liu.seSearch for publications in DiVA
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Controlling a Hydraulic System using Reinforcement Learning: Implementation and validation of a DQN-agent on a hydraulic Multi-Chamber cylinder system
Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Fluida och mekatroniska system.
Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Fluida och mekatroniska system.
2021 (engelsk)Independent thesis Advanced level (degree of Master (Two Years)), 20 poäng / 30 hpOppgave
Abstract [en]

One of the largest energy losses in an excavator is the compensation loss. In a hydraulic load sensing system where one pump supplies multiple actuators, these compensation losses are inevitable. To minimize the compensation losses the use of a multi chamber cylinder can be used, which can control the load pressure by activate its chambers in different combinations and in turn minimize the compensation losses. 

For this proposed architecture, the control of the multi chamber cylinder systems is not trivial. The possible states of the system, due to the number of combinations, makes conventional control, like a rule based strategy, unfeasible. Therefore, is the reinforcement learning a promising approach to find an optimal control. 

A hydraulic system was modeled and validated against a physical one, as a base for the reinforcement learning to learn in simulation environment. A satisfactory model was achieved, accurately modeled the static behavior of the system but lacks some dynamics. 

A Deep Q-Network agent was used which successfully managed to select optimal combinations for given loads when implemented in the physical test rig, even though the simulation model was not perfect.

sted, utgiver, år, opplag, sider
2021. , s. 67
Emneord [en]
Gear selection, reinforcement learning, machine learning, DQN, neural network, multi chamber cylinder, Digital hydraulics, hydraulics, Matlab, Simulink, Hopsan, hydraulic system validation
HSV kategori
Identifikatorer
URN: urn:nbn:se:liu:diva-177216ISRN: LIU-IEI-TEK-A--21/04015–SEOAI: oai:DiVA.org:liu-177216DiVA, id: diva2:1571659
Eksternt samarbeid
Volvo CE
Fag / kurs
Fluid and Mechanical Engineering Systems
Presentation
2021-06-09, Online, Linköping, 22:47 (engelsk)
Veileder
Examiner
Tilgjengelig fra: 2021-06-23 Laget: 2021-06-22 Sist oppdatert: 2021-06-23bibliografisk kontrollert

Open Access i DiVA

fulltext(8923 kB)906 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 8923 kBChecksum SHA-512
450c7081b5ef1b9ba1a7c9c51e290a6170cee2ff1fbc2122fbd34c3f450db11ec48777203b677ab4999cf8498e360a6fbe27594c6aa4c1ef5ae460348595c042
Type fulltextMimetype application/pdf

Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 913 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

urn-nbn

Altmetric

urn-nbn
Totalt: 1405 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf