liu.seSök publikationer i DiVA
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Efficient prediction of elastic properties of Ti0.5Al0.5N at elevated temperature using machine learning interatomic potential
Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten.ORCID-id: 0000-0001-6373-5109
Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten.
Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten.
Skolkovo Inst Sci & Technol, Russia.
Visa övriga samt affilieringar
2021 (Engelska)Ingår i: Thin Solid Films, ISSN 0040-6090, E-ISSN 1879-2731, Vol. 737, artikel-id 138927Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

High-temperature thermal stability, elastic moduli and anisotropy are among the key properties, which are used in selecting materials for cutting and machining applications. The high computational demand of ab initio molecular dynamics (AIMD) simulations in calculating elastic constants of alloys promotes the development of alternative approaches. Machine learning concept grasped as hybride classical molecular dynamics and static first principles calculations have several orders less computational costs. Here we prove the applicability of the concept considering the recently developed moment tensor potentials (MTP), where moment tensors are used as materials descriptors which can be trained to predict the elastic constants of the prototypical hard coating alloy, Ti0.5Al0.5N at 900 K. We demonstrate excellent agreement between classical molecular dynamics simulations with MTPs and AIMD simulations. Moreover, we show that using MTPs one overcomes the inaccuracy issues present in approximate AIMD simulations of elastic constants of alloys.

Ort, förlag, år, upplaga, sidor
Elsevier Science SA , 2021. Vol. 737, artikel-id 138927
Nyckelord [en]
Machine learning; Interatomic potential; Elastic tensor; Finite temperature; Alloys
Nationell ämneskategori
Teoretisk kemi
Identifikatorer
URN: urn:nbn:se:liu:diva-180901DOI: 10.1016/j.tsf.2021.138927ISI: 000710805000004OAI: oai:DiVA.org:liu-180901DiVA, id: diva2:1609652
Anmärkning

Funding Agencies|Knut and Alice Wallenberg Foundation (Wallenberg Scholar Grant) [KAW-2018.0194]; Swedish Government Strategic Research Areas in Materials Science on Functional Materials at Linkoping University [2009 00971]; SeRCAgency for Science Technology & Research (ASTAR); Swedish Research Council (VR)Swedish Research Council [2019-05600]; VINN Excellence Center Functional Nanoscale Materials (FunMat-2) Grant [2016-05156]; RFBRRussian Foundation for Basic Research (RFBR) [20-53-12012]; Swedish Research CouncilSwedish Research CouncilEuropean Commission [2016-07213]

Tillgänglig från: 2021-11-09 Skapad: 2021-11-09 Senast uppdaterad: 2024-04-02
Ingår i avhandling
1. Combining ab‐initio and machine learning techniques for theoretical simulations of hard nitrides at extreme conditions
Öppna denna publikation i ny flik eller fönster >>Combining ab‐initio and machine learning techniques for theoretical simulations of hard nitrides at extreme conditions
2024 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

In this thesis I focus on combining the high accuracy of first-principles calculations with modern machine learning methods to make large scale investigations of industrially relevant nitride systems reliable and computationally viable. I study the electronic, thermodynamic and mechanical properties of two families of compounds: Ti1−xAlxN alloys at the operational conditions of industrial cutting tools and ReNx systems at crushing pres-sures comparable to inner earth core conditions. Standard first-principles simulations of materials are usually carried out at zero temperature and pressure, and while many state-of-the-art approaches can take these effects into account, they are usually accompanied by a substantial increase in computational demand. In this thesis I therefore explore the possiblities of studying materials at extreme conditions using machine learning methods with extraordinary efficiency without loss of calculational accuracy. 

Ti1−xAlxN alloy coatings exhibit exceptional properties due to their inherent ability to spinodally decompose at elevated temperature, leading to age-hardening. Since the cubic B1 phase of Ti1−xAlxN is well-studied, available high-accuracy first-principles data served as both a benchmark and data set on which to train a machine learning interatomic potential. Using the reliable moment tensor potentials, an investigation of the accuracy and efficiency of this approach was carried out in a machine learning study. Building upon the success of this technique, implementation of a learning-on-the-fly (active learning) methodology into a workflow to determine accurate material properties with minimal prior knowledge showed great promise, while maintaining a computational demand up to two orders of magnitude lower than comparable first-principles approaches. Investigations of properties of industrially lesser desired, but sometimes present hexagonal alloy phases of Ti1−xAlxN are also included in this thesis, since knowledge and understanding of all competing phases can help guide development toward improving cutting tool lifetime and performance. Furthermore, while w-Ti1−xAlxN may not be able to compete with its cubic counterpart in terms of hardness, it shows promise for other applications due to its electronic and elastic properties. 

Metastable ReNx phases are high energy materials due to their covalent N-N and Re-N bonds, leading to exceptional mechanical and electronic properties. Just like diamond, the hardest and arguably most famous metastable mate-rial naturally occurring on earth, they are stabilized by extreme pressures and high temperatures, but can be quenched to ambient conditions. Understanding the formation and existence of these non-equilibrium compounds may hold the key to unlocking a new generation of hard materials. In this thesis, all currently known phases of ReNx compounds have been investigated, encompassing both experimentally observed and theoretically suggested structures. Investigations of the convex hulls across a broad pressure range were carried out, coupled with calculations of phonons in the proposed crystals to determine both energetic and dynamical stability. Overall, the studies included in this thesis focused mainly on investigation of the ground state of ReN2 at higher pressure, where experimental results were deviating from earlier theoretical predictions. Additional research focused on specifically exploring properties and stability of novel ReN6 at synthesis conditions using the active learning workflow to train an interatomic potential. 

Ort, förlag, år, upplaga, sidor
Linköping: Linköping University Electronic Press, 2024. s. 87
Serie
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 2375
Nationell ämneskategori
Den kondenserade materiens fysik
Identifikatorer
urn:nbn:se:liu:diva-201992 (URN)10.3384/9789180755320 (DOI)9789180755313 (ISBN)9789180755320 (ISBN)
Disputation
2024-04-19, Planck, F-building, Campus Valla, Linköping, 10:15 (Engelska)
Opponent
Handledare
Tillgänglig från: 2024-04-02 Skapad: 2024-04-02 Senast uppdaterad: 2024-04-02Bibliografiskt granskad

Open Access i DiVA

fulltext(552 kB)173 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 552 kBChecksumma SHA-512
d5a947fd5a481eecda46a05cbb3e9c4735948e1886c4b9c51d376711d0b4e1b82c166e31e62087d4e17328d88028697141eb201eb75f068cf3fda36f0849e688
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltext

Sök vidare i DiVA

Av författaren/redaktören
Tasnadi, FerencBock, FlorianTidholm, JohanAbrikosov, Igor
Av organisationen
Teoretisk FysikTekniska fakulteten
I samma tidskrift
Thin Solid Films
Teoretisk kemi

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 174 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 173 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf