liu.seSearch for publications in DiVA

Jump to content
Change search PrimeFaces.cw("Fieldset","widget_formSmash_search",{id:"formSmash:search",widgetVar:"widget_formSmash_search",toggleable:true,collapsed:true,toggleSpeed:500,behaviors:{toggle:function(ext) {PrimeFaces.ab({s:"formSmash:search",e:"toggle",f:"formSmash",p:"formSmash:search"},ext);}}});
$(function(){PrimeFaces.cw("Dialog","citationDialog",{id:"formSmash:upper:j_idt206",widgetVar:"citationDialog",width:"800",height:"600"});});
$(function(){PrimeFaces.cw("ImageSwitch","widget_formSmash_j_idt1119",{id:"formSmash:j_idt1119",widgetVar:"widget_formSmash_j_idt1119",fx:"fade",speed:500,timeout:8000},"imageswitch");});
#### Open Access in DiVA

Order online >>
#### Other links

Publisher's full text
#### Authority records

Achieng, Pauline
#### Search in DiVA

##### By author/editor

Achieng, Pauline
##### By organisation

Analysis and Mathematics EducationFaculty of Science & Engineering
On the subject

Computational Mathematics
#### Search outside of DiVA

GoogleGoogle Scholar$(function(){PrimeFaces.cw('Chart','widget_formSmash_j_idt1326_0_downloads',{id:'formSmash:j_idt1326:0:downloads',type:'bar',responsive:true,data:[[24]],title:"Downloads of File (FULLTEXT02)",axes:{yaxis: {label:"",min:0,max:30,renderer:$.jqplot.LinearAxisRenderer,tickOptions:{angle:0}},xaxis: {label:"",renderer:$.jqplot.CategoryAxisRenderer,tickOptions:{angle:-90}}},series:[{label:'diva2:1811372'}],ticks:["Nov -23"],orientation:"vertical",barMargin:100,datatip:true,datatipFormat:"<span style=\"display:none;\">%2$d</span><span>%2$d</span>"},'charts');}); Total: 24 downloads$(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_j_idt1329",{id:"formSmash:j_idt1329",widgetVar:"widget_formSmash_j_idt1329",target:"formSmash:downloadLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade"});}); findCitings = function() {PrimeFaces.ab({s:"formSmash:j_idt1332",f:"formSmash",u:"formSmash:citings",pa:arguments[0]});};$(function() {findCitings();}); $(function(){PrimeFaces.cw('Chart','widget_formSmash_visits',{id:'formSmash:visits',type:'bar',responsive:true,data:[[582]],title:"Visits for this publication",axes:{yaxis: {label:"",min:0,max:590,renderer:$.jqplot.LinearAxisRenderer,tickOptions:{angle:0}},xaxis: {label:"",renderer:$.jqplot.CategoryAxisRenderer,tickOptions:{angle:-90}}},series:[{label:'diva2:1811372'}],ticks:["Nov -23"],orientation:"vertical",barMargin:100,datatip:true,datatipFormat:"<span style=\"display:none;\">%2$d</span><span>%2$d</span>"},'charts');}); Total: 582 hits
$(function(){PrimeFaces.cw("Dialog","citationDialog",{id:"formSmash:lower:j_idt1433",widgetVar:"citationDialog",width:"800",height:"600"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt186",{id:"formSmash:upper:j_idt186",widgetVar:"widget_formSmash_upper_j_idt186",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt187_j_idt189",{id:"formSmash:upper:j_idt187:j_idt189",widgetVar:"widget_formSmash_upper_j_idt187_j_idt189",target:"formSmash:upper:j_idt187:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Reconstruction of solutions of Cauchy problems for elliptic equations in bounded and unbounded domains using iterative regularization methodsPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
2023 (English)Doctoral thesis, comprehensive summary (Other academic)
##### Abstract [en]

##### Place, publisher, year, edition, pages

Linköping: Linköping University Electronic Press, 2023. , p. 17
##### Series

Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 2352
##### National Category

Computational Mathematics
##### Identifiers

URN: urn:nbn:se:liu:diva-199096DOI: 10.3384/9789180753715ISBN: 9789180753708 (print)ISBN: 9789180753715 (electronic)OAI: oai:DiVA.org:liu-199096DiVA, id: diva2:1811372
##### Public defence

2023-12-08, BL32 (Nobel), B Building, Campus Valla, Linköping, 13:15 (English)
##### Opponent

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt530",{id:"formSmash:j_idt530",widgetVar:"widget_formSmash_j_idt530",multiple:true});
##### Supervisors

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt538",{id:"formSmash:j_idt538",widgetVar:"widget_formSmash_j_idt538",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt547",{id:"formSmash:j_idt547",widgetVar:"widget_formSmash_j_idt547",multiple:true});
##### Note

##### List of papers

Cauchy problems for elliptic equations arise in applications in science and engineering. These problems often involve finding important information about an elliptical system from indirect or incomplete measurements. Cauchy problems for elliptic equations are known to be disadvantaged in the sense that a small pertubation in the input can result in a large error in the output. Regularization methods are usually required in order to be able to find stable solutions. In this thesis we study the Cauchy problem for elliptic equations in both bounded and unbounded domains using iterative regularization methods. In Paper I and II, we focus on an iterative regularization technique which involves solving a sequence of mixed boundary value well-posed problems for the same elliptic equation. The original version of the alternating iterative technique is based on iterations alternating between Dirichlet-Neumann and Neumann-Dirichlet boundary value problems. This iterative method is known to possibly work for Helmholtz equation. Instead we study a modified version based on alternating between Dirichlet-Robin and Robin-Dirichlet boundary value problems. First, we study the Cauchy problem for general elliptic equations of second order with variable coefficients in a limited domain. Then we extend to the case of unbounded domains for the Cauchy problem for Helmholtz equation. For the Cauchy problem, in the case of general elliptic equations, we show that the iterative method, based on Dirichlet-Robin, is convergent provided that parameters in the Robin condition are chosen appropriately. In the case of an unbounded domain, we derive necessary, and sufficient, conditions for convergence of the Robin-Dirichlet iterations based on an analysis of the spectrum of the Laplacian operator, with boundary conditions of Dirichlet and Robin types.

In the numerical tests, we investigate the precise behaviour of the Dirichlet-Robin iterations, for different values of the wave number in the Helmholtz equation, and the results show that the convergence rate depends on the choice of the Robin parameter in the Robin condition. In the case of unbounded domain, the numerical experiments show that an appropriate truncation of the domain and an appropriate choice of Robin parameter in the Robin condition lead to convergence of the Robin-Dirichlet iterations.

In the presence of noise, additional regularization techniques have to implemented for the alternating iterative procedure to converge. Therefore, in Paper III and IV we focus on iterative regularization methods for solving the Cauchy problem for the Helmholtz equation in a semi-infinite strip, assuming that the data contains measurement noise. In addition, we also reconstruct a radiation condition at infinity from the given Cauchy data. For the reconstruction of the radiation condition, we solve a well-posed problem for the Helmholtz equation in a semi-infinite strip. The remaining solution is obtained by solving an ill-posed problem. In Paper III, we consider the ordinary Helmholtz equation and use seperation of variables to analyze the problem. We show that the radiation condition is described by a non-linear well-posed problem that provides a stable oscillatory solution to the Cauchy problem. Furthermore, we show that the ill–posed problem can be regularized using the Landweber’s iterative method and the discrepancy principle. Numerical tests shows that the approach works well.

Paper IV is an extension of the theory from Paper III to the case of variable coefficients. Theoretical analysis of this Cauchy problem shows that, with suitable bounds on the coefficients, can iterative regularization methods be used to stabilize the ill-posed Cauchy problem.

Funding agencies: The International Science Programme (ISP) and the Eastern Africa Universities Mathematics Programme (EAUMP).

Available from: 2023-11-13 Created: 2023-11-13 Last updated: 2023-11-13Bibliographically approved1. Analysis of Dirichlet–Robin Iterations for Solving the Cauchy Problem for Elliptic Equations$(function(){PrimeFaces.cw("OverlayPanel","overlay1479111",{id:"formSmash:j_idt608:0:j_idt616",widgetVar:"overlay1479111",target:"formSmash:j_idt608:0:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

2. Robin-Dirichlet alternating iterative procedure for solving the Cauchy problem for Helmholtz equation in an unbounded domain$(function(){PrimeFaces.cw("OverlayPanel","overlay1744860",{id:"formSmash:j_idt608:1:j_idt616",widgetVar:"overlay1744860",target:"formSmash:j_idt608:1:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

3. Reconstruction of the Radiation Condition and Solution for the Helmholtz Equation in a Semi-infinite Strip from Cauchy Data on an Interior Segment$(function(){PrimeFaces.cw("OverlayPanel","overlay1788778",{id:"formSmash:j_idt608:2:j_idt616",widgetVar:"overlay1788778",target:"formSmash:j_idt608:2:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

doi
isbn
urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt1355",{id:"formSmash:j_idt1355",widgetVar:"widget_formSmash_j_idt1355",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1414",{id:"formSmash:lower:j_idt1414",widgetVar:"widget_formSmash_lower_j_idt1414",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1415_j_idt1418",{id:"formSmash:lower:j_idt1415:j_idt1418",widgetVar:"widget_formSmash_lower_j_idt1415_j_idt1418",target:"formSmash:lower:j_idt1415:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});