liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Solar Heating Modulated by Evaporative Cooling Provides Intermittent Temperature Gradients for Ionic Thermoelectric Supercapacitors
Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering. (Wallenberg Wood Science Center)ORCID iD: 0000-0002-1766-5936
Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.ORCID iD: 0000-0001-5266-6726
Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering. (Wallenberg Wood Science Center)ORCID iD: 0000-0002-3002-3639
2024 (English)In: Advanced Functional Materials, ISSN 1616-301X, E-ISSN 1616-3028Article in journal (Refereed) Epub ahead of print
Abstract [en]

Solar heating is important for many applications but less attractive for concepts requiring intermittent heating, such as ionic thermoelectric supercapacitors (ITESCs). However, the heating process even at constant solar illumination can be converted to temperature oscillations through water infiltration and evaporation. Here, this process is demonstrated for a carbon nanotube-cellulose membrane and used to induce temporally varying temperature gradients across an ITESC, which enables continuous operation through repeated charge and discharge cycles. A temperature variation of 10 K can be generated on the top electrode, which leads to a variation in the temperature difference across the ITESC of 7.5 K. Precise control over charge and discharge durations can be achieved by adjusting the volume and interval of the added water. The concept of temporarily adjusting temperatures by evaporative cooling may be extended to create intermittent heating also for other heat sources that are typically constant. A vertical ionic thermoelectric supercapacitor (ITESC) is driven by intermittent temperature gradients as induced by constant solar heating and periodic evaporative cooling. As shown, a solar absorber provides temperature oscillations on the top electrodes through water infiltration and evaporation. This concept enables continuous operation of ITESCs through repeated charge and discharge cycles. image

Place, publisher, year, edition, pages
WILEY-V C H VERLAG GMBH , 2024.
Keywords [en]
evaporative cooling; intermittent heating; ionic thermoelectric supercapacitor; solar heating; water evaporation
National Category
Energy Engineering
Identifiers
URN: urn:nbn:se:liu:diva-204293DOI: 10.1002/adfm.202407948ISI: 001237443300001OAI: oai:DiVA.org:liu-204293DiVA, id: diva2:1867519
Note

Funding Agencies|Knut and Alice Wallenberg Foundation, Linkoping University, and industry through the Wallenberg Wood Science Center; AForsk Foundation; Swedish Government Strategic Research Area in Materials Science on Functional Materials at Linkoping University [2009 00971]; Swedish Research Council [2018-04037, 2020-00287]

Available from: 2024-06-10 Created: 2024-06-10 Last updated: 2025-05-05
In thesis
1. Opto-Thermal Management for Ionic Thermoelectric Systems
Open this publication in new window or tab >>Opto-Thermal Management for Ionic Thermoelectric Systems
2025 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The transition to sustainable energy systems necessitates innovative approaches to energy generation, conversion, and utilization. This dissertation explores the integration of opto-thermal and ionic thermoelectric effects to develop energy-efficient solutions for thermal management and energy harvesting.

In this thesis, we explore how temperature gradients—established and controlled through opto-thermal processes—can drive ionic thermoelectric energy conversion and be leveraged for practical applications. By integrating solar heating, radiative cooling, and evaporative cooling effects, we aim to develop a comprehensive framework for managing thermal energy to enhance energy harvesting, storage, and utilization.

We begin by investigating how passive cooling and solar heating can be combined to generate temperature gradients, enabling continuous ionic thermoelectric energy conversion. By tuning the solar absorption and thermal radiation, we demonstrate a strategy to optimize temperature differentials for energy harvesting. Building on this study, we then introduce evaporative cooling as an additional mechanism to dynamically modulate temperature gradients. This allows for intermittent thermal regulation, which is particularly advantageous for applications requiring periodic thermal energy input, such as ionic thermoelectric supercapacitors (iTESCs).

With these controlled thermal gradients, we then explore their application in self-powered electronics. We develop an approach that directly applying the charging/discharging current signal from iTESCs to operate resistive sensors, demonstrating a pathway toward energy-autonomous sensing technologies. These sensors harness naturally occurring temperature variations to sustain operation, reducing reliance on external power sources.

Through this integrated approach, we establish a systematic methodology for utilizing solar-thermal-electrical pathways to drive energy applications. By coupling material design with energy conversion strategies, we hope the findings in this thesis advances the potential of ionic thermoelectric systems for sustainable power generation and adaptive energy management.

Abstract [sv]

Övergången till hållbara energisystem kräver innovativa metoder för energigenerering, omvandling och användning. Denna avhandling undersöker integrationen av sol-termiska och joniska termoelektriska effekter för att utveckla energieffektiva lösningar för temperaturgradientgenerering, energiutvinning och reglering.

I denna studie utforskar vi hur temperaturgradienter – skapade och kontrollerade genom sol-termiska processer – kan driva jonisk termoelektrisk energiomvandling och utnyttjas för praktiska tillämpningar. Genom att integrera soluppvärmning, strålningskylning och avdunstningskylning strävar vi efter att utveckla en omfattande ram för hantering av termisk energi, med målet att förbättra energiutvinning, lagring och användning.

Vi börjar med att undersöka hur passiv kylning och kontrollerad soluppvärmning kan kombineras för att generera stabila temperaturgradienter, vilket möjliggör kontinuerlig jonisk termoelektrisk energiomvandling. Genom att finjustera balansen mellan solabsorption och värmeavledning demonstrerar vi en strategi för att optimera temperaturdifferenser för energiutvinning. Med denna kunskap introducerar vi sedan avdunstningskylning som en ytterligare mekanism för att dynamiskt modulera temperaturgradienter. Detta möjliggör intermittent termisk reglering, vilket är särskilt fördelaktigt för tillämpningar som kräver periodiskt energiintag, såsom joniska termoelektriska superkondensatorer (iTESCs).

Med dessa kontrollerade temperaturgradienter undersöker vi därefter deras tillämpning inom självförsörjande elektronik. Vi utvecklar en metod där laddnings- och urladdningsströmmen från iTESCs direkt används för att driva resistiva sensorer, vilket demonstrerar en väg mot energieffektiva och autonoma sensorsystem. Dessa sensorer utnyttjar naturliga temperaturvariationer för att upprätthålla drift och minskar därmed behovet av externa energikällor.

Genom detta integrerade tillvägagångssätt etablerar vi en systematisk metodologi för att utnyttja sol-termisk-elektriska processer för att driva energitillämpningar. Genom att koppla materialdesign till energiomvandlingsstrategier hoppas vi att resultaten i denna avhandling kan bidra till att utveckla joniska termoelektriska system för hållbar elproduktion och adaptiv energihantering.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2025. p. 80
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 2456
Keywords
Opto-Thermal management, Ionic thermoelectric, Sustainable energy
National Category
Energy Engineering
Identifiers
urn:nbn:se:liu:diva-213481 (URN)10.3384/9789181181395 (DOI)9789181181388 (ISBN)9789181181395 (ISBN)
Public defence
2025-06-10, K3, Kåkenhus, Campus Norrköping, Norrköping, 10:00 (English)
Opponent
Supervisors
Available from: 2025-05-05 Created: 2025-05-05 Last updated: 2025-05-05Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Search in DiVA

By author/editor
Liao, MingnaZhao, DanJonsson, Magnus
By organisation
Laboratory of Organic ElectronicsFaculty of Science & Engineering
In the same journal
Advanced Functional Materials
Energy Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 77 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf