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Abstract

Bluetooth Low Energy (BLE) devices have become integral to modern wireless communi-
cation, facilitating a wide range of applications in consumer electronics, healthcare, secu-
rity, and beyond. Their capacity to broadcast signals presents significant opportunities for
tracking and localization, which could be helpful in domains such as search and rescue
operations. However, privacy mechanisms, particularly randomization of Media Access
Control (MAC) addresses, pose substantial challenges to persistent device identification
and tracking. BLE devices may have one or two MAC addresses. For simplicity, one MAC
address is considered to represent a single target, which means that two targets can origi-
nate from the same physical device.
This thesis explores methodologies for associating BLE measurements with specific targets
and estimating their locations, despite the complexities introduced by privacy-preserving
techniques. By developing robust association and localization frameworks, this study aims
to advance BLE-based tracking applications while addressing the inherent trade-offs be-
tween utility and privacy.
The methodological framework is empirical and based on BLE signal measurements col-
lected through scanning equipment deployed in both controlled tests and outdoor field
conditions. The initial processing begins with identifying unique MAC addresses and ex-
tracting relevant features. These features feed into an association algorithm that attempts to
associate individual measurements with specific physical targets despite the address ran-
domization. A localization algorithm is then used to estimate the position of each target by
combining Received Signal Strength Indicator (RSSI) data with the known locations of the
measurements. Both algorithms are validated against ground truth data using reference
devices and RSSI filtering.
Association and localization are central to this tracking method: association ensures that
fragmented or randomized measurements are correctly grouped per physical target, while
localization estimates where each target was at a given time. The output of the method is
a spatiotemporal trace of each tracked device, providing a sequence of estimated positions
that can aid in real-time tracking or retrospective analysis.
The association algorithm is capable of grouping signal observations from the same device,
although its accuracy is affected by timing inconsistencies. Localization based on signal
strength data generally performs well when the measurements are spatially distributed,
achieving an average error of approximately 45 meters between the estimated and refer-
ence positions. When the search strategy ensures comprehensive coverage of the area, the
error can be further reduced to around 24 meters. However, accuracy may still degrade
in certain unfavorable geometric configurations. Adjustments in measurements placement
and temporal processing show potential to improve association reliability and localization
accuracy. While the approach is promising for static or semi-static scenarios, further adap-
tation is needed for use in dynamic, real-time search and rescue operations.
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1 Introduction

Every year, around 25,000 missing person reports are �led in Sweden, 9,000 classi�ed as se-
rious, and 450 deemed life-threatening, requiring immediate rescue efforts [16]. This study
focuses on locating missing persons carrying radio transmitters, such as mobile phones or
Bluetooth devices, using lightweight drone-based Bluetooth Low Energy scanning technol-
ogy. The integration of lightweight radio surveillance modules into drones constitutes a
promising platform for tracking applications, due to the rapid deployability, mobility over
challenging terrain, and wide-area coverage capacity of drones.
Bluetooth is a short-range wireless communication technology that allows devices to ex-
change data over short distances using radio waves. It was originally developed to replace
cables connecting electronic devices, such as headsets, keyboards, and mobile phones. Today,
Bluetooth is widely used in a variety of applications, including wireless audio, �le transfers,
smart home devices, and personal area networks. The technology operates in the 2.4 GHz
ISM band and supports secure, low-power communication between devices [6]. In 2022, there
were 5 billion Bluetooth-enabled devices shipped worldwide, and it is expected to reach 7.5
billion by 2028 [4].
Bluetooth technology is categorized into two types: Bluetooth Classic and Bluetooth Low En-
ergy (BLE). The Classic version is used in wireless headphones, speakers, smartwatches, car
entertainment systems, and various common devices. Despite providing strong performance,
Bluetooth Classic also requires higher power consumption, a factor that can be managed in
devices that are regularly recharged [6]. By contrast, for low-power devices, such as �tness
trackers, medical sensors, and smart home gadgets, regular charging is impractical. These de-
vices need a wireless solution capable of running for months or even years on a small battery.
BLE demonstrates to be useful in this context [11].
Introduced in Bluetooth 4.0, BLE is designed speci�cally for low-power communication. It
achieves energy ef�ciency by transmitting smaller packets of data (27–251 bytes) and mini-
mizing active radio time, which signi�cantly reduces power consumption. Unlike Bluetooth
Classic, which is designed for continuous or long-duration data exchange, BLE devices com-
municate only when necessary, making them ideal for Internet of Things (IoT) applications
[11] .
Bluetooth-enabled devices are equipped with a radio transceiver component that allows them
to send and receive Bluetooth signals. Each device has a unique identi�er known as the
Medium Access Control (MAC) address, which is used when connecting with other devices
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or when broadcasting its presence for discovery. However, since this identi�er remains con-
sistent, it can be exploited to track individuals, posing a privacy risk [25].
To prevent tracking and improve user privacy, modern BLE devices implement MAC address
randomization, a feature introduced in Bluetooth 4.0. This mechanism periodically generates
a new, random MAC address, making it harder for unauthorized parties to track a device over
time. While this improves privacy, it also introduces challenges for BLE-based systems that
rely on device identi�cation and persistent connections [7]. To address these challenges, an
essential step, called association, is introduced, which resolves MAC address randomization
and allows the identi�cation of devices over time.
Target tracking involves identifying and following the movement of physical objects over
time using sensor data. A target is de�ned as a physical device emitting BLE signals; due
to MAC address randomization, a single device may present itself under multiple MAC ad-
dresses, meaning that one physical device may appear as multiple targets over time. This
randomization, while bene�cial for privacy and security, introduces a signi�cant challenge
for tracking: it prevents continuous identi�cation of devices over time. When a drone or
scanning device revisits a region, it may encounter BLE devices that have changed their iden-
ti�ers, making it unclear whether the detected signal comes from a new device or a previously
observed one using a different address.
Structure of the advertising BLE packets begins with a Preamble, a sequence of alternating
bits for receiver synchronization, followed by an Access Address, a unique identi�er for the
communication channel. The core content resides within the PDU (Protocol Data Unit), which
includes the PDU Type de�ning the purpose of the packets, along with �ags like TxAdd/Rx-
Add indicating the address type. The PDU also speci�es its Length and contains the Ad-
vertiser Address, which is the unique MAC Address of the transmitting device. Within the
PDU's Advertising Data, various Advertising Data Structures hold speci�c attributes such as
the Company ID identifying the manufacturer, a Local Name for the device, Service UUIDs
listing supported services, and the Tx Power Level of the transmission. A CRC (Cyclic Redun-
dancy Check) is appended for error detection. Beyond the inherent structure of the packets,
RSSI (Received Signal Strength Indicator), a measure of signal power in the receiver, and the
reception timestamp are derived attributes [15].
This study investigates the target tracking and localization of BLE devices through the anal-
ysis of their signal characteristics. The attributes of BLE packets differ from one device to
another [15]. This means that the characteristics of packets transmitted by different devices
often vary [21]. Furthermore, certain temporal characteristics within these packets can be
observed and analyzed over time, potentially offering more insights.
The motivation for this study stems from a real-world use case in Sweden, where BLE track-
ing is explored as a tool to help locate missing persons in outdoor environments. BLE-enabled
devices such as smartwatches or mobile phones carried by individuals may provide valuable
location clues. Estimating the position of a missing person is crucial for search and rescue
operations. As of June 2025, the proposed system in this thesis has the potential to decrease
search time, which is crucial in life-or-death situations. Current methods largely depend on
human oversight and judgment, which can be more time consuming compared to computer-
based decision making.
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1.1. Aim

1.1 Aim

This thesis explores the use of Bluetooth Low Energy (BLE) data to identify and locate de-
vices, with the goal of assisting search teams in �nding missing persons. The primary ob-
jectives are to associate sensor measurements with speci�c target devices and to estimate the
location of targets.

1.2 Research questions

This thesis aims to address the following key questions:

• How can a Bluetooth-based tracking system be effectively designed and implemented?
What are its potential applications, and what limitations must be considered in practical
deployment?

• How can a BLE device be tracked over time? What level of accuracy can be achieved in
temporal tracking under varying conditions?

• What localization methods can be employed using RSSI (Received Signal Strength In-
dicator) measurements? How accurate are these methods in estimating the position of
BLE devices and how do they compare in different scenarios?

1.3 Methodology

This research employs an empirical methodology based on the examination of BLE signal
data. The data collection process involves specialized scanning equipment used during both
controlled experiments (see Section 4.1) and real-world environmental assessments (see Sec-
tion 4.2.1). This dataset comprises numerous MAC addresses gathered within a designated
geographical area. The main steps in this approach include:

• Data collection: acquisition of BLE packets from devices in controlled environments,
along with access to datasets simulating search and rescue scenarios.

• Analyze the data to identify individual devices based on their MAC addresses.

• Extract and derive features from the data to enable the association of each measurement
with its target.

• Develop an association algorithm using machine learning techniques trained on a des-
ignated dataset.

• The accuracy and reliability of the proposed algorithm are assessed by comparison with
ground truth data, which is established by placing a reference device in close proximity
to the BLE sniffer and �ltering out signals below a prede�ned RSSI threshold.

• Develop and evaluate a set of localization algorithms, including methods based on tri-
lateration, centroid computation, and sequential processing, that estimate device loca-
tion using RSSI measurements and the known positions of scanning device.

• The effectiveness of the localization algorithm are assessed by contrasting the estimated
target positions with the actual ground truth locations obtained during the experiment.
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1.4. Thesis Outline

1.4 Thesis Outline

Chapter 2 provides the necessary theoretical background to understand the challenges and
methodologies related to multi-target tracking, association, and localization, as discussed in
the relevant literature.
Chapter 3 presents the proposed tracking system, detailing the processes of target association,
mapping, and subsequent localization, along with a description of the speci�c methodologi-
cal approach employed.
Chapter 4 focuses on the evaluation of the implemented methods, including a quantitative
analysis of their performance and accuracy.
Chapter 5 offers a critical discussion of the limitations of the study, re�ects on the results
obtained, and proposes suggestions for improvement and re�nement.
Chapter 6 concludes the thesis by addressing the research questions and outlining directions
for future work.
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2 Theory

This chapter provides an overview of the theoretical foundations and existing research on
multi-target tracking, association challenges, and localization techniques, drawing upon rel-
evant works from the literature.

2.1 Search and rescue

Search and rescue operations in Sweden begin with the initiation of emergency response
efforts. The primary focus is on the acquisition of information and the execution of close
proximity and trail searches near the last seen position of the missing person.
A critical early step is to de�ne the search area. Authorities employ a combination of tools,
including maps, satellite imagery, aerial reconnaissance, and trail searches. This information
is crucial for establishing the Initial Planning Point (IPP), which dictates the boundaries of the
search zone and the overall search strategy. Factors such as terrain characteristics, potential
obstacles, road networks, and potential guide rails are considered, along with the missing
person pro�le [24].
The search area is then methodically delineated: probability zones are mapped, the outer
limits of the search area are de�ned (preferably using natural boundaries), and the area is
divided into smaller, manageable sectors, each labeled alphabetically. To prioritize these sec-
tors, search teams may employ the "Mattson method." This involves obtaining expert estima-
tions of the "Probability of Area" (POA) and the likely walking distance of the missing person
[24].
Once the search area is de�ned and prioritized, search teams systematically search the sec-
tors, guided by the POA. Detailed records are maintained of the searched areas, noting the
Probability of Detection (POD). When available, precise location data from search units are
used to re�ne the search. The intensity of the search is adjusted on the basis of the missing
person's pro�le. After each search, the POA is updated and a cumulative POS (probability of
success) value is tracked. Each search method has an associated POD value [24].
Various search methods are used, including close proximity searches, trail searches, patrol
searches, search lines, line search, sound chains, searches by volunteers, searches with dogs,
and aerial searches using aircraft, helicopters, and drones equipped with cameras and in-
frared technology. In time-sensitive situations, tactical search may be used, which focuses the
searches on areas with the highest probability [24].
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Swedish search and rescue emphasizes a "human-in-the-loop" approach [24]. Digital systems,
frequently employed in the form of spreadsheets, function as supportive tools for documen-
tation purposes, while human expertise and judgment remain central to the process.

2.2 Target tracking

Tracking framework integrates various processing stages to convert raw signal observations
into coherent movement trajectories. Figure 2.1 illustrates the complete multi-target tracking
pipeline based on the literature by Gustaf Hendeby and Rickard Karlsson[17].

Figure 2.1: Overview of the multi-target tracking pipeline

The initial stage is detection, where valid signal transmissions are identi�ed and retained
for further processing. This is followed by a gating stage, which serves to reduce the num-
ber of candidate measurements by �ltering out implausible or inconsistent data points, thus
enhancing the ef�ciency and robustness of subsequent stages [26].
In the association and mapping stage, the system determines whether an observed measure-
ment corresponds to a previously tracked target or represents a newly encountered target
[17].When the same identi�er is observed, the corresponding measurement can be associated
with an existing track, which represents the historical sequence of measurements previously
linked to that speci�c target. This identi�er serves as a unique marker that distinguishes indi-
vidual devices, enabling consistent tracking across time and space. When different identi�ers
are present, an association process is required to resolve the correspondence.
Subsequently, each identi�ed target is individually tracked using a single target tracking
stage (STT), which estimates its behavior over time [17].
The �nal stage of the pipeline is visualization, in which the estimated trajectories are rendered
spatially using a geographic information system such as QGIS. This allows for intuitive inter-
pretation of target movements and facilitates performance evaluation of the tracking system.
A target refers to a physical device that is being tracked, such as a smartphone, smartwatch,
or any other device capable of transmitting BLE messages. Over time, targets may change
their key component of their identi�cation, requiring dynamic re-association of measure-
ments with targets. A measurement consists of a collection of data points gathered by a
sensor, aggregated over a de�ned time interval known as a time window.
An illustrative example of target tracking is presented below to demonstrate a tracking sys-
tem's operation. At time window k-1 (Figure 2.2), two resolved tracks, T1 and T2, exist. These
represent the known tracks of two targets. The tracker also has a single global hypothesis,
G1 = T1, T2, meaning it maintains one consistent interpretation, where both targets (T1 and
T2) are associated with speci�c tracks in a uni�ed manner. This means that the tracker has
committed to a single explanation of the tracking scenario, where T1 and T2 represent the
complete track histories of two targets, and it is not considering alternative interpretations
or associations of past measurements. At time window k, the sensor detects four measure-
ments: M1, M2, M3, M4. It is not known whether any measurement originates from a target
or is due to a noise. Secondly, it is not known which measurement originates from which tar-
get. Thirdly, it is not known if missed detection events have occurred due to less than unity
probability of detection. This phenomenon is known as the measurement origin uncertainty
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[26]. In time window k + 1 there are two more measurements M5 and M6, which are not yet
relevant.

Figure 2.2: Multitarget tracking scenario

The stage of gating is to reduce complexity. This means that it eliminates unlikely
measurement-to-track associations by discarding measurements that are mapped to targets,
but do not meet a certain threshold to be considered as candidates. The outcome of the gat-
ing process is illustrated in Figure 2.3, where the circles indicate the potential association of
measurements with speci�c tracks. For T1, the measurements discarded by gating are M1,
M4 and for T2 is M4. In addition, four new tracks NT3, NT4, NT5 and NT6 are formed for the
measurements as a hypothesis of new possible targets.

Figure 2.3: Possible measurement-to-track associations at time window k

The tracking system generates all potential associations illustrated in 2.4. These potential
associations are termed single hypotheses. Global hypotheses consist of a combination of
multiple hypotheses [26]. For example: One global hypothesis could be M3 � T1, M1 � T2,
M2 � NT4, M4 � NT6 meaning M3 associated with T1, M1 associated with T2 , NT3 and NT4
are new tracks as illustrated on �gure 2.4. Another global hypothesis could be M2 � T1, M1
� T2, M3 � NT5,M4 � NT6 meaning M2 associated with T1 ,M1 associated with T2, and M3
with M4 are new target. All possible hypotheses are shown in 2.4.
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Figure 2.4: Generation of track hypotheses at time window k

Figure 2.4 illustrates two targets in the time window k, each having an established track
record that represents its historical trajectory. Potential data associations are depicted by
green arrows, associating targets to current measurements or indicating a possible missed
detection. Furthermore, a distinct hypothesis is generated for each measurement, evaluating
the possibility of it originating from a new, previously undetected target. For visual clarity,
measurements and targets are differentiated by color. The work by B.-N. Vo, M. Mallick, Y.
Bar-Shalom, S. Coraluppi, R. Mahler, and B.-T. Vo [26] introduces the Global Nearest Neigh-
bor (GNN) technique as a fundamental approach to data association in multi-target tracking.
This method connects sensor-derived measurements to existing tracks by assigning the near-
est observations to each target, based on a cost metric such as Euclidean or Mahalanobis
distance. GNN assumes that each measurement originates from at most one target and that
each target generates at most one measurement per scan.
More advanced tracking system maintain multiple global hypotheses (e.g., G1, G2, G3, etc.),
each representing a different possible history. That allows the tracker to reconsider or de-
lay the decision about which track is correct. This concept is described by Ba-ngu Vo et al.
[26]. Ba-ngu Vo et al. investigate the transformation of raw sensor measurements into dis-
crete detections or point observations, while addressing fundamental challenges inherent in
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multi-target tracking (MTT), such as measurement origin uncertainty, false alarms, missed
detections, and the spontaneous appearance or disappearance of targets. The article centers
on three major approaches to MTT: the Joint Probabilistic Data Association Filter (JPDAF),
Multiple Hypothesis Tracking (MHT), and �lters derived from the Random Finite Set (RFS)
framework.
JPDAF models the data association problem probabilistically by computing the likelihood of
each possible measurement-to-target assignment and fusing these associations into a single,
weighted estimate for each target [2]. This approach effectively handles clutter and measure-
ment ambiguity by jointly considering all association hypotheses at each time step.
MHT, in contrast, maintains and propagates multiple competing hypotheses over time, each
representing a different possible sequence of associations between measurements and targets.
As more data become available, improbable hypotheses are pruned, allowing the tracker to
retrospectively resolve ambiguities and re�ne the target trajectories [26].
The RFS-based framework offers a fundamentally different perspective by modeling both the
number of targets and their states as random �nite sets. This enables a uni�ed probabilistic
treatment of target birth, death, and detection, often circumventing the need for explicit data
association. Instead, RFS �lters such as the Probability Hypothesis Density (PHD) �lter and
the Generalized Labeled Multi-Bernoulli (GLMB) �lter approximate the multi-target poste-
rior distribution directly [26].
Furthermore, the article provides a comprehensive review of Bayesian estimation methods
and classical single-target �lters (e.g., Kalman and particle �lters) as the foundational build-
ing blocks for these more advanced multi-target tracking techniques [26].
Bayesian estimation offers a principled approach to inferring unknown parameters (like a
target's state) by integrating prior knowledge with observed data. It involves updating a
probability distribution over the possible states, representing the belief about the position
and velocity of the target [3].
The Kalman �lter, a prominent example of a Bayesian �lter, is an optimal recursive algorithm
designed for linear systems with Gaussian noise. It provides a highly ef�cient way to estimate
the state of a single target by predicting its next state and then updating this prediction using
incoming measurements [28].
Particle �lters, on the other hand, offer a more �exible Bayesian estimation framework, partic-
ularly suited for nonlinear and non-Gaussian systems. Unlike the Kalman �lter, which relies
on a single Gaussian distribution, particle �lters approximate the posterior probability distri-
bution using a set of weighted "particles" or samples. This allows them to represent complex,
multimodal distributions, making them valuable when a target's movement or measurement
characteristics are highly nonlinear or ambiguous [13].

2.3 Bluetooth Low Energy

Bluetooth Low Energy (BLE) is engineered for minimal power consumption. It operates
within the 2.4 GHz Industrial, Scienti�c, and Medical (ISM) unlicensed frequency band. BLE
uses 40 channels in the 2.4 GHz band: 3 are reserved for advertising, while 37 support data
exchange. BLE supports various communication topologies, including point-to-point, broad-
cast, and mesh networking [6].

2.3.1 BLE packets

A BLE packet represents the fundamental unit of data transmission for BLE devices, encap-
sulating both the payload and the required addressing information. The packets adhere to a
de�ned structure to ensure interoperability and comprehension between the communication
devices. Key components of every BLE packet include preamble, access address, protocol
data unit (PDU), and cyclic redundancy check (CRC) [15].
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Preamble: A sequence of alternating bits (e.g. 01010101b) transmitted at the beginning of
the packet. This pattern facilitates receiver synchronization with the incoming transmission
[15].

Access Address: A unique 32-bit identi�er speci�c to a communication link (for connected
devices) or an advertising train (for broadcasters). It enables receivers to �lter and process
only packets pertinent to their current context, ignoring transmissions on other links or from
irrelevant advertisers [15].

PDU: This component encapsulates the actual data payload or control information that is
transmitted. Its structure and content vary according to the type of communication (adver-
tising or data exchange) [15].

CRC: A 24-bit checksum appended to the packet. The CRC is calculated on the PDU and
enables the receiving device to detect errors that may have occurred during transmission [15].

2.3.2 BLE PDUs

The PDU Type �eld, an integral part of the PDU header, precisely de�nes the category and
purpose of the encapsulated message, enabling differentiation between, for example, a con-
nectable advertising event, a sensor data transmission, or a connection request [15]. The PDU
forms the core informational content of a BLE packet, and its type dictates the nature of the
message transmitted. There are two primary categories of PDUs [23]:

Advertising Channel PDUs: Advertising Channel PDUs are transmitted by devices oper-
ating in a non-connected state, utilizing the designated advertising channels. The primary
functions of the advertising channel include announcing the presence of the device, the ca-
pabilities of the broadcasting device, the presentation of limited data payloads or the request
for connections from scanning devices [11].

Data Channel PDUs: Data Channel PDUs facilitate communication between devices that
have established a connection. Such PDUs are exchanged on data channels and serve to
transport application-speci�c data, for instance, sensor readings, control commands, or ac-
knowledgments, as well as link-layer control messages [15].

2.3.3 Key Packet Attributes

Time: The timestamp that indicates when a packet was captured. Analyzing the time series
of captured packets allows one to determine the advertising interval of a device and also
group the data into time windows.

MAC: Every Bluetooth device and consequently transmitted packet must have a unique
48-bit Bluetooth Device Address [15].

RSSI: The Received Signal Strength Indicator (RSSI) is a quantitative measure of the power
level of a received signal in the receiving device. When a device scans for Bluetooth Low
Energy (BLE) signals, its internal Bluetooth radio measures the RSSI for each detected device.
RSSI is expressed in decibels relative to a milliwatt (dBm) on a logarithmic scale and is in-
herently negative. A more negative RSSI value indicates a weaker received signal, typically
corresponding to a greater distance between the transmitting and receiving devices [6].
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Frame length: The frame length of a Bluetooth Low Energy (BLE) packet refers to the total
amount of data sent in a single transmission. Each packet starts with a preamble, a short se-
quence of alternating bits that helps the receiver detect and synchronize with the signal. This
is followed by the access address, a unique identi�er ensuring the packet reaches the correct
device. The main part of the packet, known as the PDU (Protocol Data Unit), carries the ac-
tual data being transmitted, whether it is sensor readings, device information, or connection
details. At the end of the packet, a CRC (Cyclic Redundancy Check) is included to detect any
errors that might have occurred during transmission. Some packets may also have a constant
tone extension (CTE), which is used for direction-�nding applications, helping locate the de-
vice sending the signal. The frame length of a BLE packet varies depending on the amount of
data sent and the communication mode, balancing ef�ciency, speed, and power consumption
[15].

Company ID: The Company ID of a Bluetooth device is assigned by the Bluetooth SIG.
This is a unique number that helps to identify the manufacturer of a Bluetooth device. When
a device transmits data, it often includes this identi�er, which allows receivers to recognize
which company produced the hardware. The Company ID is used in various parts of Blue-
tooth communication, such as advertising packets, device identi�cation, and vendor-speci�c
features [15].

Occurrences: Occurrences represent the number of times a speci�c BLE packet is received
per unit of time. This metric helps determine how frequently a device transmits.

Advertising interval: An advertising device broadcasts an advertising packet across all
three advertisement channels in roughly 20 ms [20]. Following this transmission, the de-
vice must wait for a period of Tadv seconds. The advertising interval Tint shall be an integer
multiple of 0.625 ms in the range 20 ms to 10,485.759375 s andTvar a 'pseudo-random' value
in the range 0 ms to 10 ms [15].

Tadv (event) = Tint ( interval) + Tvar (delay) (2)

2.4 Association and tracking of BLE devices

An aspect of target tracking is the association process, where there are several methods to
associate measurements with targets (physical devices). Certain approaches have exploited
�aws in the BLE protocol to reveal the device responsible for generating random addresses
[7]. Alternatively, some methods have relied on signal attributes such as signal strength and
advertisement time (2.3.3) to �ngerprint and identify devices [7].
The method developed by Loïc Jouans, Aline Carneiro Viana, Nadjib Achir, and Anne Fladen-
muller [20] associates randomized MAC addresses belonging to the same device. This ap-
proach analyzes the delay between one address disappearing and the next appearing. This
analysis primarily investigates the attribute introduced in Section 2.3.3.
Shuhei Akiyama, Ryoya Morimoto, and Yoshiaki Taniguchi [1] focus on exploiting the RSSI
value. If the time difference, which refers to the short interval between the disappearance
of one MAC address and the appearance of another, between two MAC addresses falls be-
low a speci�c threshold and their average RSSI difference is within a prede�ned limit R, the
new MAC address is considered a potential match for the same device [1]. The equation in
2.1 represents a normalized Euclidean distance that simultaneously considers the time gap
between the disappearance of one MAC address and the appearance of another, as well as
the difference in their average RSSI values. By normalizing each component by its respective
threshold (T for time, R for RSSI), the method ensures that both features contribute equally to
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the distance metric.
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Where:

• t i : Last time the original MAC address ai was seen.

• t1j : First time the candidate MAC address aj was seen.

• r̄ i : Average RSSI value observed forai .

• r̄ j : Average RSSI value observed foraj .

• T: Time threshold — de�nes what counts as "shortly after".

• R: RSSI threshold — de�nes acceptable signal similarity.

Yanis Boussad, Yuanxuan Yang, Andrew Tomlinson, and Susan Grant-Muller [7] proposed
"McMatcher," which employs Symbolic Aggregate approXimation (SAX) to convert raw RSSI
measurements into a simpli�ed symbolic representation. This process involves segmenting
the RSSI time series into �xed time windows, averaging the signal strength within each win-
dow, and mapping these values into discrete symbols based on prede�ned ranges (bins).
Additionally, Yanis Boussad et al. introduce a special symbol to account for missing data, en-
suring the integrity of the representation. The resulting sequence of symbols is then divided
into structured "words," forming a compact yet meaningful abstraction of the RSSI �uctua-
tions [7]. Once transformed into SAX sequences, these representations are converted into nu-
merical vectors, enabling ef�cient comparison. By applying cosine similarity, the algorithm
"McMatcher" assesses the degree of similarity between different MAC address patterns over
time. If two different MAC addresses exhibit highly similar RSSI patterns, they are likely to
belong to the same physical device. This method allows for reliable MAC address matching
despite frequent randomization [7].

2.4.1 Machine Learning Techniques for Device Association

In this thesis, several machine learning algorithms are employed to address the association
problem, including k-Nearest Neighbors (k-NN), AdaBoost, Random Forest, and a Decision
Tree. Additionally, Differential Evolution is used for feature weighting optimization in con-
junction with the k-Nearest Neighbor classi�er .
The k-nearest neighbors (k-NN) algorithm is a simple non-parametric method used for clas-
si�cation and regression. In classi�cation, it works by assigning a data point to the majority
class among its k closest neighbors in the training data set. When a new unlabeled data point
is introduced, the algorithm calculates its distance, usually using the Euclidean distance, to
every point in the training set. Then it identi�es the k nearest points, and the most common
class among those neighbors is assigned to the new point. The choice of k affects the per-
formance: A small k (for example, 1) can be sensitive to noise, while a large k smooths out
decision boundaries, but may overlook local patterns [10].
The Nearest Centroid classi�er is a simple and ef�cient classi�cation algorithm that assigns
each sample to the class whose centroid (i.e., mean vector of features) is closest in terms of
a chosen distance metric. The model calculates the centroids of each class during training
and predicts the label of a new sample by determining the nearest centroid according to a
speci�ed metric, typically the Euclidean distance. The classi�er also supports class-speci�c
weights and can incorporate a shrinkage threshold to improve classi�cation accuracy by re-
ducing the in�uence of less relevant features [12].
AdaBoost (Adaptive Boosting) is an ensemble learning algorithm designed to improve the
performance of weak classi�ers by combining them into a single, strong classi�er. It works by
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training a sequence of weak learners—typically simple models such as decision stumps—on a
dataset where each sample is assigned a weight. Initially, all samples are given equal weight,
but after each iteration, the weights of misclassi�ed samples are increased, making the next
weak learner focus more on the harder examples. At each step, a weak learner is trained to
minimize the weighted error, and its in�uence (or weight) in the �nal model is determined
by its accuracy. Speci�cally, more accurate weak learners receive higher weights in the �nal
prediction. The �nal strong classi�er is a weighted majority vote of the individual weak
classi�ers. This process continues for a �xed number of iterations or until the overall error
stops improving. AdaBoost adapts to the training data by focusing on dif�cult examples,
and despite each individual model being only slightly better than random, the ensemble
performs signi�cantly better. The algorithm has also been extended to handle multi-class and
multi-label problems using variants such as AdaBoost.M1, AdaBoost.M2, AdaBoost.MH, and
AdaBoost.MR, which modify how errors are calculated and predictions are combined [9].
Differential Evolution (DE) is a population based optimization algorithm often used to solve
complex, continuous optimization problems. When applied to feature weighting optimiza-
tion, DE searches for the optimal set of weights to assign to input features, enhancing the
relevance of each feature in the classi�cation process. This becomes especially valuable when
used in conjunction with the 1-Nearest-Neighbor (1-NN) classi�er, which is sensitive to fea-
ture scales and irrelevant attributes. By optimizing feature weights using DE, the 1-NN algo-
rithm can achieve more accurate distance measurements and improve classi�cation perfor-
mance [14].
A Decision Tree is a simple and intuitive model that makes predictions by splitting the data
set into branches based on the feature values. Each internal node represents a decision on a
feature, and each leaf node gives a �nal output. It is fast, easy to interpret, and works well
on small or clean datasets. However, it tends to over�t the training data and can be unstable,
meaning small changes in the data can lead to a completely different tree. By contrast, a Ran-
dom Forest is an ensemble method that builds many decision trees using different random
subsets of the data and features. It combines their predictions, typically through majority
voting for classi�cation or averaging for regression, to produce a �nal output. This approach
reduces variance, improves accuracy, and is much more resistant to noise and over�tting
compared to a decision tree. The decision tree offers simplicity and interpretability, and a
random forest provides higher predictive performance, stability, and generalization, making
it more suitable for complex or noisy tasks [18].
Existing research highlights several methods for tracking BLE devices despite MAC address
randomization, including exploiting protocol �aws, signal-based �ngerprinting [7], delay
analysis [20], and RSSI-based matching [1]. However, challenges remain: �ngerprinting re-
quires model training with known environment, RSSI loses reliability over distance, and pre-
cise timing analysis requires highly accurate sniffers. Furthermore, evolving BLE security
measures may further limit current tracking techniques in the future.

2.5 Location estimation

Kang Eun Jeon, James She, Perm Soonsawad, and Pai Chet Ng [19] provide a comprehensive
overview, focusing on the protocol of beacon design, signal characteristics, hardware and
software components, and the role of beacons in the development of ef�cient, scalable, and
interoperable IoT solutions. In one part, the relationship between Received Signal Strength
(RSS) and distance is examined. Kang Eun Jeon et al. describe how RSS is in�uenced by
environmental factors and the inverse square law, with the signal decay modeled by an expo-
nent factor (a) to account for real-world loss factors. The linear relationship between RSS and
distance in logarithmic terms ( RSS9 � a log(d)) is highlighted, illustrating its importance in
applications such as distance estimation and beacon-based solutions.

RSS= � a log(d) + K (2.2)
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Yapeng Wang, Xu Yang, Yutian Zhao, Yue Liu, and Laurie Cuthber [27] explore the enhance-
ment of several methods for indoor positioning using Bluetooth and Received Signal Strength
(RSS) measurements. Yapeng Wang et al. develop a mathematical framework to analyze the
correlation between RSS and distance and apply three distance-based localization algorithms.
Least squares estimation (LSE), the three-border method and the centroid method [27].
LSE is widely applied in wireless positioning systems, particularly where a system of equa-
tions must be solved to estimate the location of a mobile node based on measured distances
[27]. The linear model can be expressed as:

Y = AX (2.3)

where Y PR N � 1 is the measurement vector, A PR N � M is the coef�cient matrix derived from
the geometry of the system, and X P R M � 1 is the vector of unknown coordinates (e.g., x, y)
[27]. When N ¡ M, the system is overdetermined, and the optimal estimate of X minimizes
the residual error:

f (X) = } AX � Y}2 = ( AX � Y)T(AX � Y) (2.4)

Minimizing this quadratic form leads to the solution:

X = ( AT A) � 1ATY (2.5)

In practical implementations, a weighted version may be used by introducing a weighting
matrix W to re�ect the reliability of each measurement:

f (X) = ( AX � Y)TW(AX � Y) (2.6)

Theoretically, if W is set as the inverse of the covariance matrix of measurement noise, the
estimator achieves minimum variance [27]. However, de�ning an accurate W in practice
remains an open problem [27].
The three-border method uses the known coordinates of three reference nodes and their re-
spective distances to the mobile node to determine its position [27]. Let the reference nodes be
at A(x1, y1), B(x2, y2), and C(x3, y3), with the corresponding distances d1, d2, d3. The mobile
node's position (x, y) satis�es:

(x � x1)2 + ( y � y1)2 = d2
1

(x � x2)2 + ( y � y2)2 = d2
2

(x � x3)2 + ( y � y3)2 = d2
3

(2.7)

Solving this system yields the estimated coordinates of the mobile device [27]. It is typically
solved using algebraic manipulation or numerical methods.
The Centroid Method provides a low-complexity estimate by calculating the geometric center
of a polygon formed by the intersection of range circles or estimated distance arcs from mul-
tiple reference nodes. Suppose the intersecting region de�nes a convex polygon with vertices
A(x1, y1), B(x2, y2), C(x3, y3), and D(x4, y4) [27]. The estimated position (x, y) is the centroid
of these vertices:

(x, y) =
�

x1 + x2 + x3 + x4

4
,
y1 + y2 + y3 + y4

4

�
(2.8)

Cell-based localization methods in cellular networks typically rely on reference points (RPs)
deployed in structured layouts, where the area is partitioned into prede�ned regions, and
localization is performed using the known centroids of these regions [22]. In contrast, the
Centroid-Based Localization (CBL) [22] method eliminates the need for structured deploy-
ment and strict power-level control by supporting the arbitrary placement of anchors (for-
merly RP). Each anchor periodically transmits a beacon containing its geographic coordinates
and coverage radius. Sensor nodes with unknown positions receive these beacons and iden-
tify overlapping areas formed by the anchor coverage circles. The CBL localization procedure
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consists of two primary computational steps. First, the sensor node computes the centroid of
the intersection area for each pair of overlapping coverage using a geometric mapping func-
tion based on the centers and radii of the circles. Secondly it estimates the position by aver-
aging the coordinates of all calculated pairwise centroids. In cases where a node receives a
beacon from only a single anchor, it defaults to using the anchor's coordinates as its location
estimate [22].
In contrast to the centroid method [27], the CBL method [22] does not require the construction
of a complete polygonal intersection region. Instead, it considers all (N

2 ) (where N is the total
number of anchor nodes) pairwise combinations of anchor coverage regions and computes
centroids of these overlapping pairs. If anchors A i = ( xi , yi , r i ) and A j = ( xj , yj , r j ) are
within communication range of a sensor node, the method calculates the centroid of their
overlapping area using a geometric approximation (e.g., midpoint or an analytical centroid
function) [22]. Each pairwise centroid is approximated by:

Ci� j =
�

xi + xj

2
,
yi + yj

2

�
(2.9)

Then, the �nal position estimate S1= ( xs1, ys1) of the sensor node is obtained by averaging all
pairwise centroids:

(xs1, ys1) =

0

@ 1
M

¸

i  j

xCi � j
,

1
M

¸

i  j

yCi � j

1

A (2.10)

where M = (N
2 ) is the total number of anchor pairs [22].

A closely related localization method proposed by Yeong-Sheng Chen, Shih-Hao Chang, and
Chun-Chien Teng [8] operates by �rst calculating all pairwise intersection points between the
coverage circles of reference nodes that a sensor node can detect. To enhance the reliability of
the position estimate, an Error Reduction (ER) �lter is applied to eliminate intersection points
that are likely to be inaccurate or inconsistent with the expected spatial con�guration. Yeong-
Sheng Chen et al. further introduce the concept of overlap degree, where each intersection
point is evaluated based on how many coverage circles it lies within. Only points with full-
degree overlap, that is, located within all relevant intersecting circles, are retained for position
estimation. The �nal location of the unknown sensor node is determined by averaging the
coordinates of these �ltered high-con�dence intersection points. This algorithm prioritizes
accuracy by rigorously evaluating geometric consistency among overlapping regions [8].
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3 Tracking system

This chapter presents a detailed description of the developed tracking system, including its
architecture, key features, association mechanism, and localization methods.
First, it is essential to refer to Figure 3.1, which illustrates the overall search strategy. The
search area is partitioned into a grid, and as the drone traverses each grid cell, it collects data
along its �ight path. This data, when aggregated over time, is referred to as a measurement.
The system is designed based on a scenario in which the drone systematically covers the
entire search area.

Figure 3.1: Search strategy
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3.1 Architecture

The structure of the suggested tracking system is illustrated in Figure 3.2. Initially, the system
uses a sniffer, a device that captures packets from target devices, and relays the gathered data
to a central database. This information is subsequently transferred to a local device that has
the tracking system, where processing begins. Target tracking involves two key components:
association and localization. Association is the process of maintaining continuity in tracking
targets, particularly when they change their MAC addresses. A basic case of association,
known as mapping, occurs when a measurement contains the same MAC address as the
tracked target. After identifying the individual targets, a localization procedure estimates
their locations. The concluding step visualizes the results of the tracking and localization
processes.

Figure 3.2: Tracking system diagram

The architecture of the tracking system can be conceptually divided into two main compo-
nents: association and localization.

3.2 Association

The association process is detailed in Figure 3.3. It begins with the retrieval of raw data from
a centralized database, followed by a preprocessing stage. The transmission power depends
on the speci�c type of message, as de�ned by the Bluetooth protocol [15]. Scanning PDUs
(Protocol Data Units) such as SCAN_REQ, SCAN_RSP, AUX_SCAN_REQ, and AUX_SCAN_RSP
are �ltered out. Frame length can vary if the data payload of the packet changes. During
preprocessing, measurements that occur less than four times per minute are excluded from
further analysis. This �ltering step is essential for removing spurious signals or transient
device-to-device communications, which typically consist of no more than three messages.
Subsequently, the remaining data are segmented into time windows and aggregated. Fea-
tures such as frame length, signal strength, Company ID are represented as median values.
For each MAC within a window, features such as the frequency of occurrence and timing of
advertisement messages are computed. Based on these features, initial targets are selected in
a short period of time from the start of the process. The underlying assumption is that within
a brief initial time interval, each measurement with a distinct MAC represents a unique de-
vice that needs to be tracked. The likelihood of a device changing its MAC during this short
interval is considered negligible, minimizing the risk of introducing false candidates.
The core tracking algorithm illustarted in Figure 3.3 operates in a loop over successive time
windows until the end of the data. If any initial target's MAC persists across subsequent time
windows, then the process of mapping is initiated and features of target are updated.
However, if the MAC is unknown, an association process is triggered. This process compares
the features of the new unmapped measurement with those of existing tracked targets that
have not been updated in the most recent time window. Each feature used in the association
process has a weight that re�ects its relative importance. Then a feature-derived distance
metric is computed on the basis of the weighted differences between the new measurement
and all eligible candidate targets (targets that have not been seen in a interval of one time
window). If the computed distance does not exceed a prede�ned threshold (see Section 4.6),
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the corresponding measurement is treated as originating from a new target. The association is
resolved using a global nearest-neighbor approach, in which the candidate with the smallest
distance is selected. Upon successful association, the tracked target's features are updated to
re�ect the new information.
The �nal output of the system is a temporal association of tracked targets, providing contin-
uous identi�cation over time.

Figure 3.3: Association algorithm

3.2.1 Gating and Target Selection

To simplify the tracking problem and reduce computational complexity, a gating mechanism
is employed. Gating determines which newly observed measurements could plausibly orig-
inate from known targets, thereby limiting the number of potential associations.
Initially, during the �rst time window, all detected MAC addresses are considered targets and
are continuously monitored throughout subsequent time windows. As the algorithm pro-
gresses, the addresses of successive windows are compared to the addresses of the tracked
targets. If the MAC address persists across subsequent time windows, its attributes are up-
dated accordingly, which is also de�ned as a mapping. If a new MAC address appears, it is
stored and it is retained until the end of the following time window. All targets that were not
seen/captured since a new MAC appeared in interval of one time window are considered
viable candidates for associations; all other are gated out, since they have been mapped.

3.2.2 Association and Target Update

The association represents the iteration process for every new MAC in the same time win-
dow. For every newly appeared measurement with a new MAC, a feature-derived distance
is calculated towards every possible candidate (unseen targets). From a matrix with dis-
tances between all measurements and candidates, the shortest distances corresponding to the
method of global nearest neighbor are chosen. The features of the newly associated targets
are updated.

3.2.3 Captured Attributes and Processed Features

In the analysis of captured Bluetooth Low Energy packet, it is distinguished between cap-
tured attributes , which are directly obtained from raw packet data, and processed features,
which represent higher-level information derived from the captured attributes over a time
window.
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Captured Attributes

Captured attributes, including Time, MAC Address, RSSI, Frame Length, and Company ID
provide details about the transmitting device.

Processed Features

Processed features, such as occurrences and advertising interval, represent higher-level met-
rics derived from captured attributes over de�ned temporal windows.

3.2.4 Classi�cation process

Target tracking is an iterative process that involves two main components: association and
localization. Data are collected using a BLE sniffer, and the raw signals are preprocessed and
segmented into discrete measurements based on shared MAC addresses within speci�ed time
windows. Each measurement is associated with a set of descriptive features.
Due to periodic MAC address randomization implemented by devices, the association pro-
cess plays a central role in associating measurements that are inferred to originate from the
same physical device over time. A special case of this process is known as mapping, which
refers speci�cally to associating consecutive measurements that share the same MAC address
across adjacent time windows (see Figure 3.4). In contrast, general association refers to es-
tablishing connections between measurements with different MAC addresses when a new
randomized address is believed to correspond to a previously observed target.
The result of association, through mapping or inference from MAC changes, is the construc-
tion of tracks, which represent continuous sequences of measurements attributed to individ-
ual devices. These tracks then serve as the basis for the localization process, which estimates
the spatial trajectories of the tracked targets.

Figure 3.4: Example of mapping target to measurement

MAC randomization introduces ambiguity, particularly when multiple targets change MAC
simultaneously. This leads to a set of possible hypotheses regarding which MAC correspond
to existing targets and which may represent new ones. For example, if two targets change
MAC, the system may interpret this as either two continuing targets with new MAC, two
new targets, or a combination. Each measurement must therefore be considered in terms of
its potential correspondence to an existing or new target.
The classi�cation process is initiated when the measurement does not share MAC with any of
the actively tracked targets, as illustrated in Figure 3.4. In cases where no suitable candidates
are available, that is, there are no tracked targets that have been missing for exactly one time
window, the measurement is treated as a newly observed target. A measurement is consid-
ered as new when its corresponding MAC address has not appeared in the dataset before.
This scenario is depicted in Figure 3.5, where T1 is a target with mapped MAC over different
time windows and M1 is a new measurement, which is considered then as a new target T2.
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Figure 3.5: New measurement without any candidates

A more complex scenario is shown in Figure 3.6, where two new measurements appear, but
only one existing tracked target is a viable candidate for association. This situation introduces
three possible hypotheses: either both measurements correspond to entirely new targets, or
one represents a new target, while the other corresponds to a previously tracked target that
has changed its MAC.
In this method, if a measurement appears in time window k, potential candidates for asso-
ciation are those tracked targets that were last observed in time window k and are absent
in k + 1. The association process for all new measurements from the time window k is then
initiated in the time window k + 2.

Figure 3.6: New measurements with one target

Figure 3.6 illustrates three targets T1, T2 and T3. T1 and T3 are mapped over time, but T2 is
not seen since time window K � 1, which makes it a possible candidate for newly appeared
M1 and M2. Tx symbolizes a target, that has not yet been classi�ed.
A third and more complicated case is presented in Figure 3.7, where two new measurements
must be classi�ed, and two previously tracked targets, unobserved in the preceding time
window, are viable candidates.
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Figure 3.7: New measurements with two targets

Figure 3.7 illustrates three targets T1, T2 and T3. T1 is mapped over time, but T2 has not been
captured since the time window of K � 1 and T3 since the time window of K + 1, making a
possible candidate for newly appearing M1 and M2. Figure 3.7 also reveals that the new mea-
surement could occur within the same time window as the candidate target. The algorithm
examines only the time window that follows up the measurement �rst captured time win-
dow to ensure that there are no remaining records, which, when ful�lled, makes it a legible
candidate for association.
Potential associations between targets and measurements are scored on the basis of feature-
derived distances. The global hypothesis with the shortest distance is then selected as the
most likely association for the corresponding target.

Figure 3.8: Example of the Global Nearest Neighbor (GNN) method applied to three targets
and three measurements

Figure 3.8 illustrates an example of the application of the Global Nearest Neighbor (GNN)
method. Potential associations are sorted according to feature-derived distances, with the
shortest distance selected �rst. In the example shown, T1 is associated with M1 due to having
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the shortest distance. As a result, no subsequent associations can involve eitherT1 or M1,
ensuring one-to-one correspondence between targets and measurements.

3.2.5 Association algorithm

As discussed previously, the classi�cation process is grounded in the use of a distance matrix.
Several machine learning models were explored, including: speci�cally k-Nearest Neighbors
(k-NN), k-NN with Differential Evolution, AdaBoost, Decsion Tree and Random Forest. The
performance of these models was evaluated and summarized in Table 4.5, where the rationale
for selecting the method based on differential evolution is further elaborated.
The k-NN with differential evolution, operates by training on a labeled data set to assign opti-
mized weights to input features. These features include signal strength, advertising interval,
number of occurrences, frame length, and Company ID data. Differential evolution is used to
optimize the relative importance (weights) of these features, thus enhancing the classi�cation
accuracy by minimizing the error in the resulting distance matrix.
In real-time operation, the incoming data is normalized and multiplied by the trained feature
weights obtained from the training phase. This weighted feature set is then used to calculate
distances and populate a global distance matrix. The Global Nearest Neighbor (GNN) algo-
rithm is subsequently applied to this matrix to identify the most probable match based on
minimum distance, thereby enabling robust and ef�cient target association.
The algorithm integrates k-Nearest Neighbors (k-NN) with Differential Evolution (DE) to
optimize the importance (weights) of input features. These weights are then applied in real-
time to associate new measurements with known targets using the Global Nearest Neighbor
(GNN) strategy.

Training Phase

• Start with a labeled dataset, where each instance includes features such as RSSI, adver-
tising interval, number of occurrences, frame length, and Company ID.

• Normalize all features using min-max normalization.

• Initialize a population of candidate weight vectors.

• Use Differential Evolution (mutation, crossover, selection) to evolve the weights:

– For each candidate, apply weighted k-NN on the training data.

– Evaluate performance based on classi�cation accuracy.

– Update population to improve results.

• Return the best-performing weight vector.

Real-Time Association Phase

• For each incoming measurement:

– Normalize the features.

– For each known target, compute the weighted distance using the trained weights:

D j =
¸

k

w�
k � |M k � Tj,k|

– Store distances in a global distance matrix.

• Apply Global Nearest Neighbor (GNN) to the matrix to assign each measurement to
the most probable target.
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3.3 Localization

In the subsequent stage of the tracking system, the focus is on estimating the position. Fig-
ure 3.1 illustrates the search methodology, highlighting the aggregation of data into temporal
windows and the spatial distribution of the measurements. Each target has a record of MAC
that has been mapped or associated to. This record list is assigned to the corresponding raw
data based on the MAC throughout the tracking period. The raw data are then regrouped
into shorter time intervals, much �ner-grained than those used in the association process,
to increase the temporal resolution and improve the accuracy of position estimation as il-
lustrated in Figure 3.9. Due to the aggregation process, positional features are computed as
the centroid of the spatial coordinates, while RSSI values are represented by their median to
reduce the impact of outliers.
This thesis focuses on localization using Centroid-Based Localization (CBL) with three se-
lected measurements. A detailed overview of related work is provided in Section 2.5. The
proposed method is compared to the widely adopted trilateration approach, which serves as
a common baseline in localization systems. Additionally, several alternative methods were
developed to facilitate a comprehensive evaluation of the proposed CBL technique based on
the three best measurements.
A centroid-based localization method is employed for estimating the target's position. This
approach calculates the centroid of the overlapping coverage areas derived from available
signal measurements, as described in Section 3.3.2. The result of this process is a single es-
timated spatial location for each identi�ed target. The algorithm assumes a global coverage
approach—�rst capturing packets from across the area before estimating a target's location.

Figure 3.9: Position estimation stage

3.3.1 Empirical conversion of RSSI to distance

The RSSI values are converted into estimated distances based on the empirical relationship
between signal strength and distance, as documented by the Bluetooth Special Interest Group
[5]. The proposed curve is shown in �gure 3.10. The transmit power and antenna gain were
set to 0 and the path loss is set to 2.7. Although the RSSI values may provide suf�cient preci-
sion to identify devices in close proximity, their variation decreases with increasing distance,
making it dif�cult to distinguish between devices. This limitation signi�cantly constrains
the effectiveness of RSSI-based distance estimation. The exact parameters are not available
from the of�cial Bluetooth documentation, so they are empirically adjusted to approximate
the curve presented on the website as closely as possible.

mp = Pt + Gt + Gr � 40

d = 10

mp � RSSI
10n

(3.1)
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Pt : Transmit power (dBm)

Gt : Transmit antenna gain (dBi)

Gr : Receive antenna gain (dBi)

n : Path loss exponent (environment factor)

mp : Received power at 1 meter (dBm)

RSSI : Received signal strength indicator (dBm)

d : Estimated distance (meters)

-40 : Calibration constant for path loss at 1 meter (dB)

Figure 3.10: Bluetooth range relation

3.3.2 Localization methods

A sniffer is a device that captures BLE data packets, each of which includes the GPS location
corresponding to the time of capture. The collected data measurements are aggregated into
discrete time windows, within which the centroid location and signal strength are computed.
Signal strength serves as a crucial parameter for estimating the distance to the target.

Centroid-Based Localization

As detailed in Section 2.5, the proposed method for estimating the position of each identi�ed
target is based on Centroid-Based Localization (CBL). The performance of this approach, in
comparison with alternative localization techniques, is evaluated and discussed in the results
Section 4.2.2. While CBL is a well established method, several minor modi�cations were
introduced to better handle rare edge case scenarios encountered during implementation.
These include using four measurements instead of three, applying the method in a sequential
manner, and incorporating spatial separation.
Localization is initiated by labeling raw measurement data according to the target associa-
tions established in the previous stage. The data is segmented into 5-second time windows
to ensure a suf�cient density of measurements for reliable position estimation. This shorter
aggregation interval captures the typical BLE advertising bursts across all three advertising
channels within a single measurement window, effectively reducing redundancy and pre-
venting the same device from being recorded multiple times at the same location. Compared
to longer windows (for example, 1 minute), 5-second segmentation yields a higher temporal

24



3.3. Localization

resolution and a denser dataset, which enhances the granularity and reliability of the local-
ization process. The algorithm identi�es the three measurements in any time window with
the highest RSSI values for each target, which are presumed to originate from the measure-
ments closest to the target. The algorithm continues to run as long as new data is available,
operating in real time when streamed continuously, or processing until the end of the dataset
in of�ine scenarios.
From a geometric standpoint, each of these top three RSSI measurements are used to de�ne a
circle centered at the receiver's known GPS location, with a radius determined by converting
the RSSI value to an estimated distance. The algorithm then calculates the centroid of the
region where these circles overlap.
Three scenarios may arise:

• No Overlap: In cases where there is no intersection, the position is estimated by se-
lecting the location corresponding to the strongest individual RSSI measurement, then
shifting this estimate slightly in the direction of the remaining two points based on
equation 3.3.2, weighted by a variance factor as illustrated in Figure 3.11.

pest = pb + 0.25� db � v̂ (3.2)

v̂ =
v

}v} + #
(3.3)

v =
1
2

¸

j� b

p j � pb (3.4)

where:

– pest is the estimated position,

– pb is the position with the strongest signal and therefore the smallest distance db,

– pj are the other two positions (with j P t1, 2, 3uztbu),

– v is the vector from pb to the average of the other two positions,

– v̂ is the normalized direction vector,

– #= 10� 6 is a small constant added to prevent division by zero,

– db is the distance associated with pb.
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Figure 3.11: No Overlap case

• Single Overlapping Region: If all three circles overlap in a single region, the centroid of
that region is selected as the estimated position as illustrated in Figure 3.12.

Figure 3.12: Single Overlap case

• Two Overlapping Regions: If only two circles intersect, preference is given to the in-
tersection formed by the circles with the smallest radii, as stronger signals typically
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indicate closer proximity and thus higher spatial accuracy. This heuristic is intended to
bias the estimation toward the actual target location as illustrated in Figure 3.13.

Figure 3.13: Two Overlapping case

Trilateration

By employing the trilateration method, which utilizes Bluetooth signal strength along with
the known position of the sniffer at a speci�c time, it is possible to estimate the target's loca-
tion. An example of trilateration using three strongest signal measurements is presented in
Figure 3.14. Detailed description of how trilateration is computed is covered in Section 2.5.
By leveraging the characteristics of RSSI speci�cally, the inverse relationship between signal
strength and distance.
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Figure 3.14: Example of trilateration

The measurement locations are selected over different time windows, prioritizing the highest
RSSI values, which are expected to correspond to the closest proximity to the target. Figure
3.14 illustrates an example of trilateration with a selection of the three measurements with
the highest RSSI values and the estimated position.

Sequential Localization Approaches

In addition to the Centroid-Based Localization (CBL) discussed earlier in Section 3.3.2 and
Trilateration 3.3.2, several sequential methods were developed to enable comparative evalu-
ation. The sequential method refers to the selection of three measurements that occur con-
secutively in time. Each method presents unique advantages and is speci�cally designed to
address limitations in one of them. These methods build upon previous work in both CBL
and trilateration and include the following:

• Sequential Centroid-Based Localization: This approach extends the conventional
CBL method by incorporating temporal dynamics. Instead of selecting only the three
strongest RSSI measurements, the algorithm processes sequential triplets of measure-
ments over time to simulate real-time data acquisition. For each temporally consecutive
triplet, a partial location estimate is computed using standard CBL principles. The �-
nal position estimate is then obtained by calculating the average of these intermediate
estimates, the centroid of sequential estimates.

• Sequential Trilateration with Centroid Aggregation: In this method, trilateration is
applied repeatedly to every sequential group of three RSSI measurements, collected
over time. Each trilateration yields a partial location estimate. The �nal estimated posi-
tion is computed as the average of all such partial estimates.

• Spatial Separation: For each measurement triplet, the method calculates the spread
(difference between the maximum and minimum) in both the x and the y directions. A
triplet is accepted if the spread in both axes exceeds prede�ned thresholds (30 m), en-
suring that points are well-distributed in two dimensions rather than forming a narrow
line. Although this method is not inherently sequential, it is categorized as such, as its
implementation was exclusively designed for a sequential approach.

28



3.3. Localization

Multi-Measurement Localization

Another proposed method is multi-measurement localization. While the previous approach
estimates position based on three measurements, this method incorporates four. This can be
viewed as an extension of traditional trilateration, commonly referred to as multilateration.
Similarly, in CBL, the position estimate is derived using four measurements instead of three.

Evaluated Localization Methods

Trilateration-Based Methods
Trilateration of three highest RSSI measurements
Multilateration of four highest RSSI measurements

Centroid-Based Methods (CBL)
CBL of three highest RSSI measurements
CBL of four highest RSSI measurements

Sequential Approaches
Centroid of rolling trilateration
Centroid of rolling multilateration
Centroid of rolling trilateration with Spatial Separation
Centroid of rolling CBL
Centroid of rolling CBL with four measurements
Centroid of rolling CBL with Spatial Separation

Table 3.1: List of evaluated localization methods

Table 3.1 presents all evaluated localization methods. Each method produces a single estimate
per dataset. For sequential approaches, multiple estimates are generated over time, which are
then aggregated by computing their centroid. These methods can be applied either during
data collection or post hoc; therefore, the evaluation includes both temporal analysis and an
overall performance summary.

3.3.3 Visualization in QGIS

The �nal stage of the system involves the visualization of localization results. Once the tar-
gets have been identi�ed and their positions estimated, a matrix of targets and corresponding
locations is visualized using QGIS. Each target is represented by a distinct color. Addition-
ally, for each target, the three highest RSSI measurements are depicted as circles, with radii
corresponding to distance estimates derived from the conversion method described in Sec-
tion 3.3.1. This visual representation assists the end user in assessing the spatial distribution
and consistency of the measurements, particularly in identifying whether they are aligned,
overlapping, or spatially coherent.
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4 Performance evaluation

In this chapter, the performance of the developed algorithms is systematically evaluated.
The evaluation is divided into two main parts: 4.1 Association , which assesses the effective-
ness of the target association algorithm using ground truth data, and 4.2 Localization , which
evaluates the several positioning methods displayed in Table 3.1 against known reference
positions.
To evaluate the performance of the proposed localization methods, several quantitative met-
rics are analyzed. These include association accuracy and error rates, the Euclidean distance
between estimated and reference positions as an indicator of localization accuracy. Further-
more, a variety of visualizations, such as confusion matrices, scatter plots, cumulative dis-
tribution functions (CDFs), and temporal error plots, are used to provide deeper insight into
the strengths and limitations of the algorithms.

4.1 Association

Evaluation involves conducting controlled experiments where the actual association of
tracked devices is known. In this case ground truth means knowing the speci�c MAC ad-
dress for each device.

Dataset Collection

The data used for training and evaluation of device association comprises two distinct
datasets: warm-up dataset and validation dataset.
The warm-up dataset consists of two subsets. The �rst was collected in a sequential man-
ner, with each device observed individually, while the second was captured within a highly
isolated chamber to ensure minimal external interference. Data acquisition was performed
using an nRF sniffer. The sniffer is a hardware device designed to capture BLE advertising
packets in real time of nearby transmitting devices. The warm-up dataset was collected over
a 1000-second interval as for �rst part, 1800 seconds for second part.
The purpose of using these two sets is to facilitate both model training and model selec-
tion. Speci�cally, one part of the warm-up dataset is used to train different models, and the
same data is also partially used for internal testing, where the test error is computed to select
the best-performing model. This selected model is then evaluated on a separate validation
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dataset. The warm-up dataset contains more measurements allocated for training than for
testing, while the opposite is true for the validation dataset, which emphasizes evaluation
performance.
For the �rst part of the warm-up set, ground truth was established by positioning the sniffer
in close proximity to the target device, resulting in a high Received Signal Strength Indicator
(RSSI). This setup allows RSSI to �lter out all the other surrounding devices, in order to
capture from the intended source only. In contrast, the second part of the warm-up dataset
did not require additional �ltering, as the controlled environment of the isolation chamber
completely eliminated background noise.
For the validation dataset, the devices were collected sequentially as for the �rst part of
the warm-up dataset. Validation dataset was collected over 1000-second interval, during
which the sniffer captured all packets transmitted on BLE advertising channels 37, 38, and
39. Warm-up and validation datasets are listed in Tables 4.1 and 4.2.
The dataset was partitioned using an 80/20 split. For the warm-up dataset, 80% (252 mea-
surements) was used for training and 20% (63 associations) for testing, cuts are shown in
Figures 4.1 and 4.2. On the contrary, for the validation stage, 80% (109 associations) was
allocated for testing, while the remaining 20% (27 measurements) was used for training as
illustrated in Figure 4.3.

Device Operating System
iPhone 11 iOS 18.0[two instances]
iPhone 12 Pro Max iOS 18.3.1
Xiaomi 12 Pro+ Android 15
Samsung A52s 5G Android 14
Google Pixel Android 15
iPhone 14 Pro iOS 18.3.1

Table 4.1: Warm-up dataset

Device Operating System
iPhone 12 mini iOS 18.0.1[two instances]
iPhone SE iOS 18.3.2
iPhone 15 Pro iOS 18.3.2
iPhone 16 Pro iOS 18.3.2
Pixel 8 Pro Android 15

Table 4.2: Validation dataset

Within the dataset, the same iPhone 11 was utilized in two distinct sections, and two iPhone
12 mini devices were included in the validation set. Devices from the same production series
or in case of iPhone 11, physically identical unit, were included in the validation to intention-
ally increase the level of dif�culty. Due to their highly similar characteristics, these devices
present a greater challenge for the algorithm to distinguish between them accurately.
The dataset is partitioned based on temporal order, ensuring that the algorithm captures the
full range of targets and characteristics present in the data. Within the warm-up dataset, the
�rst 80% is used as warm-up data, providing the algorithm with a substantial number of
measurements for learning, while the remaining 20% is reserved for evaluating accuracy.
The validation dataset remains unseen during training and serves to verify that the model
has not over�tted to the training data, thereby offering a more robust assessment of general-
ization performance.
The �rst part of the warm-up dataset was assembled one by one. Speci�cally, 3 devices as
shown in �gure 4.1.
Each point represents aggregated data corresponding to a single MAC address in a 60-second
time window. Horizontal lines depict the straightforward mapping process that links aggre-
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gated data points based on the same MAC address. In contrast, vertical lines indicate the
association process, wherein the target changes its MAC address, and process of association
must be performed. Different colors represent distinct targets. Based on observations from
this thesis, each device has one or two targets. The MAC addresses displayed in the graphs
are labeled according to their manufacturers. Letters A and B indicate the cases where a
physical device possesses two MAC addresses. A preceding number is used to distinguish
devices sequentially, allowing for a clear identi�cation of when a device changes and where
it should be associated.

Figure 4.1: First part of the warm-up dataset with 80% cut for training

Second part was conducted in isolated chamber without any signal interference. In this part
there were 4 devices meassured as shown on �gure 4.1.
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Figure 4.2: Second part of the warm-up dataset with 80% cut for training

The �rst notable difference appears along the x-axis, where measurements in Figure 4.1 ex-
tend only up to 1000 seconds, whereas in the comparison case in Figure 4.2, data collection
continues until approximately the 18th minute (around 1750 seconds). In Figure 4.2 it is
shown an overlapped when iPhone_11 did change its MAC adress.

Figure 4.3: Validation dataset with 20% cut for training
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4.1.1 Evaluation Method

To assess the accuracy of the target association process, a dataset with known ground truth
(see Section 4.1) is used. The primary evaluation metric is the percentage of MAC addresses
correctly assigned to their respective targets over time.
Performance is visualized using confusion matrices and time series plots. The confusion
matrices are generated using a model trained on the initial 80% of the warm-up dataset,
while the remaining 20% is used for testing on this same dataset.
For validation, it is assumed that all distinct targets are represented within the 20% test subset.
The remaining 80% of the dataset is then incrementally processed and associated with the
initially trained targets for validation. This strategy differs from the warm-up dataset usage,
as it allows a broader range of associations to be evaluated while ensuring that the model
operates using only the information available for the current set of targets. Validation set is
used in Figures 4.5, 4.8 and 4.9.
This approach does not address the challenge of associating new, previously unseen targets,
as that issue is handled at a different level within the algorithm. The hypothesis and mecha-
nism for new target association are discussed in Section 4.1.2.

4.1.2 Results

To identify the most suitable model for accurate association classi�cation, six different ma-
chine learning algorithms were implemented and evaluated: k-Nearest Neighbors (k-NN),
AdaBoost, Nearest Centroid, Random Forest, Single Decision Tree, and Weighted k-Nearest
Neighbors (Weighted k-NN). These algorithms are covered in Section 2.4.1.
While tree-based models like Decision Trees and Random Forests can offer strong perfor-
mance, they require frequent retraining to adapt to evolving data distributions. This retrain-
ing introduces signi�cant computational overhead in real-time scenarios. As a result, devel-
opment efforts focused on distance-based classi�ers, which are more ef�cient to update and
better suited for dynamic, real-time environments.
The methods were trained on the training portion of the warm-up dataset and evaluated on
the remaining 20% of the warm-up data (see Section 4.1), which may result in over�tting and
overly optimistic performance estimates. Only the k-NN and Weighted k-NN methods were
further evaluated on a separate validation dataset (see Section 4.2) to assess their generaliza-
tion capabilities beyond the initial training conditions. Accordingly, Tables 4.3 and 4.4 include
two distinct accuracy columns: Test Accuracy, which re�ects performance on the warm-up
(20%) dataset, and Validation Accuracy, which represents performance on the unseen valida-
tion dataset(80%).

k Test Accuracy (%) Validation Accuracy (%)

1 92.06 98.17
2 93.65 98.17
3 90.48 98.17
4 92.06 58.72
5 92.06 58.72
10 88.89 32.11

Table 4.3:k-NN Accuracy of associations on Test and Validation Sets for different values of k

The optimal value of k for the nearest neighbor classi�ers was selected based on performance
results, as shown in Tables 4.3 and 4.4. For the k-NN classi�er, the best performance was
achieved with k = 2. Similarly, for the weighted k-NN classi�er, both k = 2 and k = 3 yielded
comparable results; therefore, k = 2 was chosen for consistency. The weights of the k-NN
classi�er varied depending on the value of k used in the nearest-neighbor classi�cation.

34



4.1. Association

k Test Accuracy (%) Validation Accuracy (%)

1 92.06 96.43
2 93.65 99.08
3 93.65 99.08
4 93.65 98.17
5 93.65 98.17
10 93.65 98.17

Table 4.4: Weighted k-NN Accuracy of associations on Test and Validation Sets for different
values of k

Table 4.5 presents the performance of individual methods on the testing portion of the warm-
up dataset (see Section 4.1). The highest accuracy was achieved by the 2-NN and weighted
2-NN classi�ers, both reaching 93.65%. The Random Forest model also performed well,
achieving an accuracy of 93.02%; however, this result may be attributed to over�tting on
the warm-up data. Additionally, Random Forest is computationally intensive, which may
limit its practical applicability.
The AdaBoost model performed the worst, achieving an accuracy of only 20.63% with 50
estimators (i.e., individual weak learners combined in the ensemble). Increasing or decreas-
ing the number of estimators led to even lower performance. Although the Decision Tree
model did not perform poorly, its accuracy was still inferior to that of 2-NN, while requiring
comparable or greater computational resources, making it a less favorable option overall.

Model Accuracy (%)
2-NN 93.65
AdaBoost 20.63
Nearest Centroid 85.71
Random Forest 93.02
Decision Tree 91.75
Weighted 2-NN 93.65

Table 4.5: Accuracy of associations for different models.

In Figure 4.4 the confusion matrices of each model are visualized.
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4.1. Association

(a) 2-NN (b) AdaBoost

(c) Nearest Centroid (d) Random Forest

(e) Decision Tree (f) Weighted 2-NN

Figure 4.4: Confusion matrices for various classi�ers.

Furthermore, Figure 4.5 presents the confusion matrix of the weighted 2-NN classi�er in the
validation dataset, re�ecting its selection as the model with the best performance.
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4.1. Association

Figure 4.5: Confusion matrix of weighted 2-NN on validation dataset.

The combined dataset, comprising both individually collected samples and recordings from
the isolated chamber, was utilized as the warm-up set for a Differential Evolution-based op-
timization procedure. This process aimed to determine the optimal feature weights for a 2-
Nearest Neighbor (2-NN) classi�er, enhancing its effectiveness in the device association task.
The resulting weighted 2-NN model achieved a accuracy of 98.17% in correctly identifying
device associations.

Feature Weight
Frame Length 8.6708
Signal Strength 9.7206
Advertisement interval 9.7314
Occurrences 2.8701
Company ID Match 8.5753

Table 4.6: Learned feature weights used

The early stage of the algorithm, as described earlier, is focused largely on mapping and asso-
ciation. A comprehensive view on the association process can be found in Section 3.2.4. Tar-
get tracking aims to ensure that each monitored entity, typically a device encompassing two
distinct targets, maintains continuous observation throughout its operational period. Fig-
ures 3.6 and 3.7 illustrate the one-to-n and n-to-n associations, respectively. In cases where
multiple candidate associations exist for newly observed measurements, the system utilizes
a global nearest-neighbor (GNN) approach. This method minimizes the total distance across
all potential pairings, thereby assigning each measurement to the most likely existing target.

distance = w J d (4.1)

where

w =

2

6
6
6
6
4

8.6708
9.7206
9.7314
2.8701
8.5753

3

7
7
7
7
5

, d =

2

6
6
6
6
4

Frame Length
Signal Strength

Advertisement interval
Occurrences
Company ID

3

7
7
7
7
5

The values used were obtained from Table 4.6, and the feature-based distance was computed
as shown in Equation 4.1.
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4.1. Association

Figure 4.6: Distances of all the associations in warm-up dataset

Figure 4.6 revealed empirical analysis of the warm-up dataset typical distance distributions
between targets, from which a threshold value was derived to mitigate misclassi�cation er-
rors.

Figure 4.7: Distances of only correct associations in warm-up dataset

The distances of correctly associated targets predominantly range between 0 and 0.6; how-
ever, infrequent anomalies resulted in larger deviations, with a maximum observed value of
1.9 illustrated in Figure 4.7. Consequently, the threshold was set to 2 to accommodate such
outliers and ensure robustness against rare but signi�cant variations. Devices of the same
model running identical software exhibited similar characteristics, resulting in a shorter dis-
tance, particularly between devices 2 and 4. To effectively differentiate between them, a lower
threshold was established. If a target temporarily disappears and subsequently reappears,
the system reassigns it to its previous Mac, while the incorrectly associated entity is treated
as a new target. Although this strategy does not involve recursively reevaluating all prior
associations using GNN from the point of misclassi�cations, it offers a computationally ef�-
cient solution. Importantly, since the primary objective is to maintain an accurate count and
position of all tracked targets, the simpli�cation does not compromise the overall integrity of
the tracking history.
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4.1. Association

Figure 4.8 shows the association process as it progresses over time. For this experiment,
segments of the data were intentionally omitted to replicate a situation where several devices
simultaneously alter their identi�ers. This arrangement requires the algorithm to address
multiple associations at once, speci�cally seven. Here, the algorithm successfully achieved a
100% success rate.
In contrast to the other evaluation methods illustrated in Figures 4.4, this approach employs
the full algorithmic pipeline. This includes the use of the global nearest neighbor method to
determine the closest match between a measurement and an existing target, as well as han-
dling hypotheses related to newly appearing targets. The label unknown1 represents noise,
which could pose a potential risk of incorrect association with a legitimate tracked target.

Figure 4.8: Time series of the test dataset

Figure 4.9 illustrates case of misclassi�cations. This error arises due to the presence of two
different MAC addresses originated from the same device during a speci�c time period.
Although each target device should be uniquely associated to a single MAC address, both
MACs appear in the dataset as referencing to the same target. As a result, when the MAC
address changes within the time window, the new MAC is excluded from the set of candidate
for the target, ultimately leading to a misclassi�cation.
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4.2. Localization

Figure 4.9: Time series of the test dataset with wrong association

Although this speci�c case did not occur in the current evaluation, the phenomenon was
observed, particularly when using two asynchronous sniffers. This setup introduces the pos-
sibility that a target may change its MAC address at a speci�c moment, while another sniffer
still captures packets associated with the previous MAC address. This discrepancy, observed
notably with the iPhone 11 and iPhone 14, led to instances of misclassi�cations in the data.
Although adjusting the time windows to shorter intervals may increase computational com-
plexity, it could resolve the problem. This scenario is unlikely to occur, yet it remains within
the realm of possibility.

4.2 Localization

The second component of the tracking system is related to the localization process. The ap-
proach utilized for target localization is described in detail in Section 3.3. Several localization
methods are introduced and evaluated, including Trilateration-Based Methods (Section 3.3.2),
Centroid-Based Methods (Section 3.3.2), Sequential Approaches (Section 3.3.2), and a method
utilizing four measurements (Section 3.3.2).
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4.2. Localization

Figure 4.10: Aggregated data over 5 seconds from Vaxholm © OpenStreetMap

Figure 4.10 illustrates the data points, which represent the BLE packets captured by the sniffer
mounted to a drone at speci�c time and GPS locations of those measurements. The data
is aggregated into 5-second time windows, following a similar approach to that used for
association, where a 60-second interval was applied. Features such as the RSSI are aggregated
using the median, while positional data is represented by the centroid of the measurements
within the window.

4.2.1 Datasets

The various localization methods are evaluated across the following datasets:

• Complete Vaxholm Dataset: The complete Vaxholm dataset includes data collected
across the entire area, with the reference device positioned centrally within the search
area. This dataset is illustrated in Figure 4.10.

• Left-Side Subset of the Vaxholm Dataset: To increase the dif�culty of the localization
task, the �rst scenario focuses on a subset of the Vaxholm dataset, corresponding to the
time interval between the 2645th and 3060th seconds. This interval captures the left part
of the area, as shown in Figure 4.11.
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4.2. Localization

Figure 4.11: Selected left-side segment of the Vaxholm dataset © OpenStreetMap

• Right-Side Subset of the Vaxholm Dataset: The second scenario targets the right seg-
ment of the dataset, covering the time interval between the 600th and 2300th seconds.
This selection is visualized in Figure 4.12.

Figure 4.12: Selected right-side segment of the Vaxholm dataset © OpenStreetMap

• Kolmården Dataset (Search Operation 3): This scenario involves data from the third
search operation in Kolmrden, where the same individual carried two devices. The
drone provides full coverage of the area, which is densely forested. The reference de-
vices were positioned near a rocky formation.
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4.2. Localization

• South Africa Dataset: This dataset includes two reference devices. The search began
approximately 600 meters from the reference location, with the search team moving
directly toward it.

• Strömsfors Dataset: This dataset consists of three separate search rounds. One mobile
phone was used as the reference device, accompanied by two additional Bluetooth tags.
In the �rst round, the search took place approximately 400 meters from the reference
point. In the second round, the search area included the Bluetooth tags but excluded
the phone; the nearest recorded measurement was about 50 meters from the reference.
In the third round, the drone �ew directly over the reference location. Although this
dataset does not offer meaningful insights for evaluating localization methods, it pro-
vides valuable lessons regarding the practical use of Bluetooth Low Energy for localiza-
tion. As such, the evaluation has been included in the appendix.

4.2.2 Evaluation Method

The evaluation is performed on data collected from the various datasets 4.2.1, which simu-
lates a search-and-rescue scenario involving a missing person. The ground truth data was
manually inserted into the database using a reference point corresponding to the actual posi-
tion of the missing individual.

• Localization Error: De�ned as the Euclidean distance between the estimated position
and the manually recorded ground truth position.

• Error Distribution: A visual inspection of how localization errors �uctuate over time,
as illustrated in the accompanying �gures.

A reference point was established within the database. The missing person was equipped
with a BLE receiver and recorded the GPS position. By �ltering out all MACs not in close
proximity to this receiver, the algorithm's position estimates were constrained to the reference
MAC. An example of determining target's MAC is shown in Table 6.1.

4.2.3 Evaluation on Vaxholm dataset

To comprehensively assess the performance of the different localization methods, the results
were analyzed using the CDF. This approach enables the evaluation of error distribution
across all estimations, providing insight into the relative accuracy of each method. Figure 4.13
presents the CDF based on all available data from Vaxholm. This �gure illustrates that the
best performance was achieved by the centroid of rolling trilateration with spatial separation,
whereas the poorest performance was observed in the trilateration methods using the three
and four highest RSSI measurements.
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Figure 4.13: CDF of localization error of all methods for Vaxholm's dataset

Figure 4.14 illustrates the temporal progression of localization accuracy for each proposed
method. By consolidating all individual plots into a single visualization, it provides a clearer
comparison and highlights which methods demonstrate superior performance over time.
This �gure highlights the differences between the two approaches, trilateration and CBL.
The CBL-based methods demonstrate smoother performance with lower variance, whereas
trilateration methods exhibit higher variability. Additionally, methods employing sequential
processing generally yield superior results.

Figure 4.14: Localization error over time of all methods for Vaxholm's dataset
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Evaluated Localization Methods Distance to Reference Point [m]

Trilateration-Based Methods
Trilateration of three highest RSSI measurements 55.5
Multilateration of four highest RSSI measurements 56.40

Centroid-Based Methods (CBL)
CBL of three highest RSSI measurements 25.06
CBL of four highest RSSI measurements 25.71

Sequential Approaches
Centroid of rolling trilateration 27.95
Centroid of rolling multilateration 23.27
Centroid of rolling trilateration with Spatial Separation 18.75
Centroid of rolling CBL 27.95
Centroid of rolling CBL with four measurements 22.12
Centroid of rolling CBL with Spatial Separation 23.87

Table 4.7: List of evaluated localization methods with average distance to reference point

Table 4.7 summarizes all the evaluated methods and reports the distance from their estimated
centroids to the reference point. Among all approaches, the centroid of rolling trilateration
with spatial separation achieved the best result in terms of proximity to the reference point.
However, as previously noted, despite its strong centroid accuracy, this method exhibits
higher variance in individual estimates compared to the CBL method, which demonstrated
better precision as indicated by a smaller CEP radius (see Figures 6.13 and 6.14). Additionally,
the reference point was positioned near the center of the search area, which may introduce
bias and potentially overstate the accuracy of methods with higher variance. To address this
limitation, future analyses will evaluate the methods under varying spatial con�gurations.

4.2.4 Case scenario

In the initial evaluation, the reference point was centrally located within the measurement
area. However, this con�guration may introduce bias, potentially leading to overly optimistic
assessments of the localization methods. To address this, additional use-case scenarios were
constructed in which the target was positioned near the boundaries of the measurement area,
on both extremes. This approach ensures a more comprehensive and realistic evaluation of
the methods' performance under varied spatial conditions.

Left Side of the Vaxholm's data

Localization error over time of Trilateration-Based Methods and CBL

Figure 4.15 presents the temporal localization performance of the Trilateration-Based meth-
ods and CBL in the selected scenario. In this case, multilateration demonstrates a brief period
of accurate estimation between the 5th and 10th seconds. This appears to be the result of
a fortunate con�guration, where the highest RSSI measurements align linearly, leading to a
random outcome regarding whether the estimate falls to the left or right of the actual position.
However, from the 15th second onward, the distance error increases signi�cantly—reaching
up to 125 meters as the estimate shifts to the opposite side. In contrast, CBL exhibits more
stable performance, with the error gradually decreasing from 80 meters to approximately 60
meters after the 15th second.
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Figure 4.15: Localization error over time of left side Vaxholm's dataset

Localization error over time of Sequential Approaches

Figure 4.16 illustrates the localization error over time for the Sequential Approaches. Among
these, trilateration with spatial separation signi�cantly outperforms all other methods. The
remaining approaches (except for the centroid of rolling multilateration) demonstrate perfor-
mance comparable to that of the CBL method using the three highest RSSI measurements.

Figure 4.16: Localization error over time of left side Vaxholm's dataset

Right Side of the data

Localization error over time of Trilateration-Based Methods and CBL

In this scenario, the Trilateration-Based Methods produce estimates on the incorrect side, as
visualized in Figure 4.17. In contrast, CBL once again demonstrates a more stable estimation
error throughout the evaluated period.
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Figure 4.17: Localization error over time of right side Vaxholm's dataset

Localization error over time of Sequential Approaches

The Sequential Approaches do not show substantial improvement over the CBL method us-
ing the three highest RSSI measurements. It is of particular interest that the centroid of rolling
trilateration with spatial separation, which had previously shown considerable effectiveness,
encounters dif�culties in this situation. However, the observed trend suggests a gradual im-
provement in accuracy over time.

Figure 4.18: Localization error over time of right side Vaxholm's dataset
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Summary performance on Vaxholm's dataset

Evaluated Localization Methods All [m] Left [m] Right [m]

Trilateration-Based Methods
Trilateration of three highest RSSI measurements 55.50 114.69 84.22
Multilateration of four highest RSSI measurements 56.40 114.70 84.01

Centroid-Based Methods (CBL)
CBL of three highest RSSI measurements 25.06 56.65 31.18
CBL of four highest RSSI measurements 25.71 56.65 31.18

Sequential Approaches
Centroid of rolling trilateration 27.95 68.20 33.82
Centroid of rolling multilateration 23.27 122.92 38.15
Centroid of rolling trilateration with Spatial Separation 18.75 29.44 60.14
Centroid of rolling CBL 27.95 73.42 33.31
Centroid of rolling CBL with four measurements 22.12 75.08 34.43
Centroid of rolling CBL with Spatial Separation 23.87 68.33 33.57

Table 4.8: List of evaluated localization methods with average distance to reference point
from all, left, and right dataset

The evaluation of localization methods on the Vaxholm dataset (Table 4.8) reveals several key
insights into the comparative performance of different approaches in the entire dataset and
its left and right subsets.
Across the entire dataset, the Centroid of Rolling Trilateration with Spatial Separation
achieves the best overall performance, with a distance error of 18.75 meters, clearly outper-
forming all other methods. This outcome suggests that integrating sequential processing with
spatial �ltering is highly effective when suf�cient temporal data is available. However, while
the centroid estimate is closer to the reference point, the individual estimates exhibit greater
variance, indicating a lower consistency. The next most accurate methods are the Centroid
of Rolling Multilateration (23.27 m) and the Centroid of Rolling CBL with Four Measure-
ments (22.12 m), both bene�ting from temporal aggregation of measurements. Notably, the
Centroid of Rolling CBL with Four Measurements, particularly when combined with Spa-
tial Separation, demonstrates higher consistency, as evidenced by a 40-meter radius Circular
Error Probable (CEP), suggesting a more reliable approach overall. Although Spatial Separa-
tion yields the lowest distance error, CBL methods exhibit superior performance in terms of
estimate stability.
For the left subset, the performance differs substantially. The Centroid of Rolling Trilateration
with Spatial Separation again performs best with a reduced error of 29.44 meters. However,
all Trilateration-Based and Multilateration-Based methods perform poorly here, with errors
exceeding 114 meters, suggesting that these approaches are particularly sensitive to measure-
ment geometry and signal distribution in this area.
In contrast, on the right subset, simpler methods such as CBL with Three Highest RSSI Mea-
surements (31.18 m) outperform several of the more complex approaches. Interestingly, the
Centroid of Rolling Trilateration with Spatial Separation exhibits a noticeable drop in perfor-
mance (60.14 m), indicating that while effective on the whole or left-side data, it may be less
reliable in certain spatial con�gurations.
Overall, Centroid-Based Sequential Approaches, consistently outperform basic trilateration
and multilateration methods. While CBL offers strong and stable results across all scenar-
ios, the best results is observed in Centroid of Rolling Trilateration with Spatial Separation,
particularly on the full and left-side datasets.
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Performance in Kolmården

Another dataset was collected in Kolmården, consisting of three search rounds simulating a
search and rescue operation. The �rst two rounds contained over 200,000 data points, which
posed a signi�cant computational challenge for the algorithm. Consequently, the third search
round was selected for analysis, as it featured fewer nearby devices and was more manage-
able in terms of data volume.
This analysis highlights the in�uence of terrain and drone operation on localization perfor-
mance. The missing person was located near a hill, where signal re�ections likely caused
signal ampli�cation in distant areas. Additionally, the drone's �ight path lacked suf�cient
spatial distribution; it remained stationary at one location for an extended period, allowing
prolonged signal capture. As a result, the strongest RSSI measurements were concentrated at
that single location, potentially skewing the localization estimates.
In this scenario, the missing person was carrying two devices, resulting in the tracking and
localization of two distinct targets, labeled A and B. The performance of the CBL method is
presented in Figure 6.17 in the Appendix. Target A was detected multiple times, particularly
when the drone was stationary, whereas Target B was captured in a different area. Interest-
ingly, the two targets were recorded on opposite sides of the search area, despite both devices
being held together by the missing person.
Figure 4.19 shows the localization error over time with respect to Target A. The corresponding
error relative to Target B is depicted in the Appendix.

Figure 4.19: Localization error over time with respect to reference target A in the Kolmården
dataset

Figure 4.19 illustrates that trilateration methods based on three and four measurements ex-
hibit a high variance in localization error, occasionally achieving errors below 20 meters,
which is likely attributable to chance rather than consistent accuracy. In contrast, the cen-
troid of rolling CBL and its variants, including those using four measurements and spatial
separation, demonstrate a steady and consistent reduction in localization error over time,
ultimately outperforming trilateration approaches.
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Figure 4.20: CDF of localization errors for all evaluated methods with respect to reference
target A in the Kolmården dataset

Figure 4.20 corroborates the �ndings discussed previously, con�rming that the centroid of
rolling CBL demonstrates the most accurate performance. Additional results presented in the
appendix show performance relative to target B, where the centroid of trilateration and cen-
troid of multilateration yield the lowest localization errors, approximately 80 meters, which
still re�ects suboptimal accuracy. The centroid of CBL and its variants perform even less fa-
vorably for target B, with localization errors that reach approximately 120 meters from the
actual position of the missing person.

4.2.5 Summary performance on Kolmården dataset

Evaluated Localization Methods A [m] B [m] Average [m]

Trilateration-Based Methods
Trilateration of three highest RSSI measurements 193.07 161.35 177
Multilateration of four highest RSSI measurements 199.04 178.14 189

Centroid-Based Methods (CBL)
CBL of three highest RSSI measurements 136.79 146.82 142
CBL of four highest RSSI measurements 136.79 146.82 142

Sequential Approaches
Centroid of rolling trilateration 63.01 92.19 78
Centroid of rolling multilateration 68.80 92.70 81
Centroid of rolling trilateration with Spatial Separation 61.01 131.08 96
Centroid of rolling CBL 37.21 118.87 78
Centroid of rolling CBL with four measurements 38.50 121.16 80
Centroid of rolling CBL with Spatial Separation 35.73 129.83 83

Table 4.9: Localization accuracy on the Kolmården dataset: distance to individual targets and
corresponding average.

An error distance was computed for two distinct targets (A and B), corresponding to the two
devices carried by the missing person. Table 4.9 presents the localization accuracy of vari-
ous methods applied to the Kolmården dataset, showing the distance to each target and the
resulting average error. Overall, the results underscore the advantage of sequential, rolling
approaches over conventional one-shot methods, particularly under realistic search and res-
cue conditions.
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Among the evaluated methods, the most accurate performance was observed with the Cen-
troid of Rolling CBL (37 m for target A, 119 m for target B), yielding an average error of 78
meters. This was closely followed by its four-measurement variant (39 m and 121 m; avg. 80
m) and the spatially separated version (36 m and 130 m; avg. 83 m).
Centroid of Rolling Multilateration (69 m and 93 m; avg. 81 m) and Centroid of Rolling
Trilateration (63 m and 92 m; avg. 78 m) also performed competitively.
In contrast, traditional static methods such as Trilateration (193 m and 161 m; avg. 177 m)
and CBL (137 m and 147 m; avg. 142 m) exhibited substantially higher localization errors.
These methods are more susceptible to inaccuracies arising from poor spatial diversity in
measurements, especially in scenarios where the drone hovers over limited areas without
covering a broad search space.
Interestingly, Multilateration showed a small performance gain over trilateration (199 m vs.
193 m for target A; 178 m vs. 161 m for target B), but both still fell short of the accuracy
achieved by rolling methods, with average errors nearing 189 meters.
In summary, the �ndings con�rm that sequential and rolling localization methods, partic-
ularly those based on CBL, provide more reliable and accurate results in practical search
operations.

Performance on data from South Africa

Another dataset was collected in South Africa, where the search team was actively moving to-
ward the target. While the localization results from this dataset may appear highly accurate,
they come with certain limitations. The underlying algorithm assumes a global coverage ap-
proach: First, it captures packets from across the area before estimating a target's location. In
a real-time search scenario, this assumption poses challenges: at the beginning of the search,
no location estimate can be produced due to the absence of captured packets from the target.

Figure 4.21: Localization error over time with respect to reference target A in South Africa

As shown in Figure 4.21, the best results are achieved by the CBL method using three and
four measurements. This outcome is not particularly surprising, as the scenario is not well-
suited for comprehensive localization approaches: the search team primarily approaches the
target directly rather than surveying the entire area.
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4.2.6 Summary performance on South Africa dataset

Evaluated Localization Methods A [m] B [m] Average [m]

Trilateration-Based Methods
Trilateration of three highest RSSI measurements 94.89 76.09 86
Multilateration of four highest RSSI measurements 93.64 78.75 86

Centroid-Based Methods (CBL)
CBL of three highest RSSI measurements 3.36 36.98 20
CBL of four highest RSSI measurements 3.36 36.98 20

Sequential Approaches
Centroid of rolling trilateration 105.98 94.58 100
Centroid of rolling multilateration 94.48 91.92 93
Centroid of rolling trilateration with Spatial Separation 106.36 109.50 108
Centroid of rolling CBL 10.23 97.86 54
Centroid of rolling CBL with four measurements 13.48 105.59 60
Centroid of rolling CBL with Spatial Separation 25.19 137.69 82

Table 4.10: Localization accuracy on the South Africa dataset: distances to individual targets
and corresponding averages.

Table 4.10 presents the localization performance of each evaluated method, showing the es-
timated distances to targets A and B, which correspond to the two devices carried by the
missing person, as well as the average of these two estimates. Given that the search strategy
in this case was not properly implemented, a detailed analysis of the results is not considered
meaningful.
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5 Discussion

The discussion presented in this chapter highlights and critically evaluates several limitations
and potential improvements of the proposed method. Although the approach has demon-
strated promising results under certain conditions, it exhibits drawbacks and constraints that
must be addressed to enhance its reliability, accuracy, and real-time applicability.

5.1 Results

5.1.1 Association Challenges

The association component of the algorithm aims to associate measurements of the same
target despite changing MACs. This task becomes feasible when the target remains within
the detection range long enough for multiple packets to be captured. However, a critical
assumption—that once an identi�er is changed it cannot be retroactively associated—limits
its robustness.
Two evaluation strategies were employed in this study. The �rst approach assessed the accu-
racy based solely on the association process, where measurements were associated to targets
using observed features. The second approach extended this by incorporating a Global Near-
est Neighbor (GNN) method to determine whether a detected target was previously known
or newly observed. In this context, a single measurement was introduced as potential envi-
ronmental noise; however, its impact was not analyzed, and the in�uence of random noise
remains an open question.
Additionally, the second approach involved partial data removal to simulate realistic asso-
ciation challenges. This introduced constraints that are not present in the �rst method. In
the �rst case, the evaluation merely required knowledge of the number of targets and their
associated features. In contrast, the second scenario required the association process to infer
the correct mapping of measurements to targets after the device MACs were intentionally
masked. This required waiting for events such as MAC address changes to evaluate the
model's ability to correctly associate measurements over time. When multiple devices were
involved, the required data erasure window became wider, increasing the dif�culty and com-
plexity of evaluation. In the �rst approach, this was avoided by simply removing the MAC
address, thus eliminating the need for temporal mapping during evaluation.
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Asynchronous sniffers, where capture timestamps are not precisely aligned, exacerbate this
issue. For example, one sniffer may detect the new identi�er slightly before another sniffer
�nishes capturing the old one, leading to a missed association. These edge cases, particularly
at time window boundaries (e.g., between second 59 and 60), signi�cantly affect association
performance. This scenario is simulated in Figure 4.9.
In scenarios where a signi�cant number of packets are lost, the tracked target may be incor-
rectly associated with another measurement due to insuf�cient continuity in observations. To
address this, the algorithm incorporates a recovery mechanism: if a measurement reappears
with the original MAC address of the previously tracked target, the algorithm reassigns the
original track to this newly observed measurement. Simultaneously, the measurement that
was mistakenly associated is reassigned as a new, distinct target. This backtracking mecha-
nism helps correct erroneous associations resulting from temporary data loss.
A suggested improvement involves implementing a �oating or overlapping time window
that introduces temporal tolerance. This mechanism would allow MACs detected near time
window borders to be evaluated for potential matches across adjacent intervals, improving
association continuity.

5.1.2 Localization Evaluation

Several localization methods were proposed and implemented, as summarized in Table 3.1.
The system was initially designed around the Centroid-Based Localization (CBL) approach
using the three strongest RSSI measurements. Although this method provided a reasonable
baseline, it did not yield the most accurate results. Its effectiveness is highly dependent on
spatial distribution of the measurements. In many practical scenarios, the strongest signals
are received from sniffers arranged in a linear con�guration, which leads to poor localization
performance when the target lies off this axis.
In contrast, Sequential Approaches consistently outperformed methods relying solely on
highest RSSI values. Among these, the Rolling CBL and its variants, with spatial separa-
tion and using four measurements, produced more stable and reliable estimates. The Cen-
troid of Rolling Trilateration with Spatial Separation achieved particularly low average error
distances; however, it also exhibited a high variance in its estimates, indicating a lack of con-
sistency over time.
Spatial diversi�cation of sniffers, prioritizing geometric distribution over signal strength, was
shown to enhance localization accuracy, even when incorporating weaker RSSI values. In
particular, the rolling centroid approach showed strong potential, demonstrating robust per-
formance even when applied to un�ltered raw data.
Scenarios in which the search team actively moves toward the estimated position were found
to be incompatible with the current localization model.
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5.2. Limitations

Localization Method Average Distance to References [m]

Trilateration-Based Methods
Trilateration (3 highest RSSI) 116 (124)
Multilateration (4 highest RSSI) 117 (136)

Centroid-Based Methods (CBL)
CBL (3 highest RSSI) 68 (86)
CBL (4 highest RSSI) 68 (86)

Sequential Approaches
Rolling Trilateration 69 (56)
Rolling Multilateration 66 (56)
Rolling Trilateration + Spatial Separation 78 (74)
Rolling CBL 65 (64)
Rolling CBL (4 measurements) 67 (65)
Rolling CBL + Spatial Separation 74 (54)

Table 5.1: Generalized performance of localization methods: average distance to reference
points across Vaxholm, Kolmården, and South Africa datasets. Values in parentheses show
the average excluding the South Africa dataset.

Table 5.1 presents the performance of various localization methods evaluated across all
datasets (Vaxholm, Kolmården, and South Africa). When including the South Africa dataset,
the Centroid-Based Localization method using the three highest RSSI measurements yields
the lowest average error. However, this result may be misleading due to the suboptimal
search strategy employed in the South Africa scenario, which favored simpler methods. To
account for this, the table also includes, in parentheses, the average errors calculated without
the South Africa dataset, where the search strategy was more aligned with the algorithmic
assumptions. In this context, the CBL method with spatial separation demonstrates the best
performance, showing higher accuracy and lower variance compared to the rolling trilatera-
tion centroid method across the evaluated datasets (see Figures 6.13 and 6.14).

5.2 Limitations

The work is subject to the following limitations:

• Accuracy of association: As the number of devices increases, obtaining ground truth
becomes nearly impossible [7]. Therefore, accuracy is evaluated in a simulated environ-
ment, where devices are recorded individually and put into the dataset. If multiple de-
vices were captured simultaneously, potential interference or communication between
them could occur, an aspect that was not taken into account in this analysis.

• Simpli�cation of the data collection: he algorithm processes only speci�c types of mes-
sages from BLE advertisement channels 37, 38, and 39 to reduce noise. While this sim-
pli�cation enhances ef�ciency, it may introduce limitations in scenarios where the data
�ow is limited.

• Real-time limitations: The system currently performs tracking based on discrete time
windows, which prevents true real-time performance. Implementing live tracking
would require the retention of metadata and dynamic reassignment of identities, which
is not yet realized.

• Sniffer synchronization: Association accuracy may be compromised due to time
desynchronization among multiple sniffers. When device change MAC and are de-
tected by different sniffers at different times, the association algorithm may fail to cor-
rectly associate old and new MAC. This case was illustrated in Figure 4.9.
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5.3. Method

• Search strategy dependency: The method is designed with the assumption of a com-
plete scan of the target area. Alternative search approaches, such as following estimated
positions dynamically, have not been adequately supported or evaluated in this frame-
work. This drawback is illustrated on dataset from South Africa 6.20.

• Lack of Data: In the Strömsfors dataset (Figure 6.22), it was observed that data collec-
tion is not straightforward. When data is missing, it becomes impossible to estimate the
target's location, especially if the target is not detected at all. The tracking algorithm re-
quires detections in at least three distinct time windows to register a device as a target.
Consequently, if the target is observed only toward the end of the search, its location
will be estimated with a delay corresponding to three time windows.

5.2.1 Real-Time Processing Constraints

The current implementation operates on post-processed data using discrete time windows.
This structure limits its applicability in real-time scenarios. To improve ef�ciency, a rolling
update mechanism could be introduced. This would involve storing metadata—such as the
most recent tracked targets and their associated measurements—and updating only the in-
coming data in each new time window.
Although such functionality is not currently implemented, it is conceptually straightforward
and could be integrated in future versions. Due to the system's current reliance on historical
data, real-time testing and validation remain future work.

5.3 Method

• Replicability: The methodology is described in suf�cient detail to allow replication
under similar conditions. However, variations in hardware, BLE version updates, envi-
ronmental interference, or sniffer placement could affect reproducibility.

• Reliability: The method has demonstrated reliable results under full-area scan condi-
tions. However, it performs less reliably when alternative search strategies—such as
following estimated target locations—are employed 6.20. This suggests that the algo-
rithm is highly dependent on the chosen search pattern and may not generalize well
across all use cases.

• Validity: The method appears to validly assess BLE-based tracking and localization
under the given assumptions. Nonetheless, errors in association and suboptimal CBL
can propagate, reducing the overall validity of the �nal estimated positions.

The algorithm's accuracy is in�uenced by the choice of time windows, spatial �ltering, and
the handling of RSSI signal �uctuations. While these assumptions simplify the system design,
they may not hold in complex real-world environments. Further research and testing under
different �eld conditions are necessary to fully validate the method's general applicability.

5.4 The Work in a Wider Context

This research has broader societal implications, particularly in the �eld of emergency re-
sponse. The method was developed with the goal of supporting search and rescue teams
in locating missing persons in large, unstructured environments such as forests.

• Ethical considerations: The use of BLE tracking raises privacy and surveillance con-
cerns. It is important that any deployment of such systems ensures user consent, secure
data handling, and strict limitations on data retention.
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5.4. The Work in a Wider Context

• Societal applications: Potential applications include search and rescue operations, as-
set tracking, and navigation support in smart environments.

• Impact on emergency services: This system could improve the ef�ciency of rescue mis-
sions by reducing search times and improve survival outcomes in time-sensitive cases.

In summary, while the system requires further development for full operational readiness,
its potential to support critical real-world missions, such as locating missing individuals,
represents a meaningful societal bene�t.
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6 Conclusion

This chapter concludes the thesis by summarizing its main contributions and explicitly ad-
dressing the central research questions. The work focused on the design and evaluation of
a Bluetooth Low Energy (BLE)-based system for device association and localization, partic-
ularly in the context of search and rescue operations. The �ndings provide insights for both
researchers and practitioners and offer several directions for future development.
The overarching goal was to determine how BLE signals can be utilized to support reliable
tracking and localization of devices, even in the presence of MAC address randomization.
The proposed system is composed of two principal components: (1) a device association
module that groups observations from the same physical source, and (2) a localization mod-
ule that estimates the device's position using RSSI data.

Research Question 1

How can a Bluetooth-based tracking system be effectively designed and implemented?
What are its potential applications, and what limitations must be considered in practical
deployment?
The system was designed based on simpli�ed principles from Multi-Target Tracking (MTT),
omitting probabilistic modeling of misclassi�cations to maintain computational ef�ciency.
Once a target is successfully associated, it is excluded from further association steps, which
helps reduce computational overhead and minimizes redundant processing. This stream-
lined design facilitates scalable operation, particularly under asynchronous measurement
conditions commonly encountered in distributed BLE sniffers in real-world environments,
such as dense forests, amusement parks, or urban disaster zones.
The system demonstrates strong potential for practical applications in time-critical scenarios,
particularly in search and rescue operations, where reliable localization of missing individ-
uals is essential. The ability to track BLE devices despite MAC address randomization is
particularly valuable in modern operating systems, where privacy-preserving mechanisms
can otherwise hinder continuous tracking.
However, while the architecture addresses several practical concerns, its real-world deploy-
ment is conditioned by a number of operational and methodological limitations. These in-
clude the sensitivity of the accuracy of the association to packet loss, the assumption of de-
vice isolation during data collection, and the reliance on consistent BLE message formats.
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Additionally, the system is not yet optimized for live, real-time tracking; rather, it functions
through batch processing over time windows, limiting its responsiveness in dynamic �eld
conditions.
Another challenge lies in synchronizing capture times between multiple sniffers. When snif-
fers operate out of sync, association algorithms may misinterpret MAC changes as entirely
new devices, particularly in scenarios where targets are detected intermittently across the
network. In addition, the effectiveness of the localization component is tied to the complete-
ness and spatial diversity of the data. In cases where signal coverage is poor or the search
strategy results in partial coverage (as was observed in the South Africa dataset), localization
accuracy deteriorates signi�cantly.
Lastly, the system currently assumes a comprehensive analysis of the area of interest. Al-
though this assumption is feasible in structured environments, it may not hold in real-world
rescue missions where resources and mobility are limited. Supporting dynamic search strate-
gies, such as reactive routing based on preliminary estimates, remains a critical avenue for
future work.
In summary, the proposed Bluetooth-based tracking system offers a promising approach to
device localization and association, grounded in practical design choices aimed at balancing
accuracy, scalability, and simplicity. However, its effectiveness in uncontrolled or data-sparse
environments is inherently limited by current assumptions about synchronization, coverage,
and signal reliability. Addressing these limitations will be essential for translating the system
from a proof-of-concept to a deployable �eld solution.

Research Question 2

How can a BLE device be tracked over time? What level of accuracy can be achieved in
temporal tracking under varying conditions?
The tracking of BLE devices over time in this system is achieved through two main mecha-
nisms: mapping and association. When devices transmit using persistent MAC addresses,
the mapping process is employed, which assigns incoming messages to targets based solely
on their MAC identi�ers. However, due to the randomization of MAC addresses in mod-
ern BLE devices, a more advanced approach becomes necessary. This challenge is managed
through an association algorithm, which links newly observed measurements to previously
identi�ed targets based on feature similarity.
To solve the association task, the system utilizes a weighted k Nearest Neighbors (k NN)
classi�er. In this model, the importance of each input feature is optimized using Differential
Evolution. The main features used in the classi�cation process include RSSI (signal strength),
advertisement interval, number of occurrences, frame length, and a �ngerprinting metric de-
rived from communication patterns. All features are normalized, and the weighted distances
are computed, as illustrated in Equation 4.1, to assess the similarity between new and existing
observations.
The system functions in two stages:

• Training stage: Differential Evolution is applied to optimize the feature weights by max-
imizing classi�cation accuracy on a labeled dataset. This process yields a weight vector
that captures the signi�cance of each feature.

• Online association stage: Each new data instance is normalized and evaluated using the
trained weights. The distances to existing targets are calculated and placed into a global
distance matrix. The Global Nearest Neighbor algorithm is then used to determine the
best possible associations between observations and known targets.

This design enables the system to perform both one to one and many to one associations, as
illustrated in Figures 3.6 and 3.7. When multiple candidate measurements are observed for a
single target, the Global Nearest Neighbor approach minimizes the overall cost, which is the
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sum of all weighted distances. This strategy helps to prevent locally optimal matches that
could lead to incorrect associations.
Experimental results demonstrated that the Weighted 2 NN model achieved 93.65 percent ac-
curacy on the training data and 99.08 percent accuracy on the validation set. These �ndings
con�rm strong generalization performance, even in the presence of MAC address random-
ization and diverse device behavior. This suggests that simple, nonparametric models, when
enhanced through global optimization, can effectively address BLE tracking in realistic con-
ditions.
Nonetheless, system accuracy can be affected by environmental in�uences such as message
loss, lack of time synchronization between sniffers, and incomplete detection. Although the
feature-based method adds resilience, it could still bene�t from the inclusion of spatial infor-
mation or time-based models to better handle ambiguous scenarios, especially in crowded
areas or environments with weak signal reception.
To conclude, BLE devices can be reliably tracked over time using a two-part strategy that
combines feature-driven association with optimized classi�cation. The system's capacity to
generalize across various device types and to operate within asynchronous, distributed sen-
sor networks supports its potential use in real-world situations, including complex scenarios
like search and rescue missions.

Research Question 3

What localization methods can be employed using RSSI (Received Signal Strength Indi-
cator) measurements? How accurate are these methods in estimating the position of BLE
devices and how do they compare in different scenarios?
The methods evaluated included trilateration, multilateration, and centroid-based localiza-
tion (CBL), each tested with sequential processing strategies.
Trilateration and multilateration techniques estimate a target's position by geometrically
solving for the intersection of distances derived from the received signal strength at known
locations. These methods rely on selecting the measurements with the highest RSSI values
under the assumption that stronger signals correspond to proximity. Similarly, CBL methods
methods estimate the target's position by calculating the centroid of the overlapping region
derived from distance estimates based on the signal strength of the measurements.
Sequential methods aggregate measurements, typically three or four consecutive measure-
ments, to compute location estimates. To further enhance performance, certain variants in-
corporate spatial separation during measurement selection. This approach ensures that the
chosen measurement locations are geographically dispersed, thereby increasing geometric
diversity and reducing localization bias.
Table 3.1 summarizes all localization methods that were tested. The best results were
achieved by sequential centroid-based localization methods, particularly rolling CBL ap-
proaches. In particular, the version using spatial separation achieved the most consistent
accuracy, as shown in Table 5.1. Across all datasets, the average error for the rolling CBL
with spatial separation was 74 meters, and it improved to 54 meters when the South African
dataset was excluded.
Trilateration and multilateration methods exhibited larger errors, averaging over 110 me-
ters across the datasets. Selecting only the measurements with the highest signal strengths
does not necessarily correspond to selecting those closest to the reference points. This limi-
tation arises because these top measurements may lack adequate spatial distribution, which
is critical for accurate localization. In trilateration or multilateration methods, the estimation
process focuses on intersections near the edges of distance circles, which can be sensitive to
spatial arrangement. In contrast, CBL methods that rely on the overlap of areas derived from
the top three RSSI measurements estimate the position of the device near the measurement
with the strongest signal. However, this approach also presents challenges. For example,
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when a drone remains stationary or when signal re�ections and interference occur due to
environmental surfaces, the reliability of the position estimate can be compromised. CBL
methods signi�cantly reduced this variance, with errors as low as 65 meters using rolling
CBL without spatial �ltering.
During the evaluation, a key trade-off emerged. Although selecting spatially separated mea-
surements improved geometric precision, it often included sniffers with weaker RSSI signals,
which can be unreliable. Conversely, focusing on only the strongest signals improved indi-
vidual measurement reliability but led to poorer geometric diversity, potentially increasing
localization error. Therefore, balancing signal strength and spatial distribution is the key for
optimal performance.
In addition, performance in all scenarios varied. In the South Africa dataset, the search strat-
egy led to path overlaps and limited spatial diversity, which favored simpler methods like
CBL with three highest RSSI measurements. However, when such bias was removed by ex-
cluding that dataset, the sequential methods consistently outperformed the others.

Future work

This thesis highlights several limitations that provide clear directions for future research. En-
hancing association accuracy in multi-device scenarios requires real-world validation and
methods to handle simultaneous transmissions and interference. Expanding the algorithm to
process a broader range of BLE message types could improve robustness, especially in low-
data or noisy environments. The weight assigned to the RSSI feature should be reconsidered
because its current high value may cause problems when the drone performs multiple search
rounds. It would be better to link the RSSI measurements to the drone's position, which could
help improve accuracy by taking into account where the drone is during the search.
Achieving true real-time tracking will involve developing dynamic metadata management
and incremental association techniques, moving beyond the current �xed time-window ap-
proach. Addressing sniffer synchronization issues through improved timing alignment or
temporal-tolerant association algorithms is crucial for maintaining identity continuity when
MAC addresses change asynchronously.
The current search strategy assumes full area coverage; integrating adaptive, position-guided
scanning could optimize data acquisition and improve localization ef�ciency in complex en-
vironments. Lastly, mitigating the impact of missing or sparse data by incorporating predic-
tive models or sensor fusion would reduce localization delays and enhance target persistence.

Summary

In summary, the proposed BLE-based tracking and localization system demonstrates strong
potential for real-world deployment in time-sensitive and complex environments. In con-
clusion, RSSI-based localization can yield reasonable position estimates using lightweight
algorithms, particularly when rolling strategies and spatial �ltering are applied. While not
suitable for high-precision tracking on their own, these methods offer a scalable and ef�cient
approach for large-scale or emergency deployments where infrastructure or computation is
limited. With further enhancements, particularly in integrating spatial data during associa-
tion and improving noise tolerance, the system could serve as a valuable tool in life-critical
applications such as search and rescue.

61



Bibliography

[1] S. Akiyama, R. Morimoto, and Y. Taniguchi. “A study on device identi�cation from BLE
advertising packets with randomized MAC addresses”. In: 2021 IEEE International Con-
ference on Consumer Electronics-Asia (ICCE-Asia). 2021, pp. 1–4.DOI : 10.1109/ICCE-
Asia53811.2021.9641870 .

[2] Y. Bar-Shalom, F. Daum, and J. Huang. “The probabilistic data association �lter”. In:
IEEE Control Systems Magazine29.6 (2009), pp. 82–100.DOI : 10 .1109/MCS.2009.
934469 .

[3] Y. Bar-Shalom, X.-R. Li, and T. Kirubarajan. Estimation with Applications to Tracking
and Navigation: Theory, Algorithms and Software. John Wiley & Sons, Inc., 2002.ISBN:
9780471416555.DOI : 10 . 1002 / 0471221279 . URL: https : / / onlinelibrary .
wiley.com/book/10.1002/0471221279 .

[4] Bluetooth SIG. 2024 market update. Accessed: Feb. 21, 2025. Sept. 2024.URL: https :
//www.bluetooth.com/2024-market-update/ .

[5] Bluetooth SIG. Bluetooth range estimations white paper. https : / /www.bluetooth .
com/wp- content /uploads/Files /Marketing/ range- assumptions.pdf .
Accessed: May 9, 2025. 2020.

[6] Bluetooth SIG. Bluetooth technology overview. Accessed: May 1, 2025. 2025.URL: https:
//www.bluetooth.com/learn-about-bluetooth/tech-overview/ .

[7] Y. Boussad, Y. Yang, A. Tomlinson, and S. Grant-Muller. “McMatcher: A symbolic repre-
sentation for matching random BLE MAC addresses”. In: 2024 IEEE International Con-
ference on Consumer Electronics (ICCE). 2024, pp. 1–6.DOI : 10 . 1109 / ICCE59016 .
2024.10444395 .

[8] Y.-S. Chen, S.-H. Chang, and C.-C. Teng. “Location estimation based on convex overlap-
ping communication regions in wireless ad hoc sensor networks”. In: 2014 4th Interna-
tional Conference on Wireless Communications, Vehicular Technology, Information Theory and
Aerospace & Electronic Systems (VITAE). 2014, pp. 1–5.DOI : 10.1109/VITAE.2014.
6934471 .

[9] T. Chengsheng, L. Huacheng, and X. Bing. “AdaBoost typical algorithm and its appli-
cation research”. In: MATEC Web of Conferences139 (2017), p. 00222.DOI : 10.1051/
matecconf/201713900222 .

62



Bibliography

[10] T. Cover and P. Hart. “Nearest neighbor pattern classi�cation”. In: IEEE Transactions on
Information Theory13.1 (1967), pp. 21–27.DOI : 10.1109/TIT.1967.1053964 .

[11] DevAcademy. Bluetooth Low Energy Fundamentals. https://academy.nordicsemi.
com / courses / bluetooth - low - energy - fundamentals/ . Accessed: Feb. 14,
2025. 2023.

[12] scikit-learn developers. NearestCentroid — scikit-learn 1.7.0 documentation. Accessed:
Jun. 20, 2025. 2024.URL: https : / / scikit - learn . org / stable / modules /
generated/sklearn.neighbors.NearestCentroid.html .

[13] S. Du and Q. Deng. “Unscented particle �lter algorithm based on divide-and-conquer
sampling for target tracking”. In: Sensors21.6 (2021), p. 2236.DOI : 10 . 3390 /
s21062236 . URL: https://www.mdpi.com/1424-8220/21/6/2236 .

[14] M. Georgioudakis and V. Plevris. “A comparative study of differential evolution vari-
ants in constrained structural optimization”. In: Frontiers in Built Environment6 (2020).
ISSN: 2297-3362.DOI : 10 . 3389 / fbuil . 2020 . 00102 . URL: https : / / www .
frontiersin . org / journals / built - environment / articles /10 .3389 /
fbuil.2020.00102 .

[15] Core Speci�cation Working Group. Bluetooth Core Speci�cation, Version: v6.0. https :
//www.bluetooth.com/specifications/specs/core-specification-6-
0/ . Version Date: Aug. 27, 2024. Aug. 2024.

[16] D. Gundlegård. Radio Surveillance for Search of Missing Persons - RASP. https://liu.
se/en/research/rasp . Accessed: Feb. 14, 2025.

[17] G. Hendeby and R. Karlsson. Target Tracking Le 5: Multi-Target Tracking: Multi-Hypothesis
Tracking. Lecture slides. Linköping University, Apr. 2019. URL: https : / / www .
control.isy.liu.se/en/student/graduate/TargetTracking/ .

[18] Gareth James, Trevor Hastie, Daniela Witten, and Robert Tibshirani. An Introduction to
Statistical Learning: with Applications in R. Springer Texts in Statistics. Accessed: 2025-
05-25. Springer, 2013.DOI : 10.1007/978-1-4614-7138-7 .

[19] K. E. Jeon, J. She, P. Soonsawad, and P. C. Ng. “BLE beacons for Internet of Things
applications: Survey, challenges, and opportunities”. In: IEEE Internet of Things Journal
5.2 (2018), pp. 811–828.DOI : 10.1109/JIOT.2017.2788449 .

[20] L. Jouans, A. C. Viana, N. Achir, and A. Fladenmuller. “Associating the randomized
Bluetooth MAC addresses of a device”. In: 2021 IEEE 18th Annual Consumer Communi-
cations & Networking Conference (CCNC). 2021, pp. 1–6.DOI : 10.1109/CCNC49032.
2021.9369628 .

[21] G. Koulouras, S. Katsoulis, and F. Zantalis. “Evolution of Bluetooth technology: BLE in
the IoT ecosystem”. In: Sensors25.4 (2025), p. 996.DOI : 10.3390/s25040996 . URL:
https://www.mdpi.com/1424-8220/25/4/996 .

[22] X. J. Li. “An analytical method for centroid computing and its application in wireless lo-
calization”. In: 2013 19th IEEE International Conference on Networks (ICON). 2013, pp. 1–
5. DOI : 10.1109/ICON.2013.6781948 .

[23] MathWorks. Bluetooth packet structure. Bluetooth Toolbox Documentation, accessed:
May 24, 2025. 2025.URL: https : / / www . mathworks . com / help / bluetooth /
ug/bluetooth-packet-structure.html .

[24] Polismyndigheten. Handbok för efterforskning av försvunna personer. https : / / www .
polisen.se . PM 2016:12, Saknr 236, publicerad 2016-03-16. 2016.

[25] ProtonVPN. What is a MAC address, and what can it reveal about you?Accessed: May 15,
2025. 2023.URL: https://protonvpn.com/blog/what-is-mac-address .

63



Bibliography

[26] B.-N. Vo, M. Mallick, Y. Bar-Shalom, S. Coraluppi, R. Mahler, and B.-T. Vo. “Multitarget
tracking”. In: Wiley Encyclopedia(Sept. 2015), pp. 1–25.DOI : 10.1002/047134608X.
W8275.

[27] Y. Wang, Y. Xu, Y. Zhao, Y. Liu, and L. Cuthbert. “Bluetooth positioning using RSSI and
triangulation methods”. In: 2013 IEEE 10th Consumer Communications and Networking
Conference (CCNC). 2013, pp. 837–842.DOI : 10.1109/CCNC.2013.6488558 .

[28] G. Welch and G. Bishop.An introduction to the Kalman �lter. Technical Report. University
of North Carolina at Chapel Hill, Department of Computer Science, 1995. URL: https:
//www.cs.unc.edu/~welch/media/pdf/kalman_intro.pdf .

64



Appendix

The source code developed and used for this thesis is available at the following GitLab repos-
itory:
https://gitlab.liu.se/simje951/diplom.git

6.1 Evaluation of different localization methods

Trilateration-Based Methods

The trilateration-based method is described in detail in Section 3.3.2, with related work dis-
cussed in Section 2.5. Two variations of the method are employed, utilizing either three or
four measurements.

Trilateration of three highest RSSI measurements

Trilateration is a widely recognized localization technique that estimates position by minimiz-
ing the least squares error, often placing the result along the periphery of intersecting circles.
When using three highest measurements that align nearly linearly, the resulting circles may
intersect at two points, leading to ambiguity. In such cases, the selected intersection may lie
on the opposite side from the actual target. As depicted in Figure 6.1, the estimated position
in this instance is located opposite the ground truth, resulting in an error of 55.5 meters.
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6.1. Evaluation of different localization methods

Figure 6.1: Trilateration method using highest RSSI measurements.

Multilateration of four highest RSSI measurements

The same localization technique as depicted in Figure 6.1 is applied, but using four measure-
ments. This approach results in an average error of 56.4 meters from the reference point,
which is 0.9 meters greater than the error obtained with trilateration using three highest RSSI
measurements.

Figure 6.2: Multilateration of four highest RSSI measurements.

CDF of Trilateration-Based Methods

The cumulative distribution function (CDF) of the trilateration-based methods is illustrated
in Figure 6.3, demonstrating slightly improved performance for multilateration despite the
�nal estimate being slightly further from the reference point.
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6.1. Evaluation of different localization methods

Figure 6.3: CDF of localization error for Trilateration-Based Methods

To further evaluate the temporal behavior of the algorithms, an additional analysis was con-
ducted by incrementally introducing data points over time. This simulates real-time per-
formance, allowing observation of how the localization error evolves as more information
becomes available. Figure 6.4 provides a temporal analysis, illustrating that both methods
exhibit similar performance up to the 10th second. Beyond this point, multilateration out-
performs trilateration, maintaining an error of approximately 30 meters until the 40th sec-
ond. After the 40th second, the performance of both methods converges and becomes nearly
equivalent.

Figure 6.4: Localization error over time of Trilateration-Based Methods

Centroid-Based Methods (CBL)

The centroid-based method is described in detail in Section 3.3.2, and related work is dis-
cussed in Section 2.5. Two variations of the method are used, using three or four measure-
ments.

CBL of three highest RSSI measurements

A detailed explanation of this method is provided in Section 3.3.2. Figure 6.5 illustrates the
estimated position in comparison to the reference point. In this example, the Euclidean dis-
tance between the estimated and actual positions is 25.06 meters.
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6.1. Evaluation of different localization methods

Figure 6.5: Centroid-based method using three reference points.

CBL of four highest RSSI measurements

The same localization technique as depicted in Figure 6.5 is applied, but using four measure-
ments. This approach results in an average error of 25.71 meters from the reference point,
which is 65 centimeters greater than the error obtained with CBL using three highest RSSI
measurements.

Figure 6.6: CBL of 4 best points

CDF of CBL methods

Figure 6.7 illustrates the CDFs for the CBL methods, showing nearly identical performance.
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6.1. Evaluation of different localization methods

Figure 6.7: CDF of localization error for CBL Methods

Figure 6.8 reveals a consistent trend across the variations of the CBL method. This similarity
arises because the selected measurements overlap signi�cantly, leading to nearly identical
position estimates.

Figure 6.8: Localization error over time of CBL Methods

Sequential Approaches

Centroid of rolling trilateration

This method follows the same rolling logic as the rolling CBL, but employs the trilateration
algorithm for each triplet of measurements. The �nal estimated position is determined as
the centroid of all computed trilateration estimates. As depicted in Figure 6.9, the resulting
distance from the estimated centroid to the reference point is 27.95 meters. The circular error
probable (CEP) represents the green area encompassing 50% of all estimates, with a radius of
92 meters.
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6.1. Evaluation of different localization methods

Figure 6.9: Centroid of the trilateration method with 92m CEP from 50% of the measurements

Centroid of rolling multilateration

The rolling multilateration method may yield slightly improved results, with its centroid
located 23.27 meters from the reference point. However, the CEP radius of 96 meters indicates
greater uncertainty in the estimates. Rolling multilateration is visualized in Figure 6.10.

Figure 6.10: Centroid of the multilateration method with 96 m CEP from 50% of the measure-
ments

Centroid of rolling trilateration with Spatial Separation

The approach utilizing spatial separation is illustrated in Figure 6.11. This method yields a
promising result, achieving a distance of 18.75 meters from the reference point—representing
the most accurate performance among all proposed methods when evaluated on the entire
dataset over the full time span. However, the high variance of the estimates results in a CEP
of 96 meters, indicating substantial uncertainty.
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6.1. Evaluation of different localization methods

Figure 6.11: Centroid of the trilateration method with Spatial Separation.

Centroid of rolling CBL

The rolling CBL method simulates a real-time scenario in which the estimated position is
computed based on every consecutive triplet of measurements. Using the approach described
in Section 3.3.2, a set of estimated positions is produced, and the �nal reported position is
calculated as the centroid of these estimates. As shown in Figure 6.12, the resulting distance
from the centroid to the reference point is 27.95 meters.

Figure 6.12: Centroid of the CBL method with 43 m CEP from 50% of the measurements

Centroid of rolling CBL with four measurements

Slightly better performance is achieved using four measurements instead of three in the
rolling CBL approach, resulting in a centroid located 22.12 meters from the reference point.
Figure 6.13 also illustrates a CEP of 40 meters, which is lower than the other methods. This
indicates that the estimates are more concentrated and closer to the reference point, re�ecting
improved localization precision.
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6.1. Evaluation of different localization methods

Figure 6.13: Centroid of rolling CBL with four measurements method with 40 m CEP from
50% of the measurements

Centroid of rolling CBL with Spatial Separation

The spatial separation approach outperforms the method without it, achieving a distance of
23.87 meters from the reference point. It also demonstrates strong precision, as indicated by
a CEP radius of 40 meters, re�ecting high localization accuracy.

Figure 6.14: Centroid of the CBL with Spatial Separation method with 40 m CEP from 50% of
the measurements

CDF of Sequential Approaches

Figure 6.15 illustrates the overall performance of each Sequential Approach. Notably, the
centroid of rolling trilateration with spatial separation demonstrates strong results, with the
centroid located very close to the reference point. However, the remaining estimates are more
dispersed compared to those of the rolling CBL method. This outcome may be in�uenced by
the fact that the reference point is positioned near the center of the dataset, potentially favor-
ing methods with higher variance in estimating centroids toward the middle. It is important
to note that the cumulative distribution function does not re�ect the circular error probable,
which is separately evaluated for each method.
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6.2. Evaluation on Kolmården data set

Figure 6.15: CDF of localization error for Sequential Approaches

The evaluation of estimation performance over time is presented in Figure 6.16. It shows
that trilateration with spatial separation performs best up to the 40th second, after which the
accuracy slightly declines.

Figure 6.16: Localization error over time of Sequential Approaches

6.2 Evaluation on Kolmården data set

As illustrated in Figure 6.17, red crosses indicate the location estimates generated by the
Centroid-Based Localization (CBL) method using the three highest RSSI measurements. The
surrounding circles represent CEP radii derived from the Centroid of Rolling CBL, and the
red star denotes the reference position of the missing person. Since the individual was carry-
ing two mobile devices, two distinct estimates are shown.
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6.2. Evaluation on Kolmården data set

Figure 6.17: Visualization of target’s position estimation in Kolmården © OpenStreetMap
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Figure 6.18: Localization error over time with respect to reference target B in the Kolmården
dataset

74



6.3. Performance on data from South Africa
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Figure 6.19: CDF of localization errors for all evaluated methods with respect to reference
target B in the Kolmården dataset

6.3 Performance on data from South Africa

Once packets begin to be detected—typically when the search team is in close proximity to the
target—the algorithm naturally estimates the position at or near the sniffer’s location. As a
result, once the team reaches the target, the algorithm correctly identifies the target’s position.
This behavior is clearly illustrated on Figure 6.20 in the CEP visualization of rolling CBL:
while a few packets were captured early in the search process, the majority were recorded
when the team reached the target. This results in location estimates being concentrated at the
beginning and end of the search period.
Consequently, the centroid estimate falls near the midpoint between early and late packet
captures, and the CEP raidus is relatively large, reflecting the spread of data over time and
space.

Figure 6.20: Visualization of target’s position estimation in South Africa © OpenStreetMap
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6.3. Performance on data from South Africa

Figure 6.20 illustrates two CEP circles and two estimated positions, marked with crosses,
corresponding to the two devices carried by the missing individual. The black dots represent
the Centroid of Rolling CBL estimates. The green dots represent estimates for other detected
targets, which may correspond to members of the search team.
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Figure 6.21: Localization error over time with respect to reference target B in South Africa

Performance on the Strömsfors Dataset

The Strömsfors dataset was analyzed following the same procedure as with other datasets.
Reference sniffers were available during the data collection process. The devices used were
BLE tags, which MACs are listed in Table 6.1. Although this data set was not particularly use-
ful for evaluating localization methods, it provides valuable information on the limitations of
the BLE packet capture data collection approach.

Device Sniffer ID (MAC Address)

Phone B4:8A:0A:65:FC:BC
Large Sniffer C0:49:EF:47:78:10
Drone Sniffer B4:8A:0A:63:AA:78
Small Sniffer B4:8A:0A:31:5E:EC

Table 6.1: Sniffer devices and their corresponding MAC addresses used in the Strömsfors
dataset

To establish the ground truth position associated with the phone, MAC addresses recorded
by the nearby reference sniffer were filtered based on RSSI.
The dataset was then modified to include only data collected by the drone sniffer. The fol-
lowing findings were made:

• First round: The reference sniffer located near the phone was not operational. Figure
6.22 illustrates the data captured during the first round, along with the locations of the
devices deployed throughout the area.
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6.3. Performance on data from South Africa

Figure 6.22: Strömsfors round 1 of finding a missing person © OpenStreetMap

• Second round: Although the reference sniffer recorded numerous MAC addresses,
none of them were also captured by the drone sniffer. Figure 6.23 illustrates the data
captured during the second round.

Figure 6.23: Strömsfors round 2 of finding a missing person © OpenStreetMap

• Third round: The drone sniffer captured 13 identical packets to those seen by the refer-
ence sniffer within a 2-second window. However, this number of packets is insufficient
for accurate position estimation. While these could be considered for target association,
they were recorded at the end of the search phase and remained unassociated for over
a minute, thus rendering them ineffective for real-time use. Round three is showed in
Figure 6.24.
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