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Abstract—Accurate localization is a part of most autonomous
systems. GNSS is today the go to solution for localization but is
unreliable due to jamming and is not available indoors. Inertial
navigation aided by visual measurements, e.g., optical flow, offers
an alternative. Traditional feature-based optical flow is limited to
scenes with good features, current development of deep neural
network derived dense optical flow is an interesting alternative.
This paper proposes a method to evaluate the result of dense
optical flow on real image sequences using traditional feature-
based optical flow and uses this to compare six different dense
optical flow methods. The results of the dense methods are
promising, and no clear winner amongst the methods can be
determined. The results are discussed in the context of how they
can be used to support localization.

I. INTRODUCTION

Reliable and robust localization is an essential capability for
autonomous navigation in indoor and outdoor environments.
Global navigation satellite systems (GNSS), such as GPS, have
turned into the de facto standard for localization in outdoor
environments. However, GNSS is sensitive to disturbances
and jamming, suffers from degraded performance in urban
canyons, and does not work at all in indoor environments
where the GNSS signals are blocked. To handle these situations
alternatives to GNSS navigation are needed.

One common way to obtain a stand-alone navigation system
is to use inertial sensors. However, all inertial navigation
systems (INS) suffer from drift and need an additional source
of information to provide a viable long term navigation
solution. Image sensors can provide this extra information,
and their relative light weight and low price makes them
an attractive sensor alternative. Current research direction in
visual navigation which has shown promising results is visual-
simultaneous localization and mapping (V-SLAM), which is an
example of a SLAM solution [1]. Another method to extract
information about motion from images is visual odometry (VO)
[2]. Both V-SLAM and VO aim to estimate the camera’s pose
using structure for motion concept from computer vision. They
extract feature points from images and estimate camera pose
by matching feature points within consecutive frames. The
state or poses of the camera is formulated in such a way that
it can be solved online using a Kalman filter or as a batch
problem to which standard optimization solvers can be applied.

Conventional visual navigation tracks the movement of
a sparse set of image features between consecutive frame
[3]. The sparse set provides reliable visual measurements to

navigation systems in visual information rich environment,
but it can lead to performance degradation in featureless
or dynamic environment in which the reliability of feature
tracking decreases between successive image frames. The
optical flow, which can be obtained from the sparse feature
set, is the movement of a point between two frames. Assuming
that the feature points represent the same point in the 3D world
in two frames, the optical flow is then the change of the 2D
projection into the image plane of this 3D point. This, in turn,
carries information about the motion of the camera. Therefore,
extracting robust optical flow plays a key role in these systems.
If the optical flow is computed from a sparse set of feature
points only a sparse optical flow is available in the tracked
points. The features can be extracted using standard feature
detectors, e.g., the scale-invariant feature transform (SIFT) [4]
or ORB [5], and tracked using some feature tracker, e.g., the
Lucas-Kanade tracker (KLT) [6].

Recently, as the result of the rapid development of deep
learning, methods have been developed that provide dense
optical flow. These methods are fed a pair of images and
produce an optical flow estimate in each pixel, regardless of
if there are any feature points or not. Deep learning-based
optical flow estimation methods implement convolutional neu-
ral networks (CNNs), which derive optical flow for all image
pixels through stacking networks, image, or feature warping.
The first end-to-end optical flow network was FlowNet [7],
which uses CNNs with an encoder-decoder architectures. Later,
FlowNet2 [8] stacked multiple FlowNetC and FlowNetS, and it
remedied the low accuracy achieved with FlowNet. However,
this stacking increases the number of parameters and the
computational complexity. PWC-net [9] combined the coarse-
to-fine strategy with warping features and computing a cost
volume. It outperformed both classical and previous learning-
based methods. LiteFlowNet [10] was proposed to achieve
competitive accuracy while having fewer parameters than
FlowNet2. The estimation performance of the deep learning-
based optical flow estimation was further improved by ap-
plying recurrent neural network (RNN) techniques. Recurrent
all-pairs field transforms [11], which is well known as RAFT,
was proposed. It builds 4D correlation volumes between all
pairs of pixels and uses that information to iteratively refine
the flow field. Based on the RAFT framework, a global motion
aggregation (GMA) module was proposed [12]. It adds an
attention mechanism of transformer networks to RAFT, which



has a multi-scale 4D correlation layer and a recurrent update
component. The module of GMA improves occluded pixels
estimation by adding a 4D attention matrix to the layered
feature structure.

Since the proposal of the first end-to-end optical flow
method [7], deep neural network (DNN)-based dense optical
flow methods have achieved significant improvement in their
accuracy. However, due to the evaluation metric that requires
the ground truth in all pixels, the development of the algorithm
often depends on the availability of synthetic datasets, and
it usually focuses on obtaining clean flow fields represented
by average end-point error (EPE) loss from open synthetic
dataset. This results in a lack of comparisons of dense flow
methods based on real-world scenes. Therefore, given the
potential importance of optical flow in navigation applications,
comparative studies of optical flow estimation methods based
on both classical and DNN methods are needed. This paper
aims to address this shortcoming and provides a comparison of
classical feature-based and DNN-based optical flow estimation
methods.

The main contributions of this paper are:
• a method to compare dense optical flow methods, using

sparse feature-based optical flow as baseline;
• a comparison of dense optical flow methods, and a

feature-based sparse optical flow method using standard
datasets; and

• a discussion about the suitability of using dense optical
flow computed as a supporting sensor in inertial naviga-
tion.

The remainder of this paper is organized the following
way. First, Sec. II, it is described how to compute sparse
and dense optical flow, then the result from the experimental
comparison of the different optical flow methods are presented
and discussed in Sec. III, and finally conclusions are presented
in Sec. IV.

II. OPTICAL FLOW

Optical flow is defined as the movement of a pixel in an
image stream between consecutive frames. The underlying
assumption is that the pixel should represent the same point
in 3D, which then makes it possible to derive properties of
the motion of the camera without knowledge of the underly-
ing 3D world. Traditionally optical flow has been computed
using feature points, which results in a sparse optical flow.
Advances in machine learning have resulted in the ability to
produce dense optical flow. The differences between these two
approaches are illustrated Fig. 1.

A. Feature-Based Optical Flow

When computing feature-based optical flow, the first step
is to obtain stable features to track between frames. Any
suitable features can be used, which one to use depends on the
ability to find features in the scene at hand, and the ability to
find appropriate feature correspondences between frames. The
second step is to compute feature correspondences between

(a) Machine hall

(b) Vicon Room

Fig. 1: Examples of sparse and dense optical flow, computed
for two images from two EuRoc datasets [13]. The GMA [12]
method is used to obtain the dense optical flow images. The
dense optical flow uses the flow field color encoding [14].

the images. These correspondences are then used to compute
the optical flow.

Assume a set of correspondences between image Ik

and Ik+1,
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The optical flow vector δk,feature
i describes the displacement of

feature point i in the reference image Ik in the frame Ik+1.
The feature-based optical flow in the given image Ik is then{
δk,feature
i

}
. This is typically much fewer points than points in

the image, which motivates the name sparse optical flow.

B. DNN-Based Optical Flow

Dense optical flow refers to optical flow computed methods
where every point in the reference image Ik is assigned an
optical flow. Due to the advancements in machine learning, in
particular in the area of deep neural networks (DNN), this can
now be achieved. As described in the introduction, this can
be done in many different ways. Basic approach of the DNN
architecture is constructing CNNs which can solve the optical
flow estimation problem as a supervised learning task. In order
to improve quality and speed, the methods have evolved into
applying various training data protocols and adopting a layer
that correlates feature vectors at different image locations.
To directly compare with the feature-based optical flow, we
allocate estimated dense flow at the same pixel location as
the feature-based flow. Therefore, DNN-based optical flow in
the given image Ik is defined as

{
δk,DNN
i

}
, indicates the

displacement given by the neural networks.



C. Comparison metrics

In order to compare different optical flow methods, we
define metrics to compare the outputs. Given a specific point
(xk

i , y
k
i ) in the image Ik with two optical flows δk,Ai and δk,Bi

of methods A and B, define the angle error αk
i as

αk
i = arccos

(
δk,Ai · δk,Bi

∥δk,Ai ∥∥δk,Bi ∥

)
[rad]. (2)

In a similar way, the relative difference in magnitude can be
defined

Mk
i =

(
∥δk,Ai ∥ − ∥δk,Bi ∥

∥δk,Ai ∥

)
× 100 [%]. (3)

The relative magnitude is used not to be too influenced by the
magnitude of the optical flow.

In general, ground truth data for optical flow in real images
is scarce, in particular for dense optical flow. As a result,
many comparative studies of optical flow methods are only
conducted using artificial image sequences. Though, providing
some insights of the methods compared, using artificial images
always runs the risk of introducing artifacts related to the
creation of the artificial images. Hence, in this paper an
alternative method of comparison is suggested and used to
evaluate the different dense optical flow methods considered.
The idea is to use optical flow from a stable feature-based
sparse optical flow method as ground truth. The methods are
then compared in the points where the sparse optical flow is
computed. This way authentic image material can be used,
which is an important benefit.

III. EXPERIMENTAL METHOD COMPARISON

In this section, six different DNN-based methods for dense
optical flow are evaluated and compared using the publicly
available EuRoc datasets [13]. As baseline, as true dense
optical flow ground truth data is unavailable, sparse feature-
based optical flow from ORB features [5] are used.

A. DNN Optical Flow Methods

In this comparison the following network models are used
to obtain DNN dense optical flow: GMA, RAFT, LiteFlowNet2,
PWC, FlowNet2CSS of FlowNet2, FlowNetC of FlowNet.
All six networks are pre-trained on FlyingChairs [7] for all
methods. The models are then fine-tuned on a combina-
tion of FlyingThings3D [15] (excluded for the FlowNetC),
Sintel [16] (excluded for FlowNet2), and KITTI [17] (only
LiteFlowNet2), considering each training method on public
benchmarks [16]. The methods are all implemented using the
PyTorch [18] with the mixed precision strategy. The mod-
ules are initialized from scratch with random weights using
Tesla T4 GPU. Furthermore, standard optical flow training
conventions [8, 11, 16] are followed. For example, in case of
GMA, pre-train is performed using FlyingThings for 120 000
iterations with a batch size of 8, followed by another 120 000
iterations on FlyingThings with batch size of 6. Finally, the
model is fine-tuned on Sintel for 120 000 iterations with batch
size 6.

B. Experimental setup

The trained DNN optical flow methods are evaluated on
image sequences from the EuRoC dataset [13], in particu-
lar the “Machine Hall 01” (here denoted “MH 01 easy”),
“Machine Hall 03” (“MH 03 medium”), “Vicon Room 02”
(“V2 02 easy”), and “Vicon Room 03” (“V2 03 difficult”)
sequences. The comparisons are all performed against the
sparse optical flow computed using ORB features. The results
of these comparisons are presented and discussed below.

C. Results

The results of all the comparisons made are summarized
in Table I, which contains average errors for all the tests
conducted. The table indicates that all the evaluated methods
perform well on average, with only minor differences between
the methods.

To complement the table, Fig. 2 and 3 provide qualitative
comparisons of the methods for two frames with distinctive
characteristics. For each frame, the evaluated frame is de-
picted, and the computed sparse optical flow is visualized.
Next to it, the dense optical flow estimated with the different
DNN methods are visualized. The estimated dense flows are
all similar, but differ, e.g., in the level of detail captured. That
means, outside of the evaluated points, there are differences
in the computed optical flow. Which one to prefer depends on
the application, it can be observed that FlowNet and LiteFlow
Net2 provides a smoother (locally average) than the other
methods. Furthermore, the figure zooms in on 6 different
regions with a sparse optical flow and shows the sparse optical
flow in comparison to the optical flow computed by the DNN
methods in the same point. The estimated optical flows match
well in most cases, but there are exceptions such as Fig. 3(i)
and (m), where in both cases it is questionable if the right
feature match has been made between the images given the
fairly homogeneous image patch.

A quantitative comparison of the angle and relative magni-
tude difference are provided in the Fig. 4 and 5, respectively,
using box plots. Small angle differences implies that the
orientation of the optical flow estimates from the compared
methods matches and indicates a camera movement in the
same direction. The means and distributions of the angle and
magnitude differences of DNN methods in each sequence show
similar distribution pattern. On thing to note though is that
the “V2 03 difficult sequence” (Fig. 4d and 5d) has a smaller
variance in the distribution compared to other sequences for
both the angle and magnitude is present. Overall, the models
for DNN-based dense optical flow estimation have evolved
to return flows directly comparable to feature-based optical
flow. Also, there are in general small differences between
neural network estimates in comparison to the sparse method.
The comparison results show that the overall dense methods
provide similar vector fields compared to the sparse method,
which shows that it is suitable for utilizing dense optical flow
in the visual measurements to navigation system provided by
sparse optical flow.



TABLE I: Summary of comparison results.

GMA RAFT LiteFlowNet2 PWC FlowNet2 FlowNet
MH 01 easy Avg. angle diff. [rad] 0.0897 0.0894 0.0942 0.0885 0.0858 0.0991

(14 300 flows in 3 682 frames) Avg. rel. magnitude diff. [%] 2.4509 2.4031 0.9282 1.8520 1.5576 0.5058
MH 03 medium Avg. angle diff. [rad] 0.0831 0.0814 0.0854 0.0801 0.0777 0.0938

(8 671 flows in 2 700 frames) Avg. rel. magnitude diff. 3.2090 3.1496 1.7667 2.7522 2.2259 2.7305
V2 01 easy Avg. angle diff. [rad] 0.0872 0.0850 0.0951 0.0826 0.0801 0.1031

(8 546 flows in 2 280 frames) Avg. rel. magnitude diff. 2.4257 2.2809 0.6701 1.8993 1.5551 1.9715
V2 03 difficult Avg. angle diff. [rad] 0.0465 0.0466 0.0546 0.0466 0.0443 0.0587

(4 357 flows in 1 922 frames) Avg. rel. magnitude diff. 0.8022 0.6527 0.6257 0.5817 0.5012 0.9879

(a) Feature-based optical flow in image

(b) FlowNet [7] (c) FlowNet2 [8] (d) PWC [9]

(e) LiteFlowNet2 [19] (f) RAFT [11] (g) GMA [12]

(h) Area 1 (i) Area 2 (j) Area 3

(k) Area 4 (l) Area 5 (m) Area 6

Fig. 2: Flow predictions and comparison results on Machine Hall of EuRoc dataset. The dense optical flow uses the flow field
color encoding [14].

D. Discussion

Overall, the methods for dense optical flow evaluated per-
form similarly compared to the sparse feature-based optical
method used as ground truth. The results are good, and in
these points, for most usages, the DNN-based methods could
be used as substitute for the feature-based optical flow. As can
be seen in Fig. 2 and 3, in between these points, the overall
behavior is similar, but difference can be observed in the level

of “detail” captured. Whether to prefer the higher resolution
result or the more averaged result depends on the application.
Hence, it is important to consider this aspect before choosing
to use one or the other method. One can also conclude that
it could be important which points are used when extracting
the optical flow in the end. It would be interesting to study if
there are indicators of regions in an image that will provide
reliable optical flow estimates.

As indicated in the introduction, the authors’ intention is to



(a) Feature-based optical flow in image

(b) FlowNet [7] (c) FlowNet2 [8] (d) PWC [9]

(e) LiteFlowNet2 [19] (f) RAFT [11] (g) GMA [12]

(h) Area 1 (i) Area 2 (j) Area 3

(k) Area 4 (l) Area 5 (m) Area 6

Fig. 3: Flow predictions and comparison results on Vicon Room of EuRoc dataset. The dense optical flow uses the flow field
color encoding [14].

use the dense optical flow as a supporting sensor for visual
inertial odometry. The straightforward application of optical
flow in this application does only use the direction of the
optical flow. This means that the angle error is much more
important than the relative magnitude. Overall, the evaluated
methods perform well, but there are also a significant number
of outliers. Hence, proper outlier detection and removal will
be necessary when using the optical flow in any navigation
solution.

The proposed method to evaluate the different dense optical
methods using sparse optical flow as ground truth seems to
work. However, there are situations where it could be argued
that the feature points are incorrectly associated, resulting in
strange ground truth. More work is needed to eliminate these
points. Furthermore, using sparse ground truth provides less
information, as it is impossible to say anything about the
optical flow in between the points in the sparse optical flow
points, but at the same time it adds realism to the evaluation.

A combination of both artificial dense ground truth and real
sparse ground truth is to be preferred.

IV. CONCLUSIONS

Optical flow can be a vital component when designing GNSS
independent navigation solutions. In this paper, different state-
of-the-art learning based dense optical flow methods have
been evaluated, and the results have been compared to those
obtained with sparse feature-based optical flow methods. In
the process, a method utilizing sparse optical flow to obtain
ground truth for the comparison, has been proposed. Overall,
the dense methods provide results similar to the sparse method,
and no specific method stands out as significantly better than
any other. The quality of the dense optical flow would seem
to make the estimates suitable for supporting measurement in
GNSS independent navigation solutions but will require careful
outlier handling.



(a) MH 01 easy sequence (b) MH 03 medium sequence

(c) V2 01 easy sequence (d) V2 03 difficult sequence

Fig. 4: Angle comparison of all image frames between feature-
based and learning-based methods. The default value of
whisker is 1.5 corresponds to Tukey’s original definition of
boxplots.

Future work includes exploiting the computed dense opti-
cal flow to aid inertial navigation systems in visual-inertial
odometry type of system.
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