Open this publication in new window or tab >>2020 (English)In: Journal of Biomedical Optics, ISSN 1083-3668, E-ISSN 1560-2281, Vol. 25, no 8, article id 082702Article in journal (Refereed) Published
Abstract [en]
Significance: Spatial frequency domain imaging (SFDI) is a quantitative imaging method to measure absorption and scattering of tissue, from which several chromophore concentrations (e.g., oxy-/deoxy-/meth-hemoglobin, melanin, and carotenoids) can be calculated. Employing a method to extract additional spectral bands from RGB components (that we named cross-channels), we designed a handheld SFDI device to account for these pigments, using low-cost, consumer-grade components for its implementation and characterization.
Aim: With only three broad spectral bands (red, green, blue, or RGB), consumer-grade devices are often too limited. We present a methodology to increase the number of spectral bands in SFDI devices that use RGB components without hardware modification.
Approach: We developed a compact low-cost RGB spectral imager using a color CMOS camera and LED-based mini projector. The components’ spectral properties were characterized and additional cross-channel bands were calculated. An alternative characterization procedure was also developed that makes use of low-cost equipment, and its results were compared. The device performance was evaluated by measurements on tissue-simulating optical phantoms and in-vivo tissue. The measurements were compared with another quantitative spectroscopy method: spatial frequency domain spectroscopy (SFDS).
Results: Out of six possible cross-channel bands, two were evaluated to be suitable for our application and were fully characterized (520 ± 20 nm; 556 ± 18 nm). The other four cross-channels presented a too low signal-to-noise ratio for this implementation. In estimating the optical properties of optical phantoms, the SFDI data have a strong linear correlation with the SFDS data (R2 = 0.987, RMSE = 0.006 for μa, R2 = 0.994, RMSE = 0.078 for μs′).
Conclusions: We extracted two additional spectral bands from a commercial RGB system at no cost. There was good agreement between our device and the research-grade SFDS system. The alternative characterization procedure we have presented allowed us to measure the spectral features of the system with an accuracy comparable to standard laboratory equipment.
Place, publisher, year, edition, pages
SPIE - The International Society for Optics and Photonics, 2020
Keywords
multispectral imaging; spatial frequency domain imaging; low-resource settings; digital micromirror device; skin; phantoms
National Category
Medical Engineering
Identifiers
urn:nbn:se:liu:diva-169868 (URN)10.1117/1.JBO.25.8.082702 (DOI)000590144000002 ()32755076 (PubMedID)2-s2.0-85089133009 (Scopus ID)
Funder
Wallenberg Foundations
Note
Funding agencies: Knut and Alice Wallenberg FoundationKnut & Alice Wallenberg Foundation
2020-09-222020-09-222023-11-14Bibliographically approved