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Large-Scale Multipair Two-Way Relay Networks
with Distributed AF Beamforming

Hien Quoc Ngo, Student Member, IEEE, and Erik G. Larsson, Senior Member, IEEE

Abstract—We consider a multipair two-way relay network
where multiple communication pairs simultaneously exchange
information with the help of multiple relay nodes. All nodes are
equipped with a single antenna and channel state information is
available at the relay nodes. Each relay uses very simple signal
processing in a distributed manner, called distributed amplify-
and-forward (AF) relaying. A closed-form expression for the
achievable rate is derived. We show that the distributed AF
scheme outperforms conventional orthogonal relaying. When the
number of relays is large, the distributed AF relaying scheme
can achieve the capacity scaling given by the cut-set upper
bound. Furthermore, when the number of relays grows large, the
transmit powers of each terminal and of the relay can be made
inversely proportional to the number of relays while maintaining
a given quality-of-service. If the transmit power of each terminal
is kept fixed, the transmit power of each relay can be scaled down
inversely proportional to the square of the number of relays.

I. INTRODUCTION

The multipair one-way relay channel, where multiple
sources simultaneously transmit signals to their destinations
through the use of a multiple relay nodes, has attracted
substantial interest [1]–[3]. In [1], [2], the authors proposed
a transmission scheme where the beamforming weights at the
relays are obtained under the assumption that all relay nodes
can cooperate. A simple distributed beamforming scheme that
requires only local channel state information (CSI) at the
relays, and which performs well with a large number of relay
nodes, was proposed in [3]. With one-way protocols, the half-
duplex (HD) constraint at the relays imposes a pre-log factor
1/2 for the data rate and hence, limits the spectral efficiency.
To overcome this spectral efficiency loss in the one-way relay
channel, the multipair two-way relay channel has recently
been considered [4], [5]. However, those studies considered
multipair systems where only one relay (equipped with multi-
ple antennas) participates in the transmission. Multiple single-
antenna relays supporting multiple communication pairs were
considered in [6]–[8]. In [6], the weighting coefficient at each
relay was designed to minimize the transmit power at the
relays under a given received signal-to-interference-plus-noise
ratio constraint at each terminal. By contrast, the objective
function of [7] was the the sum rate. These works assume that
there is a central processing center. A distributed beamforming
scheme where the relay weighting coefficient is designed at
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each relay was proposed in [8]. However, [8] assumed that
each relay has CSI of all relay-terminal pairs. This requires
cooperation between the relay nodes for the CSI exchange.

In this paper, we propose and analyze a distributed amplify-
and-forward (AF) relaying scheme for multipair two-way relay
channels which does not require cooperation between the relay
nodes. Our scheme is suitable for dense networks where there
are many idle nodes willing to act as relays. Here, we assume
that the relays have perfect knowledge of local CSI, that is of
the channels from each terminal to the relay. The fundamental
basis of our proposed scheme is that when the number of
relays is large, the channel vectors between the terminals and
relays are pairwisely nearly orthogonal. There is also empirical
support for the near-orthogonality assumption, most notably in
the large scale MIMO literature [9]. This makes it possible for
the relays to use very simple signal processing.

The work that is most closely related to this paper is [3].
In [3] the authors investigated the scaling law of the power
efficiency in the multipair one-way relay channel. By contrast,
here, we consider the two-way relay channel. We derive a
closed-form expression of the achievable rate. The resulting
expression is simple and yields useful insight. We show that
when the number of relays M → ∞, the distributed AF
relaying achieves the cut-set upper bound on the capacity.
Furthermore, when M is large, we achieve the following
power scaling laws: (i) the transmit powers of each terminal
and of each relay can be scaled ∝ 1/M with no performance
reduction; and (ii) if the transmit power of each terminal is
fixed, the transmit power of each relay can be scaled ∝ 1/M 2.

II. MULTIPAIR TWO-WAY RELAY CHANNEL MODEL

Consider a network in which K communication pairs
(T1,k, T2,k), k = 1, ...,K, share the same time-frequency
resource. Two terminals T1,k and T2,k exchange their infor-
mation with the help of M relay nodes Rm, m = 1, 2, ...,M .
Typically, K � M . All nodes are equipped with a single
antenna and use HD operation. We assume that there is
no direct link between T1,k and T2,k that can be exploited.
Transmission will take place in both directions (from the
terminals to the relays and back) on the same frequency, and
we assume that the channels are reciprocal [9].

We further assume that the relay nodes have full CSI,
while the terminals have statistical but no instantaneous CSI.
The CSI at the relay nodes could be obtained by using
training sequences transmitted from the terminals, at a cost
of 2K symbols per coherence interval. The assumption that
the terminals do not have instantaneous CSI is reasonable for
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Fig. 1. Multipair Two-Way Relaying Network.

practical systems where the number of relay nodes is large.
To obtain instantaneous CSI at the terminals, we would have
to spend at least M symbols per coherence interval. We show
below that due to hardening effects, although the terminals do
not have instantaneous CSI, they can near-coherently detect
the signals aided by the statistical distribution of the channels.

III. DISTRIBUTED AF TRANSMISSION SCHEME

The communication occurs in two phases, as detailed next
and in Fig. 1. We assume perfect time synchronization. In [3],
the authors have shown that the lack of synchronicity does not
have much effect on the system performance.

A. Phase I
All terminals simultaneously broadcast their signals to all

relay nodes. Let hm,k and gm,k be the channel coefficients
from T1,k to Rm and from Rm to T2,k, respectively. The
channel model includes small-scale fading (Rayleigh fading)
and large-scale fading, i.e., hm,k =

√
αm,kh̃m,k and gm,k =

√

βm,kg̃m,k, where h̃m,k ∼ CN (0, 1), g̃m,k ∼ CN (0, 1).
Here, αm,k and βm,k represent the large-scale fading. Then,
the received signal at Rm is given by

rm =
√
pSh

T
mx1 +

√
pSg

T
mx2 + wm (1)

where xi , [xi,1 ... xi,K ]
T ,

√
pSxi,k is the transmitted signal

from Ti,k (the average transmit power of each terminal is pS),
hm , [hm,1 ... hm,K ]

T , gm , [gm,1 ... gm,K ]
T , and wm is

AWGN at Rm. We assume that wm ∼ CN (0, 1).

B. Phase II — Distributed AF Relaying
All relays broadcast scaled and phase-rotated versions of

their received signals to all terminals. The basic idea of
distributed AF relaying is as follows. Consider the two-way
relay channel with K pairs as a one-way relay channel with
2K pairs where the groups of sources and destinations are the
same. Then, we apply the relaying scheme for one-way relay
channels in [3, Sec. V].1 We propose to let Rm transmit the
following phase-rotated version of the received signal:

xRm = γma
H
mDa

∗
mrm (2)

where am ,
[

hT
m gT

m

]T
, D ,

[

0 IK
IK 0

]

is used to

permute the signal position to ensure that the signal transmitted

1Considering a multipair one-way relay channel with K sources T1,k , K
destinations T2,k , k = 1, ..., K, and M relay nodes Rm, m = 1, ...,M , the
scaled version at Rm proposed in [3] is gH

mh∗
mrm.

from T1,k arrives at its destination T2,k and vice versa, and γm
is a normalization factor which controls the transmit power at
Rm, chosen such that E

{

|xRm |2
}

= pR. Hence,2

γm =

√
pR

E {|aH
mDa∗

m|2 (pS‖hm‖2 + pS‖gm‖2 + 1)} (3)

=

√

pR/4

pS
∑K

j=1 (αm,j + βm,j) (αm,jβm,j + cm) + cm
(4)

where cm ,
∑K

i=1
αm,iβm,i, see Appendix A. Let n2,k be the

CN (0, 1) noise at T2,k. Then, the received signal at T2,k is

y2,k =

M∑

m=1

gm,kxRm + n2,k. (5)

When the number of relay nodes M is large, the received
signal at T2,k is dominated by the desired signal part (which
includes x1,k). As a result, we can obtain noise-free and
interference-free communication links when M grows without
bound. A more detailed analysis is given in the next section.

C. Asymptotic (M → ∞,K < ∞) Performance
In this section, we provide basic insights into the perfor-

mance of our proposed scheme when M → ∞ for fixed K
and pR. We will show that our proposed scheme performs well
when M is large. From (1), (2), and (5), we have

y2,k=
√
pS

M∑

m=1

pm,kx1,k

︸ ︷︷ ︸

L1

+
√
pS

K∑

j 6=k

M∑

m=1

pm,jx1,j+
√
pS

K∑

j=1

M∑

m=1

qm,jx2,j

︸ ︷︷ ︸

L2

+

M∑

m=1

γmgm,ka
H
mDa

∗
mwm + n2,k

︸ ︷︷ ︸

L3

(6)

where pm,j , γmgm,ka
H
mDa∗mhm,j and qm,j ,

γmgm,ka
H
mDa∗mgm,j . Here L1, L2, and L3 represent the

desired signal, multi-terminal interference, and noise effects,
respectively. We have

E{pm,k}=2γmE

{

gm,k

(
K∑

i=1

g∗m,ih
∗
m,i

)

hm,k

}

=2γmαm,kβm,k. (7)

We assume that Var {pm,k}, m = 1, ...,M , are uniformly
bounded, i.e., ∃c < ∞ : Var {pm,k} ≤ c, ∀m, k [10].
Since pm,k, m = 1, 2, ...,M , are independent, it follows from
Tchebyshev’s theorem [10] that

1

M
L1 −

1

M

√
pS

M∑

m=1

2γmαm,kβm,kx1,k
P→

M→∞
0. (8)

where
P→ denotes convergence in probability. Similarly, since

E {qm,j} = 0 and E
{

γmgm,ka
H
mDa∗mwm

}

= 0, we have

1

M
L2

P→
M→∞

0,
1

M
L3

P→
M→∞

0. (9)

We can see from (8) and (9) that, when M is large, the power
of the desired signal grows as M 2, while the power of the

2Note that γm could alternatively be chosen depending on the instantaneous
CSI which corresponds to having a short-term power constraint. However, we
use (3) since: i) it yields a tractable form of the achievable rate which enables
us to further analyze the system performance; and ii) the law of large numbers
guarantees that the denominator of (3) is nearly deterministic unless K is
small. Thus, our choice does not substantially affect the obtained insights.
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R2,k =
1

2
log2







1 +

4pS
(
∑M

m=1 γmαm,kβm,k

)2

pR
M∑

m=1

βm,k + 4pS
M∑

m=1

K∑

j=1

γ2
mαm,kβ2

m,k (αm,j+βm,j)+4pS
M∑

m=1

γ2
mβ2

m,k

(

2αm,kβm,k+cm+
αm,k

pS

)

+ 1








. (14)

interference and noise grows more slowly. As a result, with
an unlimited number of relay nodes, the effects of interference,
noise, and fast fading disappear. More precisely, as M → ∞,

y2,k
M

−√
pS

∑M

m=1 2γmαm,kβm,k

M
x1,k

P→ 0. (10)

The received signal includes only the desired signal and hence,
the capacity increases without bound.

IV. ACHIEVABLE RATE FOR FINITE M

In this section, we derive a closed-form expression of the
achievable rate for finite M which can be used to draw more
precise quantitative conclusions about the performance of the
distributed AF relaying scheme. The terminals do not have
instantaneous CSI, but they know the statistical distribution of
the channel. Hence, the terminals use the mean of the effective
channel gain to coherently detect the desired signals [3].

