liu.seSearch for publications in DiVA
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Smartphone Based Indoor Positioning Using Wi-Fi Round Trip Time and IMU Sensors
Linköpings universitet, Institutionen för datavetenskap.
2020 (engelsk)Independent thesis Advanced level (degree of Master (Two Years)), 20 poäng / 30 hpOppgaveAlternativ tittel
Smartphone-baserad inomhuspositionering med Wi-Fi Round-Trip Time och IMU-sensorer (svensk)
Abstract [en]

While GPS long has been an industry standard for localization of an entity or person anywhere in the world, it loses much of its accuracy and value when used indoors. To enable services such as indoor navigation, other methods must be used. A new standard of the Wi-Fi protocol, IEEE 802.11mc (Wi-Fi RTT), enables distance estimation between the transmitter and the receiver based on the Round-Trip Time (RTT) delay of the signal. Using these distance estimations and the known locations of the transmitting Access Points (APs), an estimation of the receiver’s location can be determined. In this thesis, a smartphone Wi-Fi RTT based Indoor Positioning System (IPS) is presented using an Unscented Kalman Filter (UKF). The UKF using only RTT based distance estimations as input, is established as a baseline implementation. Two extensions are then presented to improve the positioning performance; 1) a dead reckoning algorithm using smartphone sensors part of the Inertial Measurement Unit (IMU) as an additional input to the UKF, and 2) a method to detect and adjust distance measurements that have been made in Non-Line-of-Sight (NLoS) conditions. The implemented IPS is evaluated in an office environment in both favorable situations (plenty of Line-of-Sight conditions) and sub-optimal situations (dominant NLoS conditions). Using both extensions, meter level accuracy is achieved in both cases as well as a 90th percentile error of less than 2 meters.

sted, utgiver, år, opplag, sider
2020. , s. 98
Emneord [en]
Wi-Fi RTT, Indoor positioning, FTM, Android, Smartphone, Sensor fusion, IPS
HSV kategori
Identifikatorer
URN: urn:nbn:se:liu:diva-166340ISRN: LIU-IDA/LITH-EX-A--20/032--SEOAI: oai:DiVA.org:liu-166340DiVA, id: diva2:1438905
Eksternt samarbeid
Senion AB
Fag / kurs
Information Technology
Presentation
2020-06-08, 13:15 (engelsk)
Veileder
Examiner
Tilgjengelig fra: 2020-06-11 Laget: 2020-06-11 Sist oppdatert: 2020-06-11bibliografisk kontrollert

Open Access i DiVA

fulltext(3748 kB)1905 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 3748 kBChecksum SHA-512
921ab627e772350e2626edd732eaf2579a26dace9798f59fe11942437d6ab6dff49044abf47579085bec28ed909ce6733ec0144f8158d67a324412278e022611
Type fulltextMimetype application/pdf

Søk i DiVA

Av forfatter/redaktør
Aaro, Gustav
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 1912 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

urn-nbn

Altmetric

urn-nbn
Totalt: 2457 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf