liu.seSearch for publications in DiVA
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Dataset and code for "FK-means: Automatic Atrial Fibrosis Segmentation using Fractal-guided K-means Clustering with Voronoi-Clipping Feature Extraction of Anatomical Structures": FKmeans for fibrosis segmentation
Linköpings universitet, Institutionen för hälsa, medicin och vård, Avdelningen för diagnostik och specialistmedicin. Linköpings universitet, Medicinska fakulteten.ORCID-id: 0000-0001-6491-2955
Linköpings universitet, Institutionen för hälsa, medicin och vård, Avdelningen för diagnostik och specialistmedicin. Linköpings universitet, Medicinska fakulteten.ORCID-id: 0000-0001-6142-3005
Linköpings universitet, Institutionen för hälsa, medicin och vård, Avdelningen för diagnostik och specialistmedicin. Linköpings universitet, Medicinska fakulteten. Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV. Region Östergötland, Hjärtcentrum, Fysiologiska kliniken US.ORCID-id: 0000-0003-2198-9690
2023 (engelsk)DatasetAlternativ tittel
FKmeans (engelsk)
Abstract [en]

Assessment of left atrial (LA) fibrosis from late gadolinium enhancement (LGE) magnetic resonance imaging (MRI) adds to the management of patients with atrial fibrillation (AF). However, accurate assessment of fibrosis in the LA wall remains challenging. Excluding anatomical structures in the LA proximity using clipping techniques can reduce misclassification of LA fibrosis. A novel FK-means approach for combined automatic clipping and automatic fibrosis segmentation was developed. This approach combines a feature-based Voronoi diagram with a hierarchical 3D K-means fractal-based method. The proposed automatic Voronoi clipping method was applied on LGE MRI data and achieved a Dice score of 0.75, similar as the score obtained by a deep learning method (3D UNet) for clipping (0.74). The automatic fibrosis segmentation method, which utilizes the Voronoi clipping method, achieved a Dice score of 0.76. This outperformed a 3D U-Net method for clipping and fibrosis classification, which had a Dice score of 0.69. Moreover, the proposed automatic fibrosis segmentation method achieved a Dice score of 0.90, using manual clipping of anatomical structures. The findings suggest that the automatic FK-means analysis approach enables reliable LA fibrosis segmentation and that clipping of anatomical structures in the atrial proximity can add to the assessment of atrial fibrosis. 

sted, utgiver, år
Linköping University Electronic Press, 2023.
Version
Version 1.0
Emneord [en]
Fibrosis segmentation, Left atrium, Pulmonary veins, Mitral valve, Clipping, K-means, Deep learning
HSV kategori
Identifikatorer
URN: urn:nbn:se:liu:diva-199036DOI: 10.48360/m803-yp37OAI: oai:DiVA.org:liu-199036DiVA, id: diva2:1810436
Merknad

For access to data and code please contact datamanagement@liu.se for further information.

Tilgjengelig fra: 2023-11-08 Laget: 2023-11-08 Sist oppdatert: 2025-02-10

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Person

Henningsson, MarkusCarlhäll, Carl-Johan

Søk i DiVA

Av forfatter/redaktør
Firouznia, MarjanHenningsson, MarkusCarlhäll, Carl-Johan
Av organisasjonen
Firouznia, M., Henningsson, M. & Carlhäll, C. (2023). FK-means: automatic atrial fibrosis segmentation using fractal-guided K-means clustering with Voronoi-clipping feature extraction of anatomical structures. Interface Focus, 13(6), Article ID 20230033.

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 766 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf