liu.seSearch for publications in DiVA
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Gaussian Process Based Motion Pattern Recognition with Sequential Local Models
Linköpings universitet, Institutionen för datavetenskap, Artificiell intelligens och integrerade datorsystem. Linköpings universitet, Tekniska fakulteten.ORCID-id: 0000-0002-8546-4431
Linköpings universitet, Institutionen för datavetenskap, Artificiell intelligens och integrerade datorsystem. Linköpings universitet, Tekniska fakulteten.
2018 (engelsk)Inngår i: 2018 IEEE Intelligent Vehicles Symposium (IV), 2018Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

Conventional trajectory-based vehicular traffic analysis approaches work well in simple environments such as a single crossing but they do not scale to more structurally complex environments such as networks of interconnected crossings (e.g. urban road networks). Local trajectory models are necessary to cope with the multi-modality of such structures, which in turn introduces new challenges. These larger and more complex environments increase the occurrences of non-consistent lack of motion and self-overlaps in observed trajectories which impose further challenges. In this paper we consider the problem of motion pattern recognition in the setting of sequential local motion pattern models. That is, classifying sub-trajectories from observed trajectories in accordance with which motion pattern that best explains it. We introduce a Gaussian process (GP) based modeling approach which outperforms the state-of-the-art GP based motion pattern approaches at this task. We investigate the impact of varying local model overlap and the length of the observed trajectory trace on the classification quality. We further show that introducing a pre-processing step filtering out stops from the training data significantly improves the classification performance. The approach is evaluated using real GPS position data from city buses driving in urban areas for extended periods of time.

sted, utgiver, år, opplag, sider
2018.
Emneord [en]
Motion Pattern Recognition, Situation Analysis and Planning, Traffic Flow and Management, Vision Sensing and Perception, Autonomous Driving
HSV kategori
Identifikatorer
URN: urn:nbn:se:liu:diva-148724OAI: oai:DiVA.org:liu-148724DiVA, id: diva2:1220012
Konferanse
Intelligent Vehicles Symposium 2018
Prosjekter
CUGSVRCADICSELLIITWASP
Forskningsfinansiär
CUGS (National Graduate School in Computer Science)Tilgjengelig fra: 2018-06-18 Laget: 2018-06-18 Sist oppdatert: 2018-12-04

Open Access i DiVA

Fulltekst mangler i DiVA

Personposter BETA

Tiger, MattiasHeintz, Fredrik

Søk i DiVA

Av forfatter/redaktør
Tiger, MattiasHeintz, Fredrik
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric

urn-nbn
Totalt: 426 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf