liu.seSearch for publications in DiVA

Jump to content
Change search PrimeFaces.cw("Fieldset","widget_formSmash_search",{id:"formSmash:search",widgetVar:"widget_formSmash_search",toggleable:true,collapsed:true,toggleSpeed:500,behaviors:{toggle:function(ext) {PrimeFaces.ab({s:"formSmash:search",e:"toggle",f:"formSmash",p:"formSmash:search"},ext);}}});
$(function(){PrimeFaces.cw("Dialog","citationDialog",{id:"formSmash:upper:j_idt193",widgetVar:"citationDialog",width:"800",height:"600"});});
$(function(){PrimeFaces.cw("ImageSwitch","widget_formSmash_j_idt992",{id:"formSmash:j_idt992",widgetVar:"widget_formSmash_j_idt992",fx:"fade",speed:500,timeout:8000},"imageswitch");});
#### Open Access in DiVA

Order online >>
#### Other links

Publisher's full text
#### Authority records

Uwamariya, Denise
#### Search in DiVA

##### By author/editor

Uwamariya, Denise
##### By organisation

Applied MathematicsFaculty of Science & Engineering
On the subject

Probability Theory and Statistics
#### Search outside of DiVA

GoogleGoogle Scholar$(function(){PrimeFaces.cw('Chart','widget_formSmash_j_idt1179_0_downloads',{id:'formSmash:j_idt1179:0:downloads',type:'bar',responsive:true,data:[[60,137,22,4,11]],title:"Downloads of File (FULLTEXT01)",axes:{yaxis: {label:"",min:0,max:140,renderer:$.jqplot.LinearAxisRenderer,tickOptions:{angle:0}},xaxis: {label:"",renderer:$.jqplot.CategoryAxisRenderer,tickOptions:{angle:-90}}},series:[{label:'diva2:1754101'}],ticks:["May -23","Jun -23","Jul -23","Aug -23","Sep -23"],orientation:"vertical",barMargin:12,datatip:true,datatipFormat:"<span style=\"display:none;\">%2$d</span><span>%2$d</span>"},'charts');}); Total: 234 downloads$(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_j_idt1182",{id:"formSmash:j_idt1182",widgetVar:"widget_formSmash_j_idt1182",target:"formSmash:downloadLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade"});}); findCitings = function() {PrimeFaces.ab({s:"formSmash:j_idt1184",f:"formSmash",u:"formSmash:citings",pa:arguments[0]});};$(function() {findCitings();}); $(function(){PrimeFaces.cw('Chart','widget_formSmash_visits',{id:'formSmash:visits',type:'bar',responsive:true,data:[[1061,92,15,5,1]],title:"Visits for this publication",axes:{yaxis: {label:"",min:0,max:1070,renderer:$.jqplot.LinearAxisRenderer,tickOptions:{angle:0}},xaxis: {label:"",renderer:$.jqplot.CategoryAxisRenderer,tickOptions:{angle:-90}}},series:[{label:'diva2:1754101'}],ticks:["May -23","Jun -23","Jul -23","Aug -23","Sep -23"],orientation:"vertical",barMargin:12,datatip:true,datatipFormat:"<span style=\"display:none;\">%2$d</span><span>%2$d</span>"},'charts');}); Total: 1174 hits
$(function(){PrimeFaces.cw("Dialog","citationDialog",{id:"formSmash:lower:j_idt1278",widgetVar:"citationDialog",width:"800",height:"600"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt171",{id:"formSmash:upper:j_idt171",widgetVar:"widget_formSmash_upper_j_idt171",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt172_j_idt174",{id:"formSmash:upper:j_idt172:j_idt174",widgetVar:"widget_formSmash_upper_j_idt172_j_idt174",target:"formSmash:upper:j_idt172:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Large deviations of condition numbers and extremal eigenvalues of random matricesPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
2023 (English)Doctoral thesis, comprehensive summary (Other academic)
##### Abstract [en]

##### Place, publisher, year, edition, pages

Linköping: Linköping University Electronic Press, 2023. , p. 27
##### Series

Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 2313
##### National Category

Probability Theory and Statistics
##### Identifiers

URN: urn:nbn:se:liu:diva-193345DOI: 10.3384/9789180751575ISBN: 9789180751568 (print)ISBN: 9789180751575 (electronic)OAI: oai:DiVA.org:liu-193345DiVA, id: diva2:1754101
##### Public defence

2023-06-01, C2, C Building, Campus Valla, Linköping, 13:15 (English)
##### Opponent

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt482",{id:"formSmash:j_idt482",widgetVar:"widget_formSmash_j_idt482",multiple:true});
##### Supervisors

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt488",{id:"formSmash:j_idt488",widgetVar:"widget_formSmash_j_idt488",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt494",{id:"formSmash:j_idt494",widgetVar:"widget_formSmash_j_idt494",multiple:true});
##### Note

##### List of papers

Random matrix theory found applications in many areas, for instance in statistics random matrices are used to analyse multivariate data and their eigenvalues are used in hypothesis testing. Spectral properties of random matrices have been studied extensively in the literature dealing with both the bulk case (involving all the eigenvalues) and the extremal case (addressing the maximal and minimal eigenvalues). In this thesis two types of sequences of random matrices are considered: the first type is the sequence of sample covariance matrices, and the second type is the sequence of β-Laguerre (or Wishart) ensembles, for which large deviations of their extremal cases are studied. These two types of sequences of random matrices contain the classical Wishart matrices.

The thesis can be divided into two parts. The first part is on the study of large deviations of condition numbers defined as ratios of maximal and the minimal eigenvalues. This is done based on suitable analysis and estimates of the joint density function of all eigenvalues. The second part deals with large deviations of individual maximal and minimal eigenvalue, and the approach consists of suitable eigenvalue concentration inequalities and Laplace’s method.

It is remarked that for those two types of sequences of random matrices considered in this thesis, two scenarios are investigated: either one of the dimension size and the sample size is much larger than the other one, or the two sizes are comparable.

Funding agency: Swedish International Development Cooperation Agency (Sida) through Rwanda-Sweden bilateral programme

Available from: 2023-05-02 Created: 2023-05-02 Last updated: 2023-05-12Bibliographically approved1. Large-deviation asymptotics of condition numbers of random matrices$(function(){PrimeFaces.cw("OverlayPanel","overlay1615337",{id:"formSmash:j_idt543:0:j_idt547",widgetVar:"overlay1615337",target:"formSmash:j_idt543:0:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

2. Large deviations of extremal eigenvalues of sample covariance matrices$(function(){PrimeFaces.cw("OverlayPanel","overlay1756503",{id:"formSmash:j_idt543:1:j_idt547",widgetVar:"overlay1756503",target:"formSmash:j_idt543:1:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

doi
isbn
urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt1207",{id:"formSmash:j_idt1207",widgetVar:"widget_formSmash_j_idt1207",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1260",{id:"formSmash:lower:j_idt1260",widgetVar:"widget_formSmash_lower_j_idt1260",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1261_j_idt1263",{id:"formSmash:lower:j_idt1261:j_idt1263",widgetVar:"widget_formSmash_lower_j_idt1261_j_idt1263",target:"formSmash:lower:j_idt1261:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});