Consider the link T1,k → Relays → T2,k. From (6),
the received signal at T2,k can be rewritten as the desired
signal

√
pS E

{

∑M

m=1
pm,k

}

x1,k plus a remaining term which
is considered as the effective noise. This effective noise is
uncorrelated with the desired signal. Then, Gaussian noise is
the worst case, and we obtain the following achievable rate:

R2,k =
1

2
log2




1 +

pS

∣
∣
∣E

{
∑M

m=1 pm,k

}∣
∣
∣

2

pSVar
{
∑M

m=1 pm,k

}

+ MTk + ANk




 (11)

where the pre-log factor of 1/2 is due to the half-duplex
relaying, Var {x} denotes the variance of a RV x, and

MTk = pS

K∑

j 6=k

E







∣
∣
∣
∣
∣

M∑

m=1

pm,j

∣
∣
∣
∣
∣

2





+ pS

K∑

j=1

E







∣
∣
∣
∣
∣

M∑

m=1

qm,j

∣
∣
∣
∣
∣

2





(12)

ANk =

M∑

m=1

γ2
m E

{∣
∣
∣gm,ka

H
mDa

∗
m

∣
∣
∣

2
}

+ 1. (13)

We now derive a closed-form expression of the achievable rate.
Proposition 1: With distributed AF relaying, the achievable

rate of the communication link T1,k → Relays → T2,k is given
by (14), shown at the top of the page.

Proof: See Appendix B.

A. Discussion of Results
For simplicity, we next consider a simplified case where the

large-scale fading is neglected, i.e., αm,k = βm,k = 1, for all
m, k. The same insights will be straightforwardly obtained
for the case when the large-scale fading is taken into account.
Substituting αm,k = βm,k = 1 into (14), we get

R2,k=
1

2
log2

(

1+
pSpRM/K

pSpR
(
2K+5+ 2

K

)
+ pR

K
(K+1)+ 2pS

M
(K+1)+ 1

M

)

.

We can see that, when M goes to infinity, R2,k → ∞. This
lower bound on the rate coincides with the asymptotic (but
exact) rate obtained in Section III-C and hence, the achievable
rate (14) is very tight at large M .

1) Achievability of the Network Capacity: If pS and ER =
MpR (total transmit power of all relays) are fixed regardless
of M , then R2,k = 1

2
log2 M+O (1), as M → ∞. This result

coincides with the one which is obtained by using the cut-set
upper bound on the network capacity of MIMO relay networks
where all terminals are equipped with a single antenna [11].
Note that the result obtained in [11] relies on the assumption
that the relay and destination nodes have instantaneous CSI.
Here, we assume that only the relays have instantaneous CSI.
In particular, with our proposed technique, the sum rate scales
as K log2 M + O (1) at large M which is identical to the
cut-set bound on the sum capacity of our considered multipair
two-way relay network.3

2) Power Scaling Laws:
(i) If pS = ES/M and pR = ER/M , where ES and ER are

fixed regardless of M , then

R2,k → 1

2
log2

(

1 +
ESER

ER (K + 1) +K

)

, as M → ∞ (15)

which implies that when M is large, we can cut the transmit
power pS ∝ 1/M without any performance reduction.

(ii) If pS and ER are fixed regardless of M , and pR =
ER/M

2, then

R2,k → 1

2
log2

(

1+
pSER

2pSK (K + 1) +K

)

, as M → ∞. (16)

We can see that when M is large, the transmit power of each
relay node can be reduced proportionally to 1/M 2 with no
performance degradation. As a result, the transmit power of
each relay node can be very small.

V. NUMERICAL RESULTS AND DISCUSSION

In this section, we examine the sum rate of our proposed
scheme. For comparison, we also consider the sum rate of
multipair one-way relaying proposed in [3], and the sum rate
of the conventional orthogonal scheme where the transmission
of each pair is assigned different time slots or frequency bands.
In addition, we consider the sum rate of our scheme but with
a genie receiver (instantaneous CSI) at the terminals. For this
case, the achievable rate of the link T1,k → Relays → T2,k is

R2,k =
1

2
E







log2




1 +

pS

∣
∣
∣
∑M

m=1 pm,k

∣
∣
∣

2

MTk + ANk












. (17)

We choose K = 5, pS = 10 dB, and αm,k = βm,k = 1. We
assume that the total transmit powers for the two phases are the
same, i.e., 2KpS = MpR. Furthermore, for fair comparison,
the total transmit powers of all schemes are the same.

3Suppose that all terminals T1,k can cooperate and all terminals T2,k can
also cooperate. Then we have a two-way relay network with two terminals
each equipped with K antennas, and M single-antenna relays. From [12], the
network capacity of this resulting system is K log2 M +O (1). Clearly, this
resulting system has greater capacity than the original one. Thus, an upper
bound on the sum capacity of our multipair network is K log2 M +O (1).
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Fig. 2. Sum rate versus the number of relay nodes (K = 5, pS = 10 dB).

Figure 2 shows the sum rate versus the number of relay
nodes for the different transmission schemes. We can see that
the number of relay nodes has a very strong impact on the
performance. The sum rate increases significantly when we
increase M . For small M (. 10), owing to inter-terminal
interference, our proposed scheme performs worse than the
orthogonal scheme. However, when M grows large, the effect
of inter-terminal interference and noise dramatically reduces
and hence, our proposed scheme outperforms the orthogonal
scheme. Compared with the one-way relaying proposed in [3],
our distributed AF relaying scheme is better, and the advantage
increases when M increases. The gain stems from the reduced
pre-log penalty (from 1/2 to 1), however, our scheme suffers
from more interference and therefore, the gain is somewhat
less than a doubling. When M is small, the channels are no
longer nearly orthogonal and the inter-terminal interference
cannot be notably reduced and hence, our scheme is not
better than the one-way relaying scheme. Furthermore, the
performance gap between the cases with instantaneous (genie)
and statistical CSI at the terminals is small. This implies
that using the mean of the effective channel gain for signal
detection is fairly good.

APPENDIX

A. Derivation of (4)
To compute γm, we need to compute E

{

|aHmDa∗m|2
}

,
E
{

|aHmDa∗m|2‖hm‖2
}

, and E
{

|aHmDa∗m|2‖gm‖2
}

. We have

E

{∣
∣
∣a

H
mDa

∗
m

∣
∣
∣

2

‖hm‖2
}

= 4

K∑

k=1

E







∣
∣
∣
∣
∣

K∑

i=1

g∗m,ih
∗
m,ihm,k

∣
∣
∣
∣
∣

2






(a)
= 4

K∑

k=1

K∑

i=1

E

{∣
∣g∗m,ih

∗
m,ihm,k

∣
∣2
}

(b)
= 8

K∑

k=1

α2
m,kβm,k + 4

K∑

k=1

K∑

i6=k

αm,kαm,iβm,i (18)

where (a) comes from the fact that g∗m,ih
∗

m,ihm,k, i =
1, ...,K, are zero-mean mutual uncorrelated RVs, and

(b) follows by using the identity E

{

|x|2
}

= σ2 and

E

{

|x|4
}

= 2σ4, where x ∼ CN
(

0, σ2
)

. Similarly, we obtain

E
{

|aHmDa∗m|2‖gm‖2
}

= 4
∑K

k=1
βm,k (αm,kβm,k + cm),

and E
{

|aHmDa∗m|2
}

= 4
∑K

k=1
αm,kβm,k. Thus, we get (4).

B. Proof of Proposition 1

From (11), we need to compute Var

{

∑M

m=1
pm,k

}

, MTk,
and ANk. Since pm,k, m = 1, ...,M , are independent, we have

Var

{
M∑

m=1

pm,k

}

=

M∑

m=1

(
E
{
|pm,k|2

}
− 4γ2

mα2
m,kβ

2
m,k

)
. (19)

By using the same technique as in Appendix A, we obtain

Var

{
M∑

m=1

pm,k

}

= 4

M∑

m=1

γ2
mαm,kβm,k (2αm,kβm,k+cm) . (20)

Similarly, we obtain

MTk = 4pS

K∑

j 6=k

M∑

m=1

γ2
mαm,jβm,k (αm,kβm,k + αm,jβm,j + cm)

+ 4pS

K∑

j=1

M∑

m=1

γ2
mβm,jβm,k (αm,kβm,k + αm,jβm,j + cm)

+ 4pS

M∑

m=1

γ2
mβ2

m,k (2αm,kβm,k + cm) (21)

ANk = 4

M∑

m=1

γ2
mβm,k (αm,kβm,k + cm) + 1. (22)

Substituting (7), (20), (21), and (22) into (11), we obtain (14).
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