurements z; would provide information resulting in a correct
map. Since odometry u; and measurements z; are derived from sensors, noise,
and bias have to be considered. Due to the noise uncertainty, the SLAM problem
is conveniently stated in a probabilistic manner.

With a path consisting of all locations xq.; = Xg, Xy, ..., X;, map m = my, My, ..., Mg,
corresponding odometry u;.; = uy, uy, ..., u;, and measurements z.; = z1,Zy, ..., Z;
the full SLAM problem can be defined as finding the posterior probability:

p(XO:i’m | Zl:ilulzi) (2.1)

Both the sought-after trajectory and map consisting of landmarks are character-
ized by the probability distribution given the measurements and odometry. SLAM
can also be expressed as the online SLAM problem, where only the current loca-
tion x; and map are estimated, given all previous measurements z;.; and odome-
try uy;:

p(xj,m |z, uy;) (2.2)

To solve the SLAM problem a transition model and an observation model are
needed. A measurement can be modeled as

Z; = ]’l(Xi, mk)+e1- (23)

where h(-) is the measurement function. h(-) is usually a nonlinear function,
describing the relation between the measurement z, pose x, and the correspond-
ing landmark my. Noise is denoted e and is assumed zero-mean Gaussian with
measurement covariance R. The shape of the measurement function is highly de-
pendent on what sensor is used, with some sensors such as GNSS only providing
information about the position of the vehicle, and not map or orientation. The
probability distribution of the observation model can be expressed as

p(z; | x;, my) ~ N(z;; h(x;, my), R) (2.4)

In the same way, a transition model from odometry measurements can be mod-
eled as

X; = g(Xj_1,u;) +V; (2.5)

with Gaussian noise denoted v; and covariance Q.
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The transition model describes the probability distribution of the current location
x; given the previous location x;_; and odometry measurement u;. Formulated
the transition model as a probability distribution results in

p(x; [ xi_1,u;) ~ N(x;; g(xi_1,u;), Q) (2.6)

An important assumption and simplification made in order to make the solving
of SLAM feasible is the Markov assumption which asserts that the current state
is only dependent on the previous state. This means that given the previous
state, the current state is independent of all other past states [9]. For example,
P(x;|x;_1,X;_2,X;_3) is reduced to P(x;[x;_1) in accordance with the Markov As-
sumption. Another assumption is made of the map which is considered to be
static, with all features of the map having a fixed position.

In order to solve the full SLAM problem, the full SLAM posterior p(x¢.;, m|zq.;, uy.;)
is rewritten using Bayes rule

p(XO:irm | Zl:ilulzi)
=1 p(z; | X0:i, M, Z1:i_1, Uy:;) p(xq.;, m | Z1.i-1,0y.) (2.7)

with # being a normalization constant. The last factor p(xq.;, m | z1.;_1,uy;;) can
be factored further. Doing this over x; gives

p(xp.i, m | z1.j_q,uy;;)
= p(xj [ Xp:j—1, M, 2151, Up:i-1) P(Xo:i—1, M | Z1:4-1, U7p:i—1)

Given the previous state x;_1, the current state x; is conditionally independent
from m, x.;_», and u;.;_; under Markov assumption and only depends on x;_;
and odometry u;. p(xg.;, m | z1.;_1, uy.;) is now written as:

p(XO:ilm | Zl:i—lfulzi)
= p(x; [ xi_1,0;) p(Xg:ji—1, M | Z15_1, Up:i-1) (2.8)

Similarly to (2.8), the factor p(z; | x¢.;, m,z1.;_1,uy.;) in (2.7) can be simplified.
In p(z; | x¢.;, m, 27.;_1,uy.;), the variable z; is conditionally independent of xg.;_1,
z1.;i_1, and uy.; given x; and m. Removing these variables results in the full SLAM
problem being expressed as:

p(xO:il m | 7., ul:i)
= 1 p(z; | x;, m)
p(x; | xi—1,u;) p(xp.i—1, m | 23,51, 07:5-1) (2.9)
Here the densities describing the transition, and observation model can be iden-

tified. The factor p(xg.;_1,m | z1.;_1, u;.;_1) represents all previous time steps and
measurements [10].
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Figure 2.1: Factor graph model of the SLAM problem. Variable nodes are x
and m and the squares represent factors ¢;(x;).

2.2 Factor Graphs

A factor graph is a graphical model describing the factored function ¢(x). The
graph consists of two types of nodes representing variables, and functions respec-
tively. The lines connecting variable nodes with function nodes are called edges.
A simple factor graph can be seen in Figure 2.1. The functions are the factors,
and each function depends on its connected variables. The overall function ¢(x)
can be described as the product of the factors which depend upon all variables
in the system, as in (2.10). Through the factored function ¢(x) all sought-after
states can be estimated given their relation described by the functions.

The main motivation for using factor graphs lies in the usefulness of the graphi-
cal representation but also computational benefits. It is easy to quickly evaluate
the product of all factors in the graph that are merely related to the unknown
variables x;, opening up for evaluating and optimizing variables in the graph.
Factor graphs also offer increased flexibility when modeling, since it is not lim-
ited to only modeling proper density functions [11]. A factor graph shares a lot
of similarities with a Bayesian network. The probabilistic definition of the SLAM
problem makes a Bayesian network a suitable graphical model for the problem
as in Figure 2.2. A Bayesian network is a directed graph that formulates a joint
density from the product of several conditional probability densities, much like a
factor graph. However, when inferring knowledge about the unknown variables
in SLAM while using a factor graph, the measurements z are not explicitly repre-
sented in the graph. The unknown variables are the vehicle pose x and the map
m. The prior probability of z, which is P(z), is disregarded and instead each z; is
added to the graph as fixed value. This essentially means that priors P(z), which
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Figure 2.2: Bayesian model of the SLAM problem

are part of the normalization factor # in (2.9) are disregarded [12].

A Bayesian network can be converted to a factor graph by splitting each node into
a factor node and a variable node. The function node is connected to the variable
node and the parent node. Parent nodes are indicated by edges directed toward
the current variable node. If a node contains known variables it is removed and
instead becomes a parameter in the corresponding factor. Figure 2.2 is converted
to a factor graph which can be seen in Figure 2.1. Here odometry measurements
u and landmark measurements z are converted to factors represented by squares.
Variable nodes x; and m have no parent nodes but receive a factor describing the
likelihood or density function associated with the respective variable node [13].
The overall function generated from a factor graph can be written as:

d(x) = r[¢i(xi) (2.10)

where ¢; represents the function nodes, and x; denotes the states contained in the
variable nodes. The variable nodes are connected to the corresponding function
node ¢;. ¢(x) becomes the overall function [12].

In the case of SLAM, the factors ¢;(x;) can either represent the measurement dis-
tribution p(z; | x;, m) or transition distribution p(x; | x;_1, u;). The exact shape of
these factors is explained further in Section 2.3.2. The function ¢(x) now repre-
sents the full SLAM problem in (2.9) as

(jf)(x) o p(xg.;, m | 2.5, uy;) (2.11)
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Figure 2.3: The 2D pose error function e(x;,X;,z;j) can be explained in a
simplified way as the difference between the observed relative pose z;; and
the estimated relative pose Z;;.

2.3 Graph-based SLAM

Graph SLAM utilizes a factor graph to store information from measurements and
odometry readings which are used to make the best estimate of the current state
vector. The factors ¢;(x;) in (2.10) are represented by error functions e(x;, x}, z;;),
and the best estimate is found by minimizing the squared sum of all error func-
tions. The error functions measure how well the state variables of two nodes x;,
x; satisfy the corresponding measurement z;;. The measurement z;; describes
the relative transformation from x; to x; and can be derived from various sources
such as odometry measurements or by aligning observations acquired from the
two locations. Figure 2.3 shows a simple representation of an error function in
two dimensions with an odometry measurement.

In the three-dimensional case, the state variables stored in each node consist of
a translational part and a rotational part. There are different approaches to rep-
resenting the rotational component. A common way is by using Roll, Pitch, and
Yaw which is a minimal representation of the rotational states. But due to a phe-
nomenon called gimbal lock, where one degree of freedom (dof) is lost, quaternion
representation is used instead. The quaternion components are gy, 4y, 4., 4, and
the state vector x; describing 3D-pose becomes

T
X = (tx ty tz dx qy 9z qw) (2.12)
where t,, t,, t, represents translation [14].

Every consecutive node x; and x;,; is connected by an edge with the relative
motion measurement z;; which is derived from an odometry estimate. Every
measurement z;; has a corresponding information matrix Q;; which describes the
measurement uncertainty [1]. In addition to the measurements between nodes,
other measurements can be included. Figure 2.4 represents a graph where GNSS
positions are included as measurements.

The graph SLAM problem can be split into two separate problems: the front end,
and back end. The front end consists of collecting and processing sensor data
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Figure 2.4: Example of a pose graph with bold arrows representing odome-
try constraints between poses, dotted arrows representing GNSS edges.

Updated poses
poses
sensor data - Back end
Frontend | constraints (Optimization)

Figure 2.5: The two parts of graph SLAM visualized. The front end handles
sensor data and constructs nodes and edges that are fed to the back end. In
the back end, the factor graph is optimized to minimize the total error.

which is then used to construct nodes and edges in the factor graph. The back
end optimizes the graph by finding the best state estimate for each variable node
given the edge constraints. This is achieved by minimizing the log-likelihood of
the factor graph function ¢(x) which is further explained in Section 2.3.2. Each
time the log-likelihood function is minimized a new node configuration is up-
dated to the front end. A schematic block diagram can be seen in Figure 2.5,
which shows how the front end interacts with the back end.

2.3.1 Optimization on a Manifold

The optimization methods employed when solving the full SLAM problem us-
ing a factor graph, such as Gauss-Newton, and Levenberg-Marquart is designed
with the assumption that the space of parameters is Euclidean. If this assump-
tion is not fulfilled, errors are introduced into the solution. The parameters used
to describe the state vector x; of the 3D SLAM problem in this thesis contains a
translation part t; to describe the position and a quaternion q; which describes
the orientation. The translation part forms a Euclidean space while the quater-
nion component is a non-Euclidean representation of rotation. In addition, the
quaternion representation introduces one extra DOF by using four components
to describe a three-dimensional orientation. Quaternions are introduced to avoid
gimbal lock, a problem occurring when using three states (RPY) describing rota-
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tion where a DOF is lost. Using quaternion avoids the problem of gimbal lock, but
the extra DOF can still lead to ambiguities when trying to solve the optimization
problem. To solve these problems a common method is to perform the optimiza-
tion on a manifold. A manifold is a space that locally can be seen as a Euclidean
space but globally behaves differently, see Figure 2.6 for a visual representation.

<

Non-Euclidean space X

x H Ax

Euclidean space X

Figure 2.6: Example of a locally Euclidean space being projected onto a non-
Euclidean space using the B operator defined in (2.16).

The working principle of methods such as Gauss-Newton, and Levenberg-Marquart
is to minimize some squared error function S(x) by iteratively updating a state
vector x with small increments [15]

X — X+ Ax (2.13)
and the Ax is calculated by solving
dS(x + Ax)
—_— =0. 2.14
aAX Ax=0 0 ( )

To solve the problem of over-parametrization when optimizing, Grisetti et al. [14]
uses a manifold with a 6D parametrization of the state vector in (2.12) x which
only uses the vector part of the unit quaternion. This means that the manifold
representation of the state vector becomes

(At
Ax_(q) (2.15)

where At = (At,, Aty, At,)T is the translation and Aq = (Aqy, Aqy, Ag,)T.

To move between the Euclidean space and the original space, the idea is to intro-
duce the box-plus operator B which can be seen as the equivalent of the normal
addition operator + in Euclidean spaces. This means that incremental update
X < X + Ax becomes x « x H Ax when using the manifold. The operator HH maps
Ax into the original space and is defined as:

At
xHAZ=x Aq , (2.16)

Vi-11Aq |
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the @ operator is defined in Section 2.5.1.

2.3.2 Nonlinear Graph Optimization Using Least-squares

As explained in Section 2.1 and Section 2.2 the full SLAM problem (2.1) can be
solved through estimating conditional densities p(z; | x;, my) and p(x; | x;_1,u;)
stemming from the nonlinear motion model g(-) and measurement model h(-).
This section covers the structure of the optimization problem created from the
factor graph. This is done by creating and linearizing error functions based on
measurements with normally distributed noise using Taylor expansion.

The negative log posterior or information form is preferred due to computational
efficiency [12]. Under Gaussian noise assumption, the full SLAM problem can be
written as

—log ¢(x) = —log p(xq:;, m | 2y, uy;) = const (2.17a)
=Y i - glxin )l Q7 ki — gl )] (2.17b)

= )_lzi = i m)]T RY [z~ B, m)) (2.17¢)

where (2.17b) is an odometry reading and (2.17c) is a feature observation. The
error function e becomes

e(X;, X1, Wir1) = [Xit1 — g(Xi, wig1)), (2.18)

and for simplicity of notation, the measurement and node indices can be encoded
in the indices of the error function

€ ir1 = e(X{, X1, Ujp).

The graph SLAM optimization problem is a nonlinear optimization problem that
can be solved using least squares and by using standard optimization methods,
Grisetti et al. present a way to structure the problem that is based on least-
squares error minimization [14].

For the vector of nodes, x = (xlT, . xz)T where each x; represents the vehicle pose

of node i, and with a set C that contains pairs of indices which has an observa-
tion z. The goal is to find the optimal configuration of nodes x* that minimizes
a negative log-likelihood F(x) with respect to all observations. Rewriting Equa-
tion (2.17¢) with indices i and j results in

F(X) = Z e;TjQijei]’ (219)
(i,jeCy ———

=F;;

x* = argmin F(x). (2.20)

X
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The information matrix €Q;; is the concatenated inverses of covariance matrices
R; and Q;.

The first step in solving (2.19) is using the H operator defined in Section 2.3.1
with the initial guess X and local variation AX. The error function becomes

el]()“(, EE‘A)ZZ, 72] BﬂAi]) ZEIJ(XBHA)?) (221)
and can be approximated by its first order Taylor expansion
€j +]i]'Ai (222)

where the Jacobian J;; is

JAX A%=0 ’

Since (2.21) is only dependent on Ax; and AX; the Jacobian gets a sparse structure
with non-zero elements at positions i and j. Using the rule for partial derivatives
and evaluating the Jacobian in AX = 0 we get the Jacobian matrix

deij(X)  x; B Ax; de;j(X) XM AX;

0. 0---0 ) .0
Jij = o%; IA%; laz=0 0%, JA%; laz=0
S —— —_—— —
Aij Mi Bij M_/
(2.24)

Here, A;; and B;; are the derivative of the error function e;;(X) with respect to %.
M; and M; are the derivatives of the local variation AX projected on the initial
guess X using the H operator with respect to Ax.

By substituting the error terms e;; in (2.19) with the Taylor expansion (2.22)

Fjj(x B AR) = (e;j +J;;A%) Qyj(ej; +J;;A%)

T T - ~T+T ~
= el-]-Q,-]-el-j +2 ei]-Q,-]-]ij AX + Ax Jl]Ql]JZJ AX

R e —_— R
¢ij bjj H;j
= Cij + 2b1]A)~( + A)ZTHI']'A)? (225)

is obtained. The sparse structure of the Jacobian J;; transfers into the information
matrix H;; and b;; which also becomes sparse with non-zero elements only at the
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i and j positions

0 0
0 0
T T T
AlQA;; 0 0 A/Q;Bj A;Qijeij
0 0 0 0
0 0 0 0
T T T
Bl]Qz]Azj 0 0 B;]Ql]Blj BijQi]-ei]-
0 0
0 0

Due to the known structure of H;;, b;; and factor graph, F(x) can be rewritten on
quadratic form by using (2.25) and simply taking the sum of every H;;, b;; and

j’
¢;j for each observation in C

=~ Z (C,']' + 2bl]Ai + AiTH,]Ai)
(i,jeC)

= Z C,’j +2 Z b,] Af(-i—A)N(T Z Hij AX.
(i,jeC) (i,jeC) (i,jeC)
~—_———— —_———— [ —

=C =b =H
=c+2bT A% + AxTHAX. (2.26)

The optimal configuration of nodes x* can now be computed by solving linear
system
HAX" = -b. (2.27)

This can be done by using sparse Cholesky factorization, the solution AX* is at
this stage in the local Euclidean space surrounding the initial guess X and needs
to be remapped to the original space with the B operator [14]

X — x @ A% (2.28)

2.4 Robust optimization techniques

When the SLAM problem is formulated on a quadratic form that is solved by min-
imizing the sum of squared errors two important assumptions are made. The




18 2 Theory

assumptions of the least squares method are independent Gaussian noise and
that the data is free from systematic errors [16]. In graph SLAM, outlier data is
usually detected and handled by the front end. In real world operation and in
uncontrollable environments the risk of ambiguities and outliers is higher com-
pared to controlled conditions. The problem with outliers is that they influence
the solution more than inliers because the error is squared, therefore the back
end optimizer is heavily dependent on the front end generating a topologically
correct factor graph representation [2]. To reduce the effect of outliers affecting
the final solution, robust optimization techniques are used in the back-end.

In least squares minimization problems, M-estimators are a standard method for
increasing robustness against outliers. M-estimators achieve robustness by using
a loss function that weighs down large errors. There are different loss functions
that have their own behavior, such as Huber, Tukey, and Cauchy[17].

Switchable constraints (SC) were first introduced within the graph SLAM back
end as a robust technique for handling loop closure outliers. A loop closure is
a constraint between two nodes i and j based on place recognition. The con-
straint is added to the graph when the robot revisits a previously visited area
and acknowledges this through a measurement. Stinderhauf and Protzel [2] in-
troduces an additional free variable to the negative log-likelihood function which
controls a switch function and disables individual constraints. The negative log-
likelihood function consists of odometry constraints, switchable loop closure con-
straints, and switch prior constraints.

2.4.1 Dynamic Covariance Scaling

Dynamic covariance scaling builds upon switch constraints by providing a so-
lution to the switch factor s;; analytically. This removes the need for an extra
parameter in the optimization problem while still increasing the covariance of
unfit loop closure constraints.

The odometry error function is defined as:

d

€M (%, X1, Ziiv1) = f(Xir Xis1) = Ziin1 (2.29)
Here, the error function describes a constraint between two consecutive nodes
i and i + 1. The value of the function is the difference between the predicted
motion g(x;,X;,1) and odometry reading z; ;1.

The loop closure error function e-“ is defined similarly to the odometry error
function. The value of the function is the difference between the predicted dis-
tance between node i and j, g(x;,x;), and the measured distance z;;. The loop

closure error function e'C is formulated as
LC
e (x;,xj,2) = g(x;,X;) -z (2.30)

For simplicity of notation, the measurement and node indices are encoded in the
indices of the error functions. The function to minimize in order to estimate the
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most likely states becomes:

z z+1 i,i+1
LC T LC
+Z 57 (eF) Ty el (2.31)
%/_/
7)(!1]
where ef‘fﬂ” and eiLjC are error functions for odometry and loop closure con-

straints defined in (2.29) and (2.30). And the two information matrices Q; and
Q;; containing the inverse covariance of the measurements respectively.

The scaling factor s;; is calculated by

20

2

—). (2.32)
D + Xlij

Sij = min(l,

and is dependent on x7 , which is the error term for each loop closure described
]

in (2.31). This term scales the information matrix individually for each constraint.
® is a free parameter which is usually set to 1 [3, 18].

2.4.2 Realizing, Reversing, Recovering

Latif et al. [4] proposes an algorithm called Realizing, Reversing, Recovering (RRR)
that performs outlier rejection to remove faulty loop closure constraints in graph
SLAM. The algorithm is consistency-based and uses a series of x? tests to identify
constraints that agree with the vehicle odometry locally and globally. Before the
algorithm can be utilized, the constraints are divided into two sets: the odometry
set which contains sequential constraints on the vehicle movement, and the sec-
ond set called edges which contains other constraints such as loop closures or as
in our case position constraints from GNSS measurements.

The first step involves further dividing the second set into smaller subsets called
clusters by grouping constraints together based on a simple time threshold t,.
Consequently, a new cluster is initialized every f, seconds and constraints are
added to it. Each cluster is then checked independently in Algorithm 1 named
intra-cluster consistency, to find if they are internally consistent with the odometry
constraints by doing a x? test

2 _ odomT odom
DG - 2 €iirl Q; Li+1€5 41
i

edgeT edge 2
) e BTy e <l (2.33)
ij

If the cluster is consistent, each edge within the cluster is considered good if it
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satisfies the x? test

D2

edge (2.34)

—oTO..0.. 2
= eijQZ]el] < Xa’dedge'

where dg and d,gq, are the degrees of freedom for the full graph and each edge
respectively. Clusters and edges that do not satisfy the x? tests are removed from
the set.

Algorithm 1 Intra Cluster Consistency

Input: Graph, Odometry edges, cluster edges
Output: Cluster edges
1: active_edges « {odometry edges, cluster edges}
2: Graph->optimize(active_edges)
3: if Dé < )(i’dc then
4 for each edge € cluster do
5; if Dezdge < Xirdedge then
6 Accept edge
7 else
8 Reject edge
9: end if
10: end for
11: else
12: Reject cluster
13: end if

Once Algorithm 1 is finished, all clusters are internally consistent and consid-
ered candidates. The outputs from Algorithm 1 is used as input to Algorithm 2
which aims to identify all candidate clusters that are jointly consistent. A cluster
can either be considered good or rejected, so two empty sets called good clusters
and rejected clusters are defined. The graph is then optimized assuming that all
clusters are consistent by incorporating all candidates in the optimization prob-
lem. Once the graph is optimized the algorithm tests every edge to determine if
it satisfies the x? test in (2.34). If all edges pass the test, Algorithm 2 considers
all clusters as good and stops executing. However, if an edge fails the test, the
cluster to which the edge belongs is removed from the optimization and added
to the rejected clusters set.
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Algorithm 2 RRR

Input: odometry_edges, candidate_clusters, Graph
Output: good_clusters

1: good_clusters « {}

2: rejected_clusters « {}

3: loop
4: active_edges « {odometry_edges}
5: for each edge € candidate_clusters do
6: active_edges « {active_edges, edge}
7: end for
8: graph->optimize(active_edges)
9: for each cluster € candidate_clusters do
10: for each edge € cluster do
11: if Dfdge > va,dedge then
12: add cluster to rejected_clusters
13: remove cluster from candidate_clusters
14: break
15: end if
16: end for
17: end for
18: if isempty(candidate_clusters) then
19: break
20: else
21: s = candidate_clusters.size
22: (good_clusters, r_clusters)
23: «— Inter_Cluster_Consistency(good_clusters, candidate_clusters)
24: if good_clusters.size > s then
25: rejected_clusters « {}
26: else
27: rejected_clusters « {rejected_clusters, r_clusters}
28: end if
29: end if
30: end loop

Then Algorithm 3, inter cluster consistency runs until all candidate clusters have
been classified as either good or rejected. The graph is optimized with both good
and candidate clusters together, checking if they satisfy both the x? test in (2.33)
and

D2 =) e TQ el < x2 , . (2.35)

ij%ij
ij

If they pass these tests, the candidates are added to the good set. If not, a consis-
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tency index

2
DC
2
Xa,dc

CI = (2.36)

is calculated for each cluster to remove the cluster which introduces the largest
error to the graph. Then inter cluster consistency is called recursively until the
candidate set is empty.

Algorithm 3 Inter Cluster Consistency

Input: odometry_edges, good_clusters, candidate_clusters, Graph
Output: good_clusters, rejected_clusters
1: active_edges < odometry edges
2: for each edge € (good_clusters U candidate_cluster) do
3: active_edges « {active_edges, edge}
4: end for
5: graph->optimize(active_edges)
6: if D(Z: < Xi,dc A Dé < xi!dc then
7 good_clusters «— {good_clusters, candidate_cluster}
8: else
9 Find cluster; € good_clusters with largest Consistency Index (Dé/)(irdc)

10: Remove cluster; from good_clusters

11: rejected_clusters « cluster;

12: if —isempty(candidate_clusters) then

13: (good_clusters, r_clusters)

14: «— inter_cluster_consistency(good_clusters, candidate_clusters)
15: rejected_clusters « {rejected_clusters, r_clusters}

16: end if

17: end if

Once RRR has classified all clusters as either good or rejected, all edges in the
good clusters set are added to the graph.

To summarize the algorithm, a series of x? tests are used to identify constraints
consistent with the odometry estimate both locally inside time-segmented clus-
ters and globally.

2.5 Mathematical Operations on 3D Poses

This section defines two important mathematical operators that are used with the
state representation used in (2.12). The state representation is referred to as a 3D
pose and the mathematical operators are used to solve the error functions used
in the 3D SLAM problem. The composition operator @ and the inverse of a pose
are defined [15].
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X
(c) The composition p; @ p, leads to the
new pose pj.

Figure 2.7: The composition of two poses creates p5. Source: [15].

2.5.1 Composition between two poses

The composition between two poses can be thought of as calculating the sum of
two poses p; and p; using the o-plus operator ®. The translation part represents
the displacement of p; added to p; point of view with respect to its rotation and
position. The rotational part is simply the quaternion product. The composition
operator & is defined as:

e i+ 202, + @2t + (ixiy = Giwdi )y + (@i + ixdiz)tz]
tiyttiyt+2 [(qz‘,w%‘,z + Qi i) tx — (@7 + A7)ty + (dipdz — Qi,wqi,x)tj,z]
ti,z + tj,z +2 [(Qi,xqtz - Qi,wqty)tj,x + (Qi,wqi,x + qi,yqi,z)tj,y - (qlz,x + qiz,y)tj,z]

q;-9;

pi®p; =

(2.37)

2.5.2 Inverse of a pose

Taking the inverse of pose p, can be seen as negating a vector in Euclidean space.

The inverse of a pose can be divided into two parts, the translational part, and the
rotational part. The translation part can be interpreted as the relative position of
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the origin [0, 0,0]7 as seen from the pose p. The rotational part is simply the
conjugate quaternion. The inverse of a pose is defined as:

e+ 2[~(92 + 92)(~t) + 24y + 9:92)(=ty) + (—q,qy + 9xq2)(~12)]
_ty +2 (_CITCIZ + quy)(_tx) - (q)zc + qg)(_ty) + (quz + qrqx)(_tz)
| ot 2|92 + 4,9)) (1) + (<40qx + 4y402) (=) = (a3 + q7)(~ 1)
—qx

=9z

G

(2.38)

2.6 Lidar

A lidar sensor works by omitting several light beams. If the light beam reflects
on a nearby object and returns to the sensor a time of flight (ToF) measurement
can be recorded, generating a point in space. Combining multiple measurements
from one scan results in a point cloud showing a 2D or 3D view of the sensor
surroundings. Most lidar sensors are also capable of returning an intensity mea-
surement indicating the reflectivity of the object, which can give insights about
the material of the object and can be used for object classification or tracking.

There are two main categories of lidar sensors, rotating and solid-state. Rotating
lidar sensors are the most mature and use a rotor-based mechanism that provides
a 360° horizontal field of view (FoV) by rotating the scanning sensor. The vertical
FoV varies and is determined by the number of laser emitter and receiver pairs,
also called channels. Solid-state lidar sensors have no rotating parts and gener-
ally have a smaller horizontal FoV [19].

One drawback of the rotating lidar is that the motion of the sensor or observed
objects during a scan introduces distortion to the point cloud since each point is
received at different times. The distortion introduced by sensor movement can
often be removed if the scanning frequency and information about the motion
during the scan are known. With additional sensors such as an IMU and a sensor
to measure velocity, the motion can be estimated. Each point in the point cloud
is then moved a linear distance based on when during the sweep the point was
recorded [20].

2.7 Scan matching

Scan matching is a method used to align two point clouds and is sometimes also
referred to as registration. The use of range measurements such as 2D or 3D
point clouds has grown in popularity for robotic and automotive use in recent
years. One of the large applications is related to sensing the environment and
localization. The goal is to find the correct alignment of a target scan X and
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source scan P by determining the correct rotation and translation between them.
The target scan is fixed in a coordinate system, while the source scan is the new
measurement to be aligned.

Iterative closest point (ICP) is a common technique used for scan matching point
clouds. The concept of the algorithm can be simplified and explained in two
steps:

1. Compute the correspondence between each point in scan X and P.

2. Compute the translation and rotation which minimizes the distance be-
tween each corresponding pair of points.

These steps are iterated until the maximum number of iterations is reached or un-
til a convergence criterion is reached. The resulting transformation can be used
as a six-degree of freedom motion estimate between the two scans [21]. Through-
out the years, multiple variations of the ICP algorithm have been published, such
as point-to-plane ICP and GICP (plane-to-plane) ICP [22].

Another common technique used for scan matching is called the Normal Distri-
butions Transform or NDT. Similarly to an occupancy grid, the (NDT) subdivides
the 2D or 3D space into cells. Each cell is then assigned a normal distribution
which locally models the probability of a point being present. One of the main
advantages is that no explicit correspondence between scans has to be computed,
instead, the sum of all the normal distributions can be maximized resulting in a
direct transform [23].

2.8 GNSs

Today there are multiple systems used for satellite navigation, together they are
defined as Global Navigation Satellite Systems (GNSS). With GNSS it is possible to
achieve accurate, continuous, and worldwide positioning and velocity informa-
tion. The concept used for localization is time of arrival (TOA) ranging and when
multiple TOA measurements from different satellites are used it is possible to cal-
culate a position in three dimensions [24].

Aninaccurate TOA measurement can greatly worsen the localization performance.
This is common in so-called urban canyons, inside cities with tall buildings sur-
rounding the road but can also happen in less urban areas. GNSS signals can
bounce on nearby structures before being registered by the receiving sensor, which
means the signal has traveled further, giving an incorrect range to the satellite.
This effect is called multipath and can also take the form of multiple registra-
tions of the same signal.
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29 IMuU

An IMU is a combined sensor, incorporating an accelerometer, gyroscope, and
sometimes a magnetometer. Acceleration is measured by the accelerometer, an-
gular rate is measured by the gyroscope and orientation can be drawn from the
magnetometer. It is a widely used sensor in navigation and can be found in prod-
ucts such as smartphones. Often, the measured values are further processed.
Integrating acceleration measurements result in a velocity estimate and through
double integration a position estimate can be acquired. Likewise, the angular
rate can be integrated resulting in an orientation estimate. The process of esti-
mating higher order states from lower order measurements is called dead reck-
oning. The main disadvantage of using dead reckoning is the accumulation of
errors over time.
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As described in Section 2.3 the front end in graph SLAM processes sensor data and
outputs measurement constraints to the back end. The two types of measurement
constraints used in this thesis are odometry constraints that describe the motion
of the vehicle, and position constraints with robust methods that tie a node to a
global position using GNSS measurements.

This section goes over the experimental setup, the front and back end, and the
modeling of two types of disturbances. The front end implementation builds
upon the open source hdl_graph_slam framework and it is modified to handle
multiple Lidar sensors, point cloud deskewing, multiple GNSS receivers, offset
GNSS receivers, GNSS covariance, and GNSS noise.

3.1 Experimental Setup

This section presents the experimental setup which consists of the vehicle sensor
setup from which the data is recorded and the graph SLAM framework used to
process the data and estimate the vehicle states.

3.1.1 Vehicle setup

The sensor data is recorded using a passenger vehicle with four lidar sensors, two
IMUs, and two GNSS receivers. Detailed sensor specifications such as resolution
and update frequency are not relevant to this thesis science the evaluated meth-
ods are independent of specific sensor models.

The lidar sensors are automotive grade with 360-degree horizontal field-of-view

27
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Table 3.1: Transforms between sensors and the vehicle coordinate frame.

Sensor x[m] | y[m] | z[m] [;Z}il] I[);;(Ci}]l [}; :iv]
Ground Truth INS | -0.22 | -0.022 | 0.466 -7 0 0
IMU 0.7 0 0 0 0 0
Front left lidar 1.552 | 0.518 | 1.619 0 0 -7
Front right lidar 1.552 | -0.513 | 1.618 0 0 -7t

Rear left lidar 0.442 | 0.518 | 1.619 0 0 -1t/2

Front right lidar 0.443 | -0.513 | 1.618 0 0 /2
Left GNSS receiver | 1.240 | 0.560 | 1.670 0 0 0
Right GNSS receiver | 1.240 | -0.560 | 1.670 0 0 0

placed in an array on a roof rack. However, due to the placement, the field of
view is obstructed by the other sensors placed on the same rack. Therefore, the
point clouds do not overlap perfectly, making scan matching between sensors

challenging.

O Lidar
i GNSS
o IMU

Figure 3.1: Top and side view of sensor placements on the test vehicle to-
gether with a coordinate frame for the vehicle. Four Lidar sensors and two
GNSS receivers are located on a roof rack. An IMU is placed inside the vehi-

cle.

3.1.2 Software

To evaluate the robust optimization techniques in this thesis, open-source soft-
ware and frameworks have been used as a foundation. The front end is based
on a framework by Koide et al. [25], known as hdl_graph_slam. Modifications
have been made to the framework to make it compatible with the specific data

set used.
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For solving the optimization problem represented as a factor-graph a general-
purpose framework for optimizing graph-based nonlinear error functions called
g0 is used [26]. Point Cloud Library (PCL) is used for registration and filtering
of lidar data [27]. All of the above mentioned software are used together in the
open-source framework called Robot Operating System (ROS) [28].

3.2 Lidar Odometry Estimation

This section covers how the raw data from four lidar sensors are used to create
an odometry measurement. The raw data is in the form of point clouds, is firstly
preprocessed by removing irrelevant points, then deskewed with respect to ve-
hicle velocity. An outlier removal filter is applied together with a voxel filter in
order to improve processing speed. The preprocessed point clouds are used for
scan matching which outputs an odometry estimation.

3.2.1 Point cloud pre-processing

Due to the large amounts of data generated from lidar sensors, some pre-processing
steps are used to reduce the point cloud size. This is done to improve the speed
and accuracy of the scan matching algorithm.

The first processing step taken is the removal of points that do not contain any rel-
evant information for calculating the motion between scans. Therefore all points
in a radius of 5.5 meters around the lidar sensor are removed as they mostly con-
tain points reflected from the vehicle and the road below, also points outside the
maximum specified sensor range of 100 meters are removed.

Because rotating lidar sensors are used, a simple deskewing algorithm was im-
plemented that corrects for the sensor rotation and ego motion using IMU and
velocity measurements.

Then two filters in PCL are used. Radius outlier removal is used to remove points
in the point cloud which have less than three neighboring points inside a one-
meter radius. Then a voxel grid filter is applied with a voxel size of 0.3 meters
which improved processing speed for the scan matching algorithm while still
getting good odometry estimates.

3.2.2 Scan Matching

To calculate the relative pose between scans the choice of scan matching algo-
rithm was determined through experiments. The experiments showed that GICP
worked best together with the sensor setup used.

The initial guess for scan matching is calculated with the assumption that the
velocity and heading remain constant between two scans. The estimated distance
traveled between scans is calculated as the velocity multiplied by the elapsed
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Figure 3.2: Pre-processed point Figure 3.3: Pre-processed point
cloud from the rear left lidar. cloud from the front right lidar.
Table 3.2: Parameters used with GICP
Parameter | Value |
Convergence threshold 0.001 [m]
Maximum Iterations 64 [-]
Maximum Correspondence distance | 1.0 [m]
time.

During the experiments, the scan matching algorithm had difficulties finding cor-
rect corresponding points between lidar sensors placed diagonally due to very
few overlapping points. Figure 3.2 and Figure 3.3 together showcase the small
overlap between two point clouds captured at the same time. In order to decrease
the effects of incorrect correspondences, all four point clouds are concatenated
into one larger point cloud that is used as the scan matching target, see Figure 3.4.

Figure 3.4: The resulting point cloud from all four lidar sensors is used as the
scan-matching target in the odometry estimation. Each point in the figure is

enlarged for better visibility.
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With the transforms specified in Table 3.1 the relative position of each lidar to
the vehicle coordinate frame is known. A measurement z;; describes the trans-
formation between two consecutive states x; and x; are expressed in the vehicle
coordinate frame of x; and consists of the translation and a quaternion represen-
tation of orientation. The resulting measurement z;; from GICP is on the form:

T
zij=(t ty L 4 4y 4 du) - (3.1)

3.3 GNSS

In the data set used, GNSS measurements are attained from the two GNSS re-
ceivers placed on the top-left and top-right side of the vehicle, according to
Figure 3.1. The receivers provide altitude and latitude-longitude coordinates
which are transformed into the local universal transverse mercator (UTM) coordi-
nate frame along with an estimated covariance matrix describing the quality of
the measurement. The measurement z; describes the UTM position of the GNSS
receiver.

Using the transforms in Table 3.1 the offset between the GNSS receiver and the ve-
hicle coordinate frame is calculated in the UTM coordinate frame and accounting
for the vehicle orientation. Using quaternion rotation the offset P} between the
GNSS receiver and vehicle coordinate frame is

P, =q; P;-q; (3.2)

where q; is the current orientation of the vehicle, its conjugate q}, and P; is the
translation offset from receiver to the vehicle frame expressed as a quaternion
with scalar part g, = 0. The operation - is quaternion multiplication. The offset
P’ is added to the measurement z; resulting in
’ _ ’
zZ,=2;+ Pi[1:3]' (3.3)
where [1:3] selects the first three elements of the quaternion and discards the
quaternion component q,.. The measurement z; describes the position of the
vehicle frame in the UTM coordinate frame.

Each GNSS measurement is then associated with a node based on finding the mea-
surement z; that minimizes the difference in timestamp to x;. To make calcula-
tions simpler, the first acquired GNSS measurement is used for zero correction
of all GNSS measurements in order to transform the measurement to local map
coordinates.

3.4 Formulation of Optimization Problem

When formulating the SLAM problem as a factor graph optimization problem, in-
formation from a wide range of sensors can be incorporated into the solution. In
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Table 3.3: Parameters that decide when to initialize a new node.

’ Parameter \ Value ‘

Translation threshold | 1.0 [m]
Rotation threshold 0.03 [rad]

the formulation of the optimization problem for this thesis, the lidar odometry
estimation is used to formulate relative pose constraints between each consecu-
tive node, and GNSS measurements are used as position constraints to associate
each node with a UTM coordinate.

We try to find the values in the state vector of each node x* that minimizes the
cost function
X" = argmin F*?°" (x) + FONSS (x), (3.4)
X

which includes odometry and GNSS measurements. This section explains how
F°4om (x) and FENS5(x) are calculated.

3.4.1 Relative Pose Constraints

The front end scan matching continuously estimates the vehicle odometry rel-
ative to the most recent node x;. Whenever the change in translation or rota-
tion exceeds a threshold, an event is triggered. This event initializes a new node
Xj;1 = X;j and creates a measurement vector z;;. The scan matching algorithm
starts over and begins estimating the odometry relative to the new node. The
state vector of x; is initialized by composing the relative pose z;; to the estimate
of the previous node x;.

To formulate the error function the mathematical pose operators defined in Sec-
tion 2.5 are used. The idea is to calculate the difference between the measured
relative pose and the current estimate of the relative pose. The error function is
formulated
d -1 -1

el " (xi,xj,2ij) = (zj; @ (X" ®X)))[1:6)s (3.5)
where (-)[1.6] keeps the first six elements and discards the quaternion compo-
nent g, which is done as a part of the manifold optimization as explained in
Section 2.3.1.

Let C be a set with indices of consecutive pairs i, j with an odometry edge. We
get the cost function

d d T d
Fom(x) = ) (elfom)TQy(esfom) (3.6)
(i,jeC)
The information matrix Q;; is considered constant for every odometry measure-

ment and has been tuned to approximately the same size as the information ma-
trix for the position constraints in Section 3.4.2.
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3.4.2 Position Constraints

Position constraints are used together with GNSS measurements so that the local-
ization estimate gets a global coordinate. For a set G with indices of every node x;
which has a corresponding GNSS measurement z; a position constraint is created.
The constraints are added as unary edges to the node x; and the error function is

tx — Zy
GNSS
e; (zi)x;) = |ty — 2y | (3.7)
tz —Zz

The sum of all constraints creates the cost function

FGNSS(X) — Z(ez‘GNSS)TQi(eiGNSS)' (38)
ieg

The information matrix Q; is calculated as the inverse of the estimated covariance
matrix reported by the GNSS receiver.

In Section 2.4 two different methods for robust optimization are introduced, Dy-
namic Covariance Scaling and Realizing, Reversing, Recovering. These methods are
applied to modify the cost function (3.8) in different ways to reduce the effect of
outliers such as GNSS multipath measurements.

DCS modifies the cost function (3.8) by adding the scaling factor s? to the individ-
ual constraints

GNSS 2/ .GNSS\T GNSS
FONSS(x) = )~ s2(ePN99)TQ(efN*S), (3.9)
ieg
RRR, on the other hand, modifies the set G and removes measurements entirely if
they are considered outliers.

3.5 Modeling of GNss Disturbances

Common scenarios where disturbances in GNSS occur are tunnels or urban canyons
where the line-of-sight to the GNSS satellites is obscured. Figure 3.5 shows how
structures can disturb measurements, in these scenarios, it is difficult to obtain
a reliable ground truth measurement as the INS relies on good localization from
GNSS measurements. Therefore, to evaluate DCS and RRR two types of distur-
bances are modeled and added to the measurements.

The two types of disturbances being modeled are Gaussian and biased. Both sce-
narios are modeled at the same position of the data set and are meant to resemble
a vehicle entering and exiting a tunnel or urban canyon. First disturbances are
added to the measurement, followed by an outage, followed by disturbances. In
both scenarios, the measurement covariance is not modified.
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Figure 3.5: Illustration of the scenario being modeled and visualized as an
urban canyon where one of the GNSS satellite line of sight is obscured by sur-
rounding structures. A faulty measurement reflected off the surface results
in an incorrect range measurement between the satellite and receiver.

In order to compare the different methods for robustness against outliers repeata-
bility in the added disturbance is needed. To ensure repeatability the determin-
istic pseudo-random generator Mersenne Twister 19937 is used. The repeatability
ensures that the same factor graph configuration is used when evaluating DCS
and RRR. In the same way, the repeatability enables a fair comparison between
different tuning.

3.5.1 Gaussian Disturbance

Modeling the Gaussian disturbance, GNSS is available for the first 15 seconds of
the data set. Next, the vehicle enters the tunnel, and increasing Gaussian noise is
added during a five-second period before the measurements are cut completely.
After 20 additional seconds, the GNSS signal with added Gaussian noise is re-
gained. The added noise decreases until a fully stable signal is reached when
exiting the tunnel after 5 additional seconds.

The added noise N (0, 02) is normally distributed with zero mean and standard
deviation o. It is added to the latitude, longitude, and altitude independently
and is linearly scaled up to 0,,,, = 7.15 ! during the five-second period. At the
end of the outage, noise is added again and scaled down for five seconds. Starting
with a standard deviation of 0,,,,, the noise is scaled down to o0 = 0 reaching a
stable signal at the end of the modeled tunnel. The GNSS measurements from the
left and right receivers with the added disturbances can be seen in Figure 3.6. The
timestamp of the GNSS measurement is used as the seed to the random generator
resulting in the same disturbance being added every time the simulation is run.

I The standard deviation 0,4y is shown with scaled units.
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(a) Overview of the outage and the Gaussian disturbance added.
The start is marked with X and the end is marked with O.
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Figure 3.6: The resulting measurements being used as position constraints
from the modeled Gaussian disturbance, shown from above.

3.5.2 Multipath Disturbance

Multipath disturbances occur when the range measurement between the satel-
lite and GNSS receiver is incorrect. This can occur if the signal is reflected off
surrounding structures, see Figure 3.5. Because the range measurement during
multipath disturbances does not correspond to the true distance between the re-
ceiver and the satellite a shift in the position estimate occurs.

Localization in the lateral and longitudinal directions is more important than the
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altitudinal direction for autonomous applications. High accuracy in these direc-
tions is required when driving on public roads, due to narrow lane width and
a high forward velocity. Obstacles and other road users also exist in this plane,
which requires precise localization for other tasks such as path planning and con-
trol. In order to test the effect of lateral and longitudinal multipath disturbances,
a second multipath scenario is modeled using a different section of the collected
data set.

The modeled multipath scenario consists of 15 seconds without any added distur-
bances followed by five seconds of multipath disturbances and then a 20 seconds
outage. After the outage disturbances are added for five seconds followed by no
added disturbances for the rest of the data set. A shift in position is added to
the longitude and latitude of the GNSS measurement every n seconds to emulate
the signals bouncing off different structures. The shift size is randomly generated
between 0 and 3.75 2, and the resulting disturbance can be seen in Figure 3.7.

2In scaled units.
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(a) Overview of the section with outage and multipath

disturbance added. The start is marked with an X and the end is
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Figure 3.7: The resulting measurements being used as position constraints
from the modeled Gaussian disturbance.






Experiments

Three scenarios are investigated in this chapter. Different input data to the graph
SLAM system is what separates the scenarios. The first scenario is the initial seg-
ment of the provided data set in which multipath disturbances are present on the
GNSSs measurements from the left receiver. The second and third scenarios utilize
a different segment of the data set consisting of a straight drive section, a round-
about, and a second straight segment. GNSS measurements have been altered
with Gaussian disturbances and biased disturbances respectively. Additionally,
measurements have been removed for an extended period to replicate an outage
from driving through a tunnel or urban canyon.

The chapter begins by describing how the performance of the system is evaluated.
The scaling of results is explained in Section 4.1.2. A sensitivity analysis of pa-
rameter selection for DCS in Section 4.2 and for RRR in Section 4.3. Followed by
detailed results from the three scenarios using RRR, and DCS, in relation to a base-
line that is without any robust method. The results are discussed and analyzed
shortly in the respective section.

4.1 Evaluation

In order to evaluate the effects of using the robust methods when GNss distur-
bances are present, a baseline for performance is needed. The baseline is estab-
lished by estimating the vehicle pose using the proposed graph SLAM system and
using Gauss-Newton to find a solution to (3.4) without the use of DCS or RRR.
Then, the best estimations of the poses are also found using the robust methods
before solving (3.4) using Gauss-Newton. The estimated poses are compared to

39



40 4 Experiments

the position and orientation of ground truth in order to evaluate and compare
the different solutions.

The robust methods are also evaluated on how sensitive they are in terms of pa-
rameter choices. The parameters affect how much the robust methods alter the
solution. DCS has the free parameter ® which affects if and by how much the
covariance of a deviating measurement is scaled. The free parameter of RRR is
the p-value used in the x? tests which affects whether a measurement or cluster
of measurements are considered outliers and should be removed.

4.1.1 Ground Truth

To evaluate the position and orientation accuracy, a precise GNSS-aided inertial
navigation system (INS) is utilized as a ground truth reference. The INS makes
use of a Kalman filter that fuses measurements from the dual antenna RTK GNSS
system and an IMU, providing reliable position, velocity, and orientation. In order
to analyze the accuracy of the graph SLAM solution, the ground truth data is
linearly interpolated to the same time series as the estimated data points.

In every time step, error residuals are calculated relative to the ground truth.
First, translation errors are calculated. The translation error in the x-direction
relative to the ground truth gives the longitudinal error, the y-direction gives
the lateral error and the z-direction gives the error in altitude. Similarly, the
orientation errors are calculated as the difference in quaternion rotation for every
given time step. The orientation error is converted to roll, pitch, and yaw for
easier evaluation.

4.1.2 Scaled Results

To protect confidential data, all data in figures and results use scaled evaluation
metrics and units. Root mean square error or RMSE is commonly used to evaluate
performance and accuracy. To compute the RMSE first a residual e; = %; — x; is
calculated at each data point i, where %; is the estimate and x; the ground truth.
The RMSE is calculated as the square root of the mean residual error where 7 is
the total number of data points

To protect the accuracy of translation and rotation estimates the RMSE is scaled
with a scaling factor S

RMSE

SRMSE = (4.2)

The scale factor S is chosen according to the benchmark performance. For each
scenario, the system’s performance without using robust methods is considered
the baseline and determines the scaling factor. A SRMSE less than one indicates
better performance while a SRMSE larger than one indicates less precision.
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4.2 DCS Free Parameter @

A small value of the free parameter @ results in an aggressive scaling for smaller
deviations, or errors, in the measurements while a large value of @ only scales
the covariance of larger errors and with a smaller factor. The impact of ® while
using DCS is further explained in Section 2.4.1 and the impact of ® on the scaling
factor s can be seen in Figure 4.1.

The SRMSE for translation and orientation states for different scenarios and values
of @ can be seen in Table 4.1. The value of @ is varied between 0.1 and 10. This is
done for the multipath scenario, tunnel scenario with Gaussian disturbance, and
tunnel scenario with multipath disturbances. The state estimation of translation
states x and y and orientation state yaw are presented separately as the estimation
of these states is more important for the localization from a safety perspective.
Therefore, when evaluating the value of @, states x, y, and yaw are considered
more significant.

The state estimation is improved or similar to the baseline for all values of ® for
all scenarios except in the tunnel scenario with Gaussian noise in which the roll
and pitch have a SRMSE larger than one for ® = 0.5 and @ = 1.0. The state estima-
tion SRMSE of z is also worse than the baseline in the tunnel multipath scenario
when @ is set to a value lower than 2.5. These results in Table 4.1 indicate that
DCS improves the state estimation of @ if the value is set between 0.1 and 10.

In the case of multipath disturbances, DCS improves state estimation for the z
state across the different values of @ while performing similarly to the baseline
for all other states. The results from the test can be seen in Table 4.1. This
is expected due to the disturbances present in the multipath scenario in the z-
direction. The opposite is true for the tunnel multipath scenario where multi-
path disturbances are added in the x and y direction. For the tunnel multipath
scenario state estimation SRMSE for z is greater than the baseline if @ is set to
less than 2.5. As @ is set to a lower value more correction is made and while this
improves state estimation for the xy state in tunnel multipath scenario, the state
estimation for z suffers due to less trust in the more accurate z measurements.
When measurements are disturbed in all directions x, y, and z, as in the Tunnel
Gaussian scenario, improved state estimation increases as the @ is set to a lower
value. For example, the SRMSE of xy in the tunnel Gaussian scenario in Table 4.1
for ® = 10 is 0.74 and when @ = 0.1 the SRMSE is 0.64. The SRMSE of state
estimation of yaw goes from 0.68 to 0.57 when @ is set to 10 and 0.1 respectively.

The tunnel scenario with added Gaussian noise shows a more significant impact
of DCS and the value of ® compared to the multipath scenarios. The resulting
SRMSE for this scenario can be seen in Table 4.1. This is due to the larger size of
added noise in the tunnel scenario with added Gaussian noise. The discrepancy
between the accuracy of the noise and the set covariance of the measurements
is also greater, implying a correction of the covariance estimation can improve
results.
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Varying ¢ for DCS
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Figure 4.1: The scaling factor s used in DCS and how it is affected by varying
values of the parameter ®. The scaling factor is dependent on the size of the
squared error for a measurement.
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Parameter selection of @ = 0.5 and @ = 0.1 performs better across the different
scenarios when considering the most important states x, y, and yaw. When a
larger value of @ is used the covariance is not scaled sufficiently in relation to
the faulty measurements. If a strict improvement of each state is sought after
@ should be set to 2.5 since the results presented in Table 4.1 show the same
performance or improved results across all scenarios and states. If multipath
disturbances in the x, y are sought to be minimized, ® should be set to 0.5 or 0.1.

Varying @ between scenarios would improve performance but for further com-
parisons with RRR @ = 0.5 will be used for simplicity.

Table 4.1: SRMSE for estimated translation states (x,y,z) and orientation
states roll, pitch, and yaw (R,P,Y) when using DCS and varying @ for dif-
ferent scenarios. Best result for each state is bolded.

’ Scenario \States \ d=0.1 \ d=0.5 \ d=1.0 \ d=25 \ d=5 \ @:10‘

Xy 0.99 1.00 0.99 1.00 1.00 1.01
. z 0.87 0.79 0.80 0.91 0.96 0.96
Multipath —p7 1.03 1.03 1.02 1.01 | 1.01 | 101
Y 0.97 0.97 1.01 0.97 0.97 0.97

Xy 0.37 0.43 0.41 0.83 0.96 0.94

Tunnel z 1.94 1.98 1.92 0.85 0.90 0.96
Multipath [ RP 0.89 0.94 0.89 0.88 0.87 0.93
Y 0.38 0.41 0.39 0.74 0.73 0.64

Xy 0.65 0.47 0.72 0.83 0.85 0.74

Tunnel z 0.69 0.74 0.93 0.51 0.54 0.46
Gaussian RP 0.93 1.24 1.14 0.99 1.08 0.90
Y 0.57 0.77 0.73 0.69 0.79 0.68

4.3 RRR P-Value

RRR is based on consistency checks where measurements are compared within
clusters, and clusters are compared with other clusters. The consistency check is a
x? hypothesis test evaluated with a p-value and is presented in Section 2.4.2. The
value p is usually chosen to 0.95 with RRR in order to have high confidence in the
result. Varying the value of p in for the multipath scenario, tunnel scenario with
Gaussian disturbance, and tunnel scenario with multipath disturbances gives the
resulting SRMSE shown in Table 4.2. A lower p-value will result in removing mea-
surements with smaller residuals from the set of measurements. This introduces
the risk of removing good quality measurements and worsening performance.

When comparing the performance of state estimation using RRR states x, y, and
yaw are considered more significant. This is due to having to avoid other vehicles
and obstacles that exist on the same xy plane as well as the importance of know-
ing the direction of travel. The roll, pitch, and z are still important but have less
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of a direct impact if the estimation is incorrect. The results for the multipath
scenario show similar results compared to the baseline for all values of p except
p = 0.80 which shows worse or similar performance for all state estimation. This
is the result of too many measurements being removed.

It is noticeable that the SRMSE for states x, p, roll, pitch, and yaw show a more sim-
ilar performance over different values of p compared to z. This can be explained
by the higher reliance on lidar odometry as measurements are removed. Lidar
odometry performs significantly worse in altitudinal state estimation which will
result in a larger difference in the z state estimation. RRR shows an improved
performance in state estimation when the Gaussian and multipath disturbances
are present along with a GNSS outage when the value of p is set between 0.80 and
0.99.

Table 4.2: SRMSE for estimated translation states (x,y,z) and orientation
states roll, pitch, and yaw (R,P,Y) when using RRR and varying p-value for
different scenarios. The best results for each scenario are bolded.

| Scenario | States | p=0.80 [ p=0.85 [ p=0.90 [ p=0.95 [ p=0.99 |

Xy 1.01 1.02 1.02 1.03 1.02

. z 1.34 0.96 0.98 0.97 0.99
Multipath \—p5 1.11 1.01 1.01 1.01 1.01
Y 1.20 0.99 0.99 0.99 0.99

Xy 0.41 0.40 0.42 0.41 0.51

Tunnel z 2.58 2.49 2.47 2.63 1.86
Multipath [ RP 1.00 1.01 1.00 0.99 1.02
Y 0.46 0.44 0.42 0.48 0.45

Xy 0.59 0.57 0.73 0.59 0.66

Tunnel z 1.05 1.18 1.17 1.21 1.18
Gaussian RP 0.96 0.97 1.35 0.97 1.15
Y 0.55 0.54 0.52 0.55 0.67

4.4 Multipath Scenario

During the first 38 seconds of the collected data set, disturbances were observed
in the measurements of the left GNSS receiver. The disturbance is a varying shift
in the measured altitude, seen in Figure 4.2. Due to the characteristics of the
disturbance, an assumption is made that it is a multipath disturbance causing the
faulty position measurement. There are no observed disturbances in longitude or
latitude. Both GNSS receivers are high end automotive grade and report a position
uncertainty with good accuracy. In Figure 4.2 the estimated altitude and standard
deviation of the estimate can be seen for the ground truth and both receivers.
Even though the GNSS receivers are high end the left receiver underestimates the
uncertainty during the first 13 seconds.
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Figure 4.2: Measured GNSS receiver altitude transformed into the vehicle co-
ordinate frame. The dotted line is the estimated standard deviation from the
receiver and ground truth. Disturbances acting on the left receiver altitude
can be seen, the right receiver follows the ground truth without any major
disturbances. Note that the standard deviation of the left receiver is outside
the ground truth during the first 13 seconds.

The estimated position using Gauss-Newton without any robust method and us-
ing Gauss-Newton together with DCS, and RRR is compared with the ground truth
INS. Translation errors are shown in Figure 4.3. Longitudinal and Lateral errors
are almost identical with and without any robust method being used. Longitudi-
nally there is a bias in the error of 0.6 scaled distance units. Laterally the error is
outside the 30 covariance during a large portion of the data set.

In altitudinal error, the difference between the two robust methods is more visi-
ble. Because the standard deviation from the GNSS receiver is used to calculate
the information matrix Q used in the cost function (3.8) the effect of the faulty alti-
tude measurements is minimized. However, it makes it more challenging for the
robust methods to find measurements that are incorrect because the error they
introduce becomes small. Additionally, together with the right receiver which
does not have any disturbances the standard Gauss-Newton solution estimates
an altitude very close to the estimate produced by RRR. It becomes challenging
for RRR to identify incorrect measurements when the residual in the x? tests be-
comes small. Selecting a smaller p-value improves the result but with the risk of
discarding too many measurements, an example of this can be seen in Table 4.2
the SRMSE decreases for the multipath scenario when choosing a p-value of 0.85
and when choosing p = 0.80 too many measurements are removed and the SRMSE
is worsened.
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When using DCS the altitudinal error is smaller without negatively impacting the
other translational states. This indicates that the correct measurements are scaled
while keeping good measurements untouched.

Scaled Distance |[-] Scaled Distance |[-|

Scaled Distance |[-|

%)

(=]

'
)

—

Multipath Disturbance Translation Estimation Error

Longitudinal Error

|
|
§ I
_\\«\\\ /\5 /vf/
ARG el \ .............. “/\/j AR
\ // i k
1 1 1 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40 45 50

Time [sec]

Lateral error

0 5 10 15 20 25 30 35 40 45 50
Time [sec]

Altitudinal error

X =T
\
N / A A
Ver N NS TReses P R
- == N——— i
\J W\ ST // "
b |
LTI gl [ 1 1 1 L [ 1 I 1
0 5 10 15 20 25 30 35 40 45 50
Time [sec]
Roundabout — — — GN DCS —-—-— RRR -:veveee Ground truth covariance 3¢

Figure 4.3: Translation errors relative to the ground truth. Gauss-Newton is
compared to DCS with ® = 0.5 and RRR with p = 0.90. The longitudinal and
lateral errors are similar for all three methods. During the first 25 seconds
DCS improves the altitude error and RRR makes a minor improvement.

The errors in orientation estimates in Figure 4.4 are similar for all methods. In
Figure 4.5 the evaluated trajectory is shown and a sharp turn is followed by a
roundabout. This is reflected mostly in the yaw error, the first turn occurs be-
tween the second 12 and 27, and the roundabout is highlighted in the figure.
During these periods the yaw error is elevated as a result of difficulties estimat-
ing the odometry during high angular velocity. The estimated roll for all methods



4.4 Multipath Scenario 47

has a bias of approximately -1 scaled units and the pitch error is slightly degraded
during the roundabout.
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Figure 4.4: Orientation errors compared to ground truth. Gauss-Newton is
compared to DCS with ® = 0.5 and RRR with p = 0.90. A large variation in
yaw can be seen during the roundabout and during 12-27 seconds.

The SRMSE from the multipath scenario for all six states can be seen in Table 4.3.
The results show that the localization performance is similar for the baseline, DCS,
and RRR. Except for the altitudinal SRMSE where DCS is slightly better which also
is seen in Figure 4.3. The SRMSE of only using lidar odometry shows the largest
SRMSE for the altitude estimate which can be associated with the large SRMSE for
pitch angle which leads to a large deviation from the true altitude over longer
periods of time.
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Figure 4.5: The measured GNSS position shows the driven trajectory during
the first 55 seconds of the data set used. The test vehicle starts at x, and
drives from a parking space followed by a sharp right turn onto a public
road. The right turn is almost directly followed by a roundabout in which
the vehicle exits and the evaluated data ends at o.

Table 4.3: Multipath scenario SRMSE for pose. The estimated state is shown
in the first column. The second column shows the SRMSE for the baseline
using only Gauss-Newton to estimate the best state configuration. The third
column shows SRMSE when using only lidar odometry. In the fourth column,
SRMSE is shown for state estimation using DCS. The last column presents the
SRMSE for state estimation using RRR. The lidar odometry is localization
without any GNSS constraints.

Lidar
Gauss-Newton | Odometry | DCS RRR
Longitudinal 1 2.43 0.999 | 0.997
Lateral 1 1.87 1.037 | 1.037
Altitudinal 1 35.44 0.786 | 0.980
Roll 1 1.00 1.024 | 1.008
Pitch 1 2.44 1.038 | 1.006
Yaw 1 1.58 0.970 | 0.987




4.5 Modeled Scenarios 49

4.5 Modeled Scenarios

The two modeled scenarios try to resemble a tunnel or urban canyon. The scenar-
ios consist of a GNSS outage with modeled noise added five seconds before and
five seconds after the outage. Results are presented for two noise characteristics,
Gaussian noise, and a bias. The bias represents the noise phenomenon called mul-
tipath in which GNSS signals bounce off nearby buildings, resulting in distorted
measurements.

4.5.1 Gaussian Disturbance

The noise added in the Gaussian tunnel scenario is zero mean with a standard
deviation of 7.15 scaled distance units and an overview of the data can be seen
in Figure 3.6. The scaled error of the estimation of translational states compared
to the ground truth in the tunnel scenario using the baseline and using robust
methods DCS, and RRR can be seen in Figure 4.6. For the translational states,
the baseline has large error spikes in the regions with added noise. The spikes
occur both as positive and negative which is expected since the shape of the noise
is Gaussian with a zero mean. When the robust methods are used, the spikes
are mitigated, and DCS manages to stay close to the ground truth covariance 3o
during the outage for the longitudinal and lateral states. Both RRR and DCS has a
similar state estimation with RRR having a larger error.

The longitudinal state error is larger in the second half and after the roundabout
when using the robust methods compared to the baseline. This could be due
to the higher reliance on lidar odometry which has a worse performance in the
longitudinal direction compared to the baseline. The roundabout also poses a
challenge for lidar odometry due to large changes in orientation.

There is a small constant error at the beginning of a bias in the estimation of
longitudinal and lateral states. Since the error is constant from the beginning of
the run and exists for the baseline and when using robust methods, this could be
because of a faulty initial guess. The same spikes seen in the translational and lat-
eral state estimation for baseline in Figure 4.6 can be seen in the yaw estimation
error in Figure 4.7. When robust methods are utilized, the spike stemming from
the disturbances before the outage, and the spike during the outage are mitigated.
The yaw error spike from the second disturbance interval is suppressed slightly.
Overall, the yaw error is close to or within the 3¢ throughout the run when using
the robust methods, and RRR performs better when estimating the yaw state than
DCS.

During the outage, orientation estimates oscillate which indicates a discrepancy
in the lidar odometry. Since four lidars are used, the oscillations could stem from
a faulty sensor transform, or that the concatenation of the four lidar scans result
in different biases in the performance depending on the time step of the calcula-
tions. The SRMSE for all estimated states for the tunnel scenario with Gaussian
noise and a GNSS outage is presented in Table 4.4. The results show an improved
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Figure 4.6: Translation errors for the modeled Gaussian disturbance using
the parameter selection @ = 0.5 for DCS and p = 0.90 for RRR.
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Gaussian Disturbance Orientation Estimation Error
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Figure 4.7: Orientation errors for the modeled Gaussian disturbance using
the parameter selection @ = 0.5 for DCS and p = 0.90 for RRR.
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or similar performance using DCS compared to RRR except for the state yaw.

Table 4.4: Gaussian disturbance SRMSE for pose. The estimated state is
shown in the first column. The second column shows the SRMSE for the base-
line using only Gauss-Newton to estimate the best state configuration. The
third column shows SRMSE when using only lidar odometry. In the fourth
column, SRMSE is shown for state estimation using DCS with ® set to 0.5. The
last column presents the RMSE for state estimation using RRR with a p-value
of 0.90.

Lidar

Gauss-Newton | Odometry | DCS RRR

Longitudinal 1 7.10 0.666 | 0.968
Lateral 1 3.06 0.288 | 0.499
Altitudinal 1 25.33 0.825 | 1.175
Roll 1 0.52 0.825 | 0.819
Pitch 1 3.73 1.649 | 1.886
Yaw 1 0.91 0.766 | 0.518

4.5.2 Multipath Disturbance

The disturbance in the multipath scenario is only added to the latitude and lon-
gitude. It is biased and shifts in size and an overview of the data can be seen in
Figure 3.7. The biased measurements affect the translation estimate shown in Fig-
ure 4.8. For the baseline, the longitude error is shifted negatively and the lateral
error is shifted positively. As there is no added disturbance to the altitude, the
error becomes small during the disturbance and outage region.

When using DCS and RRR the longitudinal and lateral errors are similar and
smaller compared to the baseline. Longitudinally DCS converges into a slightly
better solution with a smaller SRMSE and laterally RRR converges into a slightly
better solution, as seen partly in Table 4.5.

The altitude error becomes larger for both robust methods which is a result of
measurements containing correct altitude information being removed or scaled
because the measurements introduce large errors to the other states. Instead,
lidar odometry is used as the estimate for the altitude. In relation to the ground
truth 3o the altitude error magnitude becomes smaller compared to the lateral
and longitudinal errors. Because DCS scales measurements instead of removing
them, some information about the altitude is kept and a better estimate is found.

Orientation errors can be seen in Figure 4.9 and all methods are similar in roll
and pitch. In close proximity to the roundabout, there are some spikes in the
estimates which are thought to be the problems in estimating the odometry, sim-
ilar to what was seen in Figure 4.7 for the Gaussian noise. The errors before the
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Multipath Disturbance Translation Estimation Error
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Figure 4.8: Translation errors for the modeled multipath disturbance using
the parameter selection @ = 0.5 for DCS and p = 0.90 for RRR.
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spikes show that both methods find a similar solution. The yaw error is smaller
when using DCS or RRR compared to the baseline and the results are comparable
even though DCS is slightly better.

Multipath Disturbance Orientation Estimation Error
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Figure 4.9: Orientation errors for the modeled multipath disturbance using
the parameter selection @ = 0.5 for DCS and p = 0.90 for RRR.

In Table 4.5 the SRMSE for all six states from the multipath tunnel scenario are
presented. The results show an improvement in all states except for altitude and
roll when using robust methods. One possible cause for why the altitude SRMSE
is worse when using DCS or RRR is GNSS measurements with correct altitude in-
formation being removed. The lidar odometry shows the worst performance in
the altitude SRMSE which is used instead of GNSS measurements when they are
removed.
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Table 4.5: Modeled Multipath disturbance with GNSS outage SRMSE for pose.

The estimated state is shown in the first column. The second column shows
the SRMSE for the baseline using only Gauss-Newton to estimate the best
state configuration. The third column shows SRMSE when using only lidar
odometry. In the fourth column, SRMSE is shown for state estimation using

DCS with @ = 0.5. The last column presents the RMSE for state estimation

using RRR with a p-value of 0.90.

Lidar
Gauss-Newton | Odometry | DCS RRR
Longitudinal 1 4.56 0.537 | 0.551
Lateral 1 1.19 0.313 | 0.279
Altitudinal 1 63.53 1.977 | 2.472
Roll 1 0.59 1.041 | 1.019
Pitch 1 3.09 0.835 | 0.981
Yaw 1 0.53 0.409 | 0.423







Discussion

5.1 Results

In this section the results from the experiments in Chapter 4 are discussed. The
discussed subjects are parameter sensitivity, localization, ground truth, and the
used method.

5.1.1 Parameter Sensitivity

The experiments show that the RRR solution varies less when the p-value is changed
compared to DCS. A similar SRMSE can be seen in Table 4.2 for a p set between
0.80 and 0.95 in both modeled scenarios, that is the tunnel multipath and tun-
nel Gaussian scenarios. This is likely due to the size of the noise, meaning that
RRR identifies similar measurements as outliers regardless of the p-value. We see
that the SRMSE is worsened when p = 0.80 compared to other values in the first
scenario where only small disturbances are present. This shows that setting p =
0.80 is not appropriate since it might worsen results during segments where no
or only small disturbances are present compared to the baseline. The reason is
that measurements are more likely to be considered outliers and removed when
p is set to a lower value. Measurements that slightly deviate in the multipath
scenario are removed as a measure to improve results but in this scenario, more
information is lost than gained in the final solution. DCS does not see the same
characteristics since the weight of each measurement is scaled based on the error
size of the measurements instead of removing it completely even when @ is set to
0.1, see Table 4.1. When @ is varied, state estimation is mostly improved or sim-
ilar for all values of @ when compared to the baseline, with exceptions in state z
for the tunnel multipath scenario and RP in tunnel Gaussian scenario.

57



58 5 Discussion

The resulting SRMSE for different states in the experiments investigating the im-
pact of parameter selection @ in DCS and p-value in RRR can be seen Table 4.1
and 4.2. Similar performance to the baseline is sought when small or no distur-
bances are present, which is the case in the first scenario. Regarding improved
state estimation of x, v, and yaw, the p-value should be set between 0.85 and 0.99
to not remove too many measurements in a situation with minor measurement
errors. When setting p = 0.80 state estimation is less accurate compared to the
baseline in the first scenario with multipath which can be seen in Table 4.2. Based
on these results, RRR risks affecting the results negatively if not tuned correctly.
When the p-value is set to a low value the RRR algorithm removes measurements
aggressively meaning measurements with a small deviation are completely re-
moved. This is not the case for DCS for the values tested. However, DCS shows
a greater difference in the resulting SRMSE when varying ® which shows in both
modeled scenarios.

In the modeled tunnel multipath scenario, the SRMSE for state z is greater as both
DCs and RRR are tuned for stricter scaling and removal of outlier measurements.
When p = 0.80 the SRMSE for z is 2.58, and when p = 0.99 the SRMSE is 1.86.
Since disturbances in the modeled multipath scenario are in the xy directions
this is expected since removing accurate measurements of the z state will lower
performance compared to baseline. However, as the p-value is set lower and
more measurements are rejected the xy state estimation is only improved from
0.51 to 0.41 SRMSE. The Yaw estimation goes from 0.45 to 0.46 SRMSE in the
modeled multipath scenario with p-value set to 0.99 and 0.80 respectively. In
the modeled multipath scenario, the performance of RRR is very similar with a
p-value set between 0.80 and 0.95. This is due to all disturbed measurements
being identified and removed and setting p to a value lower than 0.95 does not
lead to more values being removed. In the same scenario, if p is set to 0.99 only
some of the measurements are removed and therefore a different result is seen.
This shows that RRR is less sensitive to tuning when larger errors are present. The
same can be seen in the tunnel Gaussian scenario in which similar performance
can be seen across all values of p.

DCS shows a different tendency, improved performance is seen for lower values
of ® which can be seen in Table 4.1. States xy and yaw has the lowest SRMSE
when @ is set to 0.1 and 0.5. From this information, it can be concluded that RRR
is less dependent on tuning in the case of larger errors but with smaller errors
RRR might reduce performance when the p-value is set to a low value such as
0.80. DCS is more dependent on tuning in order to maximize performance, but a
wide range of the tuning parameter ® can be chosen, and state estimation of xy
and yaw is improved for the tested scenarios. When O is set in the upper range
between 2.5 and 10 the performance was improved or similar to the baseline for
all states when disturbances are present.

It is also worth noting that RRR has at least one other tuning parameter. For
example, one parameter is the time segment deciding the size of each cluster. It is
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not likely that the cluster size would affect our results since there are no natural
clusters in our scenarios that greatly benefit from the clustering component of
RRR. It would also be possible to set p to a different value when testing for cluster
consistency and individual values. These values are not studied in this thesis but
adds complexity to the tuning of RRR.

5.1.2 Localization

The localization performance of the first multipath scenario was improved mainly
in the altitude estimate during the first 13 seconds when using DCS. There is no
significant difference when using RRR in this scenario compared to the baseline
which can be seen in Table 4.3 where the SRMSE is close to one for all states. This
is also seen in Figure 4.3 and Figure 4.4 where the errors in translation and ori-
entation for RRR and the baseline are very similar. The most interesting state to
discuss in more detail is the altitude where the disturbance was present. The
observed noise and estimated covariance from the GNSS receiver in the data set
can be seen in Figure 4.2 which shows that the estimated covariance from the
receiver increases where the disturbance is found. During the first 13 seconds, it
can be seen that the covariance is slightly underestimated. This makes it difficult
for the x? tests in RRR to trigger because the error depends on the covariance ma-
trix. On the other hand, DCS has the advantage here being able to make smaller
adjustments to the covariance which results in a smaller error during the first 13
seconds in the altitude state.

During both modeled scenarios which contain outages RRR successfully removes
noisy measurements and DCS scales the covariance of these measurements. This
allows for a smooth transition to using lidar odometry measurements for local-
ization during the outage which improves performance, see Figure 4.6 and Fig-
ure 4.8 where the large spikes introduced by the disturbances are removed. In the
modeled scenarios DCS performs slightly better than RRR since more information
is kept as the covariance is scaled instead of removing the measurements entirely.
In the modeled scenario with Gaussian disturbance, it can be seen in Table 4.4
that DCS has a better SRMSE for all estimated states except for Yaw. Compare this
to the modeled multipath scenario where Table 4.5 shows that the SRMSE is very
similar for both methods except for the altitude state where DCS performs bet-
ter. One thing both modeled scenarios have in common is that the disturbance is
added to the same measurements which makes the disturbance characteristic the
differentiating factor. There seems to be no clear reason as to why the methods
perform differently with the two disturbance types but one explanation could be
that for the Gaussian scenario DCS gets an advantage due to the assumption of
Gaussian noise made in the GNSS constraints. The scaling works better in the
tunnel scenario with Gaussian noise since disturbances are present in all trans-
lational states. This means there is no trade off such as in the tunnel multipath
scenario in which the altitudinal state is worsened while longitudinal and lateral
states improved.
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The cluster removal step of the RRR algorithm is interesting to discuss for use to-
gether with GNSS position constraints. The algorithm was originally designed for
loop closure constraints which have the characteristics of appearing in smaller
clusters. Loop closures are detected using some place recognition algorithm and
are found in an area previously visited. The cluster removal step is a part of the
algorithm to prevent faulty association between visually similar places such as
road crossings which would make a generated map topologically incorrect. The
same problem does not apply to GNSS measurements but some similarities can
be seen if the GNSS disturbances are of the multipath characteristic of a shift in
position. An example of a cluster being removed can be seen in the first scenario
with small multipath disturbances. RRR manages to find a similar solution for
all p-values except for p = 0.80 where all GNSS measurements in the first cluster
are removed leading to worse localization. Similarly, in the two scenarios where
an outage is combined with disturbances, the RRR removed entire clusters where
the majority of measurements had disturbances which leads to correct measure-
ments also being removed. The removal of large clusters can be seen as both
positive and negative. The positive aspect is that we can be more confident that
no outliers are used, together with a good odometry estimation the localization
should keep a consistent quality. On the other hand, the cluster removal step
removes correct measurements that could make the performance even better in
applications where high precision in localization is needed. For DCS which does
not cluster the measurements, it can be seen that the localization errors in both
Section 4.4 and Section 4.5 are similar to the errors for RRR. However if the alti-
tude error in Figure 4.6 and Figure 4.8 is looked at closer it can be seen that DCS
error moves towards the ground truth covariance faster compared to RRR dur-
ing the disturbed section between 24 seconds and 29 seconds. This could be ex-
plained by the removal of the entire cluster surrounding the disturbances which
also contains correct measurements. This could indicate that cluster removal is
not needed together with GNSS measurements.

As mentioned in Chapter 1 there have been comparative studies conducted ear-
lier that focus on the performance of different robust methods combined with
loop closure constraints. One important aspect brought up by the authors in [8]
is whether the robust methods make binary decisions or not. The authors bring
up the use of the output from the SLAM solution to higher level tasks such as
navigation and planning. In the context of invalid loop closure constraints, they
argue that non-binary methods do not completely remove inconsistent paths in
the graph which could lead to failures when doing navigation tasks. The reason
is that even if DCS correctly scales a faulty loop closure constraint the two nodes
associated would still be connected in the graph which in turn can be used as a
path in planning. This same problem does not apply if the same graph is used
for localization. This is because a localization algorithm would only try to find
which node in the graph is most similar to the current position based on a place
recognition algorithm, the relationship between nodes in a graph is not relevant.
Additionally for use together with GNSS constraints using our methodology the
same problem does not occur as the GNSS constraint independently tells the rela-
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tionship of a node to a global position and not the relationship to another node
in the graph. Therefore robust methods for GNSS constraints that are non-binary
would not introduce the same safety concern for a navigation task. The experi-
ments conducted in this thesis show that both a binary method such as RRR and
a non-binary method such as DCS are capable of identifying and reducing the
effect of outlier GNSS measurements. In terms of localization, DCS performed
better across the tested cases.

5.1.3 Ground Truth

The data used as ground truth is based on estimations from a high end INS. The
INS also estimates the certainty of estimated states in the shape of a covariance
matrix. If our estimate is within the estimated covariance of the ground truth
less can be said about the performance since the resolution of the ground truth
is limited by this factor. It could also be the case that the INS provides faulty
estimations, but this is deemed as having a low impact on the results.

5.1.4 Lidar Odometry

The quality of the lidar odometry estimate greatly affects the localization perfor-
mance when using robust methods. The lidar odometry estimate method used
in this thesis shows signs of overestimating the distance traveled, likely due to
the corridor-like shape of a road and the relatively larger longitudinal velocity
compared to lateral or altitudinal velocity. This can be seen in the results of
the tunnel scenarios in Table 4.3 and 4.4 where the lidar odometry longitudinal
SRMSE is less than the lateral SRMSE. When the robust methods are applied, a
smaller improvement is also seen in the longitudinal direction compared to the
lateral direction which is caused by the quality of the lidar odometry estimate.
However, since the presented data is the SRMSE compared to the baseline, the
effect of the robust methods is isolated.

One of the important assumptions of the lidar SLAM problem is that the world
is static. The dataset used in this thesis was recorded during the daytime with a
moderate traffic flow, which introduces dynamic objects to the lidar scans. The
dynamic objects make up a small part of the point clouds making the effect on
localization small. The GNSS measurements are independent of the time of day.

5.1.5 Map quality

The map quality is closely tied to the performance of localization. Although this
thesis does not specifically look into the map quality, during the testing phase
it was clear that the map quality was affected by the localization performance.
This is due to the system design, where the map points are generated based on
the localization estimate. If the localization estimate was poor the map showed
several imperfections such as a blurry map, curved buildings, and doublets or
triplets of features such as lamp-posts.
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5.2 Method

The robust methods chosen for evaluation in this thesis can be categorized into
two types of robust methods used in the back end of graph SLAM. The categoriza-
tion is based on what kind of decision is made once an outlier measurement is
found. RRR makes a binary decision and completely removes the measurement
while DCS makes a non-binary decision by applying scaling to the measurement.
Based on previous research [7, 8] this trait had a great impact on results when
the robust methods were applied to loop closure constraints when the final graph
SLAM solution is to be used for navigation. Overall, no method was definitively
superior to the others, and the data set affected which robust method performed
the best. Only two methods were investigated in this thesis due to time con-
straints, but RRR and DCS were chosen as popular and capable methods based on
previous studies that represent both the binary and non-binary methods.

Earlier studies on robustness in graph SLAM with GNSS focus on applying meth-
ods with pseudorange observations. This approach is interesting for research pur-
poses but for use in industrial applications, simpler solutions might be opted for
instead for efficiency and cost saving. The method used for integrating GNSS in
this thesis uses the position estimated by the GNSS receiver as constraints instead
of each individual pseduorange observation. The position measurement is also
available when using cheaper equipment which makes our research relevant for
systems using the same measurements. Watson and Gross [6] conducted a com-
parative study of robust methods with pseduorange measurements and found
that the Switchable Constraints method outperformed Dynamic Covariance Scal-
ing but no further discussion explaining why. One possible explanation could
be the characteristics of multipath disturbances where the pseduorange measure-
ment is reflected off surrounding structures. Either it is reflected off a structure
or it has not been reflected off a surrounding structure, there is not so much an
in-between. This could be an advantage to a binary method such as switchable
constraints as it matches the characteristics of the disturbance. In the case of our
formulation of the GNSS measurements, the same multipath disturbance would
be incorporated into the position measurement, resulting in a slightly disturbed
position measurement. This means that a mixture of both good and bad measure-
ments are fused into one position, that remains moderately accurate. Following
the logic of selecting an appropriate method depending on the noise characteris-
tics, one could argue that a non-binary method would be suitable for this type of
formulation.

Modeling of GNSS noise characteristics in the tunnel scenario was mostly done
based on experiences from the partner company. It is hard to evaluate how accu-
rate the modeling is because it was hard to find academic papers that try to model
GNSs disturbances when driving inside tunnels. Probably because it is difficult
to get an accurate ground truth inside tunnels. Using lidar for odometry estima-
tion with scan matching is challenging due to the low number of features found,
tunnels being very monotonous with mostly flat walls, ground, and ceiling. And
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for obvious reasons GNSS cannot be used as the ground truth. In order to cover
a wider range of scenarios two different types of disturbance were modeled. The
first modeled scenario makes the assumption of Gaussian noise. The idea was
that the uncertainty grows proportionally to the distance into a tunnel before
cutting off completely. This model of a tunnel does not represent every tunnel
that exists but roughly represents the problem when driving through tunnels or
in urban canyons. This was established in discussions with the partner company.
The shape of the noise might be of a different distribution in a real scenario. For
example, it might be a Gaussian noise with an offset. Still, the robust methods
will have to distinguish outliers at the beginning of the tunnel in order for odome-
try to correctly estimate position. The second modeled scenario tries to resemble
the real disturbances that were observed in the left GNSS receiver in our data set.
Even if the modeled disturbances do not resemble GNSS disturbances perfectly
conclusions about the performance of robust methods can still be drawn from
the experiments that test the robust methods on noise commonly found using
GNSS receivers.

Covariance estimation also makes a large difference when trying to find the cor-
rect solution. In both modeled scenarios, a decision was made to not update the
covariance of the measurement to see how the robust methods would handle the
problem. The idea is to emulate the worst case scenario where the GNSS receiver
has a hard time estimating the covariance. In a real scenario, this could be the
case in a real time application where the covariance estimation is updated less
frequently due to limitations in computation speed or a limitation on data trans-
fer capacity between the GNSS receiver and the localization system. Updating the
covariance estimate proportional to the size of added disturbance would most
likely result in the Gauss-Newton solution improving, and decreasing the impact
of the robust methods. The idea was that by not giving the robust methods the
best conditions their performance would be tested. Together with the first sce-
nario where the covariance is updated from the receiver, the experiments cover
both cases.






Conclusions and further work

A summary of the results, analysis, and discussion are presented in this chap-
ter. Proposals for further work are also presented. Each research question is
answered in the first section.

6.1 Conclusions

This thesis explored the effect of robust methods for GNSS measurements in a
system with lidar for localization. Two methods, DCS and RRR were used as rep-
resentatives for the non-binary and binary categories of robust methods. The
study found that DCS, with its non-binary decision-making approach, aligns bet-
ter with the GNSS constraint formulation used compared to the binary approach
of RRR. However, both methods are capable of reducing the effect of GNSS outliers
and improving localization.

Combination of GNSs and lidar

In situations where GNSS fails to provide accurate localization lidar odometry can
be relied on as an alternative localization method if coupled with a robust method
for the GNSS measurements. Regarding the first research question, graph SLAM
can be used with GNSS measurements as position constraints alongside lidar data
to estimate the odometry. It is also possible to incorporate the measurements
from a dual GNSS receiver as two independent constraints. To reduce the effects
of outlier GNSS measurements and GNSS outage on localization, robust methods
such as DCS and RRR can be used. Both methods were able to reduce the effects
of GNSS outage, increasing Gaussian noise, and multipathing.
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DCS and RRR rely on having consistent odometry estimation to identify outlier
GNSS measurements. For a system where the lidar odometry is of poor quality, or
in environments where scan matching is challenging, the constraint formulation
used in this thesis is not recommended.

Localization with GNss disturbances

In the case of disturbances combined with a GNSS outage, such as in the tun-
nel scenarios, RRR and DCS successfully identify the erroneous measurements as
well as reduce the effect and improve localization. DCS outperforms RRR reducing
the effects of disturbance and combined GNSS outage by scaling the information
matrix by the size of the errors. DCS also improves state estimation in the first
multipath scenario with smaller disturbances. The cluster removal step of RRR is
not suitable together with GNSS measurements as it removes too many measure-
ments that still carry information. Although the measurements are inaccurate,
the complete removal of clusters is not justified when accurate localization is the
objective in a lidar and GNSS system.

The use of a robust method for handling GNSS outliers can be a good idea for
some applications where there are high requirements for localization and where
disturbances are expected to occur. Provided there is a good and reliable odom-
etry estimate that can be used in conjunction with GNSS measurements. In one
way, the robust methods support the covariance estimation done by the GNSS sen-
sors. The robust methods might not improve the localization performance if the
covariance estimation is sophisticated enough. However, an extra layer of robust-
ness is useful in both real time applications such as navigation, as well as offline
such as mapping.

Binary and non-binary decision-making

When concluding which robust technique is most suitable for GNSS constraints
the formulation of the constraints is an important factor. Together with the for-
mulation used in this thesis, it is more appropriate to make a non-binary decision
compared to a binary decision to deal with outliers. DCS makes a non-binary de-
cision that better aligns with the formulation used.

The impact of the p-value in the RRR algorithm suggests RRR is less suitable as a
robust method to handle GNSS disturbances and outages compared to DCS. If the
value of p is set too low it can worsen the performance of state estimation, partic-
ularly in scenarios when small disturbances are present which could be seen in
the altitude error of the multipath scenario. DCS consistently manages to improve
state estimation for x, y, and yaw states for different tuning. However, RRR shows
less variance in performance for different values of p compared to varying @ in
DCS. This could be an advantage when applying RRR in certain systems. The use-
fulness of a robust method greatly depends on the required tuning. If additional
parameters are required, the benefits from improved covariance estimation are
offset by the increased complexity introduced to the system.
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Both DCS and RRR are viable methods for handling outliers in GNSS measure-
ments. However, considering the overall performance, tuning properties, and
the ability to make non-binary decisions, the conclusion is that DCS is the most
suitable method.

6.2 Further Work

In this thesis, two different methods for increasing robustness against outliers
in graph SLAM were evaluated. However, the scenarios assessed provide limited
knowledge of how different noise characteristics affect the evaluated methods. In
order to further support the extent of these findings, a more quantitative study
could be performed which simulated multiple runs with slight noise variations
of the presented scenarios. If more real-world data were tested, a better picture
of the impact of RRR and DCS could be gained. Samples from a real tunnel would
provide a reference to the artificial scenarios in this thesis.

A more refined version of RRR where removing measurements is punished in
order to keep as much information as possible has been published and would be
interesting to compare.

An interesting extension of DCS would be to scale the covariance of states inde-
pendently of each other. This would be beneficial for multipath disturbances for
example a bias in the z direction should not affect the confidence of lateral and
longitudinal information. If the scaling factor s is calculated as a vector where
each individual error state is used. This would also add the possibility to tune ©
for each state.

The robust methods DCS and RRR can be applied to different constraints set in
graph SLAM in order to improve the performance of localization. For example,
a case for this would be the application to lidar odometry constraints. A topic
of further work could be in the challenging scenario where both GNSS and lidar
data can exhibit outliers. How should a decision be made to correctly identify
which source of measurements is true in a graph SLAM context?
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