liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Ionic Thermoelectric-Powered Resistive Sensors
Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering. (Wallenberg Wood Science Center)ORCID iD: 0000-0002-1766-5936
Dalian Univ Technol, Peoples R China.
Dalian Univ Technol, Peoples R China.
Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering. (Wallenberg Wood Science Center)ORCID iD: 0000-0002-3002-3639
Show others and affiliations
2025 (English)In: Advanced Science, E-ISSN 2198-3844, Vol. 12, no 6, article id 2413093Article in journal (Refereed) Published
Abstract [en]

Ionic thermoelectric supercapacitors (ITESCs) are noted for their high ionic Seebeck coefficient (alpha) to convert thermal energy into electrical current through charging. This work demonstrates the utilization of the charging and discharging current from ITESCs to directly operate resistive sensors. The humidity monitoring is powered by applying a periodic temperature gradient to a connected ITESC. By leveraging these properties and residual environmental heat, ITESCs can offer a promising method for autonomously powered portable sensors.

Place, publisher, year, edition, pages
WILEY , 2025. Vol. 12, no 6, article id 2413093
Keywords [en]
ionic thermoelectric supercapacitor; power supplying; resistive sensor
National Category
Other Chemical Engineering
Identifiers
URN: urn:nbn:se:liu:diva-210709DOI: 10.1002/advs.202413093ISI: 001377996200001PubMedID: 39679806Scopus ID: 2-s2.0-85212211521OAI: oai:DiVA.org:liu-210709DiVA, id: diva2:1926047
Note

Funding Agencies|Knut and Alice Wallenberg foundation; Linkoping University; Wallenberg Wood Science Center; Swedish Government Strategic Research Area in Materials Science on Functional Materials at Linkoping University (Faculty Grant SFO-Mat-LiU) [2009 00971]; Swedish Research Council [2020-00287, 2024-04196]; AForsk Foundation; STINT foundation [MG2021-9011]; National Natural Science Foundation of the China [22211530046, 22074010]

Available from: 2025-01-10 Created: 2025-01-10 Last updated: 2025-05-06
In thesis
1. Opto-Thermal Management for Ionic Thermoelectric Systems
Open this publication in new window or tab >>Opto-Thermal Management for Ionic Thermoelectric Systems
2025 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The transition to sustainable energy systems necessitates innovative approaches to energy generation, conversion, and utilization. This dissertation explores the integration of opto-thermal and ionic thermoelectric effects to develop energy-efficient solutions for thermal management and energy harvesting.

In this thesis, we explore how temperature gradients—established and controlled through opto-thermal processes—can drive ionic thermoelectric energy conversion and be leveraged for practical applications. By integrating solar heating, radiative cooling, and evaporative cooling effects, we aim to develop a comprehensive framework for managing thermal energy to enhance energy harvesting, storage, and utilization.

We begin by investigating how passive cooling and solar heating can be combined to generate temperature gradients, enabling continuous ionic thermoelectric energy conversion. By tuning the solar absorption and thermal radiation, we demonstrate a strategy to optimize temperature differentials for energy harvesting. Building on this study, we then introduce evaporative cooling as an additional mechanism to dynamically modulate temperature gradients. This allows for intermittent thermal regulation, which is particularly advantageous for applications requiring periodic thermal energy input, such as ionic thermoelectric supercapacitors (iTESCs).

With these controlled thermal gradients, we then explore their application in self-powered electronics. We develop an approach that directly applying the charging/discharging current signal from iTESCs to operate resistive sensors, demonstrating a pathway toward energy-autonomous sensing technologies. These sensors harness naturally occurring temperature variations to sustain operation, reducing reliance on external power sources.

Through this integrated approach, we establish a systematic methodology for utilizing solar-thermal-electrical pathways to drive energy applications. By coupling material design with energy conversion strategies, we hope the findings in this thesis advances the potential of ionic thermoelectric systems for sustainable power generation and adaptive energy management.

Abstract [sv]

Övergången till hållbara energisystem kräver innovativa metoder för energigenerering, omvandling och användning. Denna avhandling undersöker integrationen av sol-termiska och joniska termoelektriska effekter för att utveckla energieffektiva lösningar för temperaturgradientgenerering, energiutvinning och reglering.

I denna studie utforskar vi hur temperaturgradienter – skapade och kontrollerade genom sol-termiska processer – kan driva jonisk termoelektrisk energiomvandling och utnyttjas för praktiska tillämpningar. Genom att integrera soluppvärmning, strålningskylning och avdunstningskylning strävar vi efter att utveckla en omfattande ram för hantering av termisk energi, med målet att förbättra energiutvinning, lagring och användning.

Vi börjar med att undersöka hur passiv kylning och kontrollerad soluppvärmning kan kombineras för att generera stabila temperaturgradienter, vilket möjliggör kontinuerlig jonisk termoelektrisk energiomvandling. Genom att finjustera balansen mellan solabsorption och värmeavledning demonstrerar vi en strategi för att optimera temperaturdifferenser för energiutvinning. Med denna kunskap introducerar vi sedan avdunstningskylning som en ytterligare mekanism för att dynamiskt modulera temperaturgradienter. Detta möjliggör intermittent termisk reglering, vilket är särskilt fördelaktigt för tillämpningar som kräver periodiskt energiintag, såsom joniska termoelektriska superkondensatorer (iTESCs).

Med dessa kontrollerade temperaturgradienter undersöker vi därefter deras tillämpning inom självförsörjande elektronik. Vi utvecklar en metod där laddnings- och urladdningsströmmen från iTESCs direkt används för att driva resistiva sensorer, vilket demonstrerar en väg mot energieffektiva och autonoma sensorsystem. Dessa sensorer utnyttjar naturliga temperaturvariationer för att upprätthålla drift och minskar därmed behovet av externa energikällor.

Genom detta integrerade tillvägagångssätt etablerar vi en systematisk metodologi för att utnyttja sol-termisk-elektriska processer för att driva energitillämpningar. Genom att koppla materialdesign till energiomvandlingsstrategier hoppas vi att resultaten i denna avhandling kan bidra till att utveckla joniska termoelektriska system för hållbar elproduktion och adaptiv energihantering.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2025. p. 80
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 2456
Keywords
Opto-Thermal management, Ionic thermoelectric, Sustainable energy
National Category
Energy Engineering
Identifiers
urn:nbn:se:liu:diva-213481 (URN)10.3384/9789181181395 (DOI)9789181181388 (ISBN)9789181181395 (ISBN)
Public defence
2025-06-10, K3, Kåkenhus, Campus Norrköping, Norrköping, 10:00 (English)
Opponent
Supervisors
Available from: 2025-05-05 Created: 2025-05-05 Last updated: 2025-05-05Bibliographically approved

Open Access in DiVA

fulltext(3718 kB)6 downloads
File information
File name FULLTEXT01.pdfFile size 3718 kBChecksum SHA-512
27d324992e3f559cd9005d5e6f3534b4793a7d4a1d78e90481bcf265526c30ebc545e4cc2b7828a902d5020df7aee9ec25f16d3eb1b6490a9ba3d30ef4c13e49
Type fulltextMimetype application/pdf

Other links

Publisher's full textPubMedScopus

Search in DiVA

By author/editor
Liao, MingnaJonsson, MagnusZhao, Dan
By organisation
Laboratory of Organic ElectronicsFaculty of Science & Engineering
In the same journal
Advanced Science
Other Chemical Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 6 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 57 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf