liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A Highly Conductive n-Type Conjugated Polymer Synthesized in Water
Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering. (Wallenberg Wood Science Center)
Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering. (Wallenberg Initiative Materials Science for Sustainability)ORCID iD: 0000-0002-3995-2776
Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.ORCID iD: 0000-0002-8071-0074
Show others and affiliations
2024 (English)In: Journal of the American Chemical Society, ISSN 0002-7863, E-ISSN 1520-5126, Vol. 146, no 23, p. 15860-15868Article in journal (Refereed) Published
Abstract [en]

Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) is a benchmark hole-transporting (p-type) polymer that finds applications in diverse electronic devices. Most of its success is due to its facile synthesis in water, exceptional processability from aqueous solutions, and outstanding electrical performance in ambient. Applications in fields like (opto-)electronics, bioelectronics, and energy harvesting/storage devices often necessitate the complementary use of both p-type and n-type (electron-transporting) materials. However, the availability of n-type materials amenable to water-based polymerization and processing remains limited. Herein, we present a novel synthesis method enabling direct polymerization in water, yielding a highly conductive, water-processable n-type conjugated polymer, namely, poly[(2,2 '-(2,5-dihydroxy-1,4-phenylene)diacetic acid)-stat-3,7-dihydrobenzo[1,2-b:4,5-b ']difuran-2,6-dione] (PDADF), with remarkable electrical conductivity as high as 66 S cm(-1), ranking among the highest for n-type polymers processed using green solvents. The new n-type polymer PDADF also exhibits outstanding stability, maintaining 90% of its initial conductivity after 146 days of storage in air. Our synthetic approach, along with the novel polymer it yields, promises significant advancements for the sustainable development of organic electronic materials and devices.

Place, publisher, year, edition, pages
AMER CHEMICAL SOC , 2024. Vol. 146, no 23, p. 15860-15868
National Category
Polymer Chemistry
Identifiers
URN: urn:nbn:se:liu:diva-204309DOI: 10.1021/jacs.4c02270ISI: 001236257600001PubMedID: 38814791OAI: oai:DiVA.org:liu-204309DiVA, id: diva2:1867859
Note

Funding Agencies|Knut and Alice Wallenberg Foundation [2021.0058, 2021.0230, 2022.0034, 2023.0464]; Wallenberg Initiative Materials Science for Sustainability WISE); Swedish Research Council [2020-03243, 2020-04538, 2022-04053]; Olle Engkvists Stiftelse [204-0256]; European Commission through the HORATES [GA-955837]; SUNREY [GA-101084422]; Swedish Government Strategic Research Area in Materials Science on Functional Materials at Linkoping University; National Research Foundation (NRF) of Korea [2009-00971]; [2019R1A6A1A11044070]

Available from: 2024-06-11 Created: 2024-06-11 Last updated: 2025-04-28Bibliographically approved
In thesis
1. N-type Conducting Polymer Inks for Organic Thermoelectrics
Open this publication in new window or tab >>N-type Conducting Polymer Inks for Organic Thermoelectrics
2025 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The persistent underdevelopment of n-type conducting polymers has impeded the progress of efficient organic thermoelectric (OTE) devices, which are critical for wearable electronics and low-grade heat harvesting. While p-type polymers such as poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) PEDOT:PSS have driven advancements in organic electronics, the absence of air-stable, high-performance n-type counterparts has limited the practical application of OTE devices. This thesis addresses this imbalance by pioneering scalable, sustainable, and application-driven strategies to advance n-type polymers, focusing on the poly(benzodifurandione) (PBFDO) system.

The significance of this work lies in its holistic approach to overcoming industrial and environmental barriers. First, the development of α-tocopherylquinone (α-TQ) as a bio-inspired catalyst eliminates energy- and resource-intensive purification steps during PBFDO synthesis, enabling large-scale production (15 L batches) while achieving record conductivity (~1321 S cm⁻¹). This breakthrough not only resolves scalability challenges but also reduces thermal conductivity by an order of magnitude, which is critical for enhancing thermoelectric efficiency. Second, the creation of PDADF—the first n-type conjugated polymer synthesized entirely in water using a recyclable catalyst (TMQ-PANa)—establishes a sustainable pathway for eco-friendly organic electronics, aligning with global green manufacturing demands. Third, stabilizing PBFDO in water with zwitterionic additives overcomes the longstanding instability of doped polymers in aqueous environments, achieving unprecedented conductivity (1307 S cm⁻¹). Finally, integrating PBFDO into mechanically robust, washable textiles demonstrates the practical example of n-type thermoelectric yarns capable of powering devices (e.g., 0.67 µW at ΔT = 70 K), effectively bridging the gap between laboratory-scale materials and real-world wearable applications.

By redefining the synthesis, processing, and integration of n-type polymers, this work provides a blueprint for sustainable, high-performance organic thermoelectrics. It addresses systemic challenges in material scalability, environmental impact, and device integration, thereby accelerating the transition from academic research to industrially viable technologies. These advancements empower the development of self-powered wearables, large-area energy harvesters, and eco-conscious electronics, marking a pivotal step toward a future where organic thermoelectrics contribute meaningfully to sustainable energy solutions.

Abstract [sv]

Den ihållande underutvecklingen av n-typ ledande polymerer har hindrat framsteg inom effektiva organiska termolelektriska (OTE) enheter, vilka är avgörande för bärbar elektronik och utnyttjande av lågenergivärme. Medan p-typ polymerer såsom poly(3,4-etylendioxitiofen):poly(styrensulfonat) (PEDOT:PSS) har drivit utvecklingen inom organisk elektronik, har avsaknaden av luftstabila, högpresterande n-typ motsvarigheter begränsat den praktiska tillämpningen av OTE-enheter. Denna avhandling tar itu med denna obalans genom att bana väg för skalbara, hållbara och applikationsdrivna strategier för att utveckla n-typ polymerer med fokus på PBFDO-systemet.

Betydelsen av detta arbete ligger i dess holistiska angreppssätt för att övervinna industriella och miljömässiga barriärer. För det första eliminerar utvecklingen av α-tokoferylkinon (α-TQ) som en bioinspirerad katalysator energikrävande och resursintensiva reningssteg under PBFDO-syntesen, vilket möjliggör storskalig produktion (15 L omgångar) samtidigt som man uppnår rekordhög ledningsförmåga (~1321 S cm⁻¹). Genombrottet löser inte bara skalbarhetsutmaningar utan minskar även den termiska ledningsförmågan med en tiopotens, vilket är avgörande för att förbättra termolelektrisk effektivitet. För det andra etablerar skapandet av PDADF – den första n-typ konjugerade polymeren som helt syntetiserats i vatten med en återvinningsbar katalysator (TMQ-PANa) – en hållbar väg för miljövänlig organisk elektronik, i linje med globala krav på grön tillverkning. För det tredje övervinner stabiliseringen av PBFDO i vatten med hjälp av zwitterjoniska tillsatser den långvariga instabiliteten hos dopade polymerer i vattenmiljöer, vilket ger en oöverträffad ledningsförmåga (1307 S cm⁻¹). Slutligen demonstrerar integreringen av PBFDO i mekaniskt robusta, tvättbara textilier ett praktiskt exempel på n-typ termolelektriska garn som kan driva enheter (t.ex. 0,67 µW vid ΔT = 70 K), vilket effektivt överbryggar gapet mellan laboratoriematerial och verkliga bärbara applikationer.

Genom att omdefiniera syntesen, bearbetningen och integrationen av n-typ polymerer tillhandahåller detta arbete en modell för hållbara, högpresterande organiska termolelektriker. Det tar itu med systematiska utmaningar inom materialens skalbarhet, miljöpåverkan och enhetsintegration, vilket påskyndar övergången från akademisk forskning till industriellt genomförbara teknologier. Dessa framsteg möjliggör utvecklingen av självförsörjande bärbara enheter, storskaliga energihämtare och miljömedveten elektronik, och markerar ett avgörande steg mot en framtid där organiska termolelektriker bidrar väsentligt till hållbara energilösningar.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2025. p. 91
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 2449
Keywords
Organic Thermoelectrics, N-Type Polymers, Conducting Polymers, Thermoelectric Textile, Conducting Ink, PBFDO
National Category
Energy Systems
Identifiers
urn:nbn:se:liu:diva-213265 (URN)9789181180923 (ISBN)9789181180930 (ISBN)
Public defence
2025-06-03, K1, Kåkenhus, Campus Norrköping, Norrköping, 10:15 (English)
Opponent
Supervisors
Available from: 2025-04-28 Created: 2025-04-28 Last updated: 2025-05-07Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMed

Authority records

Liu, TiefengZhang, QilunStoeckel, Marc-AntoineZhang, SilanLiu, XianjieFahlman, MatsYang, ChiyuanFabiano, Simone

Search in DiVA

By author/editor
Li, QifanHuang, Jun-DaLiu, Tiefengvan der Pol, TomZhang, QilunStoeckel, Marc-AntoineWu, HanyanZhang, SilanLiu, XianjieFahlman, MatsYang, ChiyuanFabiano, Simone
By organisation
Laboratory of Organic ElectronicsFaculty of Science & Engineering
In the same journal
Journal of the American Chemical Society
Polymer Chemistry

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 402 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf