liu.seSearch for publications in DiVA
Change search
Link to record
Permanent link

Direct link
Alternative names
Publications (10 of 43) Show all publications
Qu, Y., Gomaa, M. M., Sayed, M. H., Boshta, M., Greczynski, G., Yakimova, R. & Sun, J. W. (2024). A Comparative Study of NiCo2O4, NiO, and Co3O4 Electrocatalysts Synthesized by a Facile Spray Pyrolysis For Electrochemical Water Oxidation. Advanced Materials Interfaces, 11(8), Article ID 2300920.
Open this publication in new window or tab >>A Comparative Study of NiCo2O4, NiO, and Co3O4 Electrocatalysts Synthesized by a Facile Spray Pyrolysis For Electrochemical Water Oxidation
Show others...
2024 (English)In: Advanced Materials Interfaces, ISSN 2196-7350, Vol. 11, no 8, article id 2300920Article in journal (Refereed) Published
Abstract [en]

Exploiting low-cost, highly active, and robust oxygen evolution reaction (OER) electrocatalysts based on earth-abundant elements by a simple synthesis approach holds paramount importance for green hydrogen production through water electrolysis. In this work, the NiO, Co3O4 and NiCo2O4 nanoparticle layers with identical surface morphologies are prepared under same deposition conditions by a simple spray pyrolysis method and their OER activities are comparatively investigated. Among all these three electrocatalysts, NiCo2O4 shows the lowest overpotential of 420 mV to drive benchmark current density of 10 mA cm(-2) and the smallest Tafel slope (84.1 mV dec(-1)), which are comparable to the OER performance of the benchmark commercial RuO2 electrocatalyst. The high OER activity of NiCo2O4 is attributed to the synergy effect and the modulation of electronic properties between Co and Ni atoms, which drastically reduces the overpotential required to drive OER activities. Therefore, it is believed that the NiCo2O4 synthesized by this simple method would be a competitive candidate as an industrial electrocatalyst with high-efficiency and low cost for large-scale green hydrogen production via water electrolysis.

Place, publisher, year, edition, pages
WILEY, 2024
Keywords
electrocatalyst; electrolysis of water; NiCo2O4 nanoparticles; oxygen evolution reaction; scalable synthesis
National Category
Condensed Matter Physics
Identifiers
urn:nbn:se:liu:diva-199971 (URN)10.1002/admi.202300920 (DOI)001128816400001 ()
Note

Funding Agencies|Swedish Research Council (Vetenskapsradet) [2018-04670, 2020-04400]; Swedish Foundation for International Cooperation in Research and Higher Education (STINT) [CH2016-6722]; Olle Engkvists Stiftelse [220-0222, 221-0259]

Available from: 2024-01-10 Created: 2024-01-10 Last updated: 2024-10-18Bibliographically approved
Qu, Y., Jokubavicius, V., Hoang, D. Q., Liu, X., Fahlman, M., Ivanov, I. G., . . . Sun, J. W. (2024). Aging Ni(OH)2 on 3C-SiC Photoanodes to Achieve a High Photovoltage of 1.1 V and Enhanced Stability for Solar Water Splitting in Strongly Alkaline Solutions. ACS Applied Materials and Interfaces, 16(38), 50926-50936
Open this publication in new window or tab >>Aging Ni(OH)2 on 3C-SiC Photoanodes to Achieve a High Photovoltage of 1.1 V and Enhanced Stability for Solar Water Splitting in Strongly Alkaline Solutions
Show others...
2024 (English)In: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 16, no 38, p. 50926-50936Article in journal (Refereed) Published
Abstract [en]

Photoelectrochemical (PEC) water splitting is a promising approach to directly convert solar energy to renewable and storable hydrogen. However, the very low photovoltage and serious corrosion of semiconductor photoelectrodes in strongly acidic or alkaline electrolytes needed for water splitting severely impede the practical application of this technology. In this work, we demonstrate a facile approach to fabricate a high-photovoltage, stable photoanode by depositing Ni(OH)(2) cocatalyst on cubic silicon carbide (3C-SiC), followed by aging in 1.0 M NaOH at room temperature for 40 h without applying electrochemical bias. The aged 3C-SiC/Ni(OH)(2) photoanode achieves a record-high photovoltage of 1.10 V, an ultralow onset potential of 0.10 V vs the reversible hydrogen electrode, and enhanced stability for PEC water splitting in the strongly alkaline solution (pH = 13.6). This aged photoanode also exhibits excellent in-air stability, demonstrating identical PEC water-splitting performance for more than 400 days. We find that the aged Ni(OH)2 dramatically promotes the hole transport at the photoanode/electrolyte interface, thus significantly enhancing the photovoltage and overall PEC performance. Furthermore, the oxygen evolution reaction (OER) activity and the phase transitions of the Ni(OH)(2) electrocatalyst before and after aging are systematically investigated. We find that the aging process is critical for the formation of the relatively stable and highly active Fe-doped beta-NiOOH, which accounts for the enhanced OER activity and stability of the PEC water splitting. This work provides a simple and effective approach to fabricate high-photovoltage and stable photoanodes, bringing new premise toward solar fuel development.

Place, publisher, year, edition, pages
AMER CHEMICAL SOC, 2024
Keywords
cubic silicon carbide(3C-SiC); solar water splitting; solar-to-hydrogenconversion; photovoltage; aging of Ni(OH)(2)
National Category
Materials Chemistry
Identifiers
urn:nbn:se:liu:diva-207924 (URN)10.1021/acsami.4c11809 (DOI)001314970600001 ()39285735 (PubMedID)
Note

Funding Agencies|Swedish Research Council (Vetenskapsradet) [2018-04670, 2020-04400]; Swedish Foundation for International Cooperation in Research and Higher Education (STINT) [CH2016-6722]; Olle Engkvists Stiftelse [220-0222, 221-0259]; Carl Tryggers Stiftelse [CTS22-2190, CTS2018-183]; Knut and Alice Wallenberg Foundation [KAW 2018- 0071]

Available from: 2024-10-01 Created: 2024-10-01 Last updated: 2024-11-19Bibliographically approved
Zeng, H., Chang, J.-C., Qu, Y., Wang, W., Birch, J., Hsiao, C.-L. & Sun, J. W. (2024). Interface-Engineered InAlN/Cu2O Photocathode with Accelerated Charge Separation for Boosting Photoelectrochemical Water Splitting. Solar RRL, 8(10), Article ID 2400094.
Open this publication in new window or tab >>Interface-Engineered InAlN/Cu2O Photocathode with Accelerated Charge Separation for Boosting Photoelectrochemical Water Splitting
Show others...
2024 (English)In: Solar RRL, E-ISSN 2367-198X, Vol. 8, no 10, article id 2400094Article in journal (Refereed) Published
Abstract [en]

Cu2O has emerged as a promising material for sustainable hydrogen production through photoelectrochemical (PEC) water splitting, while inefficient charge separation remains one of the main challenges hindering its development. In this work, a new architecture of InAlN/Cu2O heterojunction photocathode is demonstrated by combining n-type InAlN and p-type Cu2O to improve the charge separation efficiency, thus enhancing PEC water-splitting performance. The Pt/InAlN/Cu2O photoelectrode exhibits a photocurrent density of 2.54 mA cm(-2) at 0 V versus reversible hydrogen electrode (V-RHE), which is 3.21 times higher than that of Cu2O (0.79 mA cm(-2) at V-RHE). The enhanced PEC performance is explained by the larger built-in potential V-bi of 1.43 V formed at the InAlN/Cu2O p-n junction than that in the single Cu2O photocathode (V-bi < 0.77 V), which improves the separation of the photogenerated carriers and thus relieves the bottlenecks of charge-transfer kinetics at the electrode bulk and electrode/electrolyte interface. In this work, an avenue is opened for designing III-nitrides/Cu2O heterojunction toward solar energy conversion.

Place, publisher, year, edition, pages
WILEY-V C H VERLAG GMBH, 2024
Keywords
charge transfers; Cu2O; InAlN; photoelectrochemical water splitting; p-n heterojunction
National Category
Other Chemical Engineering
Identifiers
urn:nbn:se:liu:diva-202475 (URN)10.1002/solr.202400094 (DOI)001198084900001 ()2-s2.0-85189454759 (Scopus ID)
Note

Funding Agencies|Swedish Research Council (Vetenskapsradet) [2018-04670, 2020-04400, 2018-04198]; Swedish Foundation for International Cooperation in Research and Higher Education (STINT) [CH2016-6722]; Olle Engkvists Stiftelse [220-0222, 221-0259, 227-0244]; AForsk Foundation [23-489]; Carl Tryggers Stiftelse [CTS22-2190]; Swedish Research Council [2018-07152]; Swedish Governmental Agency for Innovation Systems [2018-04969]; Formas [2019-02496]

Available from: 2024-04-15 Created: 2024-04-15 Last updated: 2025-02-11Bibliographically approved
Shi, Y., Jokubavicius, V., Höjer, P., Ivanov, I. G., Yazdi, G., Yakimova, R., . . . Sun, J. W. (2019). A comparative study of high-quality C-face and Si-face 3C-SiC(1 1 1) grown on off-oriented 4H-SiC substrates. Journal of Physics D: Applied Physics, 52(34)
Open this publication in new window or tab >>A comparative study of high-quality C-face and Si-face 3C-SiC(1 1 1) grown on off-oriented 4H-SiC substrates
Show others...
2019 (English)In: Journal of Physics D: Applied Physics, ISSN 0022-3727, E-ISSN 1361-6463, Vol. 52, no 34Article in journal (Refereed) Published
Abstract [en]

We present a comparative study of the C-face and Si-face of 3C-SiC(111) grown on off-oriented 4H-SiC substrates by the sublimation epitaxy. By the lateral enlargement method, we demonstrate that the high-quality bulk-like C-face 3C-SiC with thickness of ~1 mm can be grown over a large single domain without double positioning boundaries (DPBs), which are known to have a strongly negative impact on the electronic properties of the material. Moreover, the C-face sample exhibits a smoother surface with one unit cell height steps while the surface of the Si-face sample exhibits steps twice as high as on the C-face due to step-bunching. High-resolution XRD and low temperature photoluminescence measurements show that C-face 3C-SiC can reach the same high crystalline quality as the Si-face 3C-SiC. Furthermore, cross-section studies of the C- and Si-face 3C-SiC demonstrate that in both cases an initial homoepitaxial 4H-SiC layer followed by a polytype transition layer are formed prior to the formation and lateral expansion of 3C-SiC layer. However, the transition layer in the C-face sample is extending along the step-flow direction less than that on the Si-face sample, giving rise to a more fairly consistent crystalline quality 3C-SiC epilayer over the whole sample compared to the Si-face 3C-SiC where more defects appeared on the surface at the edge. This facilitates the lateral enlargement of 3C-SiC growth on hexagonal SiC substrates.

Place, publisher, year, edition, pages
Biopress Ltd, 2019
National Category
Condensed Matter Physics
Identifiers
urn:nbn:se:liu:diva-159101 (URN)10.1088/1361-6463/ab2859 (DOI)000475964100002 ()
Note

Funding agencies:  Swedish Research Council (Vetenskapsradet) [621-2014-5461, 2018-04670, 2016-05362, 621-2014-5825]; Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning (FORMAS) [2016-00559]; Swedish Foundation for International Cooperation

Available from: 2019-07-24 Created: 2019-07-24 Last updated: 2021-12-29
Shen, X., Dong, G., Wang, L., Ye, L. & Sun, J. W. (2019). Correction: Enhancing Photocatalytic Activity of NO Removal through an In Situ Control of Oxygen Vacancies in Growth of TiO2 (vol. 6, no 19,  article-id 1901032, 2019). Advanced Materials Interfaces, 6(23), Article ID 1901614.
Open this publication in new window or tab >>Correction: Enhancing Photocatalytic Activity of NO Removal through an In Situ Control of Oxygen Vacancies in Growth of TiO2 (vol. 6, no 19,  article-id 1901032, 2019)
Show others...
2019 (English)In: Advanced Materials Interfaces, ISSN 2196-7350, Vol. 6, no 23, article id 1901614Article in journal (Other academic) Published
Place, publisher, year, edition, pages
John Wiley & Sons, Ltd, 2019
Keywords
nitric oxide removal, oxygen vacancies, photocatalysis, TiO2
National Category
Condensed Matter Physics
Identifiers
urn:nbn:se:liu:diva-190180 (URN)10.1002/admi.201901614 (DOI)000491971600001 ()
Available from: 2022-11-28 Created: 2022-11-28 Last updated: 2024-12-19Bibliographically approved
Patricia, C., Annett, T., Quanbao, M., Daniel Nielsen, W., Spyros, D., Augustinas, G., . . . Ole Martin, L. (2018). Boron-doping of cubic SiC for intermediate band solar cells: a scanning transmission electron microscopy study. SciPost Physics, 5(3), 1-17
Open this publication in new window or tab >>Boron-doping of cubic SiC for intermediate band solar cells: a scanning transmission electron microscopy study
Show others...
2018 (English)In: SciPost Physics, E-ISSN 2542-4653, Vol. 5, no 3, p. 1-17Article in journal (Refereed) Published
Abstract [en]

Boron (B) has the potential for generating an intermediate band in cubic silicon carbide (3C-SiC), turning this material into a highly efficient absorber for single-junction solar cells. The formation of a delocalized band demands high concentration of the foreign element, but the precipitation behavior of B in the 3C polymorph of SiC is not well known. Here, probe-corrected scanning transmission electron microscopy and secondary-ion mass spectrometry are used to investigate precipitation mechanisms in B-implanted 3C-SiC as a function of temperature. Point-defect clustering was detected after annealing at 1273 K, while stacking faults, B-rich precipitates and dislocation networks developed in the 1573 - 1773 K range. The precipitates adopted the rhombohedral B13C2 structure and trapped B up to 1773 K. Above this temperature, higher solubility reduced precipitation and free B diffused out of the implantation layer. Dopant concentrations E19 at.cm-3 were achieved at 1873 K.

Place, publisher, year, edition, pages
Amsterdam, Netherlands: SciPost Foundation, 2018
National Category
Condensed Matter Physics
Identifiers
urn:nbn:se:liu:diva-150976 (URN)10.21468/scipostphys.5.3.021 (DOI)000444757600002 ()
Available from: 2018-09-07 Created: 2018-09-07 Last updated: 2024-11-07Bibliographically approved
Shi, Y., Zakharov, A. A., Ivanov, I. G., Yazdi, G. R., Jokubavicius, V., Syväjärvi, M., . . . Sun, J. (2018). Elimination of step bunching in the growth of large-area monolayer and multilayer graphene on off-axis 3CSiC (111). Carbon, 140, 533-542
Open this publication in new window or tab >>Elimination of step bunching in the growth of large-area monolayer and multilayer graphene on off-axis 3CSiC (111)
Show others...
2018 (English)In: Carbon, ISSN 0008-6223, E-ISSN 1873-3891, Vol. 140, p. 533-542Article in journal (Refereed) Published
Abstract [en]

Multilayer graphene has exhibited distinct electronic properties such as the tunable bandgap for optoelectronic applications. Among all graphene growth techniques, thermal decomposition of SiC is regarded as a promising method for production of device-quality graphene. However, it is still very challenging to grow uniform graphene over a large-area, especially multilayer graphene. One of the main obstacles is the occurrence of step bunching on the SiC surface, which significantly influences the formation process and the uniformity of the multilayer graphene. In this work, we have systematically studied the growth of monolayer and multilayer graphene on off-axis 3CSiC(111). Taking advantage of the synergistic effect of periodic SiC step edges as graphene nucleation sites and the unique thermal decomposition energy of 3CSiC steps, we demonstrate that the step bunching can be fully eliminated during graphene growth and large-area monolayer, bilayer, and four-layer graphene can be controllably obtained on high-quality off-axis 3CSiC(111) surface. The low energy electron microscopy results demonstrate that a uniform four-layer graphene has been grown over areas of tens of square micrometers, which opens the possibility to tune the bandgap for optoelectronic devices. Furthermore, a model for graphene growth along with the step bunching elimination is proposed.

Place, publisher, year, edition, pages
Elsevier, 2018
National Category
Materials Chemistry
Identifiers
urn:nbn:se:liu:diva-151054 (URN)10.1016/j.carbon.2018.08.042 (DOI)000450120200057 ()
Note

Funding agencies: Swedish Research Council (Vetenskapsradet) [621-2014-5461, 621-2014-5825]; Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning (FORMAS) [2016-00559]; Swedish Foundation for International Cooperation in Research and Higher 

Available from: 2018-09-12 Created: 2018-09-12 Last updated: 2021-12-29
Ma, Q., Carvalho, P., Galeckas, A., Alexander, A., Hovden, S., Thøgersen, A., . . . Svensson, B. G. (2017). Characterization of B-Implanted 3C-SiC for Intermediate Band Solar Cells. Materials Science Forum, 897, 299-302
Open this publication in new window or tab >>Characterization of B-Implanted 3C-SiC for Intermediate Band Solar Cells
Show others...
2017 (English)In: Materials Science Forum, ISSN 0255-5476, E-ISSN 1662-9752, Vol. 897, p. 299-302Article in journal (Refereed) Published
Abstract [en]

Sublimation-grown 3C-SiC crystals were implanted with B ions at elevated temperature (400 °C) using multiple energies (100 to 575 keV) with a total dose of 1.3×1017 atoms/cm2 in order to form intermediate band (IB) in 3C-SiC. The samples were then annealed at 1400 °C for 60 min. An anomalous area in the center was observed in the PL emission pattern. The SIMS analysis indicated that the B concentration was the same both within and outside the anomalous area. The buried boron box-like concentration profile can reach ~3×1021 cm-3 in the plateau region. In the anomalous area a broad emission band (possible IB) emerges at around ~1.7-1.8 eV, which may be associated with B-precipitates having a sufficiently high density.

Place, publisher, year, edition, pages
Trans Tech Publications, 2017
Keywords
silicon carbide, 3C-SiC, cubic, boron, implantation, characterization, intermediate band, photovoltaics, solar cells
National Category
Condensed Matter Physics
Identifiers
urn:nbn:se:liu:diva-137579 (URN)10.4028/www.scientific.net/MSF.897.299 (DOI)
Available from: 2017-05-22 Created: 2017-05-22 Last updated: 2021-12-29Bibliographically approved
Ma, Q., Galeckas, A., Alexander, A., Thøgersen, A., Carvalho, P., Wright, D. N., . . . Svensson, B. G. (2016). Boron-implanted 3C-SiC for intermediate band solar cells. In: Silicon Carbide and Related Materials 2015: . Paper presented at International Conference on Silicon Carbide and Related Materials (pp. 291-294). , 858
Open this publication in new window or tab >>Boron-implanted 3C-SiC for intermediate band solar cells
Show others...
2016 (English)In: Silicon Carbide and Related Materials 2015, 2016, Vol. 858, p. 291-294Conference paper, Published paper (Refereed)
Abstract [en]

Sublimation-grown 3C-SiC crystals were implanted with 2 atomic percent of boron ions at elevated temperature (400 °C) using multiple energies (100 to 575 keV) with a total dose of 8.5×1016 atoms/cm2. The samples were then annealed at 1400, 1500 and 1600 °C for 1h at each temperature. The buried boron box-like concentration profile can reach ~2×1021 cm-3 in the plateau region. The optical activity of the incorporated boron atoms was deduced from the evolution in absorption and emission spectra, indicating possible pathway for achieving an intermediate band behavior in boron doped 3C-SiC at sufficiently high dopant concentrations.                    

Series
Materials Science Forum, ISSN 0255-5476, E-ISSN 1662-9752
National Category
Condensed Matter Physics
Identifiers
urn:nbn:se:liu:diva-128613 (URN)10.4028/www.scientific.net/MSF.858.291 (DOI)
Conference
International Conference on Silicon Carbide and Related Materials
Available from: 2016-05-25 Created: 2016-05-25 Last updated: 2021-12-29
Syväjärvi, M., Ma, Q., Jokubavicius, V., Galeckas, A., Sun, J., Liu, X., . . . Svensson, B. G. (2016). Cubic silicon carbide as a potential photovoltaic material. Solar Energy Materials and Solar Cells, 145, 104-108
Open this publication in new window or tab >>Cubic silicon carbide as a potential photovoltaic material
Show others...
2016 (English)In: Solar Energy Materials and Solar Cells, ISSN 0927-0248, E-ISSN 1879-3398, Vol. 145, p. 104-108Article in journal (Refereed) Published
Abstract [en]

In this work we present a significant advancement in cubic silicon carbide (3C-SiC) growth in terms of crystal quality and domain size, and indicate its potential use in photovoltaics. To date, the use of 3C-SiC for photovoltaics has not been considered due to the band gap of 2.3 eV being too large for conventional solar cells. Doping of 3C-SiC with boron introduces an energy level of 0.7 eV above the valence band. Such energy level may form an intermediate band (IB) in the band gap. This IB concept has been presented in the literature to act as an energy ladder that allows absorption of sub-bandgap photons to generate extra electron-hole pairs and increase the efficiency of a solar cell. The main challenge with this concept is to find a materials system that could realize such efficient photovoltaic behavior. The 3C-SiC bandgap and boron energy level fits nicely into the concept, but has not been explored for an IB behavior. For a long time crystalline 3C-SiC has been challenging to grow due to its metastable nature. The material mainly consists of a large number of small domains if the 3C polytype is maintained. In our work a crystal growth process was realized by a new approach that is a combination of initial nucleation and step-flow growth. In the process, the domains that form initially extend laterally to make larger 3C-SiC domains, thus leading to a pronounced improvement in crystalline quality of 3C-SiC. In order to explore the feasibility of IB in 3C-SiC using boron, we have explored two routes of introducing boron impurities; ion implantation on un-doped samples and epitaxial growth on un-doped samples using pre-doped source material. The results show that 3C-SiC doped with boron is an optically active material, and thus is interesting to be further studied for IB behavior. For the ion implanted samples the crystal quality was maintained even after high implantation doses and subsequent annealing. The same was true for the samples grown with pre-doped source material, even with a high concentration of boron impurities. We present optical emission and absorption properties of as-grown and boron implanted 3C-SiC. The low-temperature photoluminescence spectra indicate the formation of optically active deep boron centers, which may be utilized for achieving an IB behavior at sufficiently high dopant concentrations. We also discuss the potential of boron doped 3C-SiC base material in a broader range of applications, such as in photovoltaics, biomarkers and hydrogen generation by splitting water. (C) 2015 Elsevier B.V. All rights reserved.

Place, publisher, year, edition, pages
ELSEVIER SCIENCE BV, 2016
Keywords
Intermediate band; Silicon carbide; Solar cell; Photovoltaic; Boron; Doping; 3C-SiC; Cubic
National Category
Chemical Sciences
Identifiers
urn:nbn:se:liu:diva-124457 (URN)10.1016/j.solmat.2015.08.029 (DOI)000367772200004 ()
Note

Funding Agencies|Angpanneforeningen Research Foundation (AForsk); NFR SunSic project; Swedish Energy Agency; Swedish Governmental Agency for Innovation Systems (Vinnova); STAEDTLER Foundation

Available from: 2016-02-02 Created: 2016-02-01 Last updated: 2021-12-29
Organisations
Identifiers
ORCID iD: ORCID iD iconorcid.org/0000-0002-6403-3720

Search in DiVA

Show all publications