liu.seSök publikationer i DiVA
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Gaussian Process Based Motion Pattern Recognition with Sequential Local Models
Linköpings universitet, Institutionen för datavetenskap, Artificiell intelligens och integrerade datorsystem. Linköpings universitet, Tekniska fakulteten.ORCID-id: 0000-0002-8546-4431
Linköpings universitet, Institutionen för datavetenskap, Artificiell intelligens och integrerade datorsystem. Linköpings universitet, Tekniska fakulteten.
2018 (Engelska)Ingår i: 2018 IEEE Intelligent Vehicles Symposium (IV), 2018Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

Conventional trajectory-based vehicular traffic analysis approaches work well in simple environments such as a single crossing but they do not scale to more structurally complex environments such as networks of interconnected crossings (e.g. urban road networks). Local trajectory models are necessary to cope with the multi-modality of such structures, which in turn introduces new challenges. These larger and more complex environments increase the occurrences of non-consistent lack of motion and self-overlaps in observed trajectories which impose further challenges. In this paper we consider the problem of motion pattern recognition in the setting of sequential local motion pattern models. That is, classifying sub-trajectories from observed trajectories in accordance with which motion pattern that best explains it. We introduce a Gaussian process (GP) based modeling approach which outperforms the state-of-the-art GP based motion pattern approaches at this task. We investigate the impact of varying local model overlap and the length of the observed trajectory trace on the classification quality. We further show that introducing a pre-processing step filtering out stops from the training data significantly improves the classification performance. The approach is evaluated using real GPS position data from city buses driving in urban areas for extended periods of time.

Ort, förlag, år, upplaga, sidor
2018.
Nyckelord [en]
Motion Pattern Recognition, Situation Analysis and Planning, Traffic Flow and Management, Vision Sensing and Perception, Autonomous Driving
Nationell ämneskategori
Datavetenskap (datalogi) Datorseende och robotik (autonoma system)
Identifikatorer
URN: urn:nbn:se:liu:diva-148724OAI: oai:DiVA.org:liu-148724DiVA, id: diva2:1220012
Konferens
Intelligent Vehicles Symposium 2018
Projekt
CUGSVRCADICSELLIITWASP
Forskningsfinansiär
CUGS (National Graduate School in Computer Science)Tillgänglig från: 2018-06-18 Skapad: 2018-06-18 Senast uppdaterad: 2018-12-04

Open Access i DiVA

Fulltext saknas i DiVA

Personposter BETA

Tiger, MattiasHeintz, Fredrik

Sök vidare i DiVA

Av författaren/redaktören
Tiger, MattiasHeintz, Fredrik
Av organisationen
Artificiell intelligens och integrerade datorsystemTekniska fakulteten
Datavetenskap (datalogi)Datorseende och robotik (autonoma system)

Sök vidare utanför DiVA

GoogleGoogle Scholar

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 429 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf