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a b s t r a c t

Classifiers based on neural networks (nn) often lack a measure of uncertainty in the predicted class.
We propose a method to estimate the probability mass function (pmf) of the different classes, as well
as the covariance of the estimated pmf. First, a local linear approach is used during the training phase
to recursively compute the covariance of the parameters in the nn. Secondly, in the classification
phase, another local linear approach is used to propagate the covariance of the learned nn parameters
to the uncertainty in the output of the last layer of the nn. This allows for an efficient Monte Carlo
(mc) approach for; (i) estimating the pmf; (ii) calculating the covariance of the estimated pmf; and
(iii) proper risk assessment and fusion of multiple classifiers. Two classical image classification tasks,
i.e., mnist, and cfar10, are used to demonstrate the efficiency of the proposed method.

© 2024 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

In this paper, the problem of quantifying the uncertainty in
he predictions from a neural network (nn) is studied. The uncer-
ainty in the prediction stems from three different sources: errors
aused by the optimization algorithm that is used to train the nn,
rrors in the data (aleatoric uncertainty), and errors in the model
epistemic uncertainty). In this paper, the focus is on uncertainty
rom the two latter sources.

In numerous applications, e.g., image recognition (Krizhevsky,
utskever, & Hinton, 2012), and various control tasks (Karlsson
Hendeby, 2021; Li et al., 2017), nns have shown high per-

ormance. Despite their high performance, the use of nns in
afety-critical applications is limited (Grigorescu, Trasnea, Cocias,
Macesanu, 2020; Paleyes, Urma, & Lawrence, 2020). It is partly
consequence of the fact that their predictions usually do not
ome with any measure of certainty of the prediction, which is
rucial to have in a decision-making process to know to what
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degree the prediction can be trusted. In particular, this need was
highlighted in the fatal Uber accident in 2018 where the lack of
reliable classifications of surrounding objects played a role in the
development of events that eventually led to the accident (NTSB,
2018). Moreover, the quantified measure of uncertainty can be
used to detect and remove outliers in the data, and without
knowledge about the uncertainty it is not possible to fuse the
prediction from the nn with information from other sensors.

The problem to quantify the uncertainty in the prediction
of nns has lately gained increasing attention, and numerous
methods to calculate the uncertainty have been suggested
(D’Amour et al., 2020; Ghahramani, 2015; Lin, Clark, Trigoni, &
Roberts, 2022; Ovadia et al., 2019; Patel & Waslander, 2022). For
a survey of methods see Gawlikowski et al. (2023). The methods
suggested in the literature can broadly be divided into one out
of two categories. One category is based on creating an ensemble
of predictions from which the uncertainty in the prediction is
computed (Ayhan & Berens, 2018; Gal & Ghahramani, 2016;
Ilg et al., 2018; Lakshminarayanan, Pritzel, & Blundell, 2017;
Maddox, Izmailov, Garipov, Vetrov, & Wilson, 2019; Osawa et al.,
2019; Teye, Azizpour, & Smith, 2018). In the other category,
the nn structure is extended and the nn is trained to learn its
own uncertainty (Blundell, Cornebise, Kavukcuoglu, & Wierstra,
2015; Charpentier, Zügner, & Günnemann, 2020; Gustafsson,
Danelljan, Bhat, & Schön, 2020; Izmailov, Nicholson, Lotfi, &
Wilson, 2021; Kendall & Gal, 2017). Concerning the first category,
it has for example been suggested to create an ensemble by

training multiple nns, from whose predictions the uncertainty
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s computed by Lakshminarayanan et al. (2017). Since training
single nn is often computationally expensive, this method has
igh computational complexity. In practice, it is only feasible
rom a computational perspective to create small ensembles.
o decrease the computational complexity, it was in Gal and
hahramani (2016) and Teye et al. (2018) suggested to use
lready existing regularization techniques to sample values of the
arameters of the nn to create these ensembles. Another method
o create ensembles is by sampling values of the parameters
uring the last part of the training phase (Maddox et al.,
019; Osawa et al., 2019). So-called test-time data augmentation
ethods have also been suggested to do perturbation on the test
ata to create an ensemble of predictions (Ayhan & Berens, 2018).
ven though the methods in Ayhan and Berens (2018), Gal and
hahramani (2016), Maddox et al. (2019), Osawa et al. (2019)
nd Teye et al. (2018) do not need multiple models to be trained
hey require multiple forward passes. Furthermore, they require
pecially tailored training algorithms and carefully constructed
tructures of the nn.
Another limitation of methods relying on creating ensembles

s that they have trouble representing the uncertainty caused
y the bias in the prediction from a model mismatch. The bias
an be caused by an insufficiently flexible model, which could
e a result of too high regularization or too low model order.
he problem can be solved by nns from the second category,
.e., where the structure of the nn is extended such that it learns
ts own uncertainty in the prediction. However, this requires a
ore intricate nn structure with tailored loss functions (Blundell
t al., 2015; Charpentier et al., 2020; Gustafsson et al., 2020;
endall & Gal, 2017). As a consequence, the training becomes
ore complex and computationally expensive. It also makes the
ethods sensitive to errors caused by the training algorithm,
hich are not possible to learn. Furthermore, there is also a need

or more data to train complex model structures.
In this paper, we address the two limitations of the afore-

entioned methods using classical local approximations from the
rea of system identification (Ljung, 1999) based on a lineariza-
ion of the model. Where the system identification methodol-
gy works well for static systems which nns are an example
f Avant and Morgansen (2023) and Shen, Varshney, and Zhu
2014). We will refer to this as the delta method (Liero & Zwanzig,
011; Malmström, 2021; Malmström, Skog, Axehill, & Gustafsson,
022). For regression tasks, the delta method has previously been
sed to quantify the uncertainty in the prediction of nns, see

e.g., Deng, Zhou, and Zhu (2022), Hwang and Ding (1997), Immer,
Korzepa, and Bauer (2021), Liero and Zwanzig (2011) and Malm-
ström (2021), and extended to classification tasks in Malmström
et al. (2022).

2. Problem formulation and contributions

Consider the problem of learning a classifier from the training
data set

T ≜ {yn, xn}Nn=1 (1)

Here yn ∈ {1, . . . ,M} is the class labels and xn ∈ Rnx is the input
data of size nx, e.g., pixels in an image. From a statistical point
of view, the learning of the classifier can be seen as a system
identification problem where a model f (x; θ ) that predicts the
conditional probability mass function (pmf) p(y|x) of a categorical
distribution, are to be identified. That is, the probability for y = m
given the input x is modeled as

p(y = m|x; θ ) = fm(x; θ ), m = 1, . . . ,M. (2)

Here θ ∈ Rnθ denotes the nθ -dimensional parameter vector that

parameterizes the model. Further, the subscript m denotes the &

2

m’th element of the vector-valued output of the function. To
ensure that the model f (x; θ ) fulfills the properties associated
with a pmf, i.e., fm(x; θ ) ≥ 0 ∀m and

∑
m fm(x; θ ) = 1, it is

typically structured as

f (x; θ ) = softmax (g(x; θ )) , (3a)

softmax(z) ≜
1∑M

m=1 ezm
[
ez1 . . . ezM

]⊤ (3b)

and g(x; θ ) describes the underlying model of the classifier. For
example, if g(x; θ ) is given by an nn the parameters θ consist
of all the weights and biases in the nn. In the case gm(x; θ ) =

θ⊤φm(x), where φm(x) denotes, a possible nonlinear, transforma-
ion of the input x, then the model in (3a) becomes a standard
multinomial logistic regression model (Baggio, Carè, Scampic-
chio, & Pillonetto, 2022; Lindholm, Wahlström, Lindsten, & Schön,
2022). Furthermore, if the transformation φm(x) is chosen ran-
domly, the model becomes similar to the one used in extreme
learning machine classifiers (Huang, Zhu, & Siew, 2006).

2.1. Parameter estimation

For most nn the number of model parameters nθ > N and
the model parameters θ cannot be uniquely identified from the
training data T without some regularization or prior information
regarding the parameters. Let p(θ ) denote the prior for the model
parameters. The maximum a posteriori estimate of the model
parameters is then given by

θ̂N = argmax
θ

p(θ |T ) = argmax
θ

LN (θ ) + ln p(θ ), (4)

where p(θ |T ) denotes the a posteriori distribution of the param-
eters and

LN (θ ) =

N∑
n=1

ln fyn (xn; θ ) (5)

denotes the cross-entropy likelihood function (Lindholm et al.,
2022). Here yn is used as an index operator for the subscript m of
m(x; θ ).

.2. Prediction and classification

Once the classifier has been learned, i.e., a parameter estimate
ˆN has been computed, then for a new input data point x⋆ the pmf
an be predicted as

ˆ(y⋆
= m|x⋆

; θ̂N ) = fm(x⋆
; θ̂N ), m = 1, . . . ,M (6)

nd the most likely class can be found as ŷ⋆
= argmaxm fm(x⋆

; θ̂N ).
ote that, the full pmf estimate f (x; θ̂N ) is needed both for tem-
oral fusion using several inputs from the same class and fusion
ver different classifiers. Furthermore, even small probabilities
an pose a large risk, e.g., there might be a pedestrian in front of
car even if another harmless object is more likely according to
he classifier. Hence, it is important that the prediction p̂(y⋆

=

|x⋆
; θ̂N ) is accurate. However, it is well known that due to,

mong other things, uncertainties in the parameter estimates θ̂N
he disagreement between true and estimated pmf may be signif-
cant. Therefore, methods to calibrate the prediction p̂(y⋆

|x⋆
; θ̂N )

uch that it better matches p(y⋆
|x⋆) has been developed.

.3. Temperature scaling

One of the most commonly used methods to calibrate the
redicted pmf is called temperature scaling (Guo, Pleiss, Sun,

Weinberger, 2017). In temperature scaling, g(x; θ ) is scaled
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y a scalar quantity T before the normalization by the softmax
perator. With a slight abuse of notation, introduce

(x⋆
; θ̂N , T ) = softmax

(
g(x⋆

; θ̂N )/T
)

. (7)

sing the temperature scaling parameter T , the variations be-
ween the components (classes) in the predicted pmf can be
nhanced or reduced. When T → 0, then f (x⋆

; θ̂N , T ) → e⃗i,
here e⃗i denotes the i’th standard basis vector, thereby indicating
hat input x⋆

n with total certainty belongs to class i. Similarly,
hen T → ∞, then fm(x⋆

; θ̂N , T ) → 1/M ∀m, thereby indicating
hat input x⋆

n is equally probable to belong to any of the classes.
oteworthy is that the temperature scaling is typically done after
he parameters θ have been estimated, where it is estimated
using validation data. For notational brevity, the dependency on
the temperature scaling parameter T will only be explicitly stated
hen temperature scaling is considered.

.4. Marginalization of parameter uncertainties

A more theoretically sound approach to take the uncertainties
n the parameter estimate into account is via marginalization of
he pmf with respect to the parameter distribution. That is, an
stimate of the pmf and its covariance are calculated as

(x⋆
|T ) ≜

∫
θ

f (x⋆
; θ )p

(
θ |T

)
dθ (8a)

f ≜

∫
θ

(
f (x⋆

; θ ) − f (x⋆
|T )
)(

·
)⊤p(θ |T

)
dθ (8b)

rom hereon, (x)(·)⊤ is used as a shorthand notation for xx⊤. The
integral in (8a) is generally intractable, but can be approximated
by Monte Carlo (mc) sampling as

θ (k)
∼ p

(
θ |T

)
, k = 1, 2, . . . , K , (9a)

f̂ (x⋆
|T ) =

1
K

K∑
k=1

f (x⋆
; θ (k)) (9b)

ˆ f =
1
K

K∑
k=1

(
f (x⋆

; θ (k)) − f̂ (x⋆
|T )
)(

·
)⊤

. (9c)

ere K denotes the number of samples used in the mc sampling.

.5. Challenges and contributions

To realize the mc scheme in (9) the posterior parameter dis-
ribution p

(
θ |T

)
must be computed and samples drawn from

his high-dimensional distribution. Our contributions are: (i) a
ocal linearization approach that leads to a recursive algorithm of
ow complexity to compute an approximation of p

(
θ |T

)
during

he training phase; (ii) a second local linearization approach to
educe the sampling space from nθ to M-dimensional space in
he prediction phase; and as a by-product (iii) a low-complexity
ethod for risk assessment and information fusion.

. Posterior parameter distribution

Next, a local linear approach to compute an approximation of(
θ |T

)
during the training phase is presented.

.1. Laplace approximation

Assume the prior distribution for the model parameters to
e normal distributed as p(θ ) = N (θ; 0, P0), i.e., l2 regulariza-
ion is used. Then a Laplacian approximation of the posterior
istribution p(θ |T ) yields that (Bishop, 2006)

(θ |T ) ≈ N (θ; θ̂ , Pθ ), (10a)
N N

3

Pθ
N =

(
−

∂2LN (θ )
∂θ2

⏐⏐⏐⏐
θ=θ̂N

+ P−1
0

)−1

. (10b)

That is, the prior distribution is approximated by a normal distri-
bution with a mean located at the maximum a posteriori estimate
and a covariance dependent upon the shape of the likelihood
function in the vicinity of the estimate. The accuracy of the
approximation will depend upon the amount of information in
the training data T . A weakness with the Laplacian approximation
is that it is local and assumes θ̂N to be a local minimum and
can hence miss global trend in the posterior distribution (Bishop,
2006).

3.2. Asymptotic distribution

According to Bernstein–von Mises theorem (Johnstone, 2010),
if the true model belongs to the considered model set, the maxi-
mum a posteriori estimate θ̂ converges in distribution to

θ̂N
d

−→ N (θ̂N ; θ∗, I−1
θ ), (11)

when the information in the training data T tends to infinity.
Here, θ∗ denotes the true parameters and

Iθ ≜ −E
{

∂2LN (θ )
∂θ2

}
, (12)

s the Fisher information matrix. Given the likelihood function in
5) the Fisher matrix becomes

Iθ ≃

N∑
n=1

M∑
m=1

ηm,n
∂gm(xn; θ )

∂θ

(
∂gm(xn; θ )

∂θ

)⊤

, (13a)

m,n ≜ fm(xn; θ )(1 − fm(xn; θ )). (13b)

ee derivations in the Appendix.

.3. Recursive computation of covariance

To compute the parameter covariance Pθ
N defined by (10b),

he Hessian matrix of the log-likelihood (ll) must be calculated
nd then inverted. This has a complexity of O(NMn2

θ + n3
θ ),

which for large nθ in combination with large N can become
ntractable. However, by approximating the Hessian matrix of the
l with the Fisher information matrix using (13), the computation
an be done recursively and with a complexity of O

(
NMn2

θ +

M3
)

(Malmström et al., 2022). Note that Iθ in (13) can be
ritten in a quadratic form. As a result the recursive update can
e given as

n = Pθ
nUn

(
IM + U⊤

n Pθ
nUn

)−1 (14a)
θ
n+1 = Pθ

n − KnU⊤

n Pθ
n , (14b)

Un =
[
u1,n . . . uM,n

]
∈ Rnθ ×M , (14c)

um,n ≜
√

ηm,n
∂gm(xn; θ )

∂θ

⏐⏐⏐
θ=θ̂N

. (14d)

where Ir denotes the identity matrix of size r . Here Pθ
n is the

arameter covariance for n measurements, which is initialized as
θ
0 = P0. To compute umn ∈ Rnθ only the gradient of the ll in (5)

is required, which is nevertheless needed for the estimation of θ .

3.4. Approximating the covariance

An nn often has millions of parameters which might result
in the amount of data needed to store Pθ

N being larger than the
available memory capacity. A common approach to handle this is
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N as a block-diagonal matrix (Martens & Grosse,

015). Another common approach is to use the approximation

θ
N ≈

[
Pθr
N 0
0 0

]
, (15)

here Pθr
N denotes the covariance of the estimated parameters θr

orresponding to the weights and biases of the r last layers in
he nn (Kristiadi, Hein, & Hennig, 2020; Malmström et al., 2022).
epending on the number of included layers, this approximation
ight be more or less accurate. To compensate for the approx-

mation error when doing the marginalization in (8), a scaling
f Pθr

N with factor Tc ≥ 1 can be introduced. The scaling can
e estimated from validation data in a similar manner to the
emperature scaling T in Section 2.3.

. Efficient MC sampling

With access to the parameter covariance, one can propagate
he uncertainty in the parameters to uncertainty in the prediction
ith the delta method using the principle of marginalization.
lugging in the approximate Gaussian distribution (11) into (8a).
hen an mc approximation can be performed by changing (9a) to

(k)
∼ N

(
θ; θ̂N , Pθ

N

)
, k = 1, 2, . . . , K . (16)

his is a feasible solution to the problem, but it comes with a high
omputational cost since it requires drawing mc samples from a
igh-dimensional Gaussian distribution and evaluating the whole
etwork.

.1. Marginalization using the delta method

The delta method, see e.g., Liero and Zwanzig (2011) and
almström (2021), relies on linearization of the nonlinear model
(x, θ ) and provides a remedy to the problem of sampling from
he high-dimensional Gaussian distribution. The idea is to project
he uncertainty in the parameters to uncertainty in the predic-
ion before the softmax normalization (3b), thereby drastically
educing the dimension of the distribution that must be sampled.
sing the delta method, the uncertainty in the parameters can be
ropagated to the prediction before the softmax normalization as

(g(x⋆
; θ )|T ) ≈ N

(
g(x⋆

; θ ); ĝN , Pg
N ), (17a)

ˆN = E{g(x⋆
; θ )} ≃ g(x⋆

; θ̂N ), (17b)

Pg
N = Cov{g(x⋆

; θ )} ≃

(
∂

∂θ
g(x⋆

; θ )
)⊤

Pθ
N

∂

∂θ
g(x⋆

; θ ). (17c)

Using this Gaussian approximation of the parameter distribution,
the mc approximation of the marginalization integral becomes

g (k)(x⋆) ∼ N
(
g(x⋆, θ ); ĝN , Pg

N ), k = 1, 2, . . . K (18a)

f (k)(x⋆) = softmax
(
g (k)(x⋆)

)
, (18b)

f̂ (x⋆
|T ) =

1
K

K∑
k=1

f (k)(x⋆), (18c)

ˆ f =
1
K

K∑
k=1

(
f (k)(x⋆) − f̂ (x⋆

|T )
)(

·
)⊤

. (18d)

o summarize, the main idea of the delta method is linearization
erformed in two steps. First, the parameter uncertainty is com-
uted using (11), and second, the uncertainty is propagated to the
utput of the model by (17). Hence, the delta method is a local
inear approach that gives a linear approximation of a nonlinear
odel.
4

4.2. Fusion

Suppose there is a set of independent classifiers, each one pro-
viding a marginal distribution N

(
gN,c; ĝN,c, P

g
N,c), c = 1, . . . , C .

Then the predictions (before the softmax normalization) from
these classifiers can be fused as follows (Gustafsson, 2018)

Pg
N =

(
C∑

c=1

(
Pg
N,c

)−1

)−1

, (19a)

ĝN = Pg
N

C∑
c=1

(
Pg
N,c

)−1ĝN,c . (19b)

If a single classifier is used to classify a set of inputs x⋆
c , c =

1, . . . , C , known to belong to the same class y⋆, then these pre-
dictions can be fused as follows

Pg
N = (H⊤R−1H)−1, (20a)

ĝN = Pg
NH

⊤R−1z, (20b)

z =
[
ĝN,1 . . . ĝN,C

]
⊤, H =

[
Inθ

. . . Inθ

]
⊤, (20c)

[R]i,j =
∂

∂θ
g(x⋆

i ; θ )⊤
⏐⏐
θ=θ̂N

Pθ
N

∂

∂θ
g(x⋆

j ; θ )
⏐⏐
θ=θ̂N

, (20d)

where z ∈ RCnθ , H ∈ RCnθ ,nθ and the block [R]i,j ∈ Rnθ ,nθ ,
i, j = 1, . . . , C .

After fusion, the mc sampling in (18) can be applied as before
to compute the pmf estimate.

4.3. Risk assessment

Risk assessment can be defined as the probability rm that
p(y⋆

n = m|x⋆
n) > γm. The probability rm can be estimated from

he identified model fm(x⋆
n|T ) as follows

ˆm = Pr{fm(x⋆
n|T ) > γm} ≃

1
K

K∑
k=1

1
(
f (k)m (x⋆

n) > γm
)
. (21)

ere 1(a > b) denotes the indicator function which is one if a > b
nd zero otherwise. Note that the parameter γm is free to choose
nd corresponds to the accepted failure rate.

. Validation

Suppose now we have a validation data set V = {y◦
n, x

◦
n}

N◦

n=1.
n this section we will investigate metrics how to validate the
stimated pmf f̂ (x◦

n|T ) obtained from (18). The inherent difficulty
s that the validation data, just as the training data, consists of
nputs and class labels, not the actual pmf. Indeed, there is a
ack of unified qualitative evaluation metrics (Gawlikowski et al.,
023). That being said, some of the most commonly used metrics
re classification accuracy, ll, Brier score, and expected calibra-
ion error (ece) (Wójcik, Grela, Śmieja, Misztal, & Tabor, 2022).
oth the negative ll and the Brier score are proper scoring rules,
eaning that they emphasize careful and honest assessment
f the uncertainty, and are minimized for the true probability
ector (Gneiting & Raftery, 2007). However, neither of them is
measure of the calibration, i.e., reliability of the estimated pmf.
ut of these metrics, only ece considers the calibration. Hence,
ere ece is the most important metric when evaluating a method
sed to measure the uncertainty (Guo et al., 2017; Vaicenavicius
t al., 2019). To evaluate a method that quantifies uncertainty in
he prediction, one can also measure its capability to distinguish
etween in- and out-of-distribution (id and ood) inputs, i.e., find
utliers.
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Fig. 1. Example of classification using (18). Left: inputs x◦
n . Middle: Ellipse

epresentation of Pg
N , mc samples g (k)(x◦

n) and decision line between the classes
epresenting 7 and 9. Right: Estimated pmf f̂ (x◦

|T ).

.1. Brier score, accuracy, and reliability diagram

The Brier score (Gneiting & Raftery, 2007) corresponds to the
east squares fit

1
N◦

N◦∑
n=1

M∑
m=1

(
δm,yn − p̂(y◦

n = m|x◦

n)
)2

, (22)

here δi,j denotes the Kronecker delta function. Furthermore,
ˆ(y◦

n = m|x◦
n) denotes a generic pmf estimate.

Accuracy and reliability diagrams are calculated as follows.
alculate the J bin histogram defined as

Bj =

{
n :

j − 1
J

≤ max
m

p̂(y◦

n = m|x◦

n) <
j
J

}
(23)

rom the validation data. For a perfect classifier Bj = ∅ for j < J .
For a classifier that is just guessing, all sets are of equal size,
i.e., |Bj| = |Bi| ∀i, j. Note that maxm p̂(y◦

n = m|x◦
n) ≥ 1/M , so the

first bins will be empty if J > M . The accuracy of the classifier
s calculated by comparing the size of each set with the actual
lassification performance within the set. That is,

cc(Bj) =
1

|Bj|

∑
n∈Bj

1
(
ŷ◦

n = y◦

n

)
(24)

here ŷ◦
n = argmaxm p̂(y◦

n = m|x◦
n). A reliability diagram is a plot

of the accuracy versus the confidence, i.e., the predicted proba-
bility frequency. A classifier is said to be calibrated if the slope of
the bins is close to one, i.e., when acc(Bj) = (j−0.5)/J (Guo et al.,
2017).

5.2. Confidence and expected calibration error

Instead of certainty, from hereon the standard, and equivalent,
notion of confidence will be used (Guo et al., 2017; Vaicenavicius
et al., 2019). The mean confidence in a set is denoted conf(Bj) and
s defined as

onf(Bj) =
1

|Bj|

∑
n∈Bj

max
m

p̂(y◦

n = m|x◦

n), (25)

his is a measure of how much the classifier trusts its estimated
lass labels. In contrast to the accuracy it does not depend on the
nnotated class labels yn. Comparing accuracy to confidence gives

the ece, defined as

ece =

J∑ 1
|Bj|

|acc(Bj) − conf(Bj)|. (26)

j i

5

A small value indicates that the weight is a good measure of the
actual performance.

5.3. Out-of-distribution detection

To evaluate the capability of a method to find ood samples, the
so-called area under the receiver operating characteristic (auroc)
curve and area under the precision–recall curve (aupr) is often
used (Goodfellow, Bengio, & Courville, 2016). Both the auroc and
the aupr are between zero and one, and for a perfect detector,
the value is one. Intuitively, auroc is a measure of the proportion
of detections, while aupr measures the proportions of detections
that are correct. Another approach to evaluate the capability of
ood detection is to study the difference in entropy between id
nd ood inputs ∆s = Sid − Sood where the entropy S is defined as

= −

M∑
m=1

p̂(y◦

n = m|x◦

n) ln
(
p̂(y◦

n = m|x◦

n)
)

. (27)

. Experiment study

To illustrate the application of the proposed method to quan-
ify uncertainty in the prediction, two datasets were used. First,
n nn was trained using the mnist dataset (LeCun, Cortes, &
urges, 1998) to classify images of handwritten digits. Second,
n nn was trained on the cfar10 dataset (Krizhevsky, 2009) to
lassify images of ten different objects including e.g., cars, cats,
nd aircraft. For ood detection mnist was used as id and Fashion
nist (fmnist) (Xiao, Rasul, & Vollgraf, 2017) was used as ood.

.1. Classification setup

For the mnist dataset, a five-layer nn with fully-connected
odes was used. For the cfar10 dataset, a LeNet5-inspired struc-
ure was used with six convolutional layers followed by four
ully connected layers. However, for both datasets, the three last
ayers were chosen to have the same structure, fully connected
ith 100, 40, and 10 hidden nodes. To decrease the size of
he parameter covariance matrix used by the delta method, as
escribed in Section 3.4, the first part of the nn was assumed
ixed and used to create high-level features. Since the structure
f the later layers was chosen identically, both models had nθ =

450 parameters. To estimate the model parameters θ of the nn,
he adam optimizer (Kingma & Ba, 2015) was used with standard
ettings. Three and ten epochs were used to train the mnist
ataset and cfar10 dataset, respectively. Here, l2 regularization of
0−4, were used, hence the prior P0 = 10−4Inθ

. When computing
θ
N , the choice of P0 can be neglected since it is dominated by the
isher information matrix Iθ .

.2. Illustration of the uncertainties in the predictions

The low-dimensional space of the output from g(x◦
n; θ̂N ) is par-

icularly interesting to study when trying to understand how the
ncertainty in the parameter estimate θ̂N affects the classification.
ven if the parameter covariance Pθ

N is constant and only depends
n the training data, the covariance Pg

N depends on the input xn.
ig. 1 illustrates this via an example where we concentrate our
tudy on the decision between just a subset of the number of
lasses in the mnist dataset, even though the final decision is
ver all classes. More generally, for an input x◦

n that is located
n a dense region in the space of the training data, the covariance
g
N is small, but for an input x◦

n that is very far from the training
ata in some norm, the covariance Pg

N can be quite large. This

ndicates that the parameter estimate is quite sensitive in some
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Table 1
Computed performance measure for the two datasets. The arrows indicate whether a high or low value is preferable.
Method, mnist acc. ↑ ll (103) ↑ Brier ↓ ece ↓

Standard f (x◦
n; θ̂N ) 91% 7.886 0.134 1.078

Temp. sc. f (x◦
n; θ̂N,T ) (Guo et al., 2017) 91% 7.818 0.133 0.951

Deep ensemble (Lakshminarayanan et al., 2017) 96% 7.856 0.080 2.868
mc-dropout (Gal & Ghahramani, 2016) 93% 7.424 0.123 2.424
Prop. met. f̂ (x◦

n|T ) 91% 7.845 0.151 1.242

Prop. met. f̂ (x◦
n|T , Tc ) 91% 7.763 0.151 0.821

Method, cfar10 acc. ↑ ll (103) ↑ Brier ↓ ece ↓

Standard f (x◦
n; θ̂N ) 83% 7.904 0.291 1.328

Temp. sc. f (x◦
n; θ̂N,T ) (Guo et al., 2017) 83% 7.740 0.269 0.612

Deep ensemble (Lakshminarayanan et al., 2017) 87% 7.834 0.191 1.479
mc-dropout (Gal & Ghahramani, 2016) 81% 9.935 0.301 2.829
Prop. met. f̂ (x◦

n|T ) 83% 8.176 0.243 2.140
Prop. met. f̂ (x◦

n|T , Tc ) 82% 7.545 0.239 0.540
Fig. 2. Reliability diagrams for prediction on the mnist dataset using the
roposed method in (18) with and without the scaling parameter Tc . In black
s a calibration line.

irections. Even though the estimate of the pmf looks similar, by
tudying the unnormalized prediction g(x◦

n; θ̂N ) it is clear that the
rediction in the top has a higher uncertainty compared to the
ottom one.

.3. Results on quantifying the uncertainty

Six different methods to quantify the uncertainty in the clas-
ification, i.e., to estimate p(y◦

n = m|x◦
n), were evaluated. These

re: (i) Standard method, i.e., p̂(y◦
n = m|x◦

n) = fm(x◦
n; θ̂N ); (ii)

Temp. scaling, i.e., p̂(y◦
n = m|x◦

n) = fm(x◦
n; θ̂N , T ), Guo et al. (2017);

(iii) Deep ensemble, i.e., p̂(y◦
n = m|x◦

n) is estimated using the
ensemble method in Lakshminarayanan et al. (2017); number of
trained nns are 50 for mnist and 10 for cfar10; (iv) mc-dropout,
i.e., p̂(y◦

n = m|x◦
n) is estimated using the ensemble method

in Gal and Ghahramani (2016); 50 samples of the parameters are
used to create the ensemble; (v) Proposed method, i.e., p̂(y◦

n =

m|x◦
n) = f̂m(x◦

n|T ); (vi) Proposed method with scaled covariance,
i.e., p̂(y◦

n = m|x◦
n) = f̂m(x◦

n|T , Tc), but with the covariance Pg
N in

(17) scaled with a factor Tc .
The parameters T and Tc are estimated such that ece is min-

imized on validation data. In Table 1, the accuracy, ll, Brier
score, and ece are shown for six different methods evaluated
both using the mnist and cfar10 datasets. Table 1 shows that the
proposed method attains the lowest ece for both datasets, while
still having reasonably good performance in terms of accuracy,
ll, and Brier score. Neither computing the uncertainty in the
prediction using the softmax (i), deep ensembles (iii), mc-dropout
(iv), nor the proposed method without scaled covariance (v) gives
calibrated estimates of the uncertainty. To get well-calibrated
estimates of the uncertainty either the proposed method with
scaled covariance (vi) or temperature scaling (ii) should be used.

However, increasing the scaling factor decreases the ll. Hence,

6

Fig. 3. Distribution for the predicted entropy (27) for id (mnist) and ood
(fmnist) samples for the two calibrated methods.

there is a trade-off between high ll and low ece. In Fig. 2, the
reliability diagram for the calibrated and non-calibrated versions
of the proposed method is shown. Here one can see that the
parameter Tc is necessary in order to obtain a calibrated un-
certainty. For ood detection, in Table 2 and Fig. 3, one can see
that the proposed method is superior compared to temperature
scaling (which is the only other calibrated method), while having
similar performance to a deep ensemble whose performance is
the best. However, recall that deep ensemble requires training
of 50 models, hence, having significantly higher computational
complexity compared to the proposed method.

On a standard laptop (Intel core i7), computing (17c) takes 930
s where the sampling in (18) is in comparison negligible (100
samples in 5 s). This is compared to sampling the parameters
and then performing a forward pass per sample (such as in mc-
dropout and deep ensemble) where only the forward pass takes
50 s. This is without considering that methods such as deep
ensemble require training multiple nn.

7. Summary and conclusion

A method to estimate the uncertainty in classification per-
formed by an nn has been proposed. The method also enables
information fusion in applications where predictions from nns
are used as well as statistical risk assessment. The proposed
method is based on a local linear approach and consists of two
steps. In the first step, an approximation of the posterior dis-
tribution of the estimated nn parameters is calculated. This is
done using a Laplacian approximation where the covariance of
the parameters is calculated recursively using the structure of
the Fisher information matrix. In the second step, an estimate of
the pmf is calculated where the effect of the uncertainty in the
estimated parameters is considered using marginalization over
the posterior distribution of the parameter estimate. This is done
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Table 2
Performance measure for ood detection. The arrows indicate whether a high or low value is preferable.
Method, mnist (id) fmnist (ood) ∆s, (103) ↓ auroc ↑ aupr ↑

Temp. sc. f (x◦
n; θ̂N , T ) (Guo et al., 2017) −6.36 0.82 0.70

Deep ensemble (Lakshminarayanan et al., 2017) −13.12 0.94 0.91
mc-dropout (Gal & Ghahramani, 2016) −9.64 0.89 0.59

Prop. met. f̂ (x◦
n|T , Tc ) −11.00 0.90 0.90
B

B

B
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D
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G

H

H

I

I

I

J

K

by propagating the uncertainty in the estimated parameters to
the uncertainty in the output of the last layer in the nn using a
second local linear approach. The uncertainty in the output of the
last layer is approximated as a Gaussian distribution of the same
dimension as the number of classes. The pmf and its covariance
are then calculated via mc sampling, where samples are drawn
from this low-dimensional distribution.

The proposed method has been evaluated on two classical
classification datasets; mnist and cfar10. nns with standard ar-
chitectures were used. To handle a large number of parameters
in these nn architectures, only the parameters of the last layers
were considered in the uncertainty computations. The results,
in terms of ece, show that the proposed method in its standard
form yielded a similar performance as standard methods which
do not take the uncertainty in the estimated parameters into
account. However, when using a rescaled parameter covariance
matrix, used to compensate for the fact that only the uncertainty
from the parameters in the last layers was considered, a sig-
nificant reduction in the ece was observed. This illustrates that
the proposed method works well. However, that more advanced
low-rank methods to approximate the parameter covariance are
needed. This is a direction for future research. The result, in
terms of detecting ood detection, for the proposed method with
rescaled covariance is also shown to be superior compared to
ther calibrated standard methods.

ppendix. Derivation of Fisher information matrix

To calculate the Fisher information matrix in (13), it is nec-
ssary to compute the Hessian of the ll with respect to θ . To do
o, note that ∂ fj(xn,θ )

∂gi(xn;θ ) = fj(xn, θ )(δi,j− fi(xn, θ )). Hence, it holds that
∂ ln fyn (xn;θ )

∂g(xn;θ ) = e⃗yn −f (xn; θ ). Using the chain rule the first derivative
of the ll (5) can be computed as

∂LN (θ )
∂θ

=

N∑
n=1

M∑
m=1

(
δm,yn − fm(xn, θ )

)∂gm(xn; θ )
∂θ

. (A.1)

ifferentiation of (A.1) with respect to θ gives

∂2LN (θ )
∂θ2 =

N∑
n=1

M∑
m=1

(
δm,yn − fm(xn, θ )

)∂2gm(xn; θ )
∂θ2

− ηm,n
∂gm(xn; θ )

∂θ

(
∂gm(xn; θ )

∂θ

)⊤

. (A.2a)

ith ηm,n defined in (13b). And the Fisher information matrix in
12) then becomes

θ = −

N∑
n=1

M∑
m=1

(
E{δm,yn} − fm(xn, θ )

)∂2gm(xn; θ )
∂θ2

+ ηm,n
∂gm(xn; θ )

∂θ

(
∂gm(xn; θ )

∂θ

)⊤

(A.3a)

≃

N∑
n=1

M∑
m=1

ηm,n
∂gm(xn; θ )

∂θ

(
∂gm(xn; θ )

∂θ

)⊤

. (A.3b)
7

The last approximative equality follows from that E{δm,yn} =

p(yn = m|xn) and that fm(xn, θ ) is an unbiased estimate of p(yn =

m|xn) when the information in the training data tends to infinity.
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