liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
CARSS: Client-Aware Resource Sharing and Scheduling for Heterogeneous Applications
Carnegie Mellon Univ, Pittsburgh, PA, USA.
Carnegie Mellon Univ, Pittsburgh, PA, USA.
Carnegie Mellon Univ, Pittsburgh, PA, USA.
George Washington Univ, Washington, DC, USA.
Show others and affiliations
2020 (English)Conference paper, Published paper (Refereed)
Abstract [en]

Modern hardware accelerators such as GP-GPUs and DSPs are commonly being used in real-time settings such as high-performance multimedia systems and autonomous vehicles. In fact, the throughput of a wide variety of computationally demanding tasks from 3D graphics and rendering to image processing and deep learning can benefit from such specialized hardware. Such heterogeneity can affect the performance of applications running simultaneously on the same accelerator. Prior studies on resource sharing and scheduling on hardware accelerators have not attempted to account for this context. In this work, we provide a portable tagging-based cooperative scheduler and resource monitor for use by heterogeneous applications sharing a single hardware accelerator in a soft real-time environment. We also offer practical insight into how various types of applications use the hardware accelerators differently. We substantiate the feasibility of our approach and evaluate the improvement of various scheduling policies over a proprietary scheduler in several case-studies with real-world applications on 2 NVIDIA platforms: a GeForce GTX 1070 GPU and an Xavier embedded platform 1 . Although we focus on GPUs in this paper, our underlying observations and framework can also be used for sharing execution on other types of hardware accelerators.

Place, publisher, year, edition, pages
IEEE COMPUTER SOC , 2020.
National Category
Computer Sciences
Identifiers
URN: urn:nbn:se:liu:diva-168914DOI: 10.1109/RTAS48715.2020.00008ISI: 000713963100024ISBN: 9781728154992 (electronic)ISBN: 9781728155005 (print)OAI: oai:DiVA.org:liu-168914DiVA, id: diva2:1463745
Conference
2020 IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS), Sydney, NSW, Australia, 21-24 April, 2020
Available from: 2020-09-03 Created: 2020-09-03 Last updated: 2021-12-03

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Search in DiVA

By author/editor
Samii, Soheil
By organisation
Software and SystemsFaculty of Science & Engineering
Computer Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric score

doi
isbn
urn-nbn
Total: 65 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf