liu.seSök publikationer i DiVA
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Multifunctional Nanocellulose Composite Materials
Linköpings universitet, Institutionen för fysik, kemi och biologi, Biofysik och bioteknik. Linköpings universitet, Tekniska fakulteten.
2023 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Nanoparticles (NPs) are particles with more than one dimension between 1 and 100 nm. Because of their small size, they typically display different physical and chemical properties than the corresponding bulk materials. NPs have been used in many different applications, such as in electronics, optics, catalysis, and in biomedicine. Due to their colloidal nature, NPs are often immobilized on a solid substrate, such as glass or polymer-based materials, including biopolymers. Nanocellulose is a biopolymerbased nanomaterial that can be obtained from plants or bacterial biofilms. They can be processed into thin and highly hydrated films with high mechanical strength and can serve as a versatile substrate for NPs. Bacterial cellulose (BC) is also an interesting material for generating wound dressings. The combination of NPs and BC results in soft and flexible nanocomposites (BC-NPs) that can demonstrate novel properties and improve the functionality of wound dressings. 

BC-NP nanocomposites have previously been obtained by impregnating BC with the reactants needed for synthesis of the NPs and allowing the reaction to proceed in situ, inside and on the surface of the BC. This strategy limits the possibilities to control NP geometry and NP concentration and make synthesis of nanocomposites with more sophisticated compositions very challenging. In addition, the synthesis conditions used can potentially have negative effects on the properties of BC. 

The work presented in this thesis shows the possibility to produce well-defined, tunable BC-NP nanocomposites using self-assembly under very benign conditions that enable functionalization of BC with a wide range of different types of NPs. In addition to exploring the self-assembly process and the physical properties of these new BC-NP composites, several different applications were investigated. The functionalization of BC with gold nanoparticles (AuNPs) of different sizes and geometries was demonstrated. The resulting materials were used for development of a new sensor transduction technology, exploiting the optical response upon mechanical compression to detect biomolecules. BC-AuNP nanocomposites were also developed for monitoring of protease activity of wound pathogens, for catalysis, and for fabrication of ultra-black materials with unique absorption and scattering profiles of light in the visible and near infrared spectral range. In addition, the self-assembly process could be adopted for generating BC-mesoporous silica nanoparticles (MSNs) nanocomposite wound dressings. The resulting high surface area materials could be used as carriers for pH sensitive dyes. The pH-responsive BC-MSNs demonstrated adequate biocompatibility and allowed for monitoring of wound pH and for assessment of wound status. 

The strategies for functionalization of BC with inorganic NPs that was developed and explored in this thesis are highly versatile and allow for fabrication of a wide range of multifunctional nanocomposite materials. 

Ort, förlag, år, upplaga, sidor
Linköping: Linköping University Electronic Press, 2023. , s. 60
Serie
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 2292
Nyckelord [en]
nanomaterials, nanocomposites, bacterial cellulose, wound care, plasmonics, catalysis
Nationell ämneskategori
Nanoteknik Biofysik
Identifikatorer
URN: urn:nbn:se:liu:diva-191590DOI: 10.3384/9789180750622ISBN: 9789180750615 (tryckt)ISBN: 9789180750622 (digital)OAI: oai:DiVA.org:liu-191590DiVA, id: diva2:1733407
Disputation
2023-03-03, Nobel (BL32), B-huset, Campus Valla, Linköping, 13:15
Opponent
Handledare
Tillgänglig från: 2023-02-02 Skapad: 2023-02-02 Senast uppdaterad: 2023-03-15Bibliografiskt granskad
Delarbeten
1. Self-Assembly of Mechanoplasmonic Bacterial Cellulose-Metal Nanoparticle Composites
Öppna denna publikation i ny flik eller fönster >>Self-Assembly of Mechanoplasmonic Bacterial Cellulose-Metal Nanoparticle Composites
Visa övriga...
2020 (Engelska)Ingår i: Advanced Functional Materials, ISSN 1616-301X, E-ISSN 1616-3028, Vol. 30, nr 40, artikel-id 2004766Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Nanocomposites of metal nanoparticles (NPs) and bacterial nanocellulose (BC) enable fabrication of soft and biocompatible materials for optical, catalytic, electronic, and biomedical applications. Current BC-NP nanocomposites are typically prepared by in situ synthesis of the NPs or electrostatic adsorption of surface functionalized NPs, which limits possibilities to control and tune NP size, shape, concentration, and surface chemistry and influences the properties and performance of the materials. Here a self-assembly strategy is described for fabrication of complex and well-defined BC-NP composites using colloidal gold and silver NPs of different sizes, shapes, and concentrations. The self-assembly process results in nanocomposites with distinct biophysical and optical properties. In addition to antibacterial materials and materials with excellent senor performance, materials with unique mechanoplasmonic properties are developed. The homogenous incorporation of plasmonic gold NPs in the BC enables extensive modulation of the optical properties by mechanical stimuli. Compression gives rise to near-field coupling between adsorbed NPs, resulting in tunable spectral variations and enhanced broadband absorption that amplify both nonlinear optical and thermoplasmonic effects and enables novel biosensing strategies.

Ort, förlag, år, upplaga, sidor
WILEY-V C H VERLAG GMBH, 2020
Nyckelord
antimicrobials; bacterial cellulose; gold nanoparticles; nanocomposite; sensors
Nationell ämneskategori
Materialkemi
Identifikatorer
urn:nbn:se:liu:diva-168770 (URN)10.1002/adfm.202004766 (DOI)000557380700001 ()
Anmärkning

Funding Agencies|Swedish Foundation for Strategic Research (SFF)Swedish Foundation for Strategic Research [FFL15-0026, RMX18-0039]; Swedish Government Strategic Research Area in Materials Science on Functional Materials at Linkoping University [2009-00971]; VinnovaVinnova [2016-05156]; Knut and Alice Wallenberg FoundationKnut & Alice Wallenberg Foundation [KAW 2016.0231]; Swedish Research CouncilSwedish Research Council [2017-05178, 2015-05002]; Spanish Ministerio de Ciencia, Innovacion y Universidades (MICINN) [MAT2016-77391-R]; Severo Ochoa Centres of Excellence programme - Spanish Research Agency (AEI) [SEV-2017-0706]

Tillgänglig från: 2020-08-31 Skapad: 2020-08-31 Senast uppdaterad: 2023-05-24
2. Nanocellulose composite wound dressings for real-time pH wound monitoring
Öppna denna publikation i ny flik eller fönster >>Nanocellulose composite wound dressings for real-time pH wound monitoring
Visa övriga...
2023 (Engelska)Ingår i: Materials Today Bio, ISSN 2590-0064, Vol. 19, artikel-id 100574Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

The skin is the largest organ of the human body. Wounds disrupt the functions of the skin and can have catastrophic consequences for an individual resulting in significant morbidity and mortality. Wound infections are common and can substantially delay healing and can result in non-healing wounds and sepsis. Early diagnosis and treatment of infection reduce risk of complications and support wound healing. Methods for monitoring of wound pH can facilitate early detection of infection. Here we show a novel strategy for integrating pH sensing capabilities in state-of-the-art hydrogel-based wound dressings fabricated from bacterial nanocellulose (BC). A high surface area material was developed by self-assembly of mesoporous silica nanoparticles (MSNs) in BC. By encapsulating a pH-responsive dye in the MSNs, wound dressings for continuous pH sensing with spatiotemporal resolution were developed. The pH responsive BC-based nanocomposites demonstrated excellent wound dressing properties, with respect to conformability, mechanical properties, and water vapor transmission rate. In addition to facilitating rapid colorimetric assessment of wound pH, this strategy for generating functional BC-MSN nanocomposites can be further be adapted for encapsulation and release of bioactive compounds for treatment of hard-to-heal wounds, enabling development of novel wound care materials.

Ort, förlag, år, upplaga, sidor
Elsevier, 2023
Nyckelord
Bacterial nanocellulose, Wound dressing, pH sensor, Infection, Mesoporous silica nanoparticles
Nationell ämneskategori
Biomaterialvetenskap
Identifikatorer
urn:nbn:se:liu:diva-192408 (URN)10.1016/j.mtbio.2023.100574 (DOI)000944392500001 ()36852226 (PubMedID)
Anmärkning

Funding agencies: This work was supported by the Swedish Foundation for Strategic Research (SFF) grant no. FFL15-0026 and framework grant RMX18-0039 (HEALiX), the Swedish Government Strategic Research Area in Materials Science on Functional Materials at Linköping University (Faculty Grant SFO-Mat-LiU no. 2009–00971), the competence center FunMat-II that is financially supported by Vinnova (grant no. 2016-05156), the Knut and Alice Wallenberg Foundation (grant no. KAW 2016.0231), the Swedish Research Council (VR) (grant no. 2021-04427) and Swedish strategic research program Bio4Energy. Illustrations were created with BioRender.com. We thank S2Medical AB, Linköping, Sweden, for providing BC.

Tillgänglig från: 2023-03-15 Skapad: 2023-03-15 Senast uppdaterad: 2024-05-01Bibliografiskt granskad

Open Access i DiVA

fulltext(19711 kB)186 nedladdningar
Filinformation
Filnamn FULLTEXT03.pdfFilstorlek 19711 kBChecksumma SHA-512
6193164a04583a1308c4db337aa1677c09fb0a6e97e3f0fa037ca0e2359b9754feb249ee9e42326adbf1afe777bcb3aa9b9a2e76f3ea969f235a49c47a8c8e64
Typ fulltextMimetyp application/pdf
Beställ online >>

Övriga länkar

Förlagets fulltext

Person

Eskilson, Olof

Sök vidare i DiVA

Av författaren/redaktören
Eskilson, Olof
Av organisationen
Biofysik och bioteknikTekniska fakulteten
NanoteknikBiofysik

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 187 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
isbn
urn-nbn

Altmetricpoäng

doi
isbn
urn-nbn
Totalt: 1575 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf