liu.seSearch for publications in DiVA
System disruptions
We are currently experiencing disruptions on the search portals due to high traffic. We are working to resolve the issue, you may temporarily encounter an error message.
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Defect Engineering: Synthesis and Electrochemical Properties of Two-Dimensional Mo1.74CTz MXene
Linköping University, Department of Physics, Chemistry and Biology, Materials design. Linköping University, Faculty of Science & Engineering.
Linköping University, Department of Physics, Chemistry and Biology, Materials design. Linköping University, Faculty of Science & Engineering. Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics.ORCID iD: 0000-0002-7502-1215
Linköping University, Department of Physics, Chemistry and Biology, Materials design. Linköping University, Faculty of Science & Engineering.
Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.ORCID iD: 0000-0001-9140-6724
Show others and affiliations
2024 (English)In: SMALL SCIENCE, ISSN 2688-4046, Vol. 4, no 10, article id 2400204Article in journal (Refereed) Published
Abstract [en]

The creation of vacancies and/or pores into two-dimensional materials, like graphene and MXenes, has shown to increase their performance for sustainable applications. However, a simple and affordable method with controlled and tailorable vacancy concentration and/or pores size remains challenging. Herein, a simple and reproducible method is presented for controlled synthesis of Mo1.74CTz MXene with randomly distributed vacancies and pores, obtained from selective etching of both Ga and Cr in the Cr-alloyed MAX-phase like precursor Mo1.74Cr0.26Ga2C. Structural and compositional analysis of the 3D alloy show approximate to 13% Cr on the metal site, homogeneously distributed between different particles and within the atomic structure. After etching, it translates to Mo1.74CTz MXene, exhibiting defect-rich sheets. Notably, the incorporation of Cr facilitates a shorter etching time with an improved yield compared to Mo2CTz. The Mo1.74CTz MXene displays excellent electrochemical properties, almost doubling the capacitance values (1152 F cm(-3) and 297 F g(-1) at 2 mV s(-1) scan rate), compared to its pristine counterpart Mo2CTz. The presented method and obtained results suggest defect engineering of MXenes through precursor alloying as a pathway that can be generalized to other phases, to further improve their properties for various applications.

Place, publisher, year, edition, pages
WILEY , 2024. Vol. 4, no 10, article id 2400204
Keywords [en]
alloying; defects; electrochemical properties; MAX phase; MXene; pores; vacancies
National Category
Other Materials Engineering
Identifiers
URN: urn:nbn:se:liu:diva-207197DOI: 10.1002/smsc.202400204ISI: 001286116100001OAI: oai:DiVA.org:liu-207197DiVA, id: diva2:1895011
Note

Funding Agencies|Knut och Alice Wallenbergs Stiftelse [2019.0433, KAW 2020.0033]; Swedish Government Strategic Research Area in Materials Science on Advanced Functional Materials at Linkoping University [2009-00971]; Swedish Foundation for Strategic Research (SSF) [EM16-0004]; Swedish Foundation for Strategic Research (SSF); KAW Foundation; Swedish Research Council [2021-00171, RIF21-0026]

Available from: 2024-09-04 Created: 2024-09-04 Last updated: 2025-02-19Bibliographically approved
In thesis
1. Defect Engineering of Mo-based Mo2-xCTz MXenes
Open this publication in new window or tab >>Defect Engineering of Mo-based Mo2-xCTz MXenes
2025 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

From the development of bronze to the doping of silicon, the discovery and enhancement of materials have played a critical role in enabling disruptive technologies. With the increasing demand for device miniaturization and sustainability, two-dimensional (2D) nanomaterials have gained significant attention since the discovery of graphene, owing to their unique morphology and size. Among these, MXenes exhibit exceptional structural and chemical diversity, making them promising for various applications, such as energy storage and catalysis. 

Despite substantial progress, optimizing the properties of nanomaterials remains essential for overcoming current technological challenges. One strategy for this optimization is defect engineering, which involves the intentional creation of structural defects, such as vacancies. Currently, MXene properties can be modified by altering their composition (e.g., metal elements and/or surface terminations) and introducing ordered vacancies with fixed defect fractions. This thesis presents an alternative approach: the creation of randomly distributed vacancies and vacancy clusters with tunable defect content. 

Paper I introduces the concept of generating random vacancies in 2D MXenes by incorporating a sacrificial element in the parent MAX phase. Specifically, the Mo2Ga2C MAX phase was alloyed with Cr and etched in an HF solution, removing both Cr and Ga atoms. The resulting Mo2-xCTz MXenes exhibited surface defects and enhanced capacitance values. Paper II further expands this approach, demonstrating that varying the Cr content in the precursor results in MXenes with different defect fractions. The limits of Cr incorporation in the precursor phases were investigated through both simulations and experiments. Additionally, 2D MXenes with varying defect concentrations were synthesized, and electrochemical characterizations indicated that the defect concentration could be optimized for superior performance. 

These findings suggest that this defect engineering strategy provides a viable pathway to control defect concentrations and tune MXene properties. In principle, this approach could be extended to other MAX phases and sacrificial elements, unlocking new possibilities for the development of MXenes with novel and enhanced properties.  

Abstract [sv]

Från utveckling av brons till dopning av kisel har upptäckter och förbättringar av material haft en avgörande roll för att möjliggöra banbrytande teknologier. Med ökade krav på t.ex. allt mindre komponenter och hållbarhet har två-dimensionella (2D) material fått allt större uppmärksamhet på grund av en unik morfologi och unika egenskaper. Bland 2D-material uppvisar MXener en stor kemisk mångfald, vilket gör dem lovande för en mängd tillämpningar, såsom energilagring och katalys.

Trots betydande framsteg är det viktigt att fortsätta optimera materialegenskaper, för att lösa nuvarande tekniska utmaningar. En strategi för att trimma materialegenskaper är defektdesign, som handlar om att avsiktligt skapa strukturella defekter, såsom vakanser. Nuförtiden kan egenskaper hos så kallade MXener modifieras genom att ändra materialets sammansättning (t.ex. val av metall och/eller yttermineringar) och introducera ordnade vakanser i specifika defektkoncentrationer. Denna avhandling presenterar ett alternativt tillvägagångssätt: skapandet av slumpmässigt fördelade vakanser och vakanskluster med skräddarsydd defektkoncentration.

Artikel I introducerar konceptet att generera slumpmässigt fördelade vakanser i 2D MXener genom att blanda in ett extra atomslag i den ursprungliga MAX-fasen, som sedan omvandlas till 2D. För att sammanfatta, så legerades Mo2Ga2C med Cr och etsades sedan i en HFlösning, vilket avlägsnade både Cr och Ga. Detta resulterade i Mo2-xCTz MXener, med påvisade defekter och förbättrade kapacitansvärden. I Artikel II utökades detta tillvägagångssätt ytterligare, vilket visar att olika Cr-innehåll i ursprungsmaterialet resulterar i MXener med olika defektkoncentrationer. Gränserna för Cr-innehåll i MAX-fasen undersöktes genom både simuleringar och experiment. Dessutom syntetiserades 2D MXener med varierande defektkoncentrationer, och elektrokemisk karakterisering indikerade att defektkoncentrationen kunde optimeras för att få betydligt förbättrade egenskaper.

Presenterade resultat tyder på defektdesign som en möjlig väg för att kontrollera defektkoncentrationer och optimera MXene-egenskaper. I princip skulle denna strategi kunna utvidgas till andra MAX-faser och andra atomslag, vilket öppnar för nya möjligheter vad gäller utveckling av MXener med nya och förbättrade egenskaper.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2025. p. 40
Series
Linköping Studies in Science and Technology. Licentiate Thesis, ISSN 0280-7971 ; 2013
National Category
Materials Engineering Nanotechnology for Material Science
Identifiers
urn:nbn:se:liu:diva-211748 (URN)10.3384/9789181180268 (DOI)9789181180251 (ISBN)9789181180268 (ISBN)
Presentation
2025-03-28, Schrödinger, E building floor 3, 09:15 (English)
Opponent
Supervisors
Available from: 2025-02-19 Created: 2025-02-19 Last updated: 2025-03-11

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records

Halim, JosephPersson, PerRosén, Johanna

Search in DiVA

By author/editor
Ronchi, RodrigoHalim, JosephChen, NingjunPersson, PerRosén, Johanna
By organisation
Materials designFaculty of Science & EngineeringThin Film Physics
Other Materials Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 113 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